

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AMID: KNOWLEDGE DISTILLATION FOR LLMs WITH $\alpha$ -MIXTURE ASSISTANT DISTRIBUTION

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

Autoregressive large language models (LLMs) have achieved remarkable improvement across many tasks but incur high computational and memory costs. Knowledge distillation (KD) mitigates this issue by transferring knowledge from a large teacher to a smaller student through distributional alignment. Previous studies have proposed various discrepancy metrics, but the capacity gap and training instability caused by near-zero probabilities, stemming from the high-dimensional output of LLMs, remain fundamental limitations. To overcome these challenges, several approaches implicitly or explicitly incorporating assistant distribution have recently been proposed. However, the past proposals of assistant distributions have been a fragmented approach without a systematic investigation of the interpolation path and the divergence. This paper proposes  $\alpha$ -mixture assistant distribution, a novel generalized family of assistant distributions, and  $\alpha$ -mixture distillation, coined AMiD, a unified framework for KD using the assistant distribution. The  $\alpha$ -mixture assistant distribution provides a continuous extension of the assistant distribution by introducing a new distribution design variable  $\alpha$ , which has been fixed in all previous approaches. Furthermore, AMiD generalizes the family of divergences used with the assistant distributions based on optimality, which has also been restricted in previous works. Through extensive experiments, we demonstrate that AMiD offers superior performance and training stability by leveraging a broader and theoretically grounded assistant distribution space.

## 1 INTRODUCTION

Autoregressive large language models (LLMs) have recently achieved remarkable advances, delivering outstanding performance across a wide spectrum of tasks and application domains (Achiam et al., 2023; Touvron et al., 2023; Team et al., 2024). However, their massive parameter scales impose prohibitive computational and memory costs, which hinder their deployment in practical applications. Accordingly, an essential objective for practical deployment is to compress these high-capacity models by reducing the parameter count while preserving their strong performance.

Knowledge distillation (KD) (Hinton et al., 2015) is a widely adopted compression technique that transfers knowledge from a large teacher model to a smaller student model by aligning their token-level predictive distributions. The selection of a discrepancy metric is an important research topic in KD for LLMs. Several prior studies have proposed either (1) the use of various forms of divergence, including the capability of regulating the quality-diversity trade-off (Wang et al., 2025), or (2) employing a combination of these divergences (Agarwal et al., 2024; Wu et al., 2024) as the discrepancy metric. However, these approaches do not fundamentally resolve the large capacity gap between the high-capacity teacher and smaller student models, and the optimization instability due to near-zero probabilities, which is prevalent in the high-dimensional probability space of LLMs.

A practical remedy is to introduce an *assistant distribution* that interpolates teacher and student distributions to stabilize optimization and bridge this capacity gap. Recently, several methodologies have been proposed that either (1) utilize the discrepancy metric that inherently includes a specific form of assistant distribution (Agarwal et al., 2024; Ko et al., 2024; 2025) or (2) explicitly model the assistant distribution (Shing et al., 2025). However, these approaches have generally been treated as independent recipes in different papers without a systematic study, which hinders the development of general and effective methodologies.

In this paper, we propose a generalized framework that integrates the fragmentarily employed assistant distribution and divergence. First, we interpret the existing assistant distributions from the information theory view, revealing that the existing methodology can be expressed as an  $m$ -mixture, which mixes two probability distributions via arithmetic mean, and an  $e$ -mixture, which mixes them via geometric mean. Next, we present a new assistant distribution family, coined  $\alpha$ -mixture assistant distribution, by extending the mean concept via the generalized  $f_\alpha$  mean. The  $\alpha$ -mixture assistant distribution introduces a new design variable  $\alpha$  for the assistant distribution, which adjusts the geometry of the interpolation path. Here,  $\alpha$  is an independent parameter distinct from the well-utilized parameter  $\lambda$ , which controls the portion of interpolation. The  $\alpha$ -mixture assistant distribution not only includes the existing assistant distributions as a special case ( $\alpha = \pm 1$ ) but also provides several new assistant distribution that were not investigated in KD for LLMs area.

Under the concept of  $\alpha$ -mixture assistant distribution, we investigate several properties of the  $\alpha$ -mixture assistant distribution, which are meaningful in KD for LLMs, such as the analysis with  $\alpha$ -divergence, controllable support via  $\alpha$ , and continuity with respect to  $\alpha$ . Next, we propose a new KD framework for LLMs, coined as  $\underline{\alpha}$ -mixture distillation (AMiD), which generalizes the optimization schemes of prior research by unifying both the assistant distribution and the divergence. AMiD aims to align the  $\alpha$ -mixture assistant distribution and either the teacher or student. We theoretically prove the optimality of AMiD, which enables us to achieve the primary goal of KD (teacher = student) even when employing arbitrary divergence,  $\alpha$ , and  $\lambda$ , under the perfect optimization assumption. Furthermore, through gradient analysis when employing  $f$ -divergence, we theoretically demonstrate that  $\alpha$  adjusts the mode-covering and mode-seeking properties of the student distribution, with both toy experiments and real-world experiment results supporting this finding. Across various evaluation scenarios, our proposed framework AMiD consistently demonstrates superior performance compared to methodologies that do not utilize the assistant distribution and those employing limited assistant distribution.

## 2 PRELIMINARY

### 2.1 KNOWLEDGE DISTILLATION FOR LARGE LANGUAGE MODELS

We denote the input prompt and output token sequences as  $x$  and  $y$ , respectively, where  $y := (y_1, y_2, \dots, y_L) \in \mathcal{V}^L$  is a token sequence of length  $L$ , with each token drawn from the vocabulary set  $\mathcal{V}$ . Given the input  $x$ , an autoregressive large language model (LLM) outputs a next-token distribution  $p(y_l|x, y_{<l})$ , conditioned on both the prompt  $x$  and the previously generated tokens  $y_{<l} := (y_1, y_2, \dots, y_{l-1})$ . We assume access to two LLMs: a large fixed teacher model  $p(y_l|x, y_{<l})$ , and a smaller student model  $q_\theta(y_l|x, y_{<l})$  parameterized by  $\theta$ . The goal of knowledge distillation (KD) for LLMs is to transfer the knowledge of the teacher into the student. Concretely, KD for LLMs is typically formulated as aligning the next-token distributions of the teacher and student:

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[ \sum_{l=1}^L D(p(y_l|x, y_{<l}), q_\theta(y_l|x, y_{<l})) \right] \quad (1)$$

where  $D$  denotes the divergence and the dataset  $\mathcal{D}$  is composed of the predefined dataset (Hinton et al., 2015), or various strategies using the student-generated outputs (SGOs): on-policy (Lin et al., 2020), a mixed approach (Agarwal et al., 2024; Gu et al., 2024; Xu et al., 2024b), and an adaptive off-policy (Ko et al., 2024). For notational brevity, we omit the explicit dependence on  $x$  and  $y$  whenever it is clear from context, writing  $p := p(y_l|x, y_{<l})$  and  $q_\theta := q_\theta(y_l|x, y_{<l})$ .

The choice of divergence  $D$  plays a pivotal role in KD for LLMs. The widely used Kullback–Leibler (KL) divergence  $D_{\text{KL}}(p||q_\theta) := \sum_k p(k) \log \frac{p(k)}{q_\theta(k)}$  in KD (Hinton et al., 2015; Kim & Rush, 2016) emphasizes mode-covering, often assigning mass to less informative regions. To mitigate this effect, the reverse KL divergence  $D_{\text{RKL}}(p||q_\theta) := D_{\text{KL}}(q_\theta||p)$  is employed for its mode-seeking properties (Gu et al., 2024), which possesses mode-seeking properties, but either choice entails a trade-off between quality and diversity. Recent studies address this by (1) combining divergences, e.g., GKD (Agarwal et al., 2024) with the generalized Jensen–Shannon divergence  $D_{\text{GJS}}(p||q_\theta) := \lambda D_{\text{KL}}(p||\lambda p + (1 - \lambda)q_\theta) + (1 - \lambda)D_{\text{KL}}(q_\theta||\lambda p + (1 - \lambda)q_\theta)$ , and (2) extending classical divergences to enable explicit control, as in ABKD (Wang et al., 2025), which adopts the  $\alpha$ - $\beta$ -divergence  $D_{\text{AB}}$  (Cichocki et al., 2011) as a generic framework.

