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ABSTRACT

Recent advances in image editing models have shown remarkable progress.
A common architectural design couples a multimodal large language model
(MLLM) encoder with a diffusion decoder, as seen in systems such as Step 1 X-Edit
and Qwen-Image-Edit, where the MLLM encodes both the reference image and
the instruction but remains frozen during training. In this work, we demonstrate
that unlocking the reasoning capabilities of MLLM can further push the bound-
aries of editing models. Specifically, we explore two reasoning mechanisms,
thinking and reflection, which enhance instruction understanding and editing ac-
curacy. Based on that, our proposed framework enables image editing in a think-
ing—editing—reflection loop: the thinking mechanism leverages the world knowl-
edge of MLLM to interpret abstract instructions, while the reflection reviews edit-
ing results and automatically corrects unintended manipulations. Extensive ex-
periments demonstrate that our reasoning approach achieves significant perfor-
mance gains over the base model, with improvements of ImgEdit (+0.7%), GEdit
(+1.4%), and Kris (2.5%), and also outperforms previous open-source methods on
both Kris and ImgEdit. Code will be open-sourced.

1 INTRODUCTION

Image editing with diffusion models has witnessed rapid progress, moving from early mask-based
approaches such as BrushNet (Ju et al.l[2024) and PowerPaint (Zhuang et al.| 2024), to instruction-
driven systems like InstructPix2Pix (Brooks et al., [2022) and OmniGen (Xiao et al., [2025)), and
more recently to multimodal frameworks that integrate an MLLM encoder with a diffusion de-
coder, like Step1X-Edit (Liu et al.,|2025) and Qwen-Image-Edit (Wu et al., 2025a). These advances
have substantially improved controllability and usability, enabling more diverse and flexible image
editing. However, state-of-the-art instruction-based methods still face challenges in generalizing
instructions, as most models keep MLLM encoders frozen during training. As a result, current mod-
els exhibit limited visual reasoning capabilities, which restricts their ability to handle complex or
abstract instructions. More importantly, such limitations prevent them from benefiting fully from
test-time scaling, a paradigm that has driven significant improvements in language models.

Turning to the visual reasoning domain, recent advances have explored reasoning-enhanced visual
generation through unified understanding and generation (Deng et al.,|2025), reflection-based refine-
ment (Wu et al.,[2025¢ [L1 et al., [2025)), and chain-of-thought modeling (Zhang et al., 2025a; Wang
et al.| [2025b; Huang et al., 2025)). These studies highlight the potential of reasoning for controllable
and efficient generation. For instance, BAGEL (Deng et al., 2025)) introduces a thinking mode that
leverages the world knowledge of MLLMs to interpret abstract instructions in image generation and
editing, while OmniGen2 (Wu et al., [2025¢)) integrates reflection capabilities of MLLMs into image
generation. Despite these advances, most existing efforts remain centered on image generation, leav-
ing the application of reasoning to image editing largely underexplored. A key underlying challenge
lies in the substantial hallucinations of MLLMs during paired image understanding, particularly in
capturing the differences between reference and edited results (Fu et al.| 2024} [Wang et al., [2025a)
and in generating appropriate refined instructions for subsequent editing.

To this end, we propose ReasonEdit, a fundamental editing model with two reasoning capbilities:
thinking and reflection. The former primarily transforms ambiguous, colloquial, and informal edit-
ing instructions into clear, standardized, and actionable directives by constructing Thinking Pairs,
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Figure 1: Illustration of the ReasonEdit’s reasoning capabilities. The thinking module illustrates
how a model decomposes abstract instructions into clear, actionable commands. The reflection
pipeline, conversely, showcases the model’s ability to perform an iterative self-correction loop, re-
fining an intermediate generated image to achieve a more accurate final result.

which are structured as abstract-to-concrete instruction pairs. The latter is designed to perform it-
erative self-correction and refinement during the editing process by restructuring the paired image
understanding as multiple cascaded single-image understanding tasks. We achieve this by con-
structing Reflection Triples that form an iterative cycle: <original image, editing instructions, edited
image, reflection instructions, reflection-corrected image>. To train these image editing reasoning
capabilities, our network architecture integrates a MLLM as the Reasoner and a DiT as the Genera-
tor. We employ a multi-stage training strategy: initially, the model is trained independently on image
editing and thinking tasks, followed by a joint training phase. This progressive approach simplifies
the learning objectives at each stage, leading to smoother convergence and a more effective, gradual
acquisition of both editing and reasoning capabilities.

Our contributions can be summarized as follows:

* A reasoning-enhanced editing model that natively supports a thinking—editing—reflection work-
flow. Thinking mode allows parsing original instructions leveraging the world knowledge of
MLLMs, enabling the model to tackle more complex editing tasks. Reflection mode enables
iterative refinement by reviewing and correcting the results of previous edits.

* A comprehensive data construction pipeline consisting of <original image, editing instructions,
edited image, reflection instructions, reflection-corrected image>, which supports end-to-end
training of the thinking—editing—reflection loop.

