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Abstract

In this paper, we proposes a simple, tricky001
method to improve sentence representation of002
unsupervised contrastive learning. Even though003
contrastive learning has achieved great perfor-004
mances in both visual representation learning005
(VRL) and sentence representation learning006
(SRL) fields, we focus on the fact that there is007
a gap between characteristics and training dy-008
namics of VRL and SRL. We first examine the009
role of temperature to bridge the gap between010
VRL and SRL, and find some temperature-011
dependent elements in SRL; i.e., a higher tem-012
perature causes overfitting of the uniformity013
while improving the alignment in earlier phase014
of training. Then, we design a temperature015
cool-down technique based on this observation,016
which helps PLMs to be more suitable for con-017
trastive learning via preparation of uniform rep-018
resentation space. Our experimental results on019
widely-utilized benchmarks demonstrate the ef-020
fectiveness and extensiblity of our method.021

1 Introduction022

One of the most important breakthroughs in unsu-023

pervised representation learning is the introduction024

of contrastive learning into the field of deep learn-025

ing (Chen et al., 2020; He et al., 2020). In the026

past few years, a number of studies have sought027

to analyze the success of contrastive learning. For028

example, optimizing contrastive learning can sat-029

isfy two different properties of representations on030

the hypersphere, which are asymptotically quan-031

tified by the uniformity and alignment loss (the032

former leads to a uniformly distributed representa-033

tion space and the latter makes a positive instance034

closer to an anchor (Wang and Isola, 2020)). These035

approaches have also been widely adopted in the036

SRL (sentence representation learning) literature,037

where SimCSE (Gao et al., 2021) successfully im-038

plemented the framework for unsupervised con-039

trastive learning by constructing a straightforward040

dropout-based positive pair.041

There has been a steady increase of interest in 042

the role of a temperature (τ ) used in NT-Xent loss 043

(normalized temperature cross entropy loss) (Chen 044

et al., 2020). For example, a temperature is 045

inversely proportional to uniformity by control- 046

ling the strength of the penalty on negative sam- 047

ples (Wang and Liu, 2021). Also, a higher temper- 048

ature can lead to a collapse (Zhang et al., 2021a), 049

i.e., degeneration solution of representation learn- 050

ing (Chen et al., 2020; Chen and He, 2021). How- 051

ever, most studies have focused only on VRL (vi- 052

sual representation learning), and little information 053

is known about the role of temperature especially 054

for SRL. In addition, there are several differences 055

between the two fields; i.e., the number of batch 056

size (smaller in SRL), the usage of PLMs (pre- 057

trained language models)), and a temperature value 058

(relatively lower in SRL). 059

In our study, we first investigate the role of tem- 060

perature in SimCSE. Interestingly, we find that the 061

higher temperature in the earlier phase of train- 062

ing shows lower alignment and higher uniformity 063

loss, indicating that higher temperature alleviates 064

the excessive repelling of negative instances that 065

are too close to the anchor due to the anisotropic 066

space of PLMs; i.e., feature vectors form a narrow 067

cone-like representation space (Ethayarajh, 2019; 068

Wang et al., 2019; Li et al., 2020). Theoretically, 069

NT-Xent loss with higher temperature will degen- 070

erate to the vanilla contrative loss, which repels 071

every negative sample with equal strength (Zhang 072

et al., 2021a). We assume that this can be effective 073

for SRL different from typical VRL works whose 074

models’ parameters are initialized by normal distri- 075

bution1 and trained from scratch. 076

Based on the above motivation, we propose tem- 077

perature cool-down, a simple technique specially 078

designed for unsupervised SRL. We set a higher 079

temperature in the first few steps on earlier training, 080

1Thus, their representation spaces are uniformly distributed
at the beginning.
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Figure 1: PCA visualization of the representation space
during contrastive learning with/without temperature
cool-down. (a): Following the literature, BERT-base
shows the anisotropic representation space. (b): A
model trained with temperature cool-down pulls dis-
tant instances (colored pink) more uniformly. (c): A
representation space built by temperature cool-down
leads to a more uniform unit hypersphere.

