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ABSTRACT

The Transformer has become the de facto standard for modern language models
owing to its parallelizable training and effective autoregressive decoding. How-
ever, its fixed context window and the quadratic time and memory costs of its self-
attention mechanism remain central bottlenecks. These constraints have revived
interest in recurrent architectures that scale linearly with sequence length, but at
the cost of reduced parallelism. In this paper, we introduce Avey, a new foun-
dational architecture that breaks away from both attention and recurrence. Avey
pairs a ranker with an autoregressive neural processor to select and contextualize
only the most relevant tokens for any given token. Specifically, it decouples se-
quence length from context width, thus enabling effective and efficient processing
of arbitrarily long sequences. Results show that Avey compares favorably to the
Transformer across a variety of standard short-range NLP benchmarks, while sig-
nificantly outperforming it on tasks requiring long-range dependency modeling.

1 INTRODUCTION

The Transformer (Vaswani et al., 2017) has emerged as one of the most influential AI innovations
in recent years, profoundly impacting various aspects of modern life, including work, science, and
art, to mention just a few. Notably, Large Language Models (LLMs) are almost universally based on
the Transformer (Gu and Dao, 2023), which has demonstrated remarkable performance in natural
language processing (NLP) (Ouyang et al., 2022; Liu et al., 2019; Raffel et al., 2020) and various
other fields (He et al., 2022; Liu et al., 2021b; Baevski et al., 2020).

The Transformer’s state-of-the-art performance is largely driven by its recurrence-free self-attention
mechanism, which enables parallel processing of entire token sequences. Nevertheless, the com-
putational and memory costs of self-attention grow quadratically with sequence length, making it
inefficient for handling arbitrarily long sequences. Extensive research has been conducted over the
years to address this limitation (Tay et al., 2022), with a noticeable emphasis on linearizing atten-
tion (Katharopoulos et al., 2020; Choromanski et al., 2020; Zhai et al., 2021; Wang et al., 2020).
These linear approaches aim at approximating self-attention in a more computationally efficient
manner, without considerably compromising performance.

Nonetheless, linear attention mechanisms have generally underperformed the original self-attention
mechanism, often by a significant margin in language modeling tasks (Yang et al., 2023; Kasai
et al., 2021). While recent linear models such as RWKV (Peng et al., 2025) and RetNet (Sun et al.,
2023) have shown promising results, substantial progress is still needed before they can reliably and
consistently surpass the Transformer (Li et al., 2024b). In addition, these models have yet to demon-
strate definitive empirical effectiveness at scale (Gu and Dao, 2023). This persistent performance
gap between quadratic and linear approaches has spurred renewed interest in RNN-based architec-
tures, which offer linear scalability with sequence length but limit parallelism due to their inherently
cyclical nature.

To exemplify, state space models (SSMs) (Kalman, 1960; Gu et al., 2021b), which are viewed as
extensions of RNNs, have recently emerged as a compelling class of architectures. Unlike tradi-
tional RNNs, SSMs can parameterize their state transition matrices in a structured manner (e.g., via
using a diagonal plus low-rank decomposition) to improve computational efficiency and enhance
gradient flow. A specialized subclass of these models, known as structured state space sequence
(S4) models (Gu et al., 2021a;b), has garnered growing attention. Yet, despite their theoretical ap-
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Figure 1: Needle-in-a-Haystack test performance comparison between Transformer++, Mamba,
RWKV-7, and Avey, all using 1.5B parameters. The x-axis denotes the lengths of haystacks (i.e.,
documents with distractor texts, varying from 2k to 64k tokens) and the y-axis refers to the position
of the needle (i.e., a short sentence) within any of the haystacks. A green cell indicates successful
needle recall, while a red cell indicates failure. Transformer++, Mamba, and RWKV-7 were trained
with 2k-token context windows, whereas Avey was trained with only a 512-token window yet was
able to extrapolate to the longest sequences evaluated.

peal, S4 models struggled with language modeling tasks, typically trailing Transformers by several
points (Fu et al., 2022; Gu et al., 2021a).

Most recently, Mamba (Gu and Dao, 2023) advanced S4 models by enhancing their selectivity and
effectiveness while enabling high training concurrency. It demonstrated strong performance on tasks
involving long-range dependencies and compared favorably to Transformers in language modeling.
However, training, scaling, and interpreting Mamba—and SSMs more broadly (Smith et al., 2022;
Poli et al., 2023; Hasani et al., 2022)—remain challenging, while continue to be promising (Dao and
Gu, 2024).

We posit that the primary limitation of the Transformer lies in its inability to effectively model
dependencies beyond its fixed context window. While its core self-attention mechanism is inher-
ently parallelizable, this constraint makes its quadratic complexity a significant bottleneck at scale.
This explains the surge of research aimed at reducing this complexity or exploring RNN-inspired
alternatives. In this work, we propose a more viable approach by decoupling context width from
sequence length, allowing models to scale to arbitrarily long sequences. Under this paradigm shift,
the quadratic training complexity becomes less of a concern when small context windows are used,
especially if the models maintain high parallelizability.

This paper introduces Avey1, a new architecture for language modeling that departs from
Transformer-based and RNN-like designs. Avey is a flexible, sequence-length-invariant model that
decouples sequence length from context width, thus enabling effective processing of long-range se-
quences. It preserves the influence of tokens that appear outside its context window, regardless of
their positions in the sequence. This is achieved via a weighted-selective-split interaction mecha-
nism, which systematically skips irrelevant tokens beyond the context window and ensures direct
interactions with only relevant ones, retaining their contributions irrespective of sequence length.

Fig. 1 illustrates Avey’s ability to generalize beyond its training context. A popular benchmark for
evaluating this capability is Needle-in-a-Haystack (NiaH) (Kamradt, 2023). This benchmark mea-
sures a model’s capacity to recitep a specific sentence (i.e., the needle) placed at an arbitrary position
within a large body of distractor text (i.e., the haystack). Since its introduction, NiaH has become
a widely used sandbox for probing the limits of long-context language models in capturing distant
dependencies, and smaller models in generalizing beyond their trained context windows (Fu et al.,
2024). As shown in the figure, Transformer++ (i.e., the Transformer with an enhanced architecture
and training recipe– see Section 3.1), which was trained with a 2k-token context window, could not
generalize beyond that limit. In contrast, Mamba and RWKV-7 (Peng et al., 2025), also trained with
2k-token windows, managed to generalize to nearly 8k and 16k tokens, respectively. Most notably,
Avey, despite being trained on a context window of only 512 tokens, successfully generalized to the
maximum tested sequence length of 64k tokens, demonstrating strong extrapolative capability far
beyond its original training regime.

1Avey is not an acronym, but a name that the authors like.
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To elaborate on its technical aspects, Avey is a recurrence- and attention-free architecture comprising
two principal components, a ranker and a neural processor. The ranker slices each input sequence
into splits of consecutive tokens and selects the top k most relevant splits for each current split being
processed by the neural processor. The neural processor consists of three core units, the enricher,
contextualizer, and fuser. The enricher enhances the quality of token embeddings by expanding their
learnable features using a position-wise neural network. The contextualizer is an embedding-wise
neural network with dynamic parameterization, enabling interactions between relevant tokens across
the current and top k splits. Lastly, the fuser learns a function that integrates the contextualized
features produced by the contextualizer with some uncontextualized features bypassed by a partial-
embedding bypassing mechanism.

To summarize, our main contributions in this paper are as follows:

• We propose Avey, a new recurrence- and attention-free neural architecture that decouples
context window from sequence length, thus enabling effective processing of long-range
sequences.

• We show that Avey performs comparably to the Transformer—outperforming it at two
model sizes and underperforming it at one—across a range of popular zero-shot NLP
benchmarks, thereby establishing an initial foundational architecture with potential for
more scalable and effective language modeling.

• In contrast to the Transformer, we demonstrate that Avey can scale far beyond its context
window using the standard Single Needle-In-A-Haystack (S-NIAH) benchmark suite from
RULER (Hsieh et al., 2024).

• We show that Mamba (representing SSMs) and RWKV-7 (representing linear attention
models) exhibit some ability to generalize beyond their training context windows, but their
performance decline significantly as the sequence length increases far beyond them. By
comparison, Avey consistently and substantially outperforms both Mamba and RWKV-7
on the S-NIAH benchmark suite.

• We conduct extensive ablation studies to assess the impact of each design choice in Avey.

• We provide a comprehensive survey of related work in Appendix O.

• We open-source the code and pretrained checkpoints of Avey to facilitate reproducibility
and foster future research (see Section 6).

2 AVEY

As indicated earlier, Avey comprises two components, a ranker and a neural processor. We next
describe each component in detail (see Appendix R for more design intuitions behind them).

2.1 RANKER

Avey decouples sequence length from context width, enabling the processing of arbitrarily long
sequences. The sequence length refers to the total number of tokens in a sequence, while the context
width denotes the number of tokens that the neural processor can contextualize simultaneously.
Importantly, the sequence length can be set to a value that is much larger than the context width. As
such, the influence of global tokens (or tokens that fall outside the context window) may diminish
as more tokens are successively processed. If such global tokens are semantically relevant to local
tokens (or tokens that fall within the context window), the quality of token representations will
decline, and the effectiveness of the model will degrade.

To this end, the ranker and neural processor jointly employ a weighted-selective-split interaction
mechanism, which skips irrelevant global tokens and ensures direct interactions with relevant ones,
preserving their impact regardless of sequence length. As demonstrated in Fig. 2, Avey divides each
input sequence into equal-sized splits, each consisting of a list of contiguous token embeddings.
Prior to predicting the next token in the sequence (e.g., token 9 in the figure), Avey involves the
ranker to identify the top k (e.g., 2 in the figure) splits that are most relevant (e.g., splits 1 and 3) to
the current split (i.e., split 4).

The current split is defined as the one that either contains the token to be predicted (e.g., split 4 may
contain only embedding 7, and Avey will aim to predict token 8) or contributes to predicting the first
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Figure 2: The ranker (left) partitions each input sequence into equal-sized splits and identifies the
top k most relevant ones (e.g., splits 1 and 3 for k = 2) with respect to the current split (e.g., split 4),
using the MaxSim operator. These top-k splits are then weighted by their normalized scores, where
the normalized score (NS) of a split is computed as the ratio of its MaxSim value to the highest
MaxSim score among the k splits. Finally, the weighted top-k splits are contextualized together
with the current split by the neural processor (right).

token in its subsequent split (e.g., split 4 serves in predicting token 9, which will belong to split 5
once predicted). To determine relevance, the ranker computes a similarity score between the current
split, say Sc, and each preceding split, say Sp, using the MaxSim operator (Khattab and Zaharia,
2020), originally proposed and utilized in Information Retrieval. Specifically, pairwise similarities
are calculated (e.g., using a cosine function) between each embedding in Sc and all embeddings in
Sp. For each embedding in Sc, the maximum similarity across all Sp’s embeddings is taken, and
then the maxima of all Sc’s embeddings are added to yield the final MaxSim score (see Fig. 2). This
score signifies how relevant Sp is to Sc.

Subsequently, the preceding splits are ranked based on their MaxSim scores, and the top k most
relevant ones are contextualized with the current split by the neural processor, while maintaining
their original order in the sequence. Before contextualization, however, the MaxSim scores of the
top k splits are normalized with respect to the highest MaxSim score among them (e.g., split 3’s
MaxSim score of 0.8 in Fig. 2 is normalized via dividing it by the maximum score among the top k
splits, i.e., 1.6, yielding 0.5). Each selected split is then weighted by its corresponding normalized
MaxSim score, effectively scaling its contribution during contextualization.

As a result, the weighted-selective-split interaction mechanism does not only allow the ranker to
rank splits based on relevance but also the neural processor to contextualize them accordingly, as
each selected split is pre-weighted by its relevance score. This empowers the neural processor to
judiciously leverage global information (i.e., splits beyond the context width) by focusing selectively
on only relevant features, emphasizing informative ones and deemphasizing less useful ones, thus
enhancing performance. We analyze the impact of weighting the top k splits in Appendix K.

Note that the ranker is invoked only once per full forward and backward passes2. To elucidate,
Avey’s depth can be increased by stacking multiple layers within the neural processor (see Fig. 3),
thereby enabling the modeling of complex, hierarchical patterns. In contrast, only a single ranker is
required before the stack of layers within the processor, regardless of their number. Once the ranker
identifies the top k relevant splits of the current split, the neural processor contextualizes them all
using one or more layers.

Consequently, during training, each current split is matched once against every preceding split. This
results in a compute cost of N/S·(N/S+1)

2 · S2d or a time complexity of O(N2d), where N is the
sequence length, S is the split size, and d is the embedding dimension. This complexity assumes

2It is important to note as well that the ranker is an internal module that selects among in-sequence splits
already present in the input. It does not query external corpora or indexes and therefore adds neither retrieval
latency nor corpus-freshness dependencies. It is not a RAG component, which fetches external evidence at
inference (and/or training) time from a separate knowledge base. The two are orthogonal indeed (one allocates
internal context and the other changes the evidence set) and can be composed. See Appendix P for details.
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Figure 3: The neural processor (top) with its three major components, the enricher, contextualizer
(Cx), and fuser. The processor is unfolded into two copies for illustrative purposes only, to show
how different embeddings, (e.g., e1 and e2, or more precisely, parts of their tails, i.e., e122 and e222)
are contextualized by Cx (i.e., in reality, all components are shared across all embeddings and many
embeddings can be input to Cx simultaneously).

that scalar multiply-add operations (e.g., those used in computing cosine similarity for MaxSim) and
comparisons (e.g., those utilized to determine maximum scores) are constant-time. We next discuss
the neural processor.

2.2 NEURAL PROCESSOR

The neural processor encompasses three key machineries, the enricher, contextualizer, and fuser
(see Fig. 3). We describe each in detail below.