Meanwhile, several methodologies have recently been proposed to improve the optimization stability of KD for LLMs. Ko et al. (2024) leverages the skew KL divergence  $D_{\text{SKL}}(p\|q_\theta) := D_{\text{KL}}(p\|\lambda p + (1-\lambda)q_\theta)$  and the skew reverse KL divergence  $D_{\text{SRKL}}(p\|q_\theta) := D_{\text{KL}}(q_\theta\|\lambda p + (1-\lambda)q_\theta)$ . TAID (Shing et al., 2025) introduces an adaptive intermediate distribution that gradually shifts from the student’s initial distribution to the teacher distribution, i.e.,  $D_{\text{TAID}}(p\|q_\theta) := D_{\text{KL}}(r_t\|q_\theta)$  where  $r_t := \text{softmax}((1-\lambda_t) \cdot \text{logit}(q'_\theta) + \lambda_t \cdot \text{logit}(p))$  with time-dependent interpolation parameter  $\lambda_t$ , detached student logits  $\text{logit}(q'_\theta)$ , and teacher logits  $\text{logit}(p)$ .

## 2.2 $m$ -MIXTURE AND $e$ -MIXTURE

Mixture models are a standard tool for integrating information from multiple distributions. Information geometry (Amari, 2016; Nielsen, 2020; Eguchi & Komori, 2022) provides a dualistic structure on the manifold of probability distributions, characterized by two affine connections: the mixture connection and the exponential connection. These connections induce two natural ways of interpolating between distributions, commonly referred to as the *m-mixture* and the *e-mixture*.

Given two probability distributions  $p$  and  $q$  defined on the same measurable space, the *m-mixture* is defined as a convex combination of  $p$  and  $q$ :

$$p^{(m)}(x) := (1-t)p(x) + tq(x), \quad t \in [0, 1] \quad (2)$$

In contrast, the *e-mixture* is defined multiplicatively:

$$p^{(e)}(x) := \frac{p(x)^t q(x)^{1-t}}{Z(t)}, \quad Z(t) := \int p(x)^t q(x)^{1-t} dx \quad (3)$$

The *m-mixture* forms a straight line in probability space, while the *e-mixture* forms one in log-probability space. Some studies leverage *m*- and *e*-mixtures, for example, to construct paths for annealed importance sampling (Grosse et al., 2013; Masrani et al., 2021).

## 2.3 GENERALIZED $f$ -MEAN

Generalized  $f$ -mean (Kolmogorov & Castelnuovo, 1930) is a generalized framework of the mean by using a monotonically increasing differentiable function  $f : \mathbb{R} \rightarrow \mathbb{R}$ . Given a set of weights  $\{w_i \in \mathbb{R}^+ \mid \sum_i w_i = 1\}$  and the set of corresponding input elements  $\{u_i \in \mathbb{R}\}$ , the generalized  $f$ -mean is defined as:

$$m_f(\{w_i\}, \{u_i\}) := f^{-1} \left( \sum_i w_i f(u_i) \right) \quad (4)$$

The  $m_f$  applies a nonlinear transformation to the inputs, combines them with weights in the transformed domain, and maps the result back to the original domain. The well-known means, such as the arithmetic mean and geometric mean, have *homogeneity*, which stands for a scale-free property  $m_f(\{w_i\}, \{c \cdot u_i\}) = c \cdot m_f(\{w_i\}, \{u_i\})$  for  $c > 0$ . The generalized  $f$ -mean is homogeneous only when  $f$  belongs to the unique class of functions (Hardy, 1952; Amari, 2007):

$$f(u) := f_\alpha(u) = \begin{cases} u^{\frac{1-\alpha}{2}}, & \alpha \neq 1 \\ \log u, & \alpha = 1 \end{cases}, \quad u \in \mathbb{R}^+ \quad (5)$$

This family includes various notable examples, such as the weighted arithmetic mean for  $\alpha = -1$ , the weighted geometric mean for  $\alpha = 1$ , the weighted harmonic mean for  $\alpha = 3$ , and  $\min\{u_i\}, \max\{u_i\}$  for  $\alpha \rightarrow \infty$  and  $\alpha \rightarrow -\infty$ , respectively.

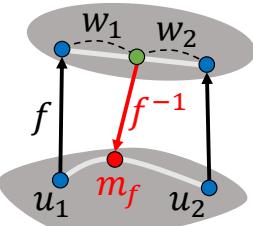


Figure 1: Illustration of generalized  $f$ -mean.

## 3 METHODOLOGY

This section introduces a new KD framework for LLMs, coined  $\alpha$ -mixture distillation (AMiD), which generalizes both the assistant distribution and the associated optimization scheme. Section 3.1 reveals the connection among the existing assistant distributions and highlights the need for a systematic study. Section 3.2 proposes the  $\alpha$ -mixture assistant distribution, which provides a unified and generalized assistant distribution family via  $\alpha$ -mixture distribution. Finally, Section 3.3 extends the assistant-based KD objective into a generic divergence framework.

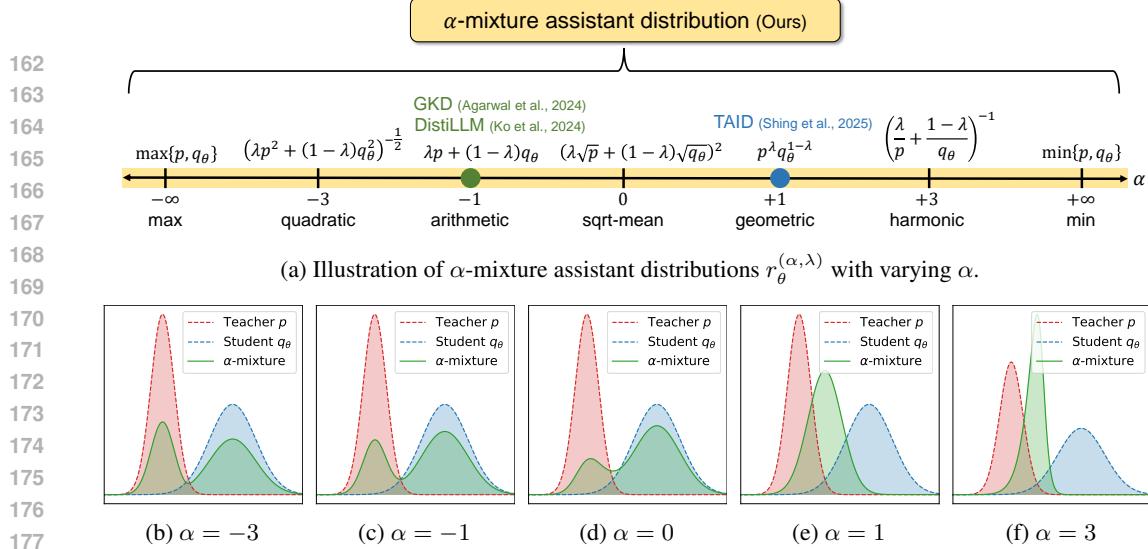


Figure 2: Visualization of the  $\alpha$ -mixture assistant distribution family. (a) The  $\alpha$ -mixture assistant distribution provides a generalized framework for assistant distributions, with prior studies (Agarwal et al., 2024; Ko et al., 2024; Shing et al., 2025) recoverable as special cases. (b-f) Illustration of the  $\alpha$ -mixture assistant distribution where  $p = \mathcal{N}(0, 0.5^2)$ ,  $q_\theta = \mathcal{N}(3, 1^2)$ , and  $\lambda = 0.3$ . For  $\alpha < 1$ , the support of the  $\alpha$ -mixture assistant distribution corresponds to the union of the supports of  $p$  and  $q_\theta$ , whereas for  $\alpha \geq 1$ , it corresponds to their intersection.