2 RELATED WORK

2.1 IMAGE EDITING MODELS

Diffusion models have demonstrated remarkable progress in generative modeling, particularly for
producing high-fidelity and diverse image editing results. Early approaches, such as BrushNet (Ju
et al., [2024), BrushEdit (Li et al., 2024), PowerPaint (Zhuang et al.l 2024), and FLUX.1-Fill-
dev (Black Forest Labs|, 2024b), typically employ an edit-area mask together with textual instruc-
tions to achieve localized and high-quality edits. Beyond mask-based control, recent works have
further explored enhancing editing controllability by incorporating multiple visual conditions. For
instance, OminiControl (Tan et al., 2025), ACE (Han et al., [2025)), and ACE++ (Mao et al., |2025)
unify diverse conditional signals such as depth maps and keypoints within a single model, thereby
enabling more flexible and versatile editing capabilities.

While visual conditions offer precise control, they also raise the usage threshold. In contrast,
instruction-based models aim to enable editing through natural language, but often struggle to
align semantic understanding with fine-grained manipulation. Pioneering efforts such as Instruct-
Pix2Pix (Brooks et al.l 2022), MagicBrush (Zhang et al.l 2023), UltraEdit (Zhao et al.| |2024),
AnyEdit (Yu et al., [2025)), and OmniGen (Xiao et al.l 2025)) construct large-scale instruction—image
pairs to support purely instruction-driven editing, yet still face challenges in fidelity and quality.
Recent approaches address this challenge by leveraging priors from advanced text-to-image mod-
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els (Black Forest Labs| [2024a;c; |Cai et al.| 2025)), as in ICEdit (Zhang et al., [2025b)), Hidream-
E1 (HiDream-ai, 2025), and FLUX.1-Kontext-dev (BlackForestLabs et al.| [2025). Another line
of work integrates multimodal large language model encoders with diffusion decoders, such as
Qwen2VL-Flux (Lul[2024), MetaQueries (Pan et al.,2025)), BLIP3-o (Chen et al.,[2025)), UniWorld-
vl (Lin et al., 2025), Step1X-Edit (Liu et al.,[2025), and Qwen-Image-Edit (Wu et al., 2025a).

Although existing models have achieved notable progress in instruction-based editing, their reliance
on frozen MLLM encoders limits performance on complex or abstract instructions. Motivated by
this, ReasonEdit unlocks the reasoning capability of MLLMs through joint optimization with the
diffusion decoder, thereby improving semantic understanding and extending the boundaries of con-
trollable image editing.

2.2 REASONING-ENHANCED VISUAL GENERATION MODELS

The test-time scaling paradigm has rapidly extended from language to multimodal domains, giving
rise to several reasoning-enhanced visual generation models. ThinkDiff (M et al., 2025) introduces
multimodal in-context reasoning into diffusion models via a “think-then-diffuse” inference scheme,
while BAGEL (Deng et al}|2025) enables a thinking mode by jointly training visual understanding
and generation tasks. In addition to pre-thinking mechanisms before generation, some works explore
reflection strategies to refine outputs, such as OmniGen2 (Wu et al.l 2025¢c) and Reflect-DiT (Li
et al.} 2025). Others, including Image-CoT (Zhang et al., 2025a), MINT (Wang et al., [2025b)), and
IRG (Huang et al.| 2025), employ multimodal chain-of-thought reasoning to guide the generation
process. Beyond text-to-image, GoT (Fang et al., [2025) integrates reasoning with diffusion mod-
els using large-scale reasoning-chain data for controllable generation and editing. Uni-CoT (Qin
et al.l 2025)) further decomposes multimodal chain-of-thought learning into macro- and micro-level
components with auxiliary tasks, enabling efficient training for complex reasoning.

Compared with the above approaches, ReasonEdit focuses more on exploring thinking and reflection
mechanisms for editing tasks, enhancing instruction understanding and editing accuracy. While Uni-
CoT (Qin et al.||2025) is a concurrent work, our method adopts different base models, training data
composition, and training paradigm.

3 METHOD

This section introduces the training data construction and the training of our model. We first elab-
orate on the construction of our edit reasoning data. Following this, we describe the training of the
proposed REASONEDIT, in which we present the model design, the multi-stage training strategy.
Finally, and a thorough account of the specific training details, ensuring clarity of the our method.

3.1 DATA CONSTRUCTION

To facilitate supervised fine-tuning of our reasoning model, we have developed two distinct datasets:
thinking and reflection. The former consists of abstract instruction-clear multi-step decomposition
instruction pairs, while the latter includes triples that encompass multiple cascaded single-image
understanding tasks.

Thinking Pairs consist of abstract-to-concrete instruction pairs. Each pair links an abstract instruc-
tion, which captures a user’s original request in ambiguous, colloquial, or informal language, with
its corresponding set of concrete, actionable commands. The concrete counterpart translates the ini-
tial user intent into one or more precise, standardized, and executable directives. For instance, the
abstract entry “symptoms of potassium deficiency in leaves” is paired with the concrete command
“Render the leaves yellow and desiccate the leaf tips.” For more complex requests, this structure
facilitates a logical decomposition into a single, cascaded sequence of directives. As an illustration,
a multifaceted request like “Make the image more dramatic with a vintage feel” is deconstructed
into a single, composite instruction: “Increase the image contrast. Apply a sepia tone filter. Add a
subtle vignette effect”.