2.2.1 THE ENRICHER

The enricher aims at enriching the quality of each token representation via expanding the quantity
of its learnable features, thereby enabling the contextualizer to capture more nuanced distinctions
between tokens. Concretely, it is a one-layer, position-wise neural network (i.e., the input to each
neuron is a single scalar element from an embedding), thus operating on each embedding indepen-
dently, without considering neighboring embeddings. As such, it allows intra-feature interactions
within the context of each individual embedding, facilitating the learning of higher-order and more
expressive representations. The enricher can expand each input embedding by an arbitrary factor.
We study the effect of varying the expansion factor on Avey’s performance in Appendix D, and
ablate the enricher’s contribution in Appendix K.

Equation 1 formalizes the enricher, where X ∈ RC×d is a matrix of C input embeddings (C ≤ N ,
where N is the sequence length), each of dimension d; σ is an activation function; U ∈ Rd×m is
a learnable weight matrix defining a linear projection from dimension d to m, where m > d; and
b ∈ RC×m denotes biases.

Z = σ(XU+ b) (1)

As demonstrated in Fig. 3, the enricher feeds both, the contextualizer and the fuser. In particular,
it bypasses a portion of each expanded embedding directly to the fuser in a technique that we refer
to as partial-embedding bypassing. More precisely, the output of the enricher, Z ∈ RC×m, is
split into two parts: (1) the head Zh ∈ RC×mh , which is bypassed directly to the fuser, and (2) the
tail Zt ∈ RC×mt , which is forwarded to the contextualizer, where m = mh +mt. Consequently,
varying the tail size alters the head size, which can influence Avey’s performance. We investigate
the impact of different tail sizes on Avey’s performance in Appendix E.
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The partial-embedding bypassing technique allows preserving raw distinctive features of each em-
bedding, thus inducing representations with inherent diversity. This diversity may serve in allevi-
ating issues like entropy collapse (Zhai et al., 2023), where the contextualizer increasingly focuses
on a few tokens, and over-smoothing (Zhou et al., 2021; Shi et al., 2022; Zhou et al., 2024), where
embeddings become increasingly similar, as Avey’s depth is increased. We analyze the significance
of partial-embedding bypassing on Avey’s effectiveness in Appendix K.

Lastly, Equation 1 implies that each neuron performs a weighted sum of d input features (i.e., the
elements of an embedding), incurring d−1 multiply-add operations. Since d is projected to a higher
dimension m3, the total computational cost is m(d− 1) per token. For a sequence of N tokens, the
cost becomes Nm(d− 1), or asymptotically O(Nmd).

2.2.2 THE CONTEXTUALIZER

The contextualizer is a one-layer, embedding-wise neural network (i.e., the input to each neuron is
one embedding), thus operating in parallel on C embeddings, where C denotes the context width.
More precisely, it enables inter-embedding, data-dependent interactions of only tail embeddings
(i.e., Zt ∈ RC×mt , as defined in Section 2.2.1), after each enricher’s output embedding m is split
into a head part (i.e., mh) and a tail part (i.e., mt), and only the mt part (e.g., e12 and e22 in Fig. 3)
is forwarded to the contextualizer.

The mt part of each enriched embedding is further divided into two equal portions, mtl (or left
portion) and mtr (or right portion), to enable judicious control of information flow through the
neural processor. Specifically, mtl serves as a gating mechanism for mtr, regulating how much
of its contextualized feature values are propagated forward. Both mtl and mtr are learnable by
the model, hence, allowing mtl to dynamically capture the significance of each mtr’s feature, and
emphasize or deemphasize its influence accordingly. This gating mechanism was inspired from
gMLP (Liu et al., 2021a) and resembles that of Gated Linear Units (Dauphin et al., 2017; Shazeer,
2020; Wu et al., 2019).

More formally, Zt ∈ RC×mt is partitioned into two equal parts, Ztl ∈ RC×(mt/2), which is
bypassed to a multiplicative element-wise operation as part of a gating mechanism, and Ztr ∈
RC×(mt/2), which is contextualized via a neural network, where each neuron takes as input an
embedding of dimension mt/2. Equation 2 defines the overall process, where V ∈ RC×C is a
learnable weight matrix representing a linear cross-embedding transformation, ⊙ denotes element-
wise multiplication, b′ ∈ RC×(mt/2) refers to optional biases, and N (Ztr) and N (Z⊤

tr) are row-
and column-wise normalized versions of Ztr, respectively.

c(Zt) = Ztl ⊙ σ
((
V ⊙N (Ztr)N (Z⊤

tr)
)
Ztr + b′) (2)

Equation 2 suggests that each neuron in the contextualizer’s network performs a weighted sum
of the cosine similarities between embeddings (denoted by N (Ztr)N (Z⊤

tr)) and the embeddings
themselves (denoted by Ztr). This introduces a level of selectivity into the neural processor, as
advocated by (Gu and Dao, 2023). Specifically, it makes the parametrization of the neural processor
dynamic, enabling it to disregard or focus on information during inference based on the input. We
examine the influence of dynamic parametrization on Avey’s performance in Appendix K4.

Finally, we note that the contextualizer inherently models the relationships between tokens, making
the neural processor naturally aware of their positions in the sequence (i.e., positional encodings are
not needed). In terms of complexity, as each neuron performs a weighted sum of C embeddings,
each of dimension mt/2, it results in a cost of (C − 1)mt/2 multiply-add operations. With C
neurons, the cost becomes C(C−1)mt/2. For a sequence of N tokens, the contextualizer processes
N/S splits, each contextualized with k relevant splits, making C = S(k + 1) and yielding a total
cost of (N/S)[C(C − 1)mt/2] = N(k + 1)[(C − 1)mt/2] (after substituting S with C/(k + 1)),
or asymptotically O(NkCmt).

3In our case, we experiment with m being a multiple of d, entailing that m ≥ 2d (see Appendix D).
4See also a discussion on neural contextualization versus attention in Appendix Q.
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2.2.3 THE FUSER

The fuser is designed to learn an optimal function, referred to as fusion5, that integrates uncontex-
tualized features (i.e., those of dimension mh, bypassed by the partial-embedding bypassing tech-
nique) with contextualized features (i.e., those of dimension mt/2, output by the contextualizer).
Subsequently, it produces, for each input token, a contracted representation that matches the token’s
original embedding dimension d (see Fig. 3). Akin to the enricher, it is a one-layer, position-wise
neural network, which operates on each embedding of dimension mh +mt/2 independently.

Equation 3 provides a mathematical definition of the fuser, where Zh ∈ RC×mh (as described in
Section 2.2.1) and c(Zt) ∈ RC×(mt/2) (as suggested by Equation 2) are concatenated, and O ∈
R(mh+mt/2)×d is a learnable weight matrix representing a linear projection from dimension mh +
mt/2 back to dimension d, where d < mh +mt/2

6.

f(Z) = [Zh ∥ c(Zt)]O (3)

Equation 3 entails that each neuron performs a weighted sum of mh +mt/2 embedding elements,
yielding a cost of (mh+mt/2− 1) multiply-add operations. For d neurons (since the fuser projects
mh + mt/2 to d), the cost is d(mh + mt/2 − 1). For a sequence of N tokens, the total cost is
Nd(mh +mt/2− 1), or asymptotically O(Nmd).

Considering the aggregate computational costs of the ranker, enricher, contextualizer, and fuser,
Avey exhibits a training time complexity of O(L(2Nmd + NkCmt) + N2d), where L denotes
the number of neural processor layers. As the term N2d dominates asymptotically, the overall
complexity simplifies to O(N2d). During inference, the complexity reduces to O(N), or linear
per token. We elaborate on Avey’s time complexity in Appendix N. In addition, we show that
its empirical Time to First Token (TTFT), a key latency metric for real-time applications (Horton
et al., 2024; Liu et al., 2025; Dexter et al., 2025), is significantly lower than that of Transformer++,
Mamba, and RWKV-7 (see Fig. 8 in Appendix N).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We compare Avey against three leading open-source models, namely, Mamba (Implementation,
2023a), RWKV-7 (Implementation, 2023b), and Transformer++, extended to the strongest architec-
tural recipe of the standard Transformer (Karpathy, 2023) (see Appendix A for details). All models
were trained using their best-known hyperparameters under a fixed budget of 100 billion tokens
drawn from the FineWeb dataset (Hugging Face, 2023). Complete training and model hyperparam-
eters for all the baselines are provided in Appendix A.

To assess each model’s accuracy, we employed a suite of widely used NLP benchmarks, including
ARC-E and ARC-C (Clark et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020),
OBQA (Mihaylov et al., 2018), SIQA (Sap et al., 2019), and Winogrande (Sakaguchi et al., 2021).
Additionally, we evaluated the long-context retrieval capabilities of all the models using the standard
Single Needle-In-A-Haystack (S-NIAH) benchmark suite from RULER (Hsieh et al., 2024). Full
details of all the benchmarks and additional experimental setups are included in Appendix A.

3.2 DESIGN CHOICES

We conducted over 200 experiments to explore several key design choices. Table 1 summarizes our
findings and provides references to the corresponding experiments that support each conclusion.

3.3 SHORT-RANGE BENCHMARK RESULTS

In this section, we evaluate Avey on standard autoregressive language modeling benchmarks, com-
paring it against Transformer++, Mamba, and RWKV-7 across three model sizes, small, medium,
and large, as defined in Section 3.1. We utilize a range of widely used zero-shot downstream eval-
uation tasks, all detailed in Section 3.1. Table 2 summarizes the results. With small models, Avey,
Mamba, and RWKV-7 outperformed Transformer++ by average margins of 1.43%, 2.41%, and

5The name is inspired from the CNN literature (Hu et al., 2018).
6This inequality will always hold if mh +mt ≥ 2d, as is the case in our experiments (see Section 3).
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Table 1: Summary of studies for key design choices and corresponding experimental references.

Question Answer Experiments

RMSNorm or LayerNorm? RMSNorm Appendix H

LR: to decay or not to decay? Yes, cosine decay with peak LR of 1e−3 Appendix I

Best values for sequence length N , split size S,
and top-k splits?

N = 512, S = 64, k = 7 Appendix G

Activation in the enricher? Yes, ReLU2 Appendix B

Activation in the contextualizer? No Appendix C

Deeper model and narrower embeddings, or
shallower model and wider embeddings?

Deeper model and narrower embeddings Appendix F

Weight ranked splits? Yes, using normalized scores Appendix K

Enrich embeddings before contextualization? Yes, by 4x Appendix K, D

Bypass uncontextualized features to the fuser? Yes, 50% of each enriched embedding Appendix K, E

Static or dynamic parametrization for the
contextualizer?

Dynamic parametrization Appendix K

Replace the contextualizer with self-attention? No Appendix K

Table 2: Zero-shot performance across multiple NLP tasks.

Model ARC-C ARC-E HellaSwag OBQA PIQA SIQA Winogrande Average

Avey-153M 24.37 42.33 39.36 31.40 68.37 39.13 51.28 42.32
Transformer++-152M 23.63 43.17 39.32 29.80 67.01 38.89 50.22 41.72
Mamba-144M 24.17 43.53 40.55 30.40 68.32 39.41 52.72 42.73
RWKV-7-168M 24.17 43.01 41.55 29.67 68.72 39.17 51.09 42.48

Avey-496M 27.50 48.95 51.82 32.47 72.49 40.15 54.38 46.82
Transformer++-488M 26.73 48.09 52.66 31.73 72.13 39.93 55.25 46.65
Mamba-500M 28.64 51.02 54.15 34.47 73.03 40.84 55.49 48.23
RWKV-7-501M 27.13 49.37 54.54 36.27 73.58 39.40 55.72 48.00

Avey-1.52B 31.26 56.55 61.42 36.80 75.61 42.00 57.06 51.53
Transformer++-1.5B 30.00 56.29 63.87 38.00 76.01 42.24 61.38 52.54
Mamba-1.4B 32.13 57.74 63.74 36.85 76.19 42.00 60.40 52.72
RWKV-7-1.5B 32.94 59.05 64.43 37.13 76.84 41.71 60.06 53.17

1.82%, respectively. Mamba and RWKV-7 slightly exceeded Avey’s performance, with average
margins of 0.9% and 0.3%, respectively. With medium models, Avey, Mamba, and RWKV-7 again
outperformed Transformer++ by averages of 0.3%, 3.4%, and 2.9%, respectively. Lastly, with large
models, Avey underperformed Transformer++ by an average of 1.9%, while Mamba and RWKV-7
marginally outpaced it by 0.71% and 1.19%, respectively.

The results above assume a fixed training budget of 100B tokens. To better understand how Avey
scales with increasing model size, we conducted additional experiments following the Chinchilla
scaling laws (Hoffmann et al., 2022), which recommend increasing the number of training tokens
proportionally with model size. Consequently, we adjusted the number of training steps and tokens
to align with these laws. Appendix J outlines the configurations of the trained models, including the
numbers of layers, embedding dimensions, training steps, learning rates, and total training tokens.
The methodology of these experiments closely follows that of (Gu and Dao, 2023), with slight
modifications (e.g., to accommodate parameter budget constraints). As demonstrated in Appendix J,
Avey scales as effectively as Transformer++, particularly when both model size and token count are
scaled proportionally in accordance with the Chinchilla scaling laws.