### 3.1 MOTIVATION

Our primary motivation stems from the observation that recent studies inherently include the composition of the teacher distribution  $p$  and the student distribution  $q_\theta$ , which we will refer as *assistant distribution*  $r_\theta$  in this paper. For example, several studies (Agarwal et al., 2024; Ko et al., 2024) utilize the divergences that include  $r_\theta := \lambda p + (1 - \lambda)q_\theta$  with  $\lambda \in [0, 1]$ , which is an weighted arithmetic mean, also known as *m-mixture*. Moreover, we have newly discovered that the assistant distribution of TAID (Shing et al., 2025) is *e-mixture*, also known as a weighted geometric mean.

**Proposition 3.1.** *The assistant distribution of TAID (Shing et al., 2025) is e-mixture of  $p$  and  $q_\theta$ .*<sup>1</sup>

$$r_\theta := \text{softmax}((1 - \lambda) \cdot \text{logit}(q_\theta) + \lambda \cdot \text{logit}(p)) \propto p^\lambda q_\theta^{1 - \lambda} \quad (6)$$

Please refer to Appendix A.2 for proof. Using the assistant distribution provides several advantages in KD for LLMs. First, the assistant distribution facilitates more effective knowledge transfer between the teacher and the student. In KD, a significant capacity gap often arises due to differences in model size (Mirzadeh et al., 2020), and this issue becomes particularly pronounced in LLMs (Zhang et al., 2023; Sun et al., 2025) due to the high-dimensional nature. This gap makes it difficult for the student to faithfully capture the knowledge encoded in the teacher (Mirzadeh et al., 2020; Shing et al., 2025). By introducing the assistant distribution that serves as a bridge between the teacher and student, the information transfer might be more efficient (Shing et al., 2025). Second, the assistant distribution improves training stability. Due to the high-dimensional nature of LLMs, most of probabilities in  $p$  and  $q_\theta$  are inevitably close to zero. These near-zero probabilities might cause instability in both the loss and the gradient computation when divergences involving density ratios (e.g., KL divergence) are used (Ko et al., 2024). A suitably constructed assistant distribution yields more stable density-ratio estimates, thereby enhancing the robustness of optimization (Ko et al., 2024).

Despite these advantages, no systematic study has examined (1) the distinction between *m*- and *e*-mixture assistant distributions, (2) alternative candidates, (3) their compatibility with diverse divergences, and (4) their implications for KD in LLMs, supported by theoretical and empirical analyses. This gap hinders the development of general and effective methodologies, so the recent studies often fall into sub-optimal performances by relying on an isolated design of assistant distribution. In this paper, we alleviate this gap by unifying the existing assistant distributions into a generalized design principle of assistant distribution.

<sup>1</sup>We omit the time index  $t$  and detached notation for the sake of uniformity.

216 3.2  $\alpha$ -MIXTURE ASSISTANT DISTRIBUTION  
217

218 As discussed in Section 3.1, the existing assistant distributions can be formulated as the mixture of  
219 the teacher distribution and the student distribution via the mean function. To integrate the frag-  
220 mientarily employed assistant distributions, we employ the generalized  $f_\alpha$ -mean (Amari, 2016) and  
221 introduce a new assistant distribution family, coined  $\alpha$ -mixture assistant distribution as follows:

222 **Definition 1** ( $\alpha$ -mixture assistant distribution). Let  $\alpha \in \mathbb{R}$  and  $\lambda \in [0, 1]$ . For distributions  $p$  and  $q_\theta$   
223 defined either on a discrete support  $\mathcal{X}$  indexed by  $k$  or on a continuous domain  $\mathcal{X}$  with variable  $x$ ,  
224 define the unnormalized  $\alpha$ -mixture assistant distribution as:

$$225 \tilde{r}_\theta^{(\alpha, \lambda)}(z) = \begin{cases} (\lambda p(z)^{\frac{1-\alpha}{2}} + (1-\lambda) q_\theta(z)^{\frac{1-\alpha}{2}})^{\frac{2}{1-\alpha}}, & \text{if } \alpha \neq 1, \\ 226 p(z)^\lambda q_\theta(z)^{1-\lambda}, & \text{if } \alpha = 1, \end{cases} \quad (7)$$

227 where  $z = k$  in the discrete case and  $z = x$  in the continuous case.

228 Consequently, the (normalized)  $\alpha$ -mixture assistant distribution is defined as:

$$229 r_\theta^{(\alpha, \lambda)}(z) = \frac{\tilde{r}_\theta^{(\alpha, \lambda)}(z)}{Z_r}, \quad Z_r := \sum_k \tilde{r}_\theta^{(\alpha, \lambda)}(k) \text{ or } \int_{\mathcal{X}} \tilde{r}_\theta^{(\alpha, \lambda)}(x) dx \quad (8)$$

230 The  $\alpha$ -mixture assistant distribution  $r_\theta^{(\alpha, \lambda)}$  contains two tunable parameters:  $\alpha$  and  $\lambda$ . The  $\lambda$  de-  
231 termines the portion of the interpolation between teacher  $p$  and student model  $q_\theta$ , which has been  
232 fine-tuned in previous works (Agarwal et al., 2024; Ko et al., 2024; Shing et al., 2025). The other  
233 parameter  $\alpha$  is a new axis of distribution design variable, which was only employed as a specialized  
234 case ( $\alpha = \pm 1$ ), controls the geometry of the interpolation path, as depicted in Figure 3a. Since the  
235 form of the generalized  $f_\alpha$ -mean is solely governed by  $\alpha$ , once  $\alpha$  is fixed,  $\lambda$  only serves to control  
236 the portion between  $p$  and  $q_\theta$  along that determined path. In addition, Theorem 3.2 provides an  
237 helpful information geometric perspective of the  $\alpha$ -mixture (assistant) distribution:

238 **Theorem 3.2.** (Amari, 2007) Given a fixed  $\alpha$  and  $\lambda$ , the  $r^{(\alpha, \lambda)}$  defined as Eq. (8) is unique minimizer  
239 of a weighted sum of Amari's  $\alpha$ -divergences  $D_\alpha$  (see Appendix A.1 for the definition):

$$240 r^{(\alpha, \lambda)} = \arg \min_r \lambda \cdot D_\alpha(p||r) + (1-\lambda) \cdot D_\alpha(q||r) \quad (9)$$

241 Theorem 3.2 indicates that  $r_\theta^{(\alpha, \lambda)}$  is the internal division distribution of  $p$  and  $q_\theta$  in terms of  $\alpha$ -  
242 divergence, which bridges the generalization of the mean concept and the geodesic in information  
243 geometry. Due to the generalized  $f_\alpha$ -mean, the existing assistant distributions are recoverable as  
244 special instances of  $r_\theta^{(\alpha, \lambda)}$ :  $r_\theta^{(-1, \lambda)}$  is  $m$ -mixture (Agarwal et al., 2024; Ko et al., 2024) that is  
245 minimizer of a weighted sum of  $D_{\text{KL}}$ , and  $r_\theta^{(1, \lambda)}$  is  $e$ -mixture (Shing et al., 2025) that is minimizer  
246 of a weighted sum of  $D_{\text{RKL}}$ . Furthermore,  $r_\theta^{(\alpha, \lambda)}$  provides several new assistant distributions that  
247 were not previously used in KD literature, as depicted in Figure 2a.