To construct the Thinking Pairs dataset, we devised a three-step process combining categorization,
annotation, and review, leveraging different advanced Vision-Language Models (VLMs) as anno-
tators. First, we classified a large pool of raw instructions as either already clear or as abstract
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and complex. Then, in a two-way annotation process, we generated the corresponding abstract in-
structions for the clear commands and decomposed the complex instructions into clear, actionable
sub-directives. Finally, a rigorous review ensured that each pair met our specific abstract-to-concrete
requirements. We also supplemented the dataset with a small number of simple instructions that did
not require rewriting. This ensures our model can learn to handle both complex requests by decom-
posing them and simple requests by outputting them directly.

The Thinking Pairs dataset is built from an initial 500k image-instruction pair pool, which we cat-
egorize into 112k complex and 388k simple instructions. After annotating the entire set, a rigorous
review process selects 150k high-quality abstract-to-concrete pairs. Specifically, 62k of these pairs
come from simplifying complex instructions, and 88k are created by adding an abstract layer to
simple ones. To ensure versatility, we also include 50k pairs of simple, unedited instructions. The
final dataset totals 200k carefully curated pairs.

Reflection Triples is constructed from a large collection of existing image-editing pairs, designed
to facilitate a model’s multi-step, cascaded reasoning capabilities. Each core triple consists of an
<Input Image>, a <Generated Image>, and a <Target Image>. This structure models a chained
editing process: the <Generated Image> represents an intermediate output from an initial edit on
the <Input Image>, providing the crucial context for a multi-round, single-image reflection process
through which the model evaluates the generated output and performs subsequent adjustments to
produce the refined <Target Image>. In some instances, the generated image and the target image
are identical if no further edits are required.

To mitigate hallucination issues inherent in single-pass, dual-image evaluation, we designed a multi-
round, single-image reflection pipeline to enable robust reflection. This process begins by generating
a target image description based on the input image and instruction, which acts as a faithful and con-
cise blueprint for the intended outcome. A quantitative evaluation then provides a consistency score
and rationale, with metrics designed to assess the presence of conflicts, omissions, and hallucina-
tions. This comprehensive evaluation serves as a strong prior for the final reflection and decision-
making phase, where the model assesses the edit’s success using the original image, the generated
image, and the original instruction as a basis. The process yields one of three conclusions: Success-
ful Edit: Indicated by reasoning content and a <#Success> tag, signifying consistency between the
generated and target images. Refinable Edit: For edits that are not fully successful but allow for
refinement, reasoning content and a <#Reflection> tag are returned, along with a secondary editing
instruction based on the generated image. Failed Edit: If an edit fails due to irrecoverable flaws,
reasoning content and a <#Failed> tag are provided.

The Reflection Triples is constructed from an initial pool of 500k image-editing pairs. To diversify
the modalities of intermediate images, we generate an additional 500k images using four mainstream
editing methods (OpenAl, |2025;Shi et al.,2024; Liu et al., 2025; BlackForestLabs et al., 2025). We
then apply our previously described reflection pipeline, utilizing an advanced VLM to automate the
process. After a final, rigorous manual screening, the curation yields 180k valid data pairs, with an
approximate ratio of 3:1:1 for success, reflection, and failed examples.

3.2 TRAINING

Based on the reasoning-enhanced dataset, we utilize a multi-stage training strategy to effectively
integrate reasoning and image editing capabilities into a single unified model.

3.2.1 MODEL DESIGN

As shown in Fig. E], our model integrates an MLLM as the Reasoner and a DiT (Peebles & Xie,2023)
as a Generator. Specifically, we directly adopt Step1X-Edit (Liu et al.}[2025)) as our base architecture,
which employs Qwen2.5VL 7B Instruct (Bai et al., |2025) for text embedding and a 12B DiT as
its diffusion head. In contrast to the original Step1X-Edit, we enhance the MLLM and diffusion
transformer with Thinking and Reflection capabilities on image editing. This is achieved through a
multi-stage training strategy and subsequent fine-tuning on our reasoning-enhanced dataset, thereby
progressively refining the model’s performance. It is important to note that, while Stepl1X-Edit
serves as our chosen implementation, our proposed method is broadly applicable across various
image editing approaches.
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Figure 2: The model architecture and inference pipeline of REASONEDIT are structured around two
core components: the Thinking and Reflection processes which serve as the Reasoner, and a DiT
acting as the Generator. These Reasoner and Generator modules undergo a multi-stage training pro-
cess. During inference, they operate in an interleaved and sequential manner, progressively yielding
more precise image editing results through their integrated Thinking and Reflection capabilities.

Result-round1
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3.2.2 MULTI-STAGE TRAINING

Prior work highlights that such reconciliation often necessitates dedicated architectural advance-
ments, for instance, in vision encoders (Ma et al.}[2025;[Wu et al.}, 2025b} |Qu et al.,[2025)), to mitigate
conflicts during early joint training on both understanding and generation. To address these com-
plex dynamics and effectively integrate enhanced reasoning with generative processes, we adopt a
multi-stage training strategy. This progressive approach decomposes the intricate joint optimization
into simpler, focused tasks: initially cultivating the MLLM’s explicit Thinking and Reflection, sub-
sequently adapting the Generator (DiT) to these refined MLLM on image editing, and culminating
in a comprehensive joint fine-tuning of both components to achieve superior overall performance.