3.4 LONG-RANGE BENCHMARK RESULTS

We now evaluate Avey, Transformer++, Mamba, and RWKV-7 on benchmarks designed to as-
sess performance on tasks with long-range dependencies. Specifically, we use the standard Single
Needle-In-A-Haystack (S-NIAH) benchmark suite from RULER(Hsieh et al., 2024), as described in
Section3.1. The S-NIAH suite includes multiple variants, notably S-NIAH-1 (pass-key retrieval) and
S-NIAH-2 (number in haystack). S-NIAH-1 involves retrieving the specific value associated with
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Figure 4: Performance comparison between Transformer++, Mamba, RWKV-7, and Avey on S-
NIAH-1 and S-NIAH-2. The x-axis denotes the lengths of haystacks (i.e., documents with distractor
texts, varying from 2k to 64k tokens). All models use 0.5B parameters. Similar results are shown in
Appendix M for other model sizes.

a given key (the pass-key) from a distractor text (the haystack) containing many key-value pairs.
The pass-key, serving as the needle, appears only once, and the model must accurately recall its
corresponding value regardless of its position in the haystack. S-NIAH-2 is similar to S-NIAH-1 but
poses a greater challenge, whereby the value to be retrieved is numerical (e.g., a random 9-digit num-
ber). This task requires exact recall, where even a single-digit error is considered incorrect, thereby
testing the model’s precision in extracting structured numerical information from long haystacks.

Fig. 4 demonstrates the results of Avey, Transformer++, Mamba, and RWKV-7 on both S-NIAH-1
and S-NIAH-2 benchmarks. As described in Section 3.1, Transformer++, Mamba, and RWKV-
7 were all trained with a context window of 2,048 tokens. As shown, Transformer++ performs
strongly on both benchmarks as long as the haystack length remains within its trained context win-
dow. Once the haystack’s length exceeds its window width, Transformer++ fails to recall the correct
values associated with the keys. In contrast, Mamba and RWKV-7 exhibit some ability to general-
ize beyond their training windows, but their performance also declines significantly as the haystack
length increases far beyond those limits. On the flip side, Avey achieves good performance across
both benchmarks, despite being trained with a context window of only 512 tokens. For instance,
on S-NIAH-2 with a 64k-token haystack, Avey outperforms Mamba and RWKV-7 by averages of
85.25% and 23.6%, respectively. In addition, on S-NIAH-1 under the same 64k-token setting, Avey
achieves an accuracy of 97.8%, while Mamba and RWKV-7 drop to 0% and 0.8%, respectively.

Interestingly, Avey’s performance tends to improve as the haystack length increases, highlighting its
strong extrapolative capability. This behavior can be attributed to the fact that as the haystack length
(i.e., sequence length N ) grows, the candidate pool from which the ranker selects the top-k splits
for contextualization also expands. As discussed in Appendix G, a larger N enables the ranker to
identify and retrieve more relevant splits while discarding less informative ones, thereby improving
the overall quality of contextualization and potentially enhancing performance. This effect is fur-
ther supported by the results in Appendix K, where the inclusion of the ranker led to measurable
performance gains. Notably, embeddings containing a needle—whether in S-NIAH-1 or S-NIAH-
2—are not processed in isolation but rather contextualized alongside other embeddings. As such, an
improved quality of contextualization driven by the ranker may contribute to more accurate value
recall. However, whether this mechanism fully explains Avey’s increasing performance with longer
haystacks remains uncertain, and further interpretability studies are needed to better understand the
underlying drivers of this behavior.

4 RELATED WORK

Appendix O provides a comprehensive survey on related work.

5 CONCLUSION

In this paper, we introduced Avey, a new foundational architecture for autoregressive language mod-
eling. Unlike traditional models, Avey relies neither on recurrence nor attention. Instead, it employs
a neural approach to enrich and contextualize embeddings. Additionally, it leverages a ranker that
enables the model to flexibly and effectively handle sequences of arbitrary lengths, despite being
trained with only a small context window. We hope this work lays the groundwork for future re-
search and inspires further advances in scalable and effective language modeling.
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6 REPRODUCIBILITY

All results reported in this paper are reproducible. Section 2 specifies Avey’s components in detail.
The full experimental methodology is provided in Appendix A. We attach a repository with code
as supplementary material. The repository includes: (1) training and evaluation scripts; (2) con-
figuration files with the exact hyperparameters used for every experiment; (3) data preprocessing
instructions and dataset references/splits; and (4) environment specifications and run scripts to re-
generate all tables and figures. Using the provided commands on hardware comparable to our setup
reproduces the reported numbers within expected seed variance.
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Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Daniel Y Fu, Elliot L Epstein, Eric Nguyen, Armin W Thomas, Michael Zhang, Tri Dao, Atri
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A EXPERIMENTAL METHODOLOGY

In this section, we describe the experimental methodology employed throughout the paper. To begin
with, we adopted a cascaded search process to identify the best configuration of Avey. Specifically,
we began with a baseline version of the neural processor—excluding the ranker—and sequentially
explored several architectural design choices. After each empirical conclusion regarding a specific
architectural element, we integrated that element into the processor (one at a time) and resumed the
search process from the updated configuration. This cascaded process is captured chronologically
in Appendices B, C, D, E, and F.

To elaborate, we started with an expansion factor of 4× in the enricher, a tail size of 50% (i.e., half
of each expanded embedding is forwarded to the contextualizer), RMSNorm (Zhang and Sennrich,
2019) as a normalization technique, no activation functions in the enricher and contextualizer, global
batch size of 0.5M, context width of 1024, and a constant learning rate of 1e−3. As we empirically
verified and decided upon each architectural element, we updated the processor accordingly. For
example, after determining that ReLU2 was the most effective activation function for the enricher,
we integrated it into the model and proceeded with the remaining search.

After finalizing the above exploratory set of experiments, we incorporated the ranker into the neural
processor and conducted an extensive study—comprising over 138 training and inference runs—to
identify the optimal sequence length (i.e., N ), split size (i.e., S), and number of top-k splits (i.e., k).
The results of this sensitivity study are summarized in Appendix G. Following this, we evaluated the
best normalization technique (Appendix H) as well as the optimal peak learning rate and learning
rate schedule (Appendix I) for the full architecture.

All the experiments described above were conducted using a 145-million-parameter model trained
on 10 billion tokens from the FineWeb dataset7 (Hugging Face, 2023) (specifically, the sample-
100BT subset of FineWeb). The results of these experiments informed the following final selection
of training and model hyperparameters for Avey across three parameter scales, 153M (small), 496M
(medium), and 1.52B (large).

Training and Model Hyperparameters of AVEY:

• Training hyperparameters:
• Optimizer: AdamW
• Betas: (0.9, 0.95)
• Epsilon: 1e−12

• Peak learning rate: 1e−3

• Schedule: Cosine decay to 10% of the peak learning rate, with no warmup
• Batch size: 0.5M for the small and medium models, and 1M for the large model
• Gradient norm clip: 1.0
• Weight decay: 0.1 (applied only to matrices)

• Model hyperparameters:
• All models:

• Context width: 512
• Split size (S): 64
• Number of top-k splits: 7
• Vocabulary size: 50,304

7This dataset is released under the Open Data Commons Attribution License (ODC-By) v1.0.
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• Expansion factor: 4
• Tail size: 0.5

• Small model (153M parameters):
• Embedding dimension: 768
• Number of layers: 26

• Medium model (496M parameters):
• Embedding dimension: 768
• Number of layers: 104

• Large model (1.52B parameters):
• Embedding dimension: 2048
• Number of layers: 48

For baselines, we compared Avey against three leading open-source models, namely, Mamba (Im-
plementation, 2023a), RWKV-7 (Implementation, 2023b), and Transformer++ (Karpathy, 2023).
For Transformer++, we implemented the strongest architectural recipe known to us, incorporating
rotary positional encodings (Su et al., 2024), SwiGLU MLPs (Shazeer, 2020), and RMSNorm in
place of LayerNorm (Zhang and Sennrich, 2019). All models were trained using their best-known
hyperparameters (see details below, assuming three model sizes, small, medium, and large) under a
fixed budget of 100 billion tokens drawn from the aforementioned FineWeb dataset 8. For consis-
tency and comparability, we used the p50k base tokenizer (OpenAI, 2022) across all the models, as
it aligns with the GPT-2-derived token counts reported for this dataset.

Training and Model Hyperparameters of TRANSFORMER++:

• Training hyperparameters:
• Optimizer: AdamW
• Betas: (0.9, 0.95)
• Epsilon: 1e−12

• Peak learning rates:
• Small model: 3e−3
• Medium model: 1.5e−3
• Large model: 1.25e−3

• Schedule: A linear warmup for 10% of steps, followed by cosine decay to 10% of the
peak learning rate

• Batch size: 0.5M for the small and medium models, and 1M for the large model
• Gradient norm clip: 1.0
• Weight decay: 0.1 (only applied to matrices)

• Model hyperparameters:
• All models:

• Context width: 2048
• Vocabulary size: 50,304
• Intermediate size in FFN: 4× the embedding dimension

• Small model (152M parameters):
• Embedding dimension: 768
• Number of layers: 12
• Number of heads: 12

• Medium model (488M parameters):
• Embedding dimension: 1024
• Number of layers: 26
• Number of heads: 16

• Large model (1.5B parameters):
8More precisely, all models, including Avey, Transformer++, Mamba, and RWKV-7 were trained for 1

epoch over the sample-100BT subset of FineWeb.
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• Embedding dimension: 1664
• Number of layers: 32
• Number of heads: 16

Training and Model Hyperparameters of MAMBA:

• Training hyperparameters:
• Optimizer: AdamW
• Betas: (0.9, 0.95)
• Epsilon: 1e−12

• Peak learning rates:
• Small model: 3e−3
• Medium model: 1.5e−3
• Large model: 1.0e−3

• Schedule: A linear warmup for 10% of steps, followed by cosine decay to 10% of the
peak learning rate

• Batch size: 0.5M for the small and medium models, and 1M for the large model
• Gradient norm clip: 1.0
• Weight decay: 0.1 (applied only to matrices)

• Model hyperparameters:
• All models:

• Context width: 2048
• Vocabulary size: 50,304
• All hyperparameters other than the ones specified are left at their default values

according to (Implementation, 2023a)
• Small model (144M parameters):

• Embedding dimension: 768
• Number of layers: 28

• Medium model (500M parameters):
• Embedding dimension: 1280
• Number of layers: 42

• Large model (1.4B parameters):
• Embedding dimension: 2048
• Number of layers: 52

Training and Model Hyperparameters of RWKV-7:

• Training hyperparameters:
• Optimizer: AdamW
• Betas: (0.9, 0.95)
• Epsilon: 1e−12

• Peak learning rates:
• Small model: 6e−4
• Medium model: 4e−4
• Large model: 4e−4

• Schedule: Cosine decay to 10% of the peak learning rate, with no warmup
• Batch size: 1M for the small and medium models, and 2M for the large model
• Gradient norm clip: 1.0
• Weight decay: 0.1 (applied only to matrices)

• Model hyperparameters:
• All models:

• Context width: 2048
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Table 3: Avey’s performance without and with an activation function in the enricher. The study
involves only the neural processor within Avey and trains it on 10B tokens.

Configuration Perplexity ARC-C ARC-E HellaSwag OBQA PIQA SIQA Winogrande Average

No Activation 37.65 22.53 35.19 28.95 27.40 60.45 36.13 48.70 37.05
GELU 30.10 23.04 37.88 31.37 26.00 63.55 36.95 51.85 38.66
ReLU 31.02 22.87 37.21 31.35 28.00 62.79 38.13 48.86 38.46
ReLU2 30.18 24.15 38.76 32.08 28.00 63.76 38.28 50.12 39.31
SiLU 30.81 22.18 38.43 31.30 28.20 62.30 37.05 53.20 38.95

• Vocabulary size: 50,304
• All hyperparameters other than the ones specified are left at their default values

according to (Implementation, 2023b)
• Small model (168M parameters):

• Embedding dimension: 768
• Number of layers: 12

• Medium model (501M parameters):
• Embedding dimension: 1024
• Number of layers: 30

• Large model (1.5B parameters):
• Embedding dimension: 2048
• Number of layers: 24

To compare all models, we employed a suite of widely used NLP benchmarks, including ARC-E and
ARC-C (for scientific reasoning and reading comprehension) (Clark et al., 2018), HellaSwag (for
commonsense inference) (Zellers et al., 2019), PIQA (for physical reasoning) (Bisk et al., 2020),
OBQA (for open-book science reasoning) (Mihaylov et al., 2018), SIQA (for social interaction un-
derstanding) (Sap et al., 2019), and Winogrande (for coreference and commonsense reasoning) (Sak-
aguchi et al., 2021). In addition, we evaluated long-context retrieval capabilities using the standard
Single Needle-In-A-Haystack (S-NIAH) benchmark suite from RULER (Hsieh et al., 2024), which
measures a model’s ability to extract pass-keys from large distractor corpora, with sequence lengths
ranging from 2k to 64k tokens. All evaluations were conducted using the widely adopted LM Eval-
uation Harness from EleutherAI (Gao et al., 2021), consistent with the prior work in the field.

For all models, we reported performance in terms of benchmark accuracy9. Specifically, we used
normalized accuracy (acc-norm) from the LM Evaluation Harness whenever available. For each
model, the reported score on each NLP benchmark is the average accuracy across its final three
checkpoints (taken at 90B, 95B, and 100B tokens) to account for variability due to training random-
ness. Complete benchmark results across these checkpoints, along with key summary statistics and
discussions, are provided in Appendix L.

Finally, all training and evaluation runs were executed on 208 NVIDIA H200 GPUs, with mixed-
precision (bfloat16) enabled for training. The total training time for all models—Avey, Trans-
former++, Mamba, and RWKV-7—across the three presented model sizes and 100B training tokens
is estimated to be approximately 80–90 hours, assuming optimal parallelization across the 208 GPUs
and using the implementations referenced above. To avoid potential sources of randomness and en-
sure consistency across results, we disabled Torch Compile during all design choice and sensitivity
experiments. For the ablation studies and final training runs, however, Torch Compile was enabled
whenever possible to accelerate training. Additionally, we fixed the random seed to 11 (arbitrarily
chosen) for all training runs to further reduce variability due to stochastic effects.

B ACTIVATION OR NO ACTIVATION IN THE ENRICHER

In this study, we illustrate the performance of Avey with and without an activation function in the
enricher. To this end, we trained a model with 145 million parameters using 10 billion tokens from

9Additionally, throughout the paper, all reported perplexity values specifically refer to training perplexity.
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Table 4: Avey’s performance without and with an activation function in the contextualizer. The
study involves only the neural processor within Avey, trains it on 10B tokens, and uses ReLU2

within the enricher, capitalizing on the results shown in Table 3.