248 Moreover, the support of  $\alpha$ -mixture assistant distribution determined by the range of  $\alpha$ :  
249  $\text{supp}(r_\theta^{(\alpha, \lambda)}) = \text{supp}(p) \cup \text{supp}(q_\theta)$  when  $\alpha < 1$ , and  $\text{supp}(r_\theta^{(\alpha, \lambda)}) = \text{supp}(p) \cap \text{supp}(q)$   
250 when  $\alpha \geq 1$ . This property demonstrates the necessity of determining the range of  $\alpha$  based on the  
251 characteristics at the intersection of  $p$  and  $q_\theta$ . For instance, if  $p$  and  $q_\theta$  overlap significantly, setting  
252  $\alpha \geq 1$  can strengthen the matching within the intersection region. Conversely, if they overlap min-  
253 imally, setting  $\alpha < 1$  indicates that matching occurs across a broader range. Although in KD for  
254 LLMs,  $p$  and  $q_\theta$  typically share the same support defined by the vocabulary set, this property remains  
255 useful because many probabilities are very small values close to zero due to the high dimensionality.  
256 Figures 2b-2f shows the different behaviors of  $r_\theta^{(\alpha, \lambda)}$  among the various  $\alpha$  values.

257 Lastly, we also demonstrate that  $r_\theta^{(\alpha, \lambda)}$  is a continuous function with respect to  $\alpha$  in Proposition 3.3,  
258 even though the  $r_\theta^{(\alpha, \lambda)}$  is a piecewise-defined function. This property enables the design of a  
259 curriculum-based adaptive  $\alpha$  scheduling, paralleling prior work (Shing et al., 2025; Ko et al., 2025)  
260 that investigated adaptive strategies for  $\lambda$ . Please refer to Appendix A.3 for proof.

261 **Proposition 3.3.** (Continuity) Assume that  $p$  and  $q_\theta$  are not both zero. Then,  $r_\theta^{(\alpha, \lambda)}$  is continuous  
262 function w.r.t  $\alpha$  under the fixed  $\lambda \in [0, 1]$ .

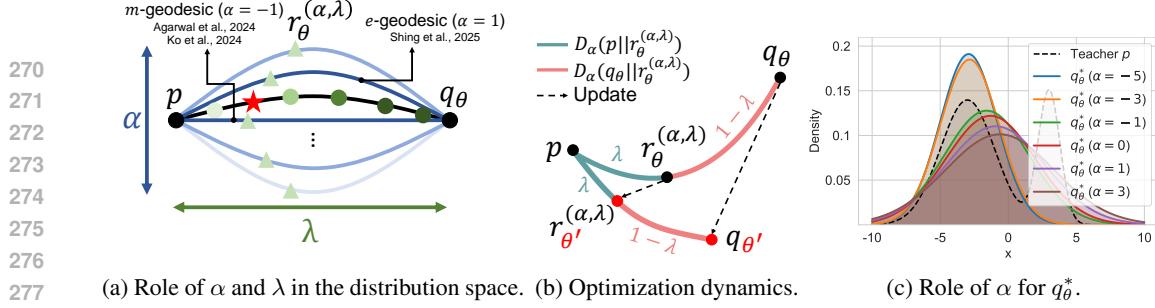
(a) Role of  $\alpha$  and  $\lambda$  in the distribution space. (b) Optimization dynamics. (c) Role of  $\alpha$  for  $q_\theta^*$ .

Figure 3: Visualization of the characteristics of the  $\alpha$ -mixture distillation, AMiD. (a)  $\alpha$  determines the geometry of interpolation while  $\lambda$  controls the portion between  $p$  and  $q_\theta$ . In general, the curvature of the path increases as  $\alpha$  moves farther away from  $-1$  (the straight line). (b)  $r_\theta^{(\alpha, \lambda)}$  can be interpreted as the internal division point in terms of  $\alpha$ -divergence. Due to the uniqueness, the updated parameter  $\theta'$  via optimization of AMiD, directly affects the student distribution. (c) Toy experiment with two-modal  $p$  and uni-modal  $q_\theta$ .  $\alpha$  controls the property of the optimized student distribution  $q_\theta^*$  between the mode-covering and mode-seeking, even though we minimize the fixed divergence  $D_{\text{KL}}(p \parallel r_\theta^{(\alpha, \lambda)})$ . In particular, when  $\alpha \leq 1$ , increasing  $\alpha$  encourages  $q_\theta^*$  to exhibit more mode-covering behavior, whereas using smaller  $\alpha$  strengthens mode-seeking behavior.

### 3.3 AMiD: KNOWLEDGE DISTILLATION WITH $\alpha$ -MIXTURE ASSISTANT DISTRIBUTION

In this section, we present a token-level KD for LLMs with  $\alpha$ -mixture assistant distribution, coined as  $\alpha$ -mixture distillation (AMiD), which aims to align  $r_\theta^{(\alpha, \lambda)}$  and either  $p$  or  $q_\theta$ . Specifically, the optimization of AMiD is defined as follows, similar to Eq. (1):

$$\min_{\theta} \mathbb{E}_{(x, y) \sim \mathcal{D}} \left[ \sum_{l=1}^L D(p, r_\theta^{(\alpha, \lambda)}) \right] \quad \text{or} \quad \min_{\theta} \mathbb{E}_{(x, y) \sim \mathcal{D}} \left[ \sum_{l=1}^L D(q_\theta, r_\theta^{(\alpha, \lambda)}) \right] \quad (10)$$

We highlight that AMiD allows the use of arbitrary divergence  $D$  and any dataset  $\mathcal{D}$  (see Section 2.1) since  $r_\theta^{(\alpha, \lambda)}$  is a valid distribution. Furthermore, AMiD generalizes the optimization schemes of prior research by extending both the assistant distribution and the divergence. For example, DistiLLM (Ko et al., 2024) corresponds to  $D_{\text{KL}}(p \parallel r_\theta^{(-1, \lambda)})$  and  $D_{\text{KL}}(q_\theta \parallel r_\theta^{(-1, \lambda)})$ ; and TAID (Shing et al., 2025) corresponds to  $D_{\text{KL}}(r_\theta^{(1, \lambda)} \parallel q_\theta)$ . Next, we aim to characterize the optimality of AMiD.

**Theorem 3.4. (Optimality)** *Let  $D$  be any proper divergence and  $\alpha \in \mathbb{R}$ .*

- *If  $\lambda \in [0, 1]$  and  $\exists \theta$  s.t.  $D(p, r_\theta^{(\alpha, \lambda)}) = 0$ , then  $D(p, r_\theta^{(\alpha, \lambda)}) = 0$  if and only if  $p = q_\theta$ .*
- *If  $\lambda \in (0, 1]$  and  $\exists \theta$  s.t.  $D(q_\theta, r_\theta^{(\alpha, \lambda)}) = 0$ , then  $D(q_\theta, r_\theta^{(\alpha, \lambda)}) = 0$  if and only if  $p = q_\theta$ .*

Please refer to Appendix B.3 for the proof. Theorem 3.4 demonstrates that even if we minimize the divergence between  $p$  (or  $q_\theta$ ) and  $r_\theta^{(\alpha, \lambda)}$ , the primary goal of KD is guaranteed i.e.,  $p = q_\theta$ . It is intuitive because the interpolation point needs to coincide with one of the endpoints when it coincides with the other (see Figure 3b). Therefore, leveraging the benefits of the assistant distribution, we establish optimality. Although Theorem 3.4 establishes theoretical optimality for any choice of  $D$ ,  $\alpha \in \mathbb{R}$ , and  $\lambda \in (0, 1)$ , the effectiveness of AMiD might depend on selecting an appropriate  $\alpha$  value due to the imperfect practical optimization. Please refer to Appendix B.3 for the theoretical insights based  $\alpha$  tuning guidelines, Appendix C.4 for overlap-based adaptive  $\alpha$  scheduling.

Now, we provide the gradient analysis to investigate the specific role of  $\alpha$ . In particular, we consider  $f$ -divergence, which is widely used in many areas, including KD for LLMs.