REASONING LEARNING STAGE. This initial stage is dedicated to cultivating the MLLM’s ex-
plicit Thinking and Reflection capabilities tailored for image editing tasks. To efficiently adapt the
model while mitigating catastrophic forgetting of its foundational knowledge, and to isolate rea-
soning training, we employ Low-Rank Adaptation (LoRA) on the linear layers in
attention modules. During this phase, the DiT remains frozen. Training is conducted on the con-
structed Thinking Pairs and Reflection Triples datasets (cf. Sec. [3.1)), optimizing with a standard
Next Token Prediction (NTP) loss,

L
Lytp =By, |~ Zlogpe(tkﬁl,tz, oy te-1) (D
k=1
where t;, represents the k-th token in a sequence of length L, and py is the probability predicted by
the MLLM parameterized by 6.

EDIT LEARNING STAGE. Following the dedicated tuning of the MLLM’s reasoning abilities, this
stage focuses on adapting the Generator, specifically the DiT model. To leverage the MLLM’s
refined contextual understanding without interference, its parameters are kept frozen throughout this
phase. The DiT is trained using a flow matching loss (Lipman et al.,[2023)), with a dual objective that
encompasses both text-to-image (T2I) generation and direct image editing tasks. Including T2I data
is crucial; their significantly larger scale and broader domain coverage are instrumental in enriching
the model’s general generative knowledge, which in turn substantially improves its proficiency in
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diverse editing scenarios. The flow matching loss is formulated as,
2
Lim = Eiev(0,1),20~D 01 ~N (0,1, |11t (2] ) — v (2] 20, €)[|5 2

where t is uniformly sampled from [0, 1], xo is a data point from the dataset D, x; is standard
Gaussian noise, and c represents the conditioning information (e.g., a text or a reference image).
The DiT model w; is trained to predict the target vector field 1 — x( at the interpolated point
xy = (1 = t)xo + to;.

UNIFIED TUNING STAGE. After the preceding stages, this final stage unifies and jointly fine-tunes
both the MLLM and the DiT. This comprehensive joint optimization is crucial for ensuring that the
understanding and generative processes seamlessly complement each other. The joint training loss
for this stage is formulated as,

Lioint = Lrm + wntp - LNTP 3

3.2.3 TRAINING DETAILS

We utilized Stepl1X-Edit V1.1 (StepFun Al 2025) as our pretrained model. The first reasoning
learning stage involved training the MLLM on 32 H800 GPUs (4 nodes, 8 GPUs/node) for 16 hours,
completing 50,000 steps with an initial learning rate of 1 x 10~%. The second edit learning stage
scaled to 128 GPUs (16 nodes, 8 GPUs/node), training for 38.9 hours and 28,000 steps at a learning
rate of 1 x 10~5. Over 38.9 hours and 28,000 steps, with a learning rate of 1 x 10—, the DiT was
trained using 14.4 million in-house T2I samples and 2.4 million in-house image editing samples.
The final stage consisted of 20 hours of training, completing 12,000 steps with a learning rate of
6 x 1076 and the NTP loss weight wntp of 0.1. Similar to BAGEL (Deng et al.| 2025)) and Mogao
(Liao et al., [2025)), during this stage, FlexAttention (Dong et al., 2024) and a packed data format
(Dehghani et al.l [2023)) were utilized to support efficient hybrid training for both understanding
and generation tasks, especially on the Reflection Triples. To optimize training performance and
scalability, distributed training employed several parallelization strategies. Specifically, the MLLM
and the Connector utilized sequence parallelism and DeepSpeed Ulysses (Jacobs et al.| [2024). For
the DiT, both tensor parallelism and sequence parallelism were applied, enabling effective scaling
across multiple nodes and GPUs and accelerating the training process.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benckmark. We conduct our experiments on three widely-used benchmarks: GEdit-Bench (Liu
et al.l 2025) and ImgEdit-Bench (Ye et all 2025) for evaluating broad and comprehensive foun-
dational image editing capabilities, and KRIS-Bench (Wu et al.l |2025d) for assessing a model’s
advanced reasoning skills and ability to interpret abstract instructions. These benchmarks collec-
tively enable a thorough evaluation of our model’s performance, ranging from foundational editing
tasks to complex, abstract reasoning challenges.

Metrics. For the GEdit-Bench, we evaluate performance using three metrics-Semantic Consistency
(8Q), Perceptual Quality (PQ), and an Overall Score (O)-which are automatically assessed by VI-
EScore (Ku et al.,[2023) using GPT-4.1. On the ImgEdit-Bench, we use GPT-4.1 to assign 1-5 ratings
across three dimensions-instruction adherence, image-editing quality, and detail preservation-where
the final score for the latter two is capped by instruction adherence. On the KRIS-Bench, we use
GPT-4o to assign 1-5 ratings across four dimensions-Visual Consistency, Visual Quality, Instruc-
tion Following, and the novel Knowledge Plausibility, which assesses consistency with real-world
knowledge.

4.2 EXPERIMENTAL RESULTS

Quantitative results are first reported on GEdit-Bench and ImgEdit-Bench to assess foundational
editing capabilities (cf. Sec. |4.2.1)), with the evaluation then shifting to the more complex KRIS-
Bench for an assessment of abstract reasoning skills (cf. Sec.[4.2.2)).
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Figure 3: Comprehensive qualitative evaluation of leading image editing models. The results
demonstrate that our proposed approach, which incorporates thinking and reflection mechanisms,
significantly outperforms the editing model.

Table 1: Comprehensive quantitative evaluation of leading image editing models. Our approach
achieves state-of-the-art performance among open-source models on both ImgEdit-Bench and
KRIS-Bench, while also proving to be highly competitive with several closed-source models.