Configuration Perplexity ARC-C ARC-E HellaSwag OBQA PIQA SIQA Winogrande Average

No Activation 30.18 24.15 38.76 32.08 28.00 63.76 38.28 50.12 39.31
GELU 30.64 22.01 37.54 31.23 27.20 64.74 37.21 50.67 38.66
ReLU 30.30 23.29 37.84 31.82 26.60 64.15 38.13 50.59 38.92
ReLU2 31.05 22.35 38.80 30.78 27.20 63.49 37.31 52.01 38.85
SiLU 30.92 23.63 36.74 31.51 27.40 64.20 36.18 50.04 38.53

Table 5: The effect of the expansion factor on Avey’s performance. The study involves only the neu-
ral processor within Avey, trains it on 10B tokens, adopts ReLU2 within the enricher, and does not
use an activation function within the contextualizer, building upon the results portrayed in Tables 3
and 4.

Expansion Perplexity ARC-C ARC-E HellaSwag OBQA PIQA SIQA Winogrande Average

2× 30.85 23.29 36.83 30.92 26.20 63.98 37.72 51.78 38.67
4× 30.18 24.15 38.76 32.08 28.00 63.76 38.28 50.12 39.31
8× 30.00 23.21 37.79 31.48 26.20 63.82 36.59 50.75 38.55

the Fineweb dataset (Hugging Face, 2023). The model employs an expansion factor of 4× in the
enricher (i.e., each embedding dimension is expanded fourfold by the enricher), a tail size of 50%
(i.e., half of each expanded embedding is forwarded to the contextualizer), RMSNorm (Zhang and
Sennrich, 2019) as a normalization technique, and no activation function in the contextualizer. Addi-
tionally, the context width (i.e., the maximum number of tokens that can be input to and processed by
the contexutalizer simultaneously) is set to 1024 and a constant learning rate of 1e−3 is maintained
throughout training.

The study excludes the ranker and focuses solely on the neural processor. Besides, it evaluates four
activation functions, namely, GELU (Hendrycks and Gimpel, 2016), ReLU (Nair and Hinton, 2010),
ReLU2 (Chowdhery et al., 2022), and SiLU (Ramachandran et al., 2017). All other experimental
settings follow the methodology detailed in Appendix A. Table 3 summarizes the results. As shown,
ReLU2 yielded an improvement in performance versus a baseline with no activation, hence, was
adopted as the default activation function for the enricher throughout our experiments presented in
Sections 3.3 and 3.4. It is important to note, however, that the lowest perplexity was provided by
GELU and not ReLU2 (although the difference in perplexity was very minimal). While perplexity
quantifies how effectively the model predicts the next token in the training dataset, it remains a proxy
for overall modeling capability and does not always precisely predict downstream task performance.

C ACTIVATION OR NO ACTIVATION IN THE CONTEXTUALIZER

We now evaluate Avey with and without an activation function in the contextualizer. We use the same
experimental settings outlined in Appendix B and add to that ReLU2 as an activation function in
the enricher, capitalizing on the findings therein. We also experiment with four activation functions,
namely, GELU, ReLU, ReLU2, and SiLU. Results are summarized in Table 4. As illustrated, the best
performance was achieved without any activation function in the contextualizer, thus was employed
as the default configuration in all our experiments reported in Sections 3.3 and 3.4.

D WHAT IS THE BEST EXPANSION FACTOR?

In this study, we vary the expansion factor in the enricher, defined as the degree to which each input
embedding is expanded. Specifically, we evaluate several expansion factors, ranging from 2x to
8x as shown in Table 5, while keeping the total model parameter count constant (e.g., with a 2x
expansion factor we use 34 layers, while with a 4x one we utilize 20 layers). The experimental
setup follows the methodology outlined in Appendix B, but incorporates ReLU2 as an activation
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Table 6: The effect of the tail size on Avey’s performance. The study involves only the neural
processor within Avey, trains it on 10B tokens, adopts ReLU2 within the enricher, does not use an
activation function within the contextualizer, and utilizes an expansion factor of 4x, as recommended
by the findings demonstrated in Tables 3, 4, and 5.

Tail Size Perplexity ARC-C ARC-E HellaSwag OBQA PIQA SIQA Winogrande Average

10% 34.23 21.59 36.78 30.34 27.0 63.60 37.15 50.28 38.11
30% 30.91 23.55 37.33 31.41 29.4 64.25 37.15 51.22 39.19
50% 30.18 24.15 38.76 32.08 28.0 63.76 38.28 50.12 39.31
70% 29.79 23.04 38.26 31.68 28.4 63.55 37.36 49.96 38.89
90% 30.20 23.04 38.38 32.13 27.6 64.04 37.67 50.91 39.11

Table 7: Avey’s performance across different model configurations, including wider embedding
dimensions (e.g., 1536 under 0.5B-parameter model) with shallower layers (e.g., 24 layers under
0.5B-parameter model), or narrower embedding dimensions (e.g., 768 under 0.5B-parameter model)
with deeper layers (e.g., 90 layers under 0.5B-paramter model). The models with 140M, 0.5B, and
1.5B parameters are referred to as small Avey, medium Avey, and large Avey in the text.

# Params Embed. # Layers Perplexity ARC-C ARC-E HellaSwag OBQA PIQA SIQA Winogrande Average

140 M
512 40 31.14 22.53 37.58 31.05 28.6 63.87 37.46 52.64 39.10
768 20 30.18 24.15 38.76 32.08 28.0 63.76 38.28 50.12 39.31
1024 11 31.46 23.46 38.30 30.78 27.0 63.93 37.72 48.86 38.58

0.5 B
768 90 23.02 23.55 42.05 38.61 30.2 66.10 39.20 51.78 41.64
1024 54 23.27 24.40 41.92 38.46 29.2 67.19 38.74 51.46 41.62
1536 24 23.51 23.98 42.85 37.79 29.4 66.97 38.89 51.78 41.67

1.5 B
1536 80 19.97 25.26 45.50 44.56 30.2 68.61 40.02 52.33 43.78
2048 48 19.84 25.77 46.55 44.99 31.6 69.42 40.17 52.17 44.38
2560 30 20.23 26.62 45.16 43.91 29.2 69.10 39.82 52.09 43.70

function in the enricher and omits any activation function in the contextualizer, aligning with the
findings reported in Appendices B and C. As depicted in the table, an expansion factor of 4x yielded
the best performance, hence, was set as the default configuration in the enricher throughout all our
experiments presented in Sections 3.3 and 3.4.

E WHAT IS THE BEST TAIL SIZE?

We now examine the impact of forwarding a tail portion of each enriched embedding to the contex-
tualizer. More precisely, we vary the size of this tail portion, referred to as the tail size, from 10%
to 90% of each enriched embedding, as illustrated in Table 6. The study follows the experimental
setup described in Appendix B and employs ReLU2 as an activation function in the enricher, no
activation function in the contextualizer, and an expansion factor of 4x, based on the findings pre-
sented in Appendices B, C, and D, respectively. As depicted in Table 6, the best performance was
accomplished using a tail size of 50%, thus was adopted as the default configuration for Avey in all
our experiments reported in Sections 3.3 and 3.4.

F DEEPER MODELS AND NARROWER EMBEDDINGS, OR SHALLOWER
MODELS AND WIDER EMBEDDINGS

The objective of this study is to determine whether a narrower embedding dimension with a greater
model depth yields better or worse performance than a wider embedding dimension with fewer
layers. The study utilizes the experimental setup described in Appendix B and leverages the findings
presented in Appendices B, C, D, and E. Consequently, it utilizes ReLU2 as an activation function
in the enricher, no activation function in the contextualizer, an expansion factor of 4x, and a tail size
of 50%.

To begin with, we evaluated a small Avey model (referred to as small Avey) with 140 million parame-
ters, using three different embedding dimensions, 512, 768, and 1024. These configurations resulted

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

in 40, 20, and 11 layers, respectively, to maintain a constant parameter count. Table 7 summarizes
the results. As illustrated, the configuration with an embedding dimension of 768 and a layer count
of 20 outperformed the other two configurations.

Afterwards, we assessed a larger Avey model with 500 million parameters (referred to as medium
Avey), using three different embedding dimensions, 768, 1024, and 1536. These configurations
resulted in 90, 54, and 24 layers, respectively, while keeping the total parameter count constant. As
shown in Table 7, the setup with an embedding dimension of 768 and 90 layers yielded the best
performance among the three tested ones.

Finally, we examined an even larger Avey model with 1.5 billion parameters (referred to as large
Avey), using three different embedding dimensions, 1536, 2048, and 2560. To maintain a constant
parameter count across configurations, these dimensions corresponded to 80, 48, and 30 layers,
respectively. As portrayed in Table 7, the configuration with an embedding dimension of 2048 and
48 layers delivered the best performance among the three considered configurations.

The above results suggest a trend, whereby wider embedding dimensions (e.g., 1024 in small Avey;
1563 in medium Avey; and 2560 in large Avey) paired with shallower architectures (e.g., 11 layers
in small Avey; 24 layers in medium Avey; and 30 layers in large Avey) tend to underperform deeper
models (e.g., 40 and 20 layers in small Avey; 90 and 54 layers in medium Avey; and 80 and 48
layers in large Avey) with narrower embeddings (e.g., 512 and 768 in small Avey; 768 and 1024
in medium Avey; and 1536 and 2048 in large Avey). As such, in all our experiments discussed in
Sections 3.3 and 3.4, we employed deeper models with narrower embedding dimensions, namely,
the best performing small Avey, medium Avey, and large Avey in Table 7.

Interestingly, Table 7 also highlights that certain benchmarks benefit more from increased model
capacity than others. For instance, a commonsense reasoning benchmark like HellaSwag demon-
strates performance improvements of 20.36% and 28.5% under 0.5B-parameter and 1.5B-parameter
models, respectively, compared to a 140M-parameter baseline. In contrast, a question-answering
benchmark such as SIQA exhibits only a modest gain of 2.4% under both 0.5B-parameter and 1.5B-
parameter models relative to the 140M-parameter baseline, suggesting less sensitivity to model size.

G WHAT ARE THE BEST SEQUENCE LENGTH, SPLIT SIZE, AND TOP-k
VALUES?

We now analyze how Avey’s perplexity and overall performance are affected by variations in three
key parameters, the ranker’s top-k selected splits, the split size S, and the sequence length N . We
consider three values for N , 256, 512, and 1024. For each N , the split size S is grown geometri-
cally, starting from 16 and doubling at each step, up to the maximum permissible value N/2. Subse-
quently, for any N and S, the number of top-ranked splits k can range from 1 (i.e., contextualizing
the current split with one additional relevant split) up to N/S − 1. To tame the quantity of experi-
ments, we increase k arithmetically from 1 to a maximum of 15, whenever possible, using an incre-
ment of 2. Finally, we use the experimental configurations recommended in Appendices B, C, D, E,
and F.

As shown in Table 8, Avey’s perplexity is highest when both S and k are very small (e.g., S = 16
and k = 1). While a small S can help filter out irrelevant embeddings and denoise contextualization,
pairing it with a very small k can deprive the contextualizer of sufficient context to build expressive
representations10. To expand the context (i.e., increase its width S(k + 1)) and enrich the resulting
embeddings, either S or k can be increased. For example, as we increased k under N = 256 and
S = 16, perplexity decreased and benchmark performance improved. However, a larger context
does not always yield better outcomes, especially when involving a high proportion of irrelevant
embeddings. This behavior was observed when k was increased beyond 3 under N = 1024 and
S = 128, resulting in higher perplexity and diminished downstream accuracy.

In contrast to S and k, the sequence length N determines the size of the candidate pool from which
the ranker selects the top-k splits for any current split during training. A larger N allows the ranker
to reach farther back in the sequence history, potentially retrieving more relevant splits and lowering
perplexity. For example, increasing N from 512 to 1024, while holding S = 16 and k = 15

10Recall from Section 2.2.2 that the context width C is defined as C = S(k + 1).
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constant, reduced perplexity by 5.4%. Nevertheless, lower perplexity does not always translate into
improved downstream performance. For instance, with N = 512 and S = 16, k = 15 yielded
the lowest perplexity, yet k = 5 achieved higher benchmark accuracy. As noted in Appendix B,
the loss remains only a proxy for overall modeling capability and does not always exactly predict
downstream task performance. As demonstrated in Table 8, the best empirical performance was
obtained with N = 512, S = 64, and k = 7, which was, accordingly, adopted as Avey’s default
configuration.

H RMSNORM OR LAYERNORM

In all previous runs across the appendices, we used RMSNorm (Zhang and Sennrich, 2019) as a
normalization technique. We now test Avey with another standard normalization method, namely,
LayerNorm (Ba et al., 2016). To begin with, we note that Avey normalizes input embeddings before
each layer (as illustrated in Fig. 3) and output embeddings once after the final layer and prior to
token prediction.

We evaluate each normalization technique using Avey’s complete architecture, including its neural
processor and ranker. The ranker is configured according to the best-performing setting identified
in Appendix G (i.e., sequence length N = 512, split size S = 64, and number of top-ranked splits
k = 7). The neural processor employs the optimal configurations reported in Appendices B, C, D, E,
and F. As before, we trained the resulting model with 153 million parameters on 10 billion tokens
from the Fineweb dataset. Table 9 summarizes the results. As shown, RMSNorm slightly outper-
forms LayerNorm on average, and is therefore adopted in Avey and used consistently across all the
experiments presented in Sections 3.3 and 3.4.

I LEARNING RATE: TO DECAY OR NOT TO DECAY?