**Proposition 3.5. (Gradient analysis)** *The gradient of  $f$ -divergence  $D_f(p \parallel r_\theta^{(\alpha, \lambda)})$  be expressed as:*

$$\nabla_{\theta} D_f(p \parallel r_\theta^{(\alpha, \lambda)}) = \mathbb{E}_{r_\theta^{(\alpha, \lambda)}} \left[ w \cdot \left\{ \psi_f \left( \frac{p}{r_\theta^{(\alpha, \lambda)}} \right) - \mathbb{E}_{r_\theta^{(\alpha, \lambda)}} \left[ \psi_f \left( \frac{p}{r_\theta^{(\alpha, \lambda)}} \right) \right] \right\} \cdot \nabla_{\theta} \log q_\theta \right] \quad (11)$$

where  $w := \frac{(1-\lambda)q_\theta^{\frac{1-\alpha}{2}}}{\lambda p^{\frac{1-\alpha}{2}} + (1-\lambda)q_\theta^{\frac{1-\alpha}{2}}}$  and  $\psi_f(v) := f(v) - vf'(v)$ .

Table 1: ROUGE-L scores ( $\uparrow$ ) on five task-agnostic instruction-following datasets. **Bold** and Underline mean the best and second-best performance of each column, except the teacher, respectively. All results are based on our own re-implementation. We use  $D_{AB}$  and  $\lambda = 0.1$  for AMiD. We conduct the evaluation with five random seeds. More results of baselines are in Appendix C.1.

| Model                                               | Val. ( $\uparrow$ ) | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ )   | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ )     | Avg. ( $\uparrow$ ) |
|-----------------------------------------------------|---------------------|---------------------------|--------------------------|-------------------------|-------------------------|-------------------------|---------------------|
| GPT-2 XL (Teacher)                                  | —                   | 27.14 $\pm 0.15$          | 14.55 $\pm 0.82$         | 16.12 $\pm 0.31$        | 27.21 $\pm 0.25$        | 31.41 $\pm 0.06$        | 23.29               |
| <b><i>GPT-2 XL (1.5B) → GPT-2 (0.1B)</i></b>        |                     |                           |                          |                         |                         |                         |                     |
| GKD                                                 | 27.06               | 24.58 $\pm 0.13$          | 11.78 $\pm 0.44$         | 14.60 $\pm 0.37$        | 22.84 $\pm 0.12$        | 25.04 $\pm 0.09$        | 19.77               |
| TAID                                                | 28.37               | 25.74 $\pm 0.27$          | 12.91 $\pm 0.31$         | 17.09 $\pm 0.18$        | 23.66 $\pm 0.31$        | 26.82 $\pm 0.05$        | 21.24               |
| DistiLLM (SKL)                                      | 27.88               | 25.50 $\pm 0.28$          | 12.35 $\pm 0.39$         | 16.10 $\pm 0.22$        | 23.87 $\pm 0.39$        | 26.16 $\pm 0.06$        | 20.80               |
| DistiLLM (SRKL)                                     | 28.21               | 25.74 $\pm 0.20$          | 12.13 $\pm 0.23$         | 16.34 $\pm 0.15$        | 25.40 $\pm 0.10$        | 26.91 $\pm 0.12$        | 21.30               |
| ABKD                                                | 28.61               | 25.49 $\pm 0.24$          | 12.52 $\pm 0.52$         | <b>17.36</b> $\pm 0.55$ | 26.07 $\pm 0.14$        | 27.36 $\pm 0.10$        | <u>21.76</u>        |
| <b>AMiD (Ours)</b>                                  | <b>29.24</b>        | <b>26.44</b> $\pm 0.12$   | <b>13.74</b> $\pm 0.49$  | 16.76 $\pm 0.24$        | <b>29.71</b> $\pm 0.08$ | <b>30.35</b> $\pm 0.09$ | <b>23.40</b>        |
| <b><i>GPT-2 XL (1.5B) → GPT-2 Medium (0.3B)</i></b> |                     |                           |                          |                         |                         |                         |                     |
| GKD                                                 | 27.90               | 25.06 $\pm 0.55$          | 12.36 $\pm 0.42$         | 15.71 $\pm 0.58$        | 23.83 $\pm 0.26$        | 27.14 $\pm 0.09$        | 20.82               |
| TAID                                                | 29.45               | 27.01 $\pm 0.27$          | <u>14.53</u> $\pm 0.47$  | <u>17.58</u> $\pm 0.20$ | 25.14 $\pm 0.15$        | 29.79 $\pm 0.14$        | 22.81               |
| DistiLLM (SKL)                                      | 29.65               | 26.87 $\pm 0.13$          | 14.11 $\pm 0.29$         | 16.85 $\pm 0.54$        | 25.59 $\pm 0.22$        | 28.84 $\pm 0.03$        | 22.45               |
| DistiLLM (SRKL)                                     | 29.72               | 26.50 $\pm 0.20$          | 13.79 $\pm 0.71$         | 17.14 $\pm 0.52$        | 26.25 $\pm 0.11$        | 29.31 $\pm 0.16$        | 22.60               |
| ABKD                                                | 29.64               | 26.93 $\pm 0.17$          | 13.69 $\pm 0.32$         | 17.45 $\pm 0.27$        | 28.15 $\pm 0.18$        | 30.94 $\pm 0.06$        | <u>23.43</u>        |
| <b>AMiD (Ours)</b>                                  | <b>30.83</b>        | <b>27.34</b> $\pm 0.18$   | <b>15.26</b> $\pm 0.46$  | <b>17.69</b> $\pm 0.27$ | <b>29.04</b> $\pm 0.20$ | <b>33.15</b> $\pm 0.13$ | <b>24.50</b>        |
| <b><i>GPT-2 XL (1.5B) → GPT-2 Large (0.8B)</i></b>  |                     |                           |                          |                         |                         |                         |                     |
| GKD                                                 | 29.36               | 26.38 $\pm 0.24$          | 14.44 $\pm 0.66$         | <u>17.02</u> $\pm 0.46$ | 26.64 $\pm 0.16$        | 30.99 $\pm 0.13$        | 23.09               |
| TAID                                                | 29.83               | 26.85 $\pm 0.32$          | 15.07 $\pm 0.31$         | <u>17.02</u> $\pm 0.48$ | 26.71 $\pm 0.23$        | 31.09 $\pm 0.17$        | 23.35               |
| DistiLLM (SKL)                                      | 29.69               | 26.12 $\pm 0.27$          | <u>15.69</u> $\pm 0.75$  | 16.91 $\pm 0.43$        | 27.23 $\pm 0.18$        | 30.73 $\pm 0.12$        | 23.34               |
| DistiLLM (SRKL)                                     | <u>30.59</u>        | 27.09 $\pm 0.40$          | 14.61 $\pm 0.66$         | 16.39 $\pm 0.27$        | 28.44 $\pm 0.45$        | 31.04 $\pm 0.06$        | 23.51               |
| ABKD                                                | 30.49               | 27.67 $\pm 0.34$          | 15.46 $\pm 0.81$         | <b>17.43</b> $\pm 0.25$ | 30.74 $\pm 0.22$        | <u>33.11</u> $\pm 0.15$ | <u>24.88</u>        |
| <b>AMiD (Ours)</b>                                  | <b>31.10</b>        | <b>27.86</b> $\pm 0.29$   | <b>16.46</b> $\pm 0.41$  | 16.62 $\pm 0.50$        | <b>32.64</b> $\pm 0.26$ | <b>35.64</b> $\pm 0.07$ | <b>25.84</b>        |

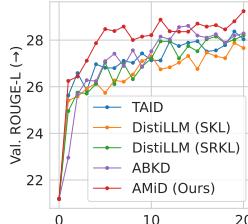


Table 2: Experimental results on the task-specific distillation. “Trans.” and “Summ.” indicate translation and summarization task, respectively. We use  $D_{AB}$  and  $\lambda = 0.1$  for AMiD.

| Model                        | SFTed Gemma-7B-It → Gemma-2B-It |                              |                           | SFTed Qwen2-7B-It to Qwen2-0.5B-It |                              |                           |
|------------------------------|---------------------------------|------------------------------|---------------------------|------------------------------------|------------------------------|---------------------------|
|                              | Trans. COMET ( $\uparrow$ )     | Summ. ROUGE-L ( $\uparrow$ ) | GSM8K. Acc ( $\uparrow$ ) | Trans. COMET ( $\uparrow$ )        | Summ. ROUGE-L ( $\uparrow$ ) | GSM8K. Acc ( $\uparrow$ ) |
| TAID                         | 74.20                           | <u>34.93</u>                 | 24.49                     | <u>58.17</u>                       | 31.65                        | 33.28                     |
| DistiLLM                     | 52.83                           | 26.51                        | 00.00                     | 57.23                              | <u>32.27</u>                 | <u>35.63</u>              |
| ABKD                         | 74.21                           | 34.88                        | 24.26                     | 58.07                              | 31.67                        | 33.13                     |
| AMiD ( $\alpha \neq \pm 1$ ) | <b>74.78</b>                    | <b>35.22</b>                 | <b>24.94</b>              | <b>58.31</b>                       | <b>32.51</b>                 | <b>36.24</b>              |

Figure 4: ROUGE-L curve on Dolly dataset.