ImgEdit-Bench GEdit-Bench KRIS-Bench
Models n
Semantic . Factual Conceptual  Procedural

Qrerall Consistency Quality BOverall Knowledge Knowll()edge Knowledge Qrerall

Gemini 2 flash (Apr. 2025) - 6.87 7.44 6.51 65.26 59.65 62.90 62.41

Gemini 2.5 flash (Sep. 2025) 4.30 8.25 8.29 7.89 77.03 78.29 75.93 7129

close-source  Doubao (seed edit 1.6, Apr. 2025) - 7.22 7.89 6.98 63.30 62.23 54.17 60.70
models Doubao (Seedream 4.0, Aug. 2025) 4.46 9.17 7.95 8.40 78.10 76.86 76.93 7731
GPT4o (Apr. 2025) - 7.74 8.13 7.49 79.80 81.37 78.32 80.09

GPT4o (Sep. 2025) 4.30 8.74 7.67 8.01 81.16 78.24 77.09 79.00

ICEdit (Zhang et al.}[2025b 3.05 4.94 7.39 4.87 46.99 42.73 27.76 40.70

Omnigen (Xiao et al. 2.96 5.88 5.87 5.01 33.11 28.02 23.89 28.85

Omnigen uetal. C! 3.44 7.16 6.77 6.41 57.36 44.20 47.79 49.71
BAGEL-thinking (Deng et al.| 2025] 3.56 7.70 6.51 6.66 66.18 61.92 49.02 60.18

BAGEL (Deng et al 3.20 7.48 6.80 6.60 60.26 55.86 51.69 56.21

open-source  Uniworld-VT (Lin et al.||2025 3.26 4.93 7.43 4.85 47.71 44.80 47.92 50.27
models Hidream-I1 (ET) (HiDream-a1}[2025 3.17 5.66 6.06 5.01 43.31 50.05 37.64 44.72
Hidream-E1.1 (Cai et al. 3.97 715 6.65 6.42 43.52 4471 36.08 4225
Flux-Kontext-dev (BlackForestLabs et al.}[2025 3.97 7.16 7.37 6.51 53.28 50.36 42.53 49.54
Step1X-Edit v1.1 (StepFun 3.90 7.66 7.35 6.97 53.05 54.34 44.66 51.59
Qwen-Image-Edit (Wu et al. a, 4.27 8.00 7.86 7.56 61.47 56.79 47.07 56.15
ReasonEdit-base(Ours 4.24 791 7.73 7.27 59.39 62.77 62.38 61.48
ReasonEdit-reasoning(Ours) 4.27 791 7.80 7.37 60.77 65.81 61.62 63.03

4.2.1 EVALUATION ON GEDIT-BENCH AND IMGEDIT-BENCH

As shown in Table 1, our method achieves superior performance on the foundational instruction
benchmarks ImgEdit-Bench and GEdit-Bench. Our method is tied for the top position on ImgEdit-
Bench with a score of 4.27, and our 12B model achieves a score merely 0.19 points below that of
the top-ranked open-source model, Qwen-Image-Edit (20B), on GEdit-Bench, which highlights the
exceptional efficiency of our approach at only 60% of its model size.

GEdit-Bench and ImgEdit-Bench primarily evaluate a model’s foundational editing capabilities.
While our thinking and reflection mechanisms provide performance gains, their full impact may
be less pronounced on these relatively simple tasks compared to more complex ones. This is con-
sistent with the design of our dataset, where the thinking and reflection modules are specifically
tailored for complex instructions and multi-step editing.

As shown in Fig. 3] a qualitative comparison demonstrates that our approach excels at precisely alter-
ing target areas while faithfully maintaining the integrity of unedited regions, such as backgrounds,
facial features, and hairstyles. This capability addresses a key challenge in image editing by effec-
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tively mitigating common failures related to consistency and fidelity, resulting in stable performance
and accurate responsiveness to a wide range of commands.

4.2.2 EVALUATION ON KRIS-BENCH

On the KRIS-Bench, the proposed approach demonstrates the best performance among all open-
source models, including those that also employ a thinking-based mechanism (e.g., BAGEL-
Thinking), and surpasses several closed-source methods. The model’s performance exceeds that
of the 20B Qwen-Image-Edit model by 6.88 points, despite being only 60% of its size.

The performance gains are attributed to the method’s ability to simplify abstract and difficult edit-
ing tasks into clear, actionable steps for the editing model. Furthermore, the reflection pipeline
provides a crucial mechanism to analyze the correctness of an edit and formulate strategies for im-
provement. This iterative process of self-correction allows the model to identify and rectify subtle
errors, effectively mitigating hallucination and improving overall fidelity. The method’s demon-
strated effectiveness on both complex and simple tasks (cf. Sec. proves its versatility and
robust generalization.

As shown in Fig.|3] many methods often misinterpret or fail to respond correctly to abstract or com-
plex instructions. Our proposed thinking module effectively aids the editing model in understanding
such instructions and executing them accurately. Furthermore, the reflection pipeline enhances this
process by enabling the model to identify and rectify subtle errors, formulate precise refinement
strategies, and prevent the compounding of mistakes that are common in multi-step editing tasks.
Simultaneously, many models struggle with maintaining consistency in complex scenarios, often
leading to unintended alterations in unedited regions because they lack a robust understanding of the
entire scene’s structure. In contrast, our approach ensures high consistency by faithfully preserving
elements that should remain unchanged.