In all previous runs across the appendices, we used a constant learning rate of 1e−3. In this study, we
evaluate the performance of Avey under varying maximum learning rates and learning rate sched-
ules. Specifically, we compare two schedules, cosine decay and constant learning rate (which can
be viewed as cosine decay with an infinite cycle length, effectively eliminating any decay). The
study adopts the experimental configurations suggested in Appendices B, C, D, E, and F. In addi-
tion, it employs Avey’s complete architecture, including its neural processor and ranker, with the
best configuration from Table 8.

As shown in Table 10, cosine decay consistently achieves lower losses than the constant sched-
ule across the tested learning rates. This observation aligns with findings from the Chinchilla pa-
per (Hoffmann et al., 2022), which indicates that when the cosine cycle length significantly exceeds
the total number of training steps (by at least 25%), model performance tends to deteriorate. Notably,
the longest cycle length arises when the schedule is constant. In contrast, setting it to approximately
match the training duration yields the best final loss (Hoffmann et al., 2022).

To this end, we adopt a cosine decay schedule with a peak learning rate of 1e−3 for Avey, especially
that it provides the lowest loss across all the runs. We note, however, that Table 10 also shows that the
lowest loss does not correspond to the best downstream task performance. For instance, the loss of
3.308 under the constant learning rate schedule resulted in a slightly better benchmark performance
than the lower loss of 3.218 under the cosine decay schedule, both using the same peak learning rate.
While constant learning rates can be effective for short or exploratory runs (this study uses only 10
billion tokens), it is generally the case that, as the number of training tokens increases, the learning
rate must decrease to allow the optimizer to settle into a lower-loss region (You et al., 2019). Hence,
schedules with decay are typically favored for longer or large-scale training runs (Hoffmann et al.,
2022; Bergsma et al., 2025).

J SCALING LAWS

In this section, we present a scaling law study comparing how well Avey, Transformer++, Mamba,
and RWKV-7 scale with increasing compute. For Avey, we use the full architecture, including
both the ranker and neural processor. All models are trained at three different sizes, as defined in
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Figure 5: Scaling law results, comparing how perplexity decreases as compute increases, assuming
three model sizes of 150M, 500M, and 1.5B parameters and a proportional increase in the number
of training tokens with model size, following the Chinchilla scaling laws.

Appendix A and summarized in Table 11. To ensure compute-optimal scaling, we proportionally
increase the number of training tokens with model size, following the Chinchilla scaling laws (Hoff-
mann et al., 2022). Specifically, and in line with the methodology from (Gu and Dao, 2023), we
use 2B, 7B, and 20B tokens to train models with approximately 150M, 500M, and 1.5B parameters,
respectively. Lastly, we employ the same batch size across all the models to control for variability in
the number of gradient update steps, especially because of training with a limited number of tokens.

Fig. 5 presents the scaling results. The x-axis represents the total training compute budget, calcu-
lated as the product of the number of training tokens and model parameters, which serves as a proxy
for the total FLOPs required to train each model. As shown, Avey exhibits the steepest decline in
perplexity as compute increases. Although it begins with a relatively high perplexity11, it improves
more rapidly than the other models, indicating strong scaling behavior and greater benefit from addi-
tional compute. Following Avey, Transformer++ demonstrates the next-best scaling trend, outpacing
Mamba and RWKV-7. While Mamba achieves relatively low perplexity at smaller compute budgets,
it does not scale as effectively as Avey or Transformer++. Finally, RWKV-7 performs well at low
compute but shows the flattest scaling curve, suggesting it gains the least from additional training
compute.

K ABLATION STUDY

In this study, we perform a series of ablation experiments on the core components of Avey, lever-
aging the best configurations identified in Appendices B, C, D, E, F, H, and I. All experiments are
conducted using Avey’s complete architecture, comprising both the ranker and neural processor,
with the small model variant (153 million parameters) as the baseline. For this study, we trained this
model on 10 billion tokens from the FineWeb dataset, using the training methodology and hyperpa-
rameters detailed in Appendix A.

We begin by examining the effect of dynamic parameterization on both perplexity and downstream
benchmark performance. As described in Section 2.2.2, dynamic parameterization allows each neu-
ron in the contextualizer network to compute a cosine similarity between its input embedding and

11Avey can achieve substantially lower perplexity under alternative configurations. For example, the small
model (150M parameters) with sequence length N = 1024, split size S = 16, and top-k = 15 achieves
much lower perplexity as shown in Table 8. The configuration used in this experiment– and in Sections 3.3
and 3.4, was selected based on its strong downstream benchmark performance, rather than optimal perplexity.
As discussed in Appendix B, perplexity serves as a useful proxy for modeling capability, but does not always
align perfectly with downstream task accuracy.
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the embeddings of all other neurons, weight those embeddings accordingly, and aggregate them via
a learned weighted sum. This mechanism induces selectivity, as defined in (Gu and Dao, 2023), into
the neural processor, thereby making its parameterization dynamic (or input-dependent). Table 12
summarizes the results. Disabling this component results in a 14.3% increase in perplexity and a
0.8% drop in average performance, highlighting its importance.

Second, we evaluate the impact of the partial-embedding bypassing technique introduced in Sec-
tion 2.2.1. This method involves forwarding a portion of each expanded embedding directly to the
fuser, allowing raw, distinctive features to be preserved and potentially serve in promoting more
diverse representations. As shown in Table 12, removing this mechanism results in an 8.5% increase
in perplexity and a 2.2% drop in average performance, underscoring its significance.

Third, we set the expansion factor in the enricher to 1, effectively disabling the expansion of input
embeddings. As illustrated in Table 12, this modification results in a 33.1% increase in perplexity
and a 5.2% drop in average performance, corroborating the critical role of embedding expansion in
the model’s effectiveness.

Fourth, we remove the weighting of each selected split by its corresponding normalized MaxSim
score, thereby preventing the contextualizer from scaling each split’s contribution during contex-
tualization. As depicted in Table 12, this adjustment leads to a 3.8% increase in perplexity and a
1.37% drop in average performance, indicating the importance of this technique.

Fifth, we evaluate Avey without the ranker to assess its impact on downstream task performance,
beyond its primary role of enabling effective extrapolation past the trained context window. As
shown in Table 12, the ranker does indeed enhance the neural processor’s performance, primarily by
improving the quality of contextualization through more meaningful cross-token interactions. We
note, however, the slight increase in loss (by 0.5%), which again highlights (as in Appendix B) the
discrepancy between the objectives of pertaining and downstream tasks.

Finally, we replace Avey’s neural processor with self-attention to assess the relative contribution of
each component to Avey’s overall performance, given that both are designed to pursue cross-token
interactions. As illustrated in Table 12, this substitution leads to a 4.6% increase in perplexity and
a 2.1% decline in average performance, underscoring the significance of the neural processor and
suggesting that self-attention is less effective within Avey’s architectural framework.

L ADDITIONAL SHORT-RANGE BENCHMARK RESULTS

To mitigate the effects of fluctuations in pre-training loss and downstream benchmark scores, we
reported in Section 3.3 average results across the final three checkpoints—taken at 5 billion to-
ken intervals (i.e., at 90B, 95B, and 100B tokens)—for all models evaluated, namely, Avey, Trans-
former++, Mamba, and RWKV-7. In this section, we provide the detailed performance scores for
each model at each checkpoint in Table 13. In addition, we summarize the mean, standard deviation,
standard error, and 95% confidence interval for each model, computed across the three checkpoints,
in Table 14. The illustrated statistical results reveal meaningful variance between models and across
runs of the same model. For instance, while Mamba achieves the highest mean score of 42.73 among
all the models in the small parameter regime (∼150M parameters), it also exhibits a relatively wide
confidence interval (42.06, 43.40) and a moderate standard deviation, highlighting nontrivial vari-
ability in performance across checkpoints.

Regarding variability across models, Table 14 shows overlapping confidence intervals, indicating
that model rankings—particularly which model achieves the highest mean performance—could shift
under minor experimental changes (e.g., random initialization, stochastic optimization, etc.). For
example, in the small model regime, while Avey does not surpass Mamba in mean performance,
their confidence intervals substantially overlap in the range (42.06, 43.24), suggesting that the two
models are statistically comparable and that Avey could outperform Mamba in some runs. Similarly,
a narrow but meaningful overlap exists between Avey and RWKV-7 in the range (42.46, 42.51),
implying that Avey may occasionally match or slightly exceed RWKV-7 in certain cases. Lastly,
although Mamba has the highest mean in this setting, its confidence interval also overlaps with
RWKV-7, indicating that the difference in performance between the two models is not statistically
significant and that RWKV-7 could match or slightly outperform Mamba in some runs.
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Figure 6: Performance comparison between Transformer++, Mamba, RWKV-7, and Avey on S-
NIAH-1 and S-NIAH-2. The x-axis denotes the lengths of haystacks (i.e., documents with distractor
texts, varying from 2k to 64k tokens). All models use ∼150M parameters.

In the medium model regime (∼500M parameters), Avey outperforms Transformer++ in mean per-
formance, but they are statistically comparable. In contrast, the performance gap between Avey and
both Mamba and RWKV-7 is statistically significant at the 95% confidence level, indicating that
both models clearly outperform Avey in this setting. In the large model regime (∼1.5B parameters),
while Avey does not outpace Transformer++ in average performance, their confidence intervals
overlap substantially, suggesting that Avey could potentially surpass Transformer++ in some runs.
There is also a limited overlap between Avey and Mamba, indicating that while Mamba generally
performs better, Avey might outperform it in certai n cases. In contrast, the difference between Avey
and RWKV-7 is statistically significant at the 95% level, confirming that RWKV-7 consistently out-
performs Avey in this setting. Finally, although RWKV-7 has a slightly higher mean than Mamba
(53.17 vs. 53.12), the meaningful overlap in their confidence intervals implies that the difference
between them is not statistically significant, and either model could outperform the other depending
on minor experimental factors.

M ADDITIONAL LONG-RANGE BENCHMARK RESULTS

In Section 3.4, we presented results for Avey, Transformer++, Mamba, and RWKV-7 under the
medium parameter regime (∼500M parameters) on the standard Single Needle-In-A-Haystack (S-
NIAH) benchmark suite from RULER (Hsieh et al., 2024), which is designed to evaluate models’
abilities to handle long-range dependencies. The S-NIAH benchmark, along with two of its com-
mon variants—S-NIAH-1 and S-NIAH-2—was described in detail in Section 3.4. In this section,
we extend our analysis by reporting results under two additional model regimes, small (∼150M pa-
rameters) in Fig. 6 and large (∼1.5B parameters) in Fig. 7. Akin to the experiment in Section 3.4,
Transformer++, Mamba, and RWKV-7 were trained with a context window of 2048 tokens, while
Avey was trained with a shorter window of only 512 tokens.

In both the small and large model regimes, under S-NIAH-1 and S-NIAH-2, Transformer++,
Mamba, and RWKV-7 perform well when the haystack length is 2k, fitting within their trained
context windows. Yet, Mamba consistently underperforms Transformer++ and RWKV-7, likely due
to solely relying on recurrence, which somehow treats the entire input uniformly, making the model
more susceptible to distractions from irrelevant tokens. In contrast, RWKV-7, which combines
recurrence with attention, performs better than Mamba but remains inferior to Transformer++, po-
tentially because the attention mechanism allows it to prioritize tokens relevant to the needle, while
the recurrent component may still contribute to signal dilution. Transformer++, relying exclusively
on full attention, achieves the best performance within the context window by effectively focusing
on relevant tokens without interference from recurrence-based mechanisms. Nonetheless, once the
haystack length exceeds the models’ context windows, all the three models exhibit a substantial drop
in performance. Mamba and RWKV-7, however, show minimal generalization beyond their training
limits compared to Transformer++, as previously discussed in Section 3.4.

Compared to Transformer++, Mamba, and RWKV-7, Avey generalizes far beyond its trained context
window on both S-NIAH-1 and S-NIAH-2 across all parameter regimes, underscoring its strong
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Figure 7: Performance comparison between Transformer++, Mamba, RWKV-7, and Avey on S-
NIAH-1 and S-NIAH-2. The x-axis denotes the lengths of haystacks (i.e., documents with distractor
texts, varying from 2k to 64k tokens). All models use ∼1.5B parameters.

extrapolative capabilities (as also shown in Section 3.4). Notably, this holds despite Avey being
trained with a context window of only 512 tokens. For example, in the small parameter regime,
Avey achieves an accuracy of 97.8% on S-NIAH-1 with a 64k-token haystack, while Transformer++,
Mamba, and RWKV-7 drop to 0%, 0%, and 0.6%, respectively. Similarly, on S-NIAH-2 at the same
haystack length, Avey attains 68.8% accuracy, whereas Transformer++, Mamba, and RWKV-7 fall
to 0%, 2.8%, and 2%, respectively. Comparable trends are observed in the large parameter regime
as well, as illustrated in Fig. 7.

An interesting observation arises in the small parameter regime, where Avey outperforms all other
models on S-NIAH-1 with a haystack length of 2k, knowing that this length exceeds its trained
context window width and enables it to demonstrate its strong extrapolative capability. However,
this pattern does not persist in the medium (see Fig. 4 in Section 3.4) and large (see Fig. 7) parameter
regimes, where Transformer++ and RWKV-7 outperform Avey on the same benchmark at 2k length,
despite this length still surpassing Avey’s trained context window. This suggests that these models,
with their increased capacity, are able to compensate for the challenge posed by S-NIAH-1, and
entails that Avey might benefit from a longer training context window.

In this paper, we kept Avey’s context window fixed at 512 tokens across all parameter regimes.
All tuning experiments related to sequence length, split size, and top k splits (see Section G) were
conducted exclusively using the small model size. It is plausible that with larger capacity, Avey could
more effectively leverage longer sequences by retrieving and contextualizing a larger set of relevant
tokens while filtering out less informative ones, thereby enhancing contextual representations and
further boosting performance. Investigating the relationship between sequence length and model
size in Avey is an interesting direction for future work.