Please refer to Appendix A.5 for the proof. Proposition 3.5 implies the following properties. First,  $w$  controls the magnitude of the instance-wise gradient  $\nabla_{\theta} \log q_{\theta}(y_l | x, y_{<l})$ . While  $w$  does not affect the individual gradient direction due to  $0 \leq w \leq 1$ , its weighting effect may shift the batch-wise gradient direction. Second, the  $\alpha$  plays a crucial role in enabling  $w$  to perform instance-wise weighting based on the density ratio  $\frac{p(y_l | x, y_{<l})}{q_{\theta}(y_l | x, y_{<l})}$ . This property originates from the unique characteristic of the  $\alpha$ -mixture assistant distribution that cannot be achieved by  $\lambda$  or learning rate scheduling. Third,  $\alpha$  (relatively) adjusts the *mode-covering* and *mode-seeking* behavior of the optimized student distribution. Let us assume  $\frac{1-\alpha}{2} \geq 0$ , i.e.,  $\alpha \leq 1$ .<sup>2</sup> When  $p \geq q_{\theta}$ , a larger  $\alpha$  produces a correspondingly larger value of  $w$ . Thus, it amplifies the gradient magnitude in regions where the student underestimates the teacher. As a result, choosing a large  $\alpha$  (relatively) encourages the student distribution  $q_{\theta}$  to exhibit a *mode-covering* behavior. In contrast, employing the small  $\alpha$  in  $p < q_{\theta}$  results in a large  $w$  value. It assigns a large gradient magnitude to the area where the student overestimates, ultimately exhibiting that the small  $\alpha$  (relatively) reinforces *mode-seeking* property.

To support the results from the gradient analysis, we investigate the property of the optimized student distribution  $q_{\theta}^*$  through the toy experiments. Figure 3c shows that the optimized student distribution  $q_{\theta}^*$  with small  $\alpha$  converges to one of the peak, which indicates the mode-seeking. As increasing  $\alpha$ , the  $q_{\theta}^*$  gradually have thick tails while moving towards the average of  $p$ , which implies the mode-covering. These analyses indicate that the balance between mode-covering and mode-seeking, often attributed to divergence selection, might be controlled by  $\alpha$  in the  $\alpha$ -mixture assistant distribution.

<sup>2</sup>Although  $\alpha$  can be any real number, we assume  $\alpha \leq 1$  for the sake of simplicity.

378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
Table 3: ROUGE-L scores ( $\uparrow$ ) with various divergences  $D$  and  $\alpha$ . We utilize GPT-2 XL (1.5B)  $\rightarrow$  GPT-2 (0.1B). We use  $\lambda = 0.1$  for AMiD.  $q_\theta$  indicates the no-assistant baseline.  $\alpha = -1$  and  $\alpha = 1$  correspond to the assistant distribution employed in DistiLLM and TAID, respectively.

| Divergence $D$                                             | Assistant $r_\theta^{(\alpha, \lambda)}$ | Val. ( $\uparrow$ ) | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ )   | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ )     | Avg. ( $\uparrow$ ) |
|------------------------------------------------------------|------------------------------------------|---------------------|---------------------------|--------------------------|-------------------------|-------------------------|-------------------------|---------------------|
| $D_{\text{KL}}(p \parallel r_\theta^{(\alpha, \lambda)})$  | $q_\theta$                               | 25.25               | 22.96 $\pm$ 0.23          | 10.54 $\pm$ 0.14         | 15.33 $\pm$ 0.13        | 18.10 $\pm$ 0.26        | 21.10 $\pm$ 0.16        | 17.61               |
|                                                            | AMiD ( $\alpha = -5.0$ )                 | <b>28.99</b>        | <b>25.86</b> $\pm$ 0.10   | <b>13.72</b> $\pm$ 0.42  | 15.90 $\pm$ 0.29        | <b>28.32</b> $\pm$ 0.24 | <b>29.52</b> $\pm$ 0.06 | <b>22.66</b>        |
|                                                            | AMiD ( $\alpha = -3.0$ )                 | <b>28.47</b>        | <b>25.72</b> $\pm$ 0.17   | <b>13.68</b> $\pm$ 0.19  | <b>16.71</b> $\pm$ 0.30 | <b>27.30</b> $\pm$ 0.30 | <b>29.03</b> $\pm$ 0.12 | <b>22.49</b>        |
|                                                            | AMiD ( $\alpha = -1.0$ )                 | 27.88               | 25.50 $\pm$ 0.28          | 12.35 $\pm$ 0.39         | 16.10 $\pm$ 0.22        | 23.87 $\pm$ 0.39        | 26.16 $\pm$ 0.06        | 20.80               |
|                                                            | AMiD ( $\alpha = -0.5$ )                 | 27.37               | 24.17 $\pm$ 0.37          | 12.15 $\pm$ 0.49         | 16.37 $\pm$ 0.38        | 24.34 $\pm$ 0.20        | 24.36 $\pm$ 0.06        | 20.28               |
|                                                            | AMiD ( $\alpha = 0.0$ )                  | 26.37               | 24.08 $\pm$ 0.25          | 10.65 $\pm$ 0.20         | 16.27 $\pm$ 0.24        | 20.09 $\pm$ 0.20        | 22.71 $\pm$ 0.13        | 18.76               |
|                                                            | AMiD ( $\alpha = 0.5$ )                  | 25.56               | 22.81 $\pm$ 0.22          | 10.77 $\pm$ 0.40         | 16.24 $\pm$ 0.23        | 18.96 $\pm$ 0.45        | 22.13 $\pm$ 0.10        | 18.18               |
|                                                            | AMiD ( $\alpha = 1.0$ )                  | 25.31               | 22.99 $\pm$ 0.12          | 11.17 $\pm$ 0.51         | 15.97 $\pm$ 0.46        | 18.74 $\pm$ 0.40        | 21.94 $\pm$ 0.16        | 18.16               |
| $D_{\text{RKL}}(p \parallel r_\theta^{(\alpha, \lambda)})$ | $q_\theta$                               | <b>28.85</b>        | <b>26.67</b> $\pm$ 0.50   | 12.32 $\pm$ 0.43         | <b>17.48</b> $\pm$ 0.30 | 24.25 $\pm$ 0.19        | <b>26.56</b> $\pm$ 0.19 | 21.46               |
|                                                            | AMiD ( $\alpha = -5.0$ )                 | 28.39               | <b>26.16</b> $\pm$ 0.33   | <b>12.95</b> $\pm$ 0.57  | 17.39 $\pm$ 0.39        | <b>24.59</b> $\pm$ 0.22 | <b>27.17</b> $\pm$ 0.09 | <b>21.65</b>        |
|                                                            | AMiD ( $\alpha = -3.0$ )                 | <b>28.75</b>        | <b>26.47</b> $\pm$ 0.12   | <b>12.71</b> $\pm$ 0.21  | 17.17 $\pm$ 0.42        | <b>27.00</b> $\pm$ 0.11 | <b>28.16</b> $\pm$ 0.12 | <b>22.30</b>        |
|                                                            | AMiD ( $\alpha = -1.0$ )                 | <b>28.97</b>        | 22.96 $\pm$ 0.23          | 12.34 $\pm$ 0.24         | 17.27 $\pm$ 0.64        | 22.44 $\pm$ 0.36        | 25.68 $\pm$ 0.10        | 20.83               |
|                                                            | AMiD ( $\alpha = -0.5$ )                 | 28.25               | 26.15 $\pm$ 0.30          | 11.81 $\pm$ 0.29         | 16.54 $\pm$ 0.22        | 23.49 $\pm$ 0.25        | 25.87 $\pm$ 0.06        | 20.77               |
|                                                            | AMiD ( $\alpha = 0.0$ )                  | 28.80               | 25.84 $\pm$ 0.22          | 12.06 $\pm$ 0.13         | <b>17.71</b> $\pm$ 0.65 | 22.72 $\pm$ 0.24        | 25.36 $\pm$ 0.10        | 20.74               |
|                                                            | AMiD ( $\alpha = 0.5$ )                  | 28.45               | 25.42 $\pm$ 0.11          | 11.45 $\pm$ 0.26         | 17.31 $\pm$ 0.38        | 21.58 $\pm$ 0.24        | 24.43 $\pm$ 0.10        | 20.04               |
|                                                            | AMiD ( $\alpha = 1.0$ )                  | 0.16                | 4.27 $\pm$ 0.01           | 2.81 $\pm$ 0.02          | 9.12 $\pm$ 0.06         | 1.64 $\pm$ 0.00         | 1.84 $\pm$ 0.00         | 3.94                |
| $D_{\text{AB}}(p \parallel r_\theta^{(\alpha, \lambda)})$  | $q_\theta$                               | 28.61               | 25.49 $\pm$ 0.24          | 12.52 $\pm$ 0.52         | 17.36 $\pm$ 0.55        | 26.07 $\pm$ 0.14        | 27.36 $\pm$ 0.10        | 21.76               |
|                                                            | AMiD ( $\alpha = -5.0$ )                 | <b>29.24</b>        | <b>26.44</b> $\pm$ 0.12   | <b>13.74</b> $\pm$ 0.49  | <b>16.76</b> $\pm$ 0.24 | <b>29.71</b> $\pm$ 0.08 | <b>30.35</b> $\pm$ 0.09 | <b>23.40</b>        |
|                                                            | AMiD ( $\alpha = -3.0$ )                 | <b>29.07</b>        | <b>26.38</b> $\pm$ 0.18   | 13.58 $\pm$ 0.57         | 16.11 $\pm$ 0.18        | <b>29.27</b> $\pm$ 0.14 | <b>30.14</b> $\pm$ 0.06 | <b>23.10</b>        |
|                                                            | AMiD ( $\alpha = -1.0$ )                 | 28.70               | 26.10 $\pm$ 0.24          | 13.34 $\pm$ 0.25         | 16.71 $\pm$ 0.27        | 26.55 $\pm$ 0.17        | 29.55 $\pm$ 0.11        | 22.45               |
|                                                            | AMiD ( $\alpha = -0.5$ )                 | 28.70               | 26.37 $\pm$ 0.27          | <b>13.59</b> $\pm$ 0.25  | <b>17.02</b> $\pm$ 0.34 | 27.06 $\pm$ 0.31        | 28.50 $\pm$ 0.16        | 22.51               |
|                                                            | AMiD ( $\alpha = 0.0$ )                  | 28.86               | <b>25.77</b> $\pm$ 0.34   | 13.57 $\pm$ 0.22         | 16.14 $\pm$ 0.36        | 27.26 $\pm$ 0.27        | 28.52 $\pm$ 0.20        | 22.25               |
|                                                            | AMiD ( $\alpha = 0.5$ )                  | 28.46               | 25.80 $\pm$ 0.32          | 12.94 $\pm$ 0.36         | 16.59 $\pm$ 0.34        | 26.29 $\pm$ 0.22        | 27.73 $\pm$ 0.08        | 21.87               |
|                                                            | AMiD ( $\alpha = 1.0$ )                  | 24.93               | 22.36 $\pm$ 0.22          | 9.72 $\pm$ 0.58          | 16.29 $\pm$ 0.30        | 15.09 $\pm$ 0.19        | 16.15 $\pm$ 0.12        | 15.92               |