and then cool down the temperature to the origi-081

nal value. The higher temperature can mitigate the082

phenomenon where, due to the anisotropic nature083

of PLMs’ representation spaces, a smaller temper-084

ature in the early phase of training leads to unin-085

tended pulling and pushing of instances because of086

their excessive proximity to the anchor. In this way,087

temperature cool-down makes the PLMs’ represen-088

tation spaces better suited for dropout-noise based089

contrastive learning. Empirically, our temperature090

cool-down improves SimCSE’s performance on the091

unsupervised sentence representation benchmarks.092

It also has the extensibility to be used in different093

SRL methods based on SimCSE.094

2 Proposed Method095

2.1 Preliminary and Motivation096

Unsupervised Sentence Representation Learn-097

ing Previous studies in the field of SRL have098

focused on the computation of continuous and099

static word representations based on the idea of100

word2vec (Mikolov et al., 2013; Hill et al., 2016;101

Logeswaran and Lee, 2018). Since the success-102

ful introduction of PLMs (Devlin et al., 2018; Liu 103

et al., 2019), several methods using PLMs to gen- 104

erate sentence representations have been reported, 105

but PLMs suffered from some problems such as an 106

anisotropic space (Ethayarajh, 2019). 107

In line with VRL, previous attempts to apply 108

contrastive learning to SRL have focused on con- 109

structing well-crafted pairs to learn a better sen- 110

tence representation (Sun et al., 2020; Zhang et al., 111

2020, 2021b; Giorgi et al., 2021; Kim et al., 2021; 112

Yan et al., 2021). Recently, many works have fol- 113

lowed the typical SimCSE baseline (Gao et al., 114

2021), which uses dropout-noise based augmenta- 115

tion. SimCSE utilized NT-Xent loss: 116

li = −log
esim(zi,z′i)/τ∑N
j=1 e

sim(zi,z′j)/τ
, (1) 117

where sim(), zi, z′i, and z′j(i ̸= j) denote a similar- 118

ity function, a hidden representation of the anchor, 119

a positive instance, and a negative instance. 120

Role of Temperature According to the gradi- 121

ent of contrastive loss, one of the roles of tem- 122

perature is to control the distribution of negative 123

gradients (Wang and Liu, 2021). Since the gra- 124

dients with respect to both positive and negative 125

similarity are proportional to the inverse of the tem- 126

perature ( 1τ ), the contrastive loss is the hardness- 127

aware function by which temperature determines 128

the strength of repelling negative samples. For ex- 129

ample, a lower temperature boosts the gradient of 130

instances closed to the anchor and thus improves 131

the uniformity (Robinson et al., 2021). In contrast, 132

a higher temperature leads to a balanced weight of 133

gradients and may suffer both performance degra- 134

dation and collapse of the representation (Zhang 135

et al., 2021a). 136

We assume that there are temperature-dependent 137

factors in SRL due to the nature of PLMs. If there 138

is a strong relationship, a subtle change in the tem- 139

perature value may lead to an improvement in rep- 140

resentational power. This assumption raises the 141

question regarding an inconclusive reason for the 142

lower temperature value used in SimCSE. 143

2.2 Observation 144

In this section, we examine the effect of tempera- 145

ture in terms of the representation space − i.e., the 146

uniformity and alignment loss −, and the quantita- 147

tive evaluation results. As shown in Figure 2, the 148

uniformity is proportional to the temperature while 149
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Figure 2: Uniformity and alignment of BERT-base
trained by SimCSE with different temperature (τ ).