N COMPLEXITY ANALYSIS

As indicated in Sections 2.1, 2.2.1, 2.2.2, and 2.2.3, the training time complexities of the ranker, en-
richer, contextualizer, and fuser are O(N2d), O(Nmd), O(NkCmt), and O(Nmd), respectively,
where N is the sequence length, S is the split size, d is the original embedding dimension, m is
the projected embedding dimension (with m > d), mt is the tail part of m forwarded to the con-
textualizer, C is the context width (with C ≤ N ), and k is the number of splits contextualized
with each current split. This yielded an overall training time complexity of O(N2d), assuming that
scalar multiply-add operations (e.g., those used in computing cosine similarity for MaxSim) and
comparisons (e.g., those used to determine maximum scores) are constant-time.

During inference, the time complexities of the enricher, contextualizer, and fuser remain unchanged.
However, the ranker’s analysis slightly changes, as at each time step t (i.e., upon predicting a new
token), the current split is compared against all previous splits. More precisely, at each time step t,
the current split—denoted as split i and incrementally filled as tokens are generated—is compared
against all i− 1 preceding splits, each consisting of S tokens. Consequently, the cost of comparing
t tokens in split i (with t ≤ S) against S tokens in a previous split is O(t · S · d).
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Figure 8: The Time to First Token (TTFT) for Avey, Transformer++, Mamba, and RWKV-7 across
varying sequence lengths.

Now, if we let M = ⌈N/S⌉ ≈ N/S for large N be the number of splits, the total inference cost can
be defined as:

M∑
i=1

S∑
t=1

(i− 1) · O(t · S · d)

Simplifying the inner summation yields:

S∑
t=1

(i−1) ·O(t ·S ·d) = (i−1) ·O(S ·d) ·
S∑

t=1

t = (i−1) ·O(S ·d) · S(S + 1)

2
= (i−1) ·O(S2 ·d)

Substituting this back into the outer summation gives:

M∑
i=1

(i− 1) · O(S2 · d) = O(S2 · d) ·
M∑
i=1

(i− 1) = O(S2 · d) · M(M − 1)

2

Substituting M with N/S for large N results in:

O(S2 · d) · (N/S)2

2
= O(S2 · d) · O(N2/S2) = O(N2 · d)

Therefore, the cost per token becomes:

O(N2d)

N
= O(Nd)

The above analysis indicates that Avey scales linearly during inference. To more precisely char-
acterize Avey’s inference-time efficiency relative to other models, we benchmarked Time to First
Token (TTFT)—a key latency metric for real-time applications (Horton et al., 2024; Liu et al., 2025;
Dexter et al., 2025)— on a single NVIDIA H200 GPU for Avey, Transformer++, Mamba, and
RWKV-7 across varying sequence lengths. Figure 8 shows that Transformer++ exhibits an approx-
imately quadratic increase in TTFT as the sequence length N grows, due to its full self-attention
mechanism, which operates over the entire prompt before generating the first token in response. In
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contrast, Mamba and RWKV-7 scale linearly with N , as they require a full forward pass to construct
their RNN-style hidden states before emitting the first token. While Avey is also expected to scale
linearly in theory, its empirical TTFT values are significantly lower than those of Transformer++,
Mamba, and RWKV-7. This discrepancy arises because Avey’s dominant contributor to inference
complexity, namely, the ranker, is invoked only once per forward pass. Consequently, the ranker’s
computational overhead is minimal in practice, enabling Avey to deliver substantially lower TTFT
and making it particularly well-suited for real-world, latency-sensitive applications (e.g., chatbots,
and mobile or edge apps).

O RELATED WORK

Recurrent Neural Networks (RNNs) (Elman, 1990; Rumelhart et al., 1986) are designed to process
sequential data by capturing temporal dependencies, making them well-suited for tasks where input
order is essential. However, their cyclical nature limits their potential for parallel computation and
exposes them to vanishing and exploding gradient problems. As a result, they typically struggle
to effectively learn long-range dependencies. While architectures like Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho et al., 2014)
mitigate these gradient-related issues, they remain slow to optimize and challenging to scale due to
retaining RNN’s core recurrent and sequential structure.

In contrast, the Transformer (Vaswani et al., 2017) employs a self-attention mechanism to process
each sequence of tokens simultaneously. More precisely, it promotes two key design principles: (1)
a recurrent-free architecture, which enables parallel computation of token embeddings, while still
capturing their order through positional encodings, and (2) a multi-head self-attention approach,
which facilitates cross-token interactions to further enrich the expressiveness of embeddings. These
innovations make the Transformer highly effective, as well as parallelizable and efficient to train.
However, they also cause its computational and memory requirements to scale quadratically with
sequence length, making it expensive and less efficient for very long sequences.

To address the Transformer’s quadratic computation and memory costs, a wide array of approaches
have been proposed, including linear attention (Kitaev et al., 2020; Katharopoulos et al., 2020;
Choromanski et al., 2020; Peng et al., 2021; Zhai et al., 2021), sparse or local attention (Yuan et al.,
2025; Child et al., 2019; Parmar et al., 2018), context compression (Rae et al., 2019; Wang et al.,
2020; Sukhbaatar et al., 2019; Roy et al., 2021), and modified attention computations (Tay et al.,
2021; Wu et al., 2019; Tay et al., 2020), to mention just a few. Notably, the Attention-Free Trans-
former (AFT) (Zhai et al., 2021) offers a linear drop-in replacement for the quadratic self-attention
mechanism. In particular, it weights key and value vectors using learned positional biases and in-
tegrates them with query vectors via element-wise multiplication. As such, it eliminates the need
to compute and store the costly attention matrix while still preserving global query-value interac-
tions—without requiring architectural modifications or additional tuning. Furthermore, AFT intro-
duces variants such as AFT-local and AFT-conv, which leverage local attention patterns to reduce
parameter count and further improve computational and memory efficiency.

RWKV-4 (Peng et al., 2023) (the first 3 versions were experimental (Li et al., 2024b)) capitalizes
on AFT and suggests combining the strengths of both Transformers and RNNs. To elaborate, un-
like Transformers and akin to RNNs, it does not process each input token solely based on its own
embedding, but rather as a weighted sum of its embedding and that of the preceding one. To the
contrary of traditional RNNs and similar to Transformers, it adopts self-attention, but an extended
version of it, namely, that of AFT. This hybrid approach allows RWKV-4 to maintain some of the
modeling capabilities of RNNs, while benefiting from the parallelization and scalability features of
Transformers.

More precisely, RWKV-4 extends AFT in two distinct ways: (1) it introduces an additional param-
eter to handle each current token independently, and (2) it implements a per-time-step decay mech-
anism that selectively removes older content from the recurrent hidden state in a data-dependent
manner. This decay mechanism addresses a central limitation of linear attention, which pertains to
the lack of a systematic way to discard outdated information (Schlag et al., 2021; Yang et al., 2023).

Architecturally, RWKV-4 consists of homogeneous stacked residual blocks, each encompassing two
units, a time-mixing and a channel-mixing ones. The time-mixing unit applies linear attention across
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tokens, while the channel-mixing unit integrates each element of the current token’s embedding with
its corresponding element from the preceding token embedding, leveraging the output of the time-
mixing unit.

RWKV-5 (Peng et al., 2024) enhances RWKV-4’s architecture and learning decay mechanism by re-
placing traditional vector-valued states with more expressive multi-head, matrix-valued ones. More-
over, it reconfigures receptive states, incorporates supplementary gating mechanisms, and dynami-
cally learns the linear interpolation between the current and preceding token embeddings instead of
relying on pre-defined hyperparameters.

RWKV-6 (Peng et al., 2024) promotes a new application of low-rank adaptation functions (Hu et al.,
2022; Li et al., 2024b). Specifically, it makes the linear interpolation between the current and pre-
ceding tokens data-dependent to improve the selectivity of the model in retaining and discarding
information. Additionally, it replaces the static decay mechanism with a dynamic one, allowing
each element in the decay vector to fluctuate independently over time in response to the input.

The decay strategies of RWKV-4, RWKV-5, and RWKV-6 still cannot remove values stored at spe-
cific keys. DeltaNet (Schlag et al., 2021) overcomes this drawback by partially replacing the values
stored at current keys with equivalent new values, enabling models to erase outdated memories and
include up-to-date ones on a per-key basis. However, it only allows a fixed scalar fraction of a value
to be replaced from a state via an in-context learning rate parameter, thus demonstrating rigidity in
adapting to varying data contexts.

RWKV-7 (Peng et al., 2025) builds upon the principles of DeltaNet and introduces a vector-valued
in-context learning rate instead of a scalar-valued one. This allows selective replacement of state
data on a channel-wise basis. Furthermore, RWKV-7 employs a vector-valued decay mechanism
and uses additional low-rank projections to optimize the trade-off between the number of parame-
ters, computational efficiency, and downstream performance. Lastly, it incorporates Value Residual
Learning (Zhou et al., 2024), which improves the propagation of initial local information via utiliz-
ing a residual connection between the value vectors of the current layer and those of the first layer
prior to the attention operation, resulting in enhanced language modeling performance.

Most recently, RWKV-X (Hou et al., 2025) proposed combining the strengths of RWKV and sparse
attention, drawing inspiration from Mixture of Block Attention (MoBA) (Lu et al., 2025). In par-
ticular, RWKV-X restricts each query to attend only to a small, relevant subset of the input, thus
reducing computational cost and facilitating the modeling of longer-range dependencies. More pre-
cisely, rather than allowing each token to attend to every other token in the sequence (as in traditional
self-attention), it constrains each token’s attention to a limited subset (hence, making it sparse), while
maintaining the coupling between the input sequence and context window.

Similar to RWKV, RetNet (Sun et al., 2023) adopts linear attention and promotes a hybrid ap-
proach that blends Transformer- and RNN-like representations, yet with a decay-based memory
unit. Specifically, it divides the input sequence into chunks, wherein the Transformer-like paral-
lel representation is applied. Additionally, it enables propagating information sequentially across
chunks using the RNN-like representation. Lastly, it uses multiple attention heads, each governed
by a distinct decay rate, and replaces LayerNorm (Ba et al., 2016) with GroupNorm (Wu and He,
2018).

Although linear attention has been proposed as a promising alternative to quadratic softmax atten-
tion (Katharopoulos et al., 2020; Choromanski et al., 2020; Kasai et al., 2021; Peng et al., 2021), ex-
isting implementations of it are in practice slower than optimized versions of softmax attention (Dao
et al., 2022; Dao, 2023; Yang et al., 2023). From an accuracy standpoint, linear attention generally
underperforms conventional softmax attention, sometimes by a significant margin in language mod-
eling (Kasai et al., 2021; Yang et al., 2023).

To this end, and in light of the exponentially growing complexity associated with overcoming the
limitations of Transformer-based architectures, there has been a renewed interest in RNN-based
alternatives in recent years. Notably, Structured State Space Sequence (S4) models (Gu et al.,
2021a;b), inspired by the classical state space models (SSMs) (Kalman, 1960), have emerged as
a promising paradigm for sequence modeling. These models describe the temporal evolution of a
system using differential equations, offering a continuous-time formulation of dynamics, and can be
viewed as generalized versions of RNNs.
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An SSM as a concept has a broad meaning, which simply refers to the notion of any recurrent process
with a latent state (Gu and Dao, 2023). From this perspective, the RNN-like linear attention model
proposed and formulated by (Katharopoulos et al., 2020) can be interpreted as a degenerate linear
SSM. Interestingly, this justifies the usage of a decay factor in RetNet and RWKV, especially that a
decay term (or a forget gate) has been shown to be crucial in RNNs (Hochreiter and Schmidhuber,
1997; Van Der Westhuizen and Lasenby, 2018; Cho et al., 2014).

Numerous variants of SSMs (Gu et al., 2021a; 2022; Gupta et al., 2022; Li et al., 2024a; Ma et al.,
2022; Orvieto et al., 2023; Smith et al., 2022) have demonstrated strong performance across a range
of domains, including audio and vision (Goel et al., 2022; Nguyen et al., 2022; Saon et al., 2023).
Nonetheless, these variants have struggled with language modeling, often lagging behind Trans-
formers by several points in perplexity (Gu et al., 2021a).

From an efficiency standpoint, however, SSMs have shown encouraging results in language mod-
eling. For instance, S4 (Gu et al., 2021a;b), a prominent SSM, converts the continuous-time state
update equation of SSMs into a discrete form, hence, enabling parallel sequence modeling. More-
over, it utilizes the HiPPO (High-Order Polynomial Projection Operator) initialization (Gu et al.,
2020), which alleviates the vanishing gradient problem and facilitates processing longer sequences.

Another example of SSMs is H3 (Fu et al., 2022), which improves language modeling by allowing
both, the recall of earlier tokens and token-wise comparisons within a sequence. H3 extends S4 by
suggesting a state-passing algorithm that enhances computational efficiency on modern hardware.
This advancement reduces the hardware-related barriers that have traditionally limited the scalability
of SSM-based architectures.

Hyena (Poli et al., 2023) capitalizes on H3 by replacing its S4 layer with an MLP-parameterized
global convolution (Romero et al.). S5 (Smith et al., 2022) proposes using parallel scan (Martin and
Cundy, 2017) to parallelize S4. Liquid S4 (Hasani et al., 2022) augments S4 with an input-dependent
state transition matrix, computed convolutionally in the frequency domain (which is computationally
efficient) and mapped back to the time domain using an inverse Fourier transformation. SGConv (Li
et al., 2024a), LongConv (Fu et al., 2023), MultiresConv (Shi et al., 2023), and Toeplitz Neural
Network (Qin et al., 2023) all focus on the convolutional representation of S4 as well, aiming to
enhance its efficiency (Gu and Dao, 2023).