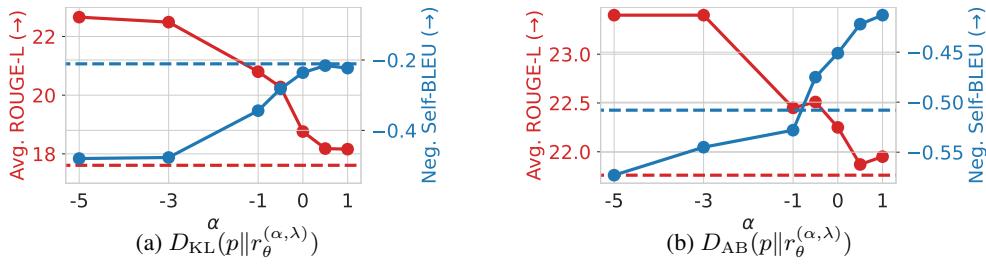


Figure 5: Performance curve on ROUGE-L (quality) and Self-BLEU (diversity). Colored dashed lines: no-assistant baseline ( $q_\theta$ ). We use  $\lambda = 0.1$ .

## 4 EXPERIMENTS

We consider both general instruction-following distillation and task-specific distillation to validate the effectiveness of AMiD. AMiD is primarily compared with methodologies, which inherently include the assistant distribution, such as GKD (Agarwal et al., 2024), DistiLLM (Ko et al., 2024), TAID (Shing et al., 2025); and the state-of-the-art ABKD (Wang et al., 2025). Please refer to Table 15 in Appendix C for further performance comparisons with additional baselines. We use  $\alpha_{AB}$ - $\beta_{AB}$ -divergence with  $\alpha_{AB} = 0.2$ ,  $\beta_{AB} = 0.7$  and adopt adaptive off-policy training (Ko et al., 2024) as default. We explore  $\alpha$  over the range  $\{-5, -3, -1, -0.5, 0, 0.5, 1.0\}$  and employ  $\lambda = 0.1$  as default by following prior work (Ko et al., 2024). Additional details on datasets, models, and training details are provided in Appendix B.

### 4.1 PERFORMANCE COMPARISON

**Instruction-following Experiments.** Table 1 reports results on the GPT-2 family (Radford et al., 2019) across different model sizes. AMiD consistently achieves the best performance in most evaluation settings, surpassing prior methods such as GKD, TAID, and DistiLLM, which also exploit assistant distributions. Notably, AMiD delivers substantial gains on SuperNI and UnNI, benchmarks requiring generalization to diverse and unseen instructions (Wang et al., 2022). These improvements suggest that AMiD promotes superior mode coverage and distributional alignment, thereby enhancing out-of-distribution generalization. Even when the capacity gap narrows for larger models (e.g., GPT-2 Large), AMiD continues to yield significant improvements, demonstrating that the  $\alpha$ -mixture assistant distribution benefits not only small students but also stronger ones, thereby validating its scalability and robustness. Figure 4 further shows that AMiD consistently envelopes the baseline's

Table 4: ROUGE-L scores ( $\uparrow$ ) with various SGOs. We utilize GPT-2 XL (1.5B)  $\rightarrow$  GPT-2 (0.1B). We use  $\lambda = 0.1$  for these experiments.  $q_\theta$  indicates no-assistant baseline ABKD for these experiments. We use  $D_{AB}$  for AMiD.  $\alpha = -1$  and  $\alpha = 1$  correspond to the assistant distribution employed in DistiLLM and TAID, respectively.