PLMs τ Avg.STS PLMs τ Avg.STS
BERT 0.05 76.95 RoBERTa 0.05 76.64
(base) 0.06 76.96 (base) 0.06 76.61

0.07 76.37 0.07 75.57
0.08 75.08 0.08 74.86
0.09 73.26 0.09 73.73
0.10 71.92 0.10 72.36

Table 1: Results of SimCSE with different temperature
on the STS evaluation tasks. An underlined temperature
indicates the original SimCSE’s hyperparameter.

the alignment is inversely proportional, which is150

consistent with previous results. Also, a higher151

temperature leads to worse performance (Table 1),152

which is similar to the finding of Zhang et al.,153

2021a. At the same time, we observe that there154

are unprecedented results; a higher temperature155

not only leads to overfitting of the uniformity (it156

gets worse2 in the evaluation datasets), but also157

improves the alignment. This tendency is more158

pronounced in the early stages of training.159

2.3 Temperature Cool-down160

Motivated by the previous findings and our obser-161

vations, we design a simple yet effective technique162

for contrastive learning in SRL, named temperature163

cool-down. Its logic is similar to the widely-used164

warm-up technique in learning rate schedulers (He165

et al., 2016, 2019). We start by setting a initial166

temperature (τi) value that is larger than the orig-167

inal temperature (τ ) in earlier training steps. Af-168

ter a certain ratio of steps (rs), we cool down the169

temperature to the original one. There are many170

possible ways to implement an effective cool-down171

process. In this paper, we explore two candidates:172

Temperature Cool-down with Constant (TCC) and173

with Step function (TCS), each formulated by:174

τTCC,t =

{
τi, if t ∈ [1, rs · s)
τ. otherwise

(2)175

2Both smaller uniformity and alignment are better.

τTCS,t =


τi, if t ∈ [1, 0.5 · rs · s)
τi+τ
2 , if t ∈ [0.5 · rs · s, rs · s)

τ. otherwise

(3) 176

where t, τ , τi, s, and rs denote a current training 177

step, original temperature, initial temperature, total 178

training steps, and step ratio, respectively. TCS 179

uses a simple median of the temperature between 180

τi and τ in the middle of the cool-down steps. We 181

simply divide the TCS steps by 1
2 . 182

Since the representation spaces of PLMs are 183

anisotropic, lower temperature in the early stages 184

of training can lead to unintended pulling/pushing 185

of instances due to excessive closeness towards 186

the anchor (see Figure 1). This can be mitigated 187

by higher temperature, whose role is to equally 188

pull/push instances regardless of their closeness. In 189

this respect, temperature cool-down prepares the 190

representation spaces of PLMs to be more suitable 191

for dropout-noise-based contrastive learning. 192

3 Experiments 193

3.1 Implementation Details 194

Training Setups We conduct grid search to de- 195

termine the optimal hyperparameters; initial tem- 196

perature (τi) ∈ [0.05, 0.014], step ratio (rs) ∈ [0.01, 197

0.03], and batch size ∈ {64, 512}. We train our 198

models for 1 epoch and evaluate the model every 199

250 steps on the STS-B development set, following 200

the literature. Also, we train SimCSE based on the 201

paper’s hyperparameters configuration. 202

Network Implementation We train SimCSE 203

with temperature cool-down using the pre-trained 204

checkpoints of BERT (Devlin et al., 2018) and 205

RoBERTa (Liu et al., 2019) downloaded from hug- 206

gingface (Wolf et al., 2019). Following SimCSE, 207

we also consider a [CLS] hidden representation as 208

the sentence representation (Gao et al., 2021). 209

3.2 Unsupervised STS Tasks 210

Benchmark We train all models on randomly 211

sampled datasets from English Wikipedia (106), 212

which is same with the baseline (Gao et al., 2021). 213

We evaluate them on typical sentence representa- 214

tion benchmark: STS 2012-2016 (Agirre et al., 215

2012, 2013, 2014, 2015, 2016), STS Benchmark 216

(STS-B) (Cer et al., 2017) and SICK Relatedness 217

(SICK-R) (Marelli et al., 2014). These datasets con- 218

sist of pair of sentences of which similarity score’s 219

3



PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase first-last ♣ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70