Most recently, Mamba (Gu and Dao, 2023) introduced a new class of SSMs known as selective
SSMs, specifically designed to improve the performance of language modeling tasks. Mamba ad-
dresses a key limitation in SSMs, namely, their inability to selectively process inputs in an input-
dependent manner (i.e., focus on or ignore specific parts of the input sequence). Consequently, it
makes the SSM parameters input-dependent, but introduces a technical challenge since traditional
SSMs are inherently designed to be time- and input-invariant to ensure computational efficiency. To
overcome this challenge, Mamba proposes a hardware-efficient parallel scan (or prefix sum) algo-
rithm (Blelloch, 1990), which enables recurrent-style computation without explicitly materializing
the expanded state. This design precludes costly I/O operations across GPU memory hierarchies
and accelerates both, training and inference.

Tri Dao and Albert Gu (Dao and Gu, 2024) argue that various approaches to operating SSMs can
be reframed as matrix multiplication algorithms involving a specific class of structured matrices
known as semiseparable matrices. They further leverage the language of tensor contractions to
prove the recurrent formulation of linear attention as proposed by (Katharopoulos et al., 2020),
before generalizing it to a new family of structured masked attention (SMA).

Subsequently, Tri Dao and Albert Gu demonstrated that SSMs and Transformers are fundamentally
connected, governed by the mathematical framework of semiseparable matrices and SMA. Addi-
tionally, they developed a rich state space duality (SSD) framework of theoretical connections be-
tween SSMs and various forms of attention. This framework facilitated the design of Mamba-2, an
extended version of Mamba, which aims to improve its efficiency (not performance). Mamba-2 uti-
lizes a scalar data-dependent gating mechanism (like the ones proposed by (Peng et al., 2021; Sun
et al., 2023; Beck et al., 2024)), which enables transforming its recurrent structure into a matrix-
multiply form, thus allowing for efficient execution on tensor cores and better support for larger
hidden state sizes.
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The strategy of the SSD framework mirrors that of linear attention (Katharopoulos et al., 2020),
which established a connection between autoregressive attention mechanisms and linear RNNs via
showing an equivalence between ”dual forms” of quadratic kernelized attention and a specific type
of linear recurrence. Conceptually, the SSD framework seeks to transfer algorithmic and systems-
level optimizations originally developed for Transformers to the realm of SSMs. Its overarching
goal is to enable the development of architectures that outperform Transformers, while scaling more
efficiently with sequence length.

Finally, several works, including Tolstikhin et al. (Tolstikhin et al., 2021), Melas-Kyriazi (Melas-
Kyriazi, 2021), Touvron et al. (Touvron et al., 2022), and Ding et al. (Ding et al., 2021), among
others, have questioned the necessity of self-attention, particularly in the context of Vision Trans-
formers. In contrast, Liu et al. (Liu et al., 2021a) introduced gMLP, an MLP-based alternative
to BERT-style Transformers (Devlin et al., 2019) that (partially) eliminates self-attention but ulti-
mately underperforms average performance on downstream NLP tasks. gMLP encompasses channel
(hidden) and spatial (cross-token) projections with multiplicative gating and static parameteriza-
tion. Its gating mechanism is reminiscent of Gated Linear Units (GLUs) (Dauphin et al., 2017;
Shazeer, 2020; Wu et al., 2019), as well as earlier architectures such as Highway Networks (Sri-
vastava et al., 2015) and LSTM-RNNs (Hochreiter and Schmidhuber, 1997). A key distinction,
however, is that gMLP applies gating on the spatially projected dimension and not the hidden one.
The gated embedding-wise neural network in Avey’s contextualizer draws inspiration from gMLP.

Unlike all previously mentioned models, Avey abandons self-attention and recurrence, introducing
a new architecture composed of a ranker and a dynamically parameterized neural processor. The
ranker identifies the most relevant tokens for contextualization, while the neural processor contextu-
alizes them data-dependently. This design decouples sequence length from context width, enabling
efficient processing of arbitrarily long sequences without diminishing the influence of distant yet
important tokens.

At the core of Avey’s architecture is a weighted-selective-split interaction mechanism, which filters
out irrelevant tokens beyond the context window and enables direct interactions only with relevant
ones, thus preserving their influence irrespective of sequence length. In addition, Avey employs a
partial-embedding bypassing technique that retains a portion of each token’s raw, distinctive features
before fusing them with its contextualized ones through a neural network. This technique boosts the
performance of Avey (as shown in Appendix K) and might help mitigate issues such as entropy
collapse (Zhai et al., 2023) and over-smoothing (Zhou et al., 2021; Shi et al., 2022), especially at
large-scale, when the depth of the model is increased significantly.

P IS THE RANKER A RAG COMPONENT?

The ranker is an internal component of Avey that operates within the input sequence, selecting
among its splits for more effective contextualization. It does not query external corpora or indexes,
introduces no retrieval I/O or freshness dependencies, and adds no retrieval latency. Its role is
architectural, that is, to allocate Avey’s internal contextual budget and decouple context width from
sequence length so that Avey can fully contextualize sequences far beyond its training window.

By contrast, Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) augments a model with
external (non-parametric) knowledge via a retriever, ranging from classic BM25 (Robertson and
Zaragoza, 2009) and dense passage retrieval (DPR) (Karpukhin et al., 2020) to system-level designs
such as REALM (Guu et al., 2020), RETRO (Borgeaud et al., 2022), and MacRAG (Lim et al.,
2025), among others. RAG aims to: (1) improve factuality by grounding outputs in retrieved docu-
ments, (2) make models updatable by reflecting new information without retraining, and (3) reduce
compute for long-context tasks by moving knowledge out of weights.

As such, the two mechanisms are orthogonal. The ranker allocates the model’s internal con-
textual budget over the given sequence, whereas RAG changes the evidence set by importing
out-of-sequence content. They can be composed (RAG can be layered atop Avey, as it is with
the Transformer) but one does not subsume the other.
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Q NEURAL CONTEXTUALIZATION VS. ATTENTION

Avey’s contextualizer is an embedding-wise neural network that dispenses with attention. In Ap-
pendix K, we replaced it with standard self-attention and observed a 4.6% increase in perplexity
alongside a 2.1% decline in average task performance, underscoring its central role in Avey’s archi-
tecture.

Formally, the contextualizer is defined in Equation 2, repeated below for convenience:

c(Zt) = Ztl ⊙ σ
((

V ⊙ N (Ztr)N (Ztr)
⊤)Ztr + b′

)
.

Let S := N (Ztr)N (Ztr)
⊤. The product (V ⊙ S)Ztr yields a content-dependent signal that is

passed through a pointwise nonlinearity and used to gate Ztl elementwise, producing a bounded,
feature-wise modulation rather than a mixture over values. By contrast, self-attention computes a
row-stochastic convex combination of value vectors after a Q/K split and softmax normalization. Ev-
idently, our formulation departs away from both the softmax and the Q/K/V decomposition, whereby
weights are neither constrained to be nonnegative nor to sum to one, and the output acts as a gate on
carrier features (i.e., Ztl) rather than a convex average of value vectors.

The contextualizer also differs fundamentally from linear attention (Choromanski et al., 2021;
Katharopoulos et al., 2020; Wang et al., 2020; Beltagy et al., 2020; Sun et al., 2023). Linear-attention
variants obtain near-linear complexity by exploiting an associative kernel factorization that permits
reordering and prefix accumulation, typically of the form ϕ(Q)

(
ϕ(K)⊤Vval

)
. Equation 2 does not

admit such reordering. In fact, the Hadamard coupling (V ⊙ S) breaks the algebraic associativ-
ity required to push multiplications across terms, and the normalization N (·) is neither linear nor
guaranteed nonnegative, precluding the kernel tricks used to approximate softmax attention with
associative feature map functions (e.g., ReLU and Exp). Lastly, we note that the contextualizer
remains quadratic (not linear) in sequence length.

For similar reasons, Equation 2 cannot be reformulated as a finite-state RNN under an autoregressive
mask. Let St = N (Z≤t

tr )N (Z≤t
tr )

⊤. The update at step t+1 depends on the full pairwise matrix
(V ⊙ St), that is, on all position-specific interactions among the past tokens after data-dependent
normalization. Because the learned weight matrix V introduces position-dependent multiplicative
couplings, there is no time-invariant transition ht+1 = f(ht, xt+1) with a fixed-dimensional suf-
ficient statistic ht that exactly summarizes (V ⊙ St). In particular, the required weights vary
across positions and must be recomputed, so any streaming recurrence would either approximate
by tying/averaging V or maintain O(t) state. Therefore, an exact finite-state RNN equivalence is
unavailable.

Empirically, V performs most of the heavy-lifting in Avey, while S primarily induces selectivity,
dynamically emphasizing or suppressing interactions conditioned on the input, echoing the selectiv-
ity principle advocated in recent sequence models (Gu and Dao, 2023). An ablation in Appendix K
shows that including S delivers a consistent, albeit modest, gain by making the neural processor’s
parametrization input-adaptive.

Putting everything together, these distinctions (i.e., gating rather than mixing, non-associative pair-
wise modulation rather than kernel-factorizable operations, and explicit quadratic interactions), ex-
plain both the theoretical departure from self-attention and linear attention and the observed empir-
ical contribution of the contextualizer within Avey.

R DESIGN RATIONALE

We designed Avey around clear functional roles for its core modules. Below, we outline some of the
guiding intuitions and how they inform its architecture.

Enricher: A substantial body of evidence indicates that much of a language model’s knowledge
is stored in feed-forward sublayers and accessed through non-linear feature interactions (e.g., (Geva
et al., 2021)). The enricher is designed accordingly. It serves both as the primary repository of
parametric knowledge and as a mechanism for intra-embedding interactions, enabling higher-order,
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non-linear composition of features within each embedding. This improves expressivity by allowing
features to modulate and refine one another in a context-aware manner.

Contextualizer: The contextualizer operates as an embedding-wise neural network such that each
neuron forms a weighted sum over input embeddings with learned coefficients (see Equation 2). To
introduce input-dependent selectivity (as in (Gu and Dao, 2023)), we augment these static weights
with a cosine-similarity term that produces a second, data-driven set of weights (the two are com-
bined multiplicatively via a Hadamard product). This dynamic modulation improves behaviors such
as copying and induction by strengthening interactions that are semantically relevant to the current
input. The split-and-gate structure follows established gated designs in gMLP (Liu et al., 2021a)
and GLU variants (Dauphin et al., 2017; Shazeer, 2020; Wu et al., 2019).

Partial Embedding Bypassing: The enricher’s output is partitioned into two streams, one is
passed to the contextualizer and the other is bypassed and fed directly to the fuser. The bypassed
part plays two complementary roles. First, it provides a strong residual path that preserves signal
and stabilizes optimization by improving gradient flow within each Avey layer. Second, it sup-
plies additional non-linear capacity in the downstream feed-forward fuser, complementing the con-
textualizer’s primarily linear mixing across embeddings. This balance between context-aware and
context-invariant processing yields richer, more diverse representations.

Fuser: The fuser (a position-wise feed-forward network) learns how to combine the contextual-
ized and bypassed streams and then projects the result back to the model’s embedding dimension,
ensuring compatibility with residual pathways across layers. As a feed-forward network (FFN), it
also contributes to storing and accessing parametric knowledge learned during training, analogous
to FFN roles in Transformers.

S LIMITATIONS

The scope of our work is limited to textual data and does not involve other modalities such as images,
audio, or genomics. Additionally, our evaluation of Avey is restricted to standard autoregressive lan-
guage modeling, benchmarking it against popular open-source architectures using both pretraining
metrics (perplexity) and zero-shot evaluations on established NLP benchmarks. As a result, we do
not investigate Avey’s ability to construct bidirectional contextualized word representations, as done
in BERT (Devlin et al., 2019). We leave this for future work. Finally, the paper focuses solely
on effectiveness rather than efficiency. While we provide a complexity analysis showing that Avey
exhibits quadratic training time like Transformers, our current implementation is slower. As such,
further engineering efforts are required to optimize it.
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Table 8: Avey’s performance under different sequence lengths, N , split sizes, S, and top-k values.
All models (a total of 69) were trained on 10B tokens using 140 million parameters. The sweet spot
in terms of downstream task performance was at N = 512, S = 64, and k = 7; hence, it was
adopted as Avey’s default configuration.