4.3 ABLATION STUDIES

To systematically evaluate the contribution of each component of the proposed method, a series of
ablation studies are conducted on the KRIS-Bench, as its abstract and challenging nature makes it
an ideal testbed for verifying the reasoning and reflection capabilities of the model. Three distinct
groups of experiments are designed: first, to assess the impact of fine-tuning the base MLLM model
(Qwen2.5VL 7B Instruct, hereafter referred to as Qwen); second, to investigate the individual and
combined effects of the thinking and reflection modules; and third, to compare the effectiveness of
the proposed single-image reflection pipeline against a single-pass dual-image approach.

Table 2: Ablation of Multi-Stage Training. This table evaluates the performance contributions of
each stage in the training pipeline, from the pre-trained baseline to the final unified model, high-
lighting the cumulative benefits of fine-tuning the generator and reasoning modules at each step.

KRIS-Bench
Methods
Factual Knowledge Conceptual Knowledge Procedural Knowledge Overall

Pre-trained Generator (Step1X-Edit V1.1) 53.05 54.34 44.66 51.59
Pre-trained Generator + Qwen Reasoning 54.05 57.44 41.26 5241
Pre-trained Generator + Qwen-tuned Reasoning 55.34 62.06 45.24 55.70
Base Generator W/O Reasoning 55.80 55.28 43.78 52.74
Base Generator + Qwen-tuned Reasoning 55.13 62.11 46.51 55.94
Unified Tuned (Ours) 60.77 65.81 61.62 63.03

Impact of Multi-Stage Training. To evaluate the specific contribution of the reasoning learning
stage, we compare the performance of the Pre-trained Generator when integrated with either a base
(untuned) Qwen model or a fine-tuned Qwen model. When the Pre-trained Generator is augmented
with the base Qwen model leveraging our thinking and reflection mechanism, only a marginal per-
formance gain of 0.82 points is observed. In contrast, fine-tuning Qwen on our reasoning data
consistently and significantly outperforms this base configuration. This highlights that foundational
multimodal large language models, without domain-specific adaptation, struggle to effectively grasp
the nuances of image editing, thereby underscoring the critical necessity of tailoring the MLLM to
these specific demands. After the edit learning stage, in isolation, the Base Generator achieves a de-
gree of performance improvement over the Pre-trained Generator, demonstrating its role in adapting
the generative capabilities. Finally, this multi-stage strategy culminates in the optimal performance
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of the unified training, providing a substantial performance increase from the Base Generator +
Qwen-tuned Reasoning model to the Unified Tuned model (55.94 vs. 63.03), validating the syner-
gistic benefits of training the entire pipeline as a whole.

Table 3: Ablation Study on the Contributions of the Thinking and Reflection Modules. The table
shows the performance of four model variants on the KRIS-Bench, demonstrating the benefits of
each component and the synergy of their combination.

KRIS-Bench
Methods
Factual Knowledge Conceptual Knowledge Procedural Knowledge Overall
Unified-tuned Generator 59.39 62.77 62.38 61.48
Unified-tuned Generator + thinking 60.60 65.90 60.87 62.83
Unified-tuned Generator + reflection 60.40 62.46 62.58 61.76
Unified-tuned Generator + thinking + reflection 60.77 65.81 61.62 63.03

Ablation of Thinking and Reflection. To understand the individual and combined contributions of
the thinking and reflection modules, four variants are compared: (1) a baseline model without either
module; (2) a model with only the thinking module; (3) a model with only the reflection module;
and (4) the full model incorporating both. The results on KRIS-Bench (see Tab.|3) show a gradual
improvement in performance with the addition of each component. The thinking module alone pro-
vides a significant performance boost, confirming its effectiveness in handling complex instructions.
The thinking + reflection module proves beneficial on both GEdit-Bench (see Tab.|l) and KRIS-
Bench, as it effectively rectifies errors. The full model, with both modules integrated, achieves the
highest scores, highlighting the synergistic relationship between understanding an instruction and
correcting subsequent errors.

Table 4: Ablation Study on Reflection Pipelines. The table compares the performance of three dif-
ferent reflection mechanisms on KRIS-Bench, highlighting the effectiveness of the proposed multi-
round pipeline.

KRIS-Bench
Methods
Factual Knowledge Conceptual Knowledge Procedural Knowledge Overall
Base Generator 55.80 55.28 43.78 52.74
Base Generator + dual-image pipeline 52.97 61.84 41.12 53.79
Base Generator + single-image pipeline 54.81 56.92 43.70 53.04
Base Generator + our multi-round pipeline 55.13 62.11 46.51 55.94

Comparison of Reflection Pipelines. To ensure consistency in the DiT parameters, this ablation
study is conducted by combining the Base Generator (the DiT after the edit learning stage) with each
of the reflection pipelines. Tab. f] compares three distinct approaches to the reflection process—a
dual-image pipeline, a pure single-image pipeline, and the proposed multi-round prior pipeline (see
Sec.[AI). The dual-image pipeline, which relies on a direct comparison between the initial input
and the generated output, is often prone to hallucinations. Conversely, a pure single-image approach
struggles with tasks that require a clear before-and-after comparison, such as Portrait Beautification
or motion/expression-related edits. As shown in the table, the proposed multi-round single-image
prior pipeline is superior. This is attributed to the method’s ability to combine the benefits of both
approaches, allowing it to perform a self-correction loop on the generated image itself while lever-
aging key prior information from the multi-round process.