SimCSE 71.64 82.68 75.81 82.25 78.60 78.93 68.76 76.95
+ TCC 72.52 83.83 76.60 83.29 79.60 79.60 71.26 78.10
+ TCS 72.37 83.79 76.65 83.37 79.42 79.60 71.13 78.05

BERTlarge SimCSE 70.80 85.58 77.34 84.27 79.31 79.07 72.82 78.46
+ TCC 71.50 85.25 77.09 84.43 79.12 80.21 74.45 78.86
+ TCS 71.23 85.19 77.43 84.12 79.39 80.26 73.85 78.78

RoBERTabase first-last ♣ 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
SimCSE 68.65 81.70 73.44 82.30 81.09 80.51 68.76 76.64
+ TCC 69.79 82.69 74.70 82.63 81.19 82.13 69.91 77.58
+ TCS 70.01 82.56 74.43 82.66 81.63 81.56 69.38 77.46

RoBERTalarge SimCSE 70.85 83.67 75.83 84.24 80.27 82.42 72.41 78.53
+ TCC 71.08 84.60 76.56 84.97 80.37 83.18 71.72 78.93
+ TCS 70.40 83.65 75.19 84.95 80.37 81.80 73.40 78.54

Table 2: Performance of different unsupervised contrastive learning methods on the STS tasks (Spearman’s
correlation). Each bold number and underlined number indicates the best and second best performance within the
PLMs, respectively. ♣: Results from Gao et al., 2021.

range is from 0 to 5. We utilize SentEval (Conneau220

and Kiela, 2018) for evaluation.221

Results Table 2 shows the experimental results.222

Applying temparture cool-down boosts the perfor-223

mances; both TCC and TCS show better perfor-224

mance in most cases compared with the original225

SimCSE: nearly 1.5% on BERT-base, 1.4% on226

RoBERTa-base, 0.5% on BERT-large, and 0.5%227

on RoBERTa-large.228

Applying to ArcCSE Here, we applied our tem-229

perature cool-down to ArcCSE (Zhang et al., 2022),230

which is one of the promising baselines extended231

from SimCSE. It proposed an angular margin con-232

trastive loss (ArcConLoss), which introduces an233

angular margin term in the similarity function. It234

also proposed the extra Triplet loss, which requires235

additional preprocessed data. However, since the236

data is not accessible, we cannot reproduce the ex-237

tra Triplet loss. We therefore report the results of238

ArcCSE without the Triplet loss in Table 3. We239

follow ArcCSE’s default configuration along with240

our parameters; τi is 0.01 and rs ∈ [0.011, 0.02]241

with a step size of 0.001. We observe that applying242

temperature cool-down improves the performance,243

and even shows better performance than the orig-244

inal ArcCSE with the Triplet loss in BERT-base.245

This result is noteworthy because the extra Triplet246

loss requires much more computational resources,247

while our cool-down technique does not.248

3.3 Uniformity and Alignment249

We track the change of uniformity and alignment250

loss in STS-B development sets. Figure 3 visu-251

alizes 3 different methods on BERT-base (more252

results are in Appendix G), easing the uniformity253

and improving the alignment in earlier phase by254
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0.35

0.3

0.25

0.2

0.15
2k 4k 6k 8k 10k 12k 14k

SimCSE
TCC
TCS

2k 4k 6k 8k 10k 12k 14k

Figure 3: Uniformity and alignment on BERT-base us-
ing temperature cool-down.