N S k Perplexity ARC-C ARC-E HellaSwag OBQA PIQA SIQA Winogrande Average

256

16

1 43.59 21.16 37.67 30.86 27.20 64.20 37.72 51.85 38.66
3 31.83 22.18 39.81 32.23 26.80 63.76 38.02 51.07 39.12
5 27.14 24.15 39.02 32.57 26.00 64.20 38.02 53.20 39.59
7 25.65 22.27 38.59 31.89 28.60 64.80 37.97 50.43 39.22
9 24.28 23.72 38.55 32.44 28.20 64.15 37.36 51.54 39.42
11 22.89 22.53 39.27 32.45 27.40 65.07 38.02 51.30 39.43
13 23.85 22.35 38.97 31.04 26.80 64.91 37.51 49.72 38.76
15 22.04 22.61 38.80 32.66 28.60 65.61 38.54 52.25 39.87

32

1 36.58 23.98 39.18 32.57 26.80 64.25 37.36 50.83 39.28
3 31.51 22.78 39.56 33.15 25.00 64.91 38.74 52.25 39.48
5 30.06 23.38 38.76 33.51 28.60 65.34 37.87 52.41 39.98
7 30.58 24.23 38.97 33.14 26.80 65.23 37.82 51.14 39.62

64 1 32.76 23.89 39.18 33.26 27.60 66.05 38.69 50.99 39.95
3 30.90 23.04 40.11 33.70 27.40 64.91 38.08 50.83 39.72

128 1 31.30 22.27 39.65 33.07 28.20 65.45 39.20 51.78 39.95

512

16

1 42.51 22.27 37.42 31.38 27.80 63.87 37.31 51.07 38.73
3 29.28 22.87 38.76 31.99 28.00 64.96 36.49 52.17 39.32
5 24.64 22.01 38.05 32.69 26.80 63.98 36.44 52.01 38.85
7 23.49 23.46 38.13 31.72 26.40 64.58 37.82 49.41 38.79
9 20.79 23.38 39.02 31.74 27.00 64.04 38.23 51.14 39.22
11 19.52 23.63 37.88 32.13 27.20 64.91 38.02 53.67 39.63
13 19.45 22.44 37.54 31.34 26.80 63.33 36.80 50.83 38.44
15 17.95 21.84 36.66 31.39 27.80 64.09 37.82 51.07 39.87

32

1 35.47 22.87 39.94 32.49 28.40 64.47 38.18 51.70 39.72
3 29.49 22.95 39.18 33.22 25.60 65.13 39.00 50.51 39.37
5 27.99 22.78 37.71 33.46 28.20 65.02 38.33 52.72 39.75
7 28.07 22.01 40.07 33.45 29.20 64.80 37.67 50.75 39.71
9 27.17 23.89 39.02 33.46 28.40 64.91 38.59 50.20 39.78

11 26.77 22.87 39.65 32.55 27.20 64.09 38.33 51.14 39.40
13 25.72 23.55 38.97 33.52 29.00 65.67 37.56 51.85 40.02
15 26.29 22.70 39.23 32.53 29.40 64.80 38.08 50.04 39.54

64

1 31.67 23.46 39.35 33.15 27.80 65.02 38.13 51.70 39.80
3 29.51 23.38 37.92 33.12 28.40 65.72 39.10 50.83 39.78
5 29.31 24.23 39.77 33.17 27.60 64.58 38.33 52.09 39.97
7 28.02 24.49 39.98 33.77 29.80 65.13 38.08 51.30 40.36

128 1 29.25 23.72 39.90 33.76 28.20 64.09 37.10 50.99 39.68
3 29.77 22.70 39.10 33.38 28.80 65.23 38.74 51.62 39.94

256 1 29.26 22.70 39.02 33.49 27.00 64.25 37.51 52.41 39.48

1024

16

1 41.64 21.42 37.16 31.12 29.80 64.47 37.56 50.75 38.90
3 28.08 22.61 38.26 31.88 27.20 64.64 38.08 50.99 39.09
5 23.69 22.18 38.38 31.94 28.80 64.09 37.87 51.22 39.21
7 21.48 23.81 38.05 31.41 27.00 63.38 36.80 50.59 38.72
9 19.83 22.53 37.50 31.90 26.80 64.47 37.92 49.64 38.68
11 18.34 21.93 37.16 31.45 28.60 65.13 37.77 50.67 38.96
13 16.80 23.55 37.50 30.55 26.80 63.11 36.95 52.33 38.68
15 15.33 23.29 37.54 31.04 27.60 63.06 37.77 50.91 38.74

32

1 35.07 22.70 39.98 32.87 27.60 65.23 37.77 51.14 39.61
3 28.54 23.55 38.55 32.91 27.60 64.74 37.51 50.28 39.31
5 26.25 22.95 39.06 33.39 28.60 64.64 38.28 50.04 39.57
7 26.29 24.06 38.76 32.70 27.60 64.80 37.67 53.12 39.82
9 24.79 23.63 38.89 33.34 27.80 64.53 37.72 52.09 39.71

11 24.33 21.93 38.76 32.56 26.40 64.36 37.36 51.38 38.96
13 23.44 22.78 37.46 32.73 29.00 65.23 37.31 50.67 39.31
15 23.14 23.72 39.56 32.39 28.40 63.60 37.31 51.38 39.48

64

1 30.84 23.89 38.51 33.31 27.20 65.18 38.28 49.88 39.46
3 27.82 22.61 39.60 33.39 28.60 64.74 38.84 50.20 39.71
5 27.89 23.04 40.49 32.97 30.00 65.02 38.49 49.09 39.87
7 27.48 24.06 39.27 33.54 28.80 65.72 37.72 50.75 39.98
9 27.37 22.35 39.98 33.48 28.00 65.29 38.74 52.64 40.07

11 27.38 23.29 39.35 33.05 28.60 65.72 37.97 50.67 39.81
13 27.44 24.23 39.77 33.05 28.20 66.05 37.31 51.07 39.95
15 26.85 24.32 40.36 34.01 28.60 65.45 37.72 51.30 40.25

128

1 28.62 23.12 40.57 33.56 27.80 65.61 38.54 51.30 40.07
3 27.08 23.89 39.81 33.65 29.00 64.69 37.72 52.09 40.12
5 28.07 23.98 40.03 33.22 29.60 65.89 39.10 50.67 40.35
7 27.27 24.32 38.85 33.92 27.40 65.13 38.13 49.88 39.66

256 1 28.30 22.61 38.38 33.22 27.80 64.85 38.79 51.30 39.56
3 28.53 23.04 39.90 32.68 27.40 64.36 37.62 49.88 39.27

512 1 28.24 24.40 39.39 32.98 28.20 65.13 37.72 50.59 39.77
36
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Table 9: Avey’s performance with RMSNorm and LayerNorm. A model with 153 million parame-
ters was trained on 10B tokens using both the neural processor and ranker with the best configuration
from Table 8.

Normalization Method Perplexity ARC-C ARC-E HellaSwag OBQA PIQA SIQA Winogrande Average
RMSNorm 28.02 24.49 39.98 33.77 29.8 65.13 38.08 51.30 40.36
LayerNorm 30.93 23.55 39.65 33.24 28.8 65.07 38.28 49.57 39.74

Table 10: Avey’s performance with two types of schedules, constant learning rate (LR) and cosine
decay, starting from different peak learning rates. All models involved the neural processor and
ranker, and were trained with 153 million parameters on 10B tokens, using both the neural processor
and ranker with the best configuration from Table 8.

Schedule LR Perplexity ARC-C ARC-E HellaSwag OBQA PIQA SIQA Winogrande Average

Constant
8e-04 28.21 23.12 39.81 33.52 28.4 64.96 38.13 52.41 40.05
1e-03 27.35 24.06 40.32 33.88 29.6 65.13 38.54 51.46 40.43
3e-03 30.38 23.81 38.34 32.90 28.2 63.38 37.77 52.33 39.53

Cosine Decay
6e-04 26.24 22.87 40.95 33.76 29.2 65.02 37.72 49.01 39.79
8e-04 25.64 24.06 39.31 34.43 29.6 65.83 37.87 49.80 40.13
1e-03 25.00 23.21 41.12 34.76 27.0 65.67 38.38 50.75 40.13

Table 11: Model configurations used in the scaling law experiments. Each model is trained at three
different sizes and numbers of training tokens increased proportionally, following the Chinchilla
scaling laws.

Model # Layers (# Heads) Embedding Dim. Learning Rate # Tokens

Avey-153M 26 768 1.00e-03 2B
Avey-496M 104 768 1.00e-03 7B
Avey-1.5B 48 2048 1.00e-03 20B
Transformer++-152M 12 (12) 768 3.00e-03 2B
Transformer++-488M 26 (16) 1024 1.50e-03 7B
Transformer++-1.5B 32 (16) 1664 1.25e-03 20B
Mamba-153M 28 768 3.00e-03 2B
Mamba-496M 42 1280 1.50e-03 7B
Mamba-1.5B 52 2048 1.00e-04 20B
RWKV-7-152M 12 768 6.00e-04 2B
RWKV-7-488M 30 1024 4.00e-04 7B
RWKV-7-1.5B 24 2048 4.00e-04 20B

Table 12: Ablation results comparing Avey variants, with individual components removed or re-
placed.

Model Variant Perplexity ARC-C ARC-E Hella OBQA PIQA SIQA Wino Average

Avey full (all features) 30.00 25.17 39.90 33.59 28.8 65.56 37.62 51.62 40.32
Avey without dynamic parameterization 34.31 25.00 40.66 32.99 28.8 65.34 36.64 50.51 39.99
Avey without bypassing 32.55 22.61 38.38 32.31 28.0 64.20 38.28 52.09 39.41
Avey without embedding expansion 39.94 22.44 37.92 28.75 25.4 62.40 38.64 52.01 38.22
Avey without weighting selected splits 31.17 22.78 38.55 33.25 28.0 65.89 37.82 52.09 39.77
Avey without the ranker 29.48 23.72 38.59 32.52 28.0 63.66 37.67 53.20 39.62
Avey with self-attention in place of neural proc. 31.39 22.61 39.27 31.99 28.0 64.58 38.33 51.38 39.45
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Table 13: Performance of all models across short-range benchmarks at 90B, 95B, and 100B training
tokens.

Model (# of Tokens) ARC-C ARC-E HellaSwag PIQA OBQA SIQA Winogrande Avg.
Avey-153M (100BT) 23.98 42.30 39.57 29.8 68.61 39.05 51.85 42.02
Avey-153M (95BT) 24.23 42.09 39.21 31.2 68.23 39.15 50.28 42.06
Avey-153M (90BT) 24.91 42.59 39.31 33.2 68.28 39.20 51.70 42.74

Transformer++-152M (100BT) 23.29 43.43 39.47 29.4 67.03 39.10 50.51 41.90
Transformer++-152M (95BT) 23.55 43.14 39.51 30.2 67.14 38.69 50.99 41.89
Transformer++-152M (90BT) 24.06 42.93 38.97 29.8 66.87 38.89 49.17 41.24

Mamba-144M (100BT) 24.32 43.73 40.82 29.8 68.28 39.00 52.41 42.62
Mamba-144M (95BT) 23.63 43.69 40.51 32.2 68.06 39.82 53.35 43.61
Mamba-144M (90BT) 24.57 43.18 40.33 29.2 68.61 39.41 52.41 42.53

RWKV-7-168M (100BT) 23.89 43.14 41.50 29.8 68.72 39.41 50.99 42.35
RWKV-7-168M (95BT) 24.23 42.89 41.77 29.2 68.99 39.10 51.14 42.48
RWKV-7-168M (90BT) 24.40 43.01 41.38 30.0 68.44 39.00 51.14 42.48

Avey-496M (100BT) 27.13 48.99 52.17 32.0 72.47 40.53 54.54 46.55
Avey-496M (95BT) 27.90 49.20 51.74 33.0 73.07 40.63 53.51 46.72
Avey-496M (90BT) 27.47 48.65 51.56 32.4 71.93 39.30 55.09 46.63

Transformer++-488M (100BT) 25.68 48.02 52.92 31.6 72.69 39.56 55.96 46.06
Transformer++-488M (95BT) 27.39 47.90 52.69 31.6 72.36 40.07 54.22 46.12
Transformer++-488M (90BT) 27.13 48.36 52.37 32.0 71.33 40.17 55.56 46.16

Mamba-500M (100BT) 29.27 51.26 54.45 34.0 73.88 40.38 54.70 48.28
Mamba-500M (95BT) 28.67 51.39 54.25 34.8 72.69 40.89 55.33 48.29
Mamba-500M (90BT) 27.99 50.42 53.76 34.6 72.52 41.25 56.43 48.14

RWKV-7-501M (100BT) 26.96 49.83 54.49 36.0 73.23 39.30 55.17 47.71
RWKV-7-501M (95BT) 27.39 49.24 54.66 35.6 73.78 39.15 55.80 47.95
RWKV-7-501M (90BT) 27.05 49.03 54.46 37.2 73.72 39.76 56.20 48.20

Avey-1.52B (100BT) 30.89 56.36 61.49 34.4 75.84 42.07 56.59 51.09
Avey-1.52B (95BT) 32.34 56.94 61.63 37.6 75.57 41.76 58.09 52.42
Avey-1.52B (90BT) 30.55 56.36 61.15 38.4 75.41 42.17 56.51 51.51

Transformer++-1.5B (100BT) 30.29 56.19 64.28 38.8 76.12 42.27 61.33 52.75
Transformer++-1.5B (95BT) 30.97 57.07 63.87 37.0 76.17 42.07 61.72 52.70
Transformer++-1.5B (90BT) 28.75 55.60 63.45 38.2 75.73 42.37 61.09 52.19

Mamba-1.4B (100BT) 32.42 57.87 64.78 38.4 76.61 42.48 62.27 53.55
Mamba-1.4B (95BT) 32.85 57.91 64.37 35.4 76.33 42.02 60.93 52.69
Mamba-1.4B (90BT) 32.00 58.63 64.38 36.8 76.22 41.50 61.33 52.69

RWKV-7-1.5B (100BT) 32.42 59.55 64.59 37.4 76.82 41.86 59.67 53.19
RWKV-7-1.5B (95BT) 33.11 58.88 64.49 37.0 76.88 41.71 60.38 53.21
RWKV-7-1.5B (90BT) 33.28 58.71 64.21 37.0 76.82 41.56 60.14 53.10

Table 14: Summary statistics for each model with different sizes computed over the last three check-
points (i.e., at 90B, 95B, and 100B training tokens).

Model Mean Standard Deviation Standard Error 95% Confidence Interval
Avey-153M 42.32 0.3683 0.2126 (41.41, 43.24)
Transformer++-152M 41.72 0.1821 0.1052 (41.27, 42.17)
Mamba-144M 42.73 0.2700 0.1559 (42.06, 43.40)
RWKV-7-168M 42.48 0.0094 0.0054 (42.46, 42.51)

Avey-496M 46.82 0.1895 0.1094 (46.35, 47.29)
Transformer++-488M 46.65 0.0507 0.0293 (46.52, 46.77)
Mamba-500M 48.23 0.0835 0.0482 (48.03, 48.44)
RWKV-7-501M 48.00 0.1807 0.1043 (47.55, 48.45)

Avey-1.52B 51.53 0.4497 0.2596 (50.41, 52.65)
Transformer++-1.5B 52.54 0.3218 0.1858 (51.74, 53.34)
Mamba-1.4B 53.12 0.3783 0.2184 (52.18, 54.06)
RWKV-7-1.5B 53.17 0.0553 0.0320 (53.03, 53.30)
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