5 CONCLUSION

In this work, we present ReasonEdit, a fundamental image editing framework that demonstrates
the crucial role of explicit reasoning in achieving robust and versatile performance. The proposed
method introduces a novel pipeline with two core capabilities: thinking and reflection. By training
these capabilities on a curated collection of Thinking Pairs and Reflection Triples, the framework
learns to convert abstract user requests into actionable commands and to perform self-correction
in an iterative loop. Extensive experiments on a range of benchmarks validate the efficacy of this
approach, with the model achieving state-of-the-art performance among open-source methods on
ImgEdit and Kris-Bench while remaining highly competitive with several closed-source models.
This work provides a new perspective on reasoning-enhanced image editing, showing that a struc-
tured pipeline for instruction understanding and self-correction is vital for building models that can
handle both simple and complex editing tasks with high fidelity and consistency.
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A APPENDIX
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Figure 4: Three distinct MLLM-based reflection pipelines for image editing. (a) Dual-image
Reflection processes the instruction, reference image, and result image simultaneously in a single
MLLM call to produce a combined thinking and reflection output. (b) Single-image Reflection
decomposes this into two sequential MLLM calls: first, generating a target description from the
instruction and reference image, and then assessing the result image against this description to pro-
vide a consistency score and reflection. (¢) Our proposed Multi-round Reflection pipeline further
refines the process into three dedicated stages: (1) Target Describe, which formulates a target image
description from the input instruction and reference image; (2) Result Assess, which evaluates the
generated image against this target description to output consistency scores and reasons; and (3) Re-
finement Conclude, where the MLLM analyzes the assessment to provide success/failure judgments
and, if necessary, detailed instructions for further image modification, leveraging both the reference
and result images. This multi-round approach enables a more granular and iterative refinement of
image editing outcomes.

A.1 ILLUSTRATION OF REFLECTION PIPELINES

We conduct an ablation study on the proposed multi-round reflection pipeline against two alterna-
tive designs, as presented in Tab. ] and further illustrated in Fig.[7] The Dual Image Reflection
pipeline directly inputs the reference image, edit instruction, and result image, tasking the MLLM
with generating thinking and reflection concurrently. Nevertheless, we found that current MLLMs
frequently exhibit hallucinations in image editing tasks under this unified input scheme. Our inves-
tigation then led to the Single Image Reflection pipeline, which first guides the MLLM to describe
the target image based on the edit instruction and reference image. Subsequently, using this target
description, the MLLM evaluates the result image, offering detailed reasoning, identifying failures,
suggesting refinements, or confirming success. A key drawback here is that the MLLM loses the
essential context of the reference image during its final conclusion, leading to less effective assess-
ments. The proposed pipeline addresses these limitations by decomposing the reflection into three
distinct sub-procedures: target description, result assessment, and refinement conclusion. In the ini-
tial two sub-procedures, the MLLM receives only a single image as input (e.g., reference image for
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target description, result image for assessment), which significantly enhances accuracy. In the final
stage, the MLLM is provided with all relevant information to formulate a comprehensive conclusion
for subsequent actions, thereby maintaining full contextual awareness.

B MORE RESULTS

W/O Reasoning W/ Reasoning
[Reflection]
<#Think>The tennis ball in the second image
looks complete, with the surface color adjusted
to a bright yellow-green, and the texture of the
ball clearly visible. There are no noticeable
artifacts or distortions, and the overall

e meets i

[Thinking]

Close the gap on the
tennis ball to complete
its surface.

[Instruction] Complete the tennis ball

[Reflection]

<#Think>The second image shows that the
damaged corner of the table has been repaired,
with no obvious signs of damage or repair
marks. The overall appearance of the table
remains consistent with the first image,
meeting the editing instructions.<#Success>

A [Thinking]

Cover the damaged area
at the corner of the
table with a piece of
matching wood.

[Instruction] Complete the table corner

[Reflection]

<#Think>The hole in the sock was successfully
repaired with pink thread, meeting the
instruction's requirement to "complete the
socks." The repair does not introduce any
noticeable artifacts or distortions.<#Success>

[Thinking]
Patch the hole in the
socks.

[Instruction] Complete the socks
[Reflection]

<#Think>The electrical wire in the second
image has been repaired with tape, effectively
covering the exposed metal and avoiding any
noticeable artifacts or breakages. The
background remains consistent, and there are
no significant distortions or unnecessary
changes.<#Success>

[Thinking]

Cover the exposed
copper wires with
electrical tape.

[Reflection]

<#Think>The image editing instruction requires
removing one apple. Upon comparison, the first
image shows two apples, while the second
image shows only one, which aligns with the
instruction's requirement. The background
remains consistent without any noticeable
artifacts or distortions. Therefore, the editing is
complete and meets the
requirement.<#Success>

[Thinking]
Remove the smaller
apple from the image.

[Reflection]

<#Think>The baby birds' mouths have been
opened wide in the second image, which
effectively conveys the impression of begging
for food. There are no noticeable artifacts or
distortions. The editing aligns well with the
given instructions.<#Success>

[Thinking]

Add open mouths to
both baby birds to
depict them as begging
for food.