PLMs Method Avg.STS
BERTbase ArcCSE w/o Triplet loss 77.76

+ TCC 78.20
+ TCS 78.09
ArcCSE ♡ 78.11

BERTlarge ArcCSE w/o Triplet loss 78.93
+ TCC 79.11
+ TCS 79.23
ArcCSE ♡ 79.37

Table 3: Results of ArcConLoss with temperature cool-
down. ♡: Results from Zhang et al., 2022.

temperature cool-down (steps < 1k) leads to more 255

stable uniformity dynamics (smaller standard devi- 256

ation). Also, the uniformity and alignment loss for 257

the best checkpoint are better than vanilla SimCSE 258

(see Appendix G). 259

4 Conclusion 260

We explore a simple, yet tricky, technique to control 261

the temperature value of vanilla contrastive loss, 262

which is widely used in the SRL literature. Moti- 263

vated by previous studies in VRL and our empirical 264

observations, we design a temperature cool-down 265

that accelerates a higher temperature in earlier train- 266

ing steps and then cools down to the original, lower 267

temperature. It shows performance improvement 268

on various STS tasks, and also has many possibili- 269

ties for plugging into other contrastive frameworks 270

and designing effective variants. 271
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5 Limitation272

Although there can be a lot of possibilities of tem-273

perature cool-down variants, this paper suggests a274

few of simple functions. Similar to the learning rate275

warm-up, there may be effective candidates such276

as the exponential decay function or cosine func-277

tion. In addition, there is a lack of mathematical278

grounding for the proposed approach. Nonetheless,279

we think that further experiments for gradient anal-280

ysis can back up the success of our temperature281

cool-down. We leave exploration towards these282

researches in the future work.283

The results reported in Table 2 may be in-284

terpreted as marginal, especially in terms of285

RoBERTa. As we mentioned before, temperature286

cool-down is a simple technique for well-preparing287

PLMs’ representation spaces, assuming they ini-288

tially look like narrow-cone. Thus, we measure289

the uniformity losses of untrained PLMs using in-290

batch samples (equally 64 for 4 models). Interest-291

ingly, we find that the initial uniformity losses of292

RoBERTa based models (RoBERTa-base:-0.1095,293

RoBERTa-large:-0.2503) are much smaller than294

BERT based models (BERT-base : -1.3086, BERT-295

large : -1.8705). We then visualize the represen-296

tation spaces of RoBERTa models, which are not297

included in main paper, and find that they already298

look similar to cool-down setups (see Figure 1(b))299

though those visualizations are limited to 2d man-300

ifold representation space. Still uncertain, but we301

believe this may be the reason of the marginal per-302

formance improvement.303

More experimental results, which are not in-304

cluded in the main paper due to a limited space, can305

be found in Appendix. These include the robust-306

ness toward different random seeds experiments307

(Appendix D), evaluation on transfer tasks (Ap-308

pendix E), and detailed results of the uniformity309

and alignment (Appendix G).310

6 Ethical Consideration311

We use datasets and pre-trained models in hug-312

gingface for only scholar purpose. Following the313

literature, reported negative biases from training314

data (English Wikipedia) of PLMs (Bender et al.,315

2021) can also be found in our works. In addition,316

there are not any other ethical problems.317
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A Dataset Details 560

Dataset train valid test
STS12 - - 3108
STS13 - - 1500
STS14 - - 3750
STS15 - - 3000
STS16 - - 1186
STS-B 5749 1500 1379

SICK-R 4500 500 4927

Table 4: Detailed configuration of 7 STS datasets.

Dataset train valid test
MR 10662 - -
CR 3775 - -

SUBJ 10000 - -
MPQA 10606 - -
SST-2 67349 872 1821
TREC 5452 - 500
MPRC 4076 - 1725

Table 5: Detailed configuration of 7 transfer datasets.

We report the statistics of the training, validation, 561

and test sets of the 7 STS evaluation tasks, as well 562

as the 7 transfer tasks which are utilized in Sec- 563

tion E: MR (Pang and Lee, 2005), CR (Hu and Liu, 564

2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe 565

et al., 2005), SST-2 (Socher et al., 2013), TREC 566

(Voorhees and Tice, 2000) and MRPC (Dolan and 567

Brockett, 2005). The detailed configuration of the 568

datasets for each evaluation scenario can be found 569

in Table 4 and Table 5, respectively. Following 570
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TCC batch_size learning_rate temp (τ ) init_temp (τi) steps_ratio (rs)
BERTbase 64 3e-5 0.05 0.10 0.014
BERTlarge 64 1e-5 0.05 0.10 0.015
RoBERTabase 128 1e-5 0.05 0.07 0.013
RoBERTalarge 256 3e-5 0.05 0.06 0.013
TCS batch_size learning_rate temp (τ ) init_temp (τi) steps_ratio (rs)
BERTbase 64 3e-5 0.05 0.10 0.028
BERTlarge 64 1e-5 0.05 0.10 0.018
RoBERTabase 128 1e-5 0.05 0.07 0.014
RoBERTalarge 256 3e-5 0.05 0.07 0.020

Table 6: The hyperparameters corresponding to the best results of the STS tasks.

the literature, we use test sets for Table 2 results571

without using any additional validation sets.572

B Detailed Implementation573

Following the literature, we use the [CLS] token as574

the sentence representation for training, and save575

the best model checkpoint by using the validation576

score on the development set of STS-B. We con-577

duct all SimCSE experiments based on the original578

paper’s configuration. We choose learning rate be-579

tween [1e-5, 3e-5], batch size between [64, 512],580

and temperature = 0.05. In the case of the initial581

temperature and cool-down step ratio, we carry out582

grid-search of the initial temperature between [0.06,583

0.12], step ratio between [0.01, 0.03] by increasing584

each value by 0.01. We do not change the original585

temperature value (τ=0.05, chosen by SimCSE).586

Detailed settings of the hyperparameters can be587

found in Table 6.588

PLMs Method uniformity(↓) alignment(↓)
BERTbase SimCSE -2.101 0.2073

+ TCC -2.124 0.1934
+ TCS -2.112 0.1924

BERTlarge SimCSE -2.410 0.2493
+ TCC -2.586 0.2482
+ TCS -2.518 0.2457

RoBERTabase SimCSE -2.383 0.2413
+ TCC -2.317 0.2196
+ TCS -2.196 0.2087

RoBERTalarge SimCSE -2.868 0.2823
+ TCC -2.817 0.2645
+ TCS -2.903 0.2880

Table 7: Uniformity and alignment results. Both losses
are better as they become smaller.

PLMs Method Avg.Score
BERTbase SimCSE 75.83 ± 0.71

+ TCC 77.42 ± 0.61

+ TCS 76.46 ± 1.41

BERTlarge SimCSE 77.14 ± 1.45

+ TCC 78.52 ± 0.29

+ TCS 78.28 ± 0.46

RoBERTabase SimCSE 76.77 ± 0.06

+ TCC 77.18 ± 0.78

+ TCS 77.06 ± 0.65

RoBERTalarge SimCSE 78.04 ± 0.64

+ TCC 78.47 ± 0.43

+ TCS 78.04 ± 0.44

Table 8: Averaged results of 3 different random seed
experiments on the STS evaluation tasks.

C Detailed Results of ArcConLoss 589

Experiments 590

In this section, we report detailed results of the 591

ArcConLoss experiments shown in Table 3 of the 592

main paper. As shown in Table 9, the application of 593

our temperature cool-down shows a performance 594

improvement that is comparable to the baseline, 595

without any additional pre-processing or loss func- 596

tion. 597

D Robustness of Temperature Cool-down 598

Since there has been a reported issue of SimCSE’s 599

vulnerability to random seeds, we perform addi- 600

tional experiments of temperature cool-down with 601

3 different random seeds. As shown in Table 8, 602

temperature cool-down improves the performance 603

of SimCSE performance with better robustness. 604
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase ArcCSE w/o Triplet loss 71.76 82.77 76.81 83.56 78.87 79.36 71.16 77.76