[Reflection]

<#Think>The cat's body in the second image
has been appropriately adjusted, with no
noticeable abnormalities or distortions. The
background remains consistent, with no
significant changes that deviate from the
editing instructions. The overall editing effect is
good, meeting the requirements.<#Success>

;. M\“.'»‘_"i: [Thinking]
7 A Correct the tail posture
/! \ of the cat to ensure it
appears naturally
arched and not rigidly
upright.

[Instruction] Correct the unreasonable body parts of animals in the
image.

Figure 5: Qualitative examples illustrating the thinking capabilities of our MLLM Reasoner across
various image editing instructions.
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[Think]

Apply a background blur
effect to the entire
scene.

[Instruction] Add a background blur filter.

[Think]

Remove the bathroom
background (shower,
door, mirror).

[Instruction] Remove the background for me.

[Think]

Replace the grassy field
background with B
concrete ground.

[Instruction] Adjust the background to a concrete ground.

[Think]

Change the blood
pressure values
displayed on the
monitor to indicate
hypertension.

[Think]

Remove the magic
wand and stars from
the background.

[Instruction] Remove the magic wand and stars from the background.

[Reflection Round 1]
<#Think>The background blur effect in the

second image is not very noticeable, with some

details still visible. Further adjustments are
needed to enhance the blur
effect.<#Reflection>Add more blur to the
background to make the details less
distinguishable.

[Reflection Round 1]

<#Think>The background in the second image
has been simplified but still contains elements
of the original background. The primary
background objects such as the shower and
door frame have been removed, but the wall
tiles and ceiling details remain visible. To fully
meet the instruction's requirement to remove
the background, these remaining details need
to be completely obscured. <#Reflection>To
fully remove the background, all remaining
elements such as the wall tiles and ceiling
need to be obscured.

[Reflection Round 1]
<#Think>The background has been changed
from green grass to a concrete surface, which

meets the instruction requirements. However,
some vegetation on the edge of the concrete is

still visible, which is an artifact that does not
align with the instruction's requirement for a
completely solid concrete surface. Therefore,
further modification is needed.

i y editing i
Remove the remaining vegetation from the
edges of the concrete surface.

[Reflection Round 1]

Change the blood pressure values displayed on

the monitor to indicate hypertension.
<#Think>The second image shows a blood
pressure meter displaying a reading of 100/68
mmHg, which does not meet the requirement

of changing the blood pressure value. There are

no significant artifacts or distortions, and the
overall editing is acceptable.
<#Reflection>Change the blood pressure
reading displayed on the meter to 170/90
mmHg.

[Reflection Round 1]

Remove the magic wand and stars from the
background. <#Think>The second image has
the magic wand removed, but the stars have
not been deleted. This does not fully comply

with the instruction to remove both the magic
wand and the stars.<#Reflection>Please delete

all the stars in the image.

[Reflection Round 2]

Add more blur to the background to make the
details less distinguishable. <#Think>The
background blur effect in the second image has
been successfully applied, meeting the
instruction requirements. There are no obvious
artifacts or distortions, and the overall
background appears naturally
blurred.<#Success>

[Reflection Round 2]

<#Think>The background has been successfully
removed, leaving only a pure white background.
The person's clothing and posture have
remained consistent, with no noticeable
distortion or artifacts.<#Success>

[Reflection Round 2]

<#Think>The background has been successfully
adjusted to a concrete ground, with no obvious
artifacts or distortions. Other areas have not
been altered, meeting the editing instruction
requirements.<#Success>

[Reflection Round 2]
<#Think>The blood pressure monitor in the

™ second image has been edited to display a
~ systolic pressure of 170 mmHg and a diastolic

pressure of 90 mmHg, indicating hypertension.
This aligns with the given editing
instruction.<#Success>

[Reflection Round 2]

<#Think>The magic wand and stars have been
successfully removed, meeting the editing
instructions.<#Success>

Figure 6: Qualitative multi-round examples illustrating the thinking and the reflection progressively
correct and improve the quality of the generate results.
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Inputimage Flux-Kontext-dev Step1X-Editv1.1 Qwen-Image-Edit BAGEL BAGEL-thinking Ours-b: [o]

2 2 4 4

[Insfruchon] What the fruit looks like when ripe in the picture.

[Instruction] Rem

[Instruction] Modify to appear more desertified.

[Instruction] Change the animal in the image to the one with the longest neck in the world.

[Instruction] Use the object in the image as the main visual focus. Place the light blue handbag slightly below the center of the frame. The background should
feature a dawn pink gradient sky with a soft-focus city silhouette. The ground is made of a smooth mirror material with a slightly blurred reflection, creating an airy
and ethereal position. Include minimalistic white feather elements slowly falling in the sky to enhance the dreamlike feeling. The overall color scheme should be
unified in three colors: blue, white, and pink, with a soft, modern texture and a fantasy atmosphere, suitable for urban women's affordable luxury brand poster style.
Position the title at the top center of the image, using a thin serif font, with the copy reading: “Lighter than the wind, more resolute than you."

[Instruction] Complete the pants.

D B R ED N D B

[Instruction] Change the temperature to Fahrenheit.

[Instruction] Without altering or beautifying anything else, just shape my eyebrows to suit me.

Figure 7: More qualitative comparison of our method and state-of-the-art approaches.
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