+ TCC 72.31 83.87 76.76 83.16 79.54 79.97 71.82 78.20
+ TCS 72.26 83.46 76.48 83.18 79.46 80.07 71.73 78.09
ArcCSE ♡ 72.08 84.27 76.25 82.32 79.54 79.92 72.39 78.11

BERTlarge ArcCSE w/o Triplet loss 73.38 84.94 76.74 84.28 80.19 80.02 72.96 78.93
+ TCC 73.92 84.53 77.24 84.72 79.66 79.96 73.76 79.11
+ TCS 72.22 85.17 77.60 84.71 79.76 80.50 74.66 79.23
ArcCSE ♡ 73.17 86.19 77.90 84.97 79.43 80.45 73.50 79.37

Table 9: Performance of different unsupervised contrastive learning methods on the STS tasks (Spearman’s
correlation). Each bold number indicates the best performance within the PLMs. ♡: Results from Gao et al., 2021.

PLMs Method MR CR SUBJ MPQA SST TREC MPRC Avg.
BERTbase SimCSE 81.37 86.49 94.46 88.66 84.95 87.60 74.32 85.41

+ TCC 80.77 85.57 94.24 88.86 85.28 87.47 74.49 85.21
+ TCS 80.30 85.25 94.31 88.85 84.35 85.80 74.14 84.71

BERTlarge SimCSE 84.30 87.98 94.86 88.78 89.51 93.00 74.61 87.58
+ TCC 84.68 88.40 94.76 89.58 90.39 93.40 75.30 88.07
+ TCS 84.47 88.37 95.11 89.57 90.72 91.80 76.58 88.09

RoBERTabase SimCSE 81.75 86.97 93.43 87.28 86.99 84.40 75.01 85.12
+ TCC 82.09 87.42 93.15 88.07 87.10 85.20 75.42 85.49
+ TCS 81.20 86.94 92.96 87.36 87.04 85.40 75.19 85.16

RoBERTalarge SimCSE 83.17 88.40 94.08 88.57 87.53 91.20 72.23 86.45
+ TCC 81.85 87.47 93.74 88.54 86.66 90.80 73.51 86.08
+ TCS 82.19 88.11 93.42 88.18 86.99 91.20 71.42 85.93

Table 10: Performance of different unsupervised contrastive learning methods on the transfer tasks. Each bold
number and underlined number indicates the best and the second best performance within the PLMs, respectively.

E Transfer Tasks605

We also perform evaluation on 7 transfer tasks us-606

ing the SentEval toolkit. As we can see in Table 10,607

the results of the transfer tasks show slightly lower608

or comparable performance to the baseline. This609

is consistent with the intuition that transfer tasks610

rarely target the sentence representation tasks (Gao611

et al., 2021).612

F Toward the Possibility of Variant for613

Temperature Cool-down614

In addition to the two methods (TCC and TCS)615

introduced in the main paper, there will be many616

different ways to design variants of temperature617

cool-down, similar to learning rate scheduling. For618

instance, one of the most commonly used learn-619

ing rate schedules is linear warm-up (Goyal et al.,620

2017). Following this straightforward mechanism,621

we introduce a simple approach of linear tempera-622

ture cool-down (called TCL) as below:623

τTCL,t =

{
τi − τi−τ

rs·s · t, if t ∈ [1, rs · s)
τ. otherwise

(4)624

We believe that there may be several other can-625

didates that show effective performance.626

G Additional Results of Uniformity and 627

Alignment 628

In addition to the results of Section 3.3, we plot the 629

uniformity and alignment of 3 other PLMs during 630

training. As shown in Figure 4, our temperature 631

cool-down methods improve the quality of the rep- 632

resentation spaces in terms of both metrics. We 633

also report the uniformity and alignment of the 634

model’s best checkpoints in Table 7. 635
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Figure 4: Uniformity and alignment on BERT-large,
RoBERTa-base, and RoBERTa-large using temperature
cool-down.
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