| Dataset $\mathcal{D}$                    | Assistant $r_\theta^{(\alpha, \lambda)}$ | Val. ( $\uparrow$ ) | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ )   | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ )     | Avg. ( $\uparrow$ ) |
|------------------------------------------|------------------------------------------|---------------------|---------------------------|--------------------------|-------------------------|-------------------------|-------------------------|---------------------|
| Fixed<br>(Hinton et al., 2015)           | $q_\theta$                               | 27.06               | 24.81 $\pm$ 0.28          | 11.25 $\pm$ 0.26         | 15.05 $\pm$ 0.21        | 21.78 $\pm$ 0.15        | 23.73 $\pm$ 0.09        | 19.32               |
|                                          | AMiD ( $\alpha = -1$ )                   | <u>27.35</u>        | <b>25.34</b> $\pm$ 0.28   | 11.54 $\pm$ 0.26         | <u>15.34</u> $\pm$ 0.30 | 21.77 $\pm$ 0.19        | <u>24.45</u> $\pm$ 0.06 | 19.69               |
|                                          | AMiD ( $\alpha = 1$ )                    | 27.09               | 24.36 $\pm$ 0.34          | <u>12.40</u> $\pm$ 0.41  | 14.37 $\pm$ 0.31        | <u>24.36</u> $\pm$ 0.28 | <u>26.28</u> $\pm$ 0.05 | <u>20.35</u>        |
|                                          | AMiD ( $\alpha \neq \pm 1$ )             | <b>27.84</b>        | <u>25.32</u> $\pm$ 0.15   | <b>13.44</b> $\pm$ 0.41  | <b>15.44</b> $\pm$ 0.11 | <b>27.03</b> $\pm$ 0.12 | <b>28.19</b> $\pm$ 0.06 | <b>21.88</b>        |
| On-policy<br>(Lin et al., 2020)          | $q_\theta$                               | 28.25               | <b>25.70</b> $\pm$ 0.20   | 13.03 $\pm$ 0.17         | 16.86 $\pm$ 0.34        | 24.67 $\pm$ 0.16        | 27.47 $\pm$ 0.15        | 21.55               |
|                                          | AMiD ( $\alpha = -1$ )                   | <u>28.60</u>        | 25.43 $\pm$ 0.34          | 12.96 $\pm$ 0.58         | 16.59 $\pm$ 0.39        | <u>27.35</u> $\pm$ 0.16 | <u>29.93</u> $\pm$ 0.07 | <u>22.45</u>        |
|                                          | AMiD ( $\alpha = 1$ )                    | <u>28.60</u>        | 25.12 $\pm$ 0.55          | <u>13.28</u> $\pm$ 0.38  | 17.08 $\pm$ 0.52        | 24.35 $\pm$ 0.23        | 26.94 $\pm$ 0.19        | 21.35               |
|                                          | AMiD ( $\alpha \neq \pm 1$ )             | <b>28.90</b>        | <b>26.22</b> $\pm$ 0.31   | <b>14.31</b> $\pm$ 0.22  | <b>17.37</b> $\pm$ 0.22 | <b>28.59</b> $\pm$ 0.27 | <b>31.00</b> $\pm$ 0.08 | <b>23.50</b>        |
| Mixed<br>(Agarwal et al., 2024)          | $q_\theta$                               | 29.08               | 25.67 $\pm$ 0.16          | 12.38 $\pm$ 0.29         | <b>17.15</b> $\pm$ 0.52 | 22.98 $\pm$ 0.26        | 26.20 $\pm$ 0.14        | 20.88               |
|                                          | AMiD ( $\alpha = -1$ )                   | 28.79               | 25.65 $\pm$ 0.25          | 11.98 $\pm$ 0.28         | 16.94 $\pm$ 0.13        | 23.82 $\pm$ 0.17        | 26.25 $\pm$ 0.06        | 20.93               |
|                                          | AMiD ( $\alpha = 1$ )                    | 28.06               | <u>25.68</u> $\pm$ 0.39   | 12.81 $\pm$ 0.20         | <u>16.97</u> $\pm$ 0.27 | <u>24.91</u> $\pm$ 0.21 | <u>26.52</u> $\pm$ 0.08 | <u>21.38</u>        |
|                                          | AMiD ( $\alpha \neq \pm 1$ )             | <b>29.24</b>        | <b>26.46</b> $\pm$ 0.16   | <b>13.62</b> $\pm$ 0.27  | 16.91 $\pm$ 0.30        | <b>28.13</b> $\pm$ 0.06 | <b>29.39</b> $\pm$ 0.07 | <b>22.90</b>        |
| Adaptive off-policy<br>(Ko et al., 2024) | $q_\theta$                               | 28.61               | 25.49 $\pm$ 0.24          | 12.52 $\pm$ 0.52         | <b>17.36</b> $\pm$ 0.55 | 26.07 $\pm$ 0.14        | 27.36 $\pm$ 0.10        | 21.76               |
|                                          | AMiD ( $\alpha = -1$ )                   | <u>28.70</u>        | <u>26.10</u> $\pm$ 0.24   | 13.34 $\pm$ 0.25         | 16.71 $\pm$ 0.27        | 26.55 $\pm$ 0.17        | <u>29.55</u> $\pm$ 0.11 | <u>22.45</u>        |
|                                          | AMiD ( $\alpha = 1$ )                    | 27.80               | 25.78 $\pm$ 0.44          | <u>13.74</u> $\pm$ 0.19  | 16.42 $\pm$ 0.22        | 26.04 $\pm$ 0.22        | 27.79 $\pm$ 0.09        | 21.95               |
|                                          | AMiD ( $\alpha \neq \pm 1$ )             | <b>29.24</b>        | <b>26.44</b> $\pm$ 0.12   | <b>13.74</b> $\pm$ 0.49  | <u>16.76</u> $\pm$ 0.24 | <b>29.71</b> $\pm$ 0.08 | <b>30.35</b> $\pm$ 0.09 | <b>23.40</b>        |

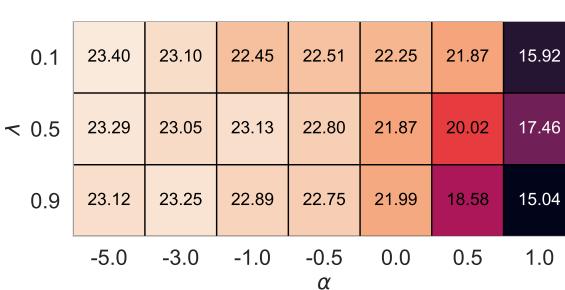
Figure 6: Relationship between  $\alpha$  and  $\lambda$  under  $D_{AB}$ .

Table 5: Win Rate (WR, %) scores on three instruction-following benchmarks. We utilize Qwen2.5-14B-Instruct as a teacher and Qwen2.5-1.5B-Instruct as a student.

| Model                        | AlpacaEval WR ( $\uparrow$ ) | Evol-Inst WR ( $\uparrow$ ) | UltraFeed WR ( $\uparrow$ ) | Avg. ( $\uparrow$ ) |
|------------------------------|------------------------------|-----------------------------|-----------------------------|---------------------|
| Teacher                      | 95.7                         | 92.2                        | 84.9                        | 90.9                |
| Student                      | 64.3                         | 47.2                        | 40.4                        | 50.6                |
| DistiLLM-2 ( $\alpha = -1$ ) | 80.2                         | 70.4                        | 61.7                        | 70.8                |
| DistiLLM-2 ( $\alpha = -5$ ) | <b>81.3</b>                  | <b>71.1</b>                 | <b>63.6</b>                 | <b>72.0</b>         |

validation ROUGE-L curve, indicating both efficient and stable optimization. Additional comparisons with other baselines and experiments on OpenLLaMA2 are provided in Appendix C.

**Task-specific Experiments.** To further investigate the effectiveness of AMiD, we consider various task-specific distillation, such as translation, summarization, and reasoning tasks. We adopt the implementation of SKD (Xu et al., 2024b) and employ the fixed dataset strategy. As shown in Table 2, using an assistant distribution achieves higher performance compared to the no-assistant baseline ABKD. Nevertheless, in the previous framework, where only  $\alpha = \pm 1$  is available, it exhibits mixed performance depending on the task and network. Our proposed framework, AMiD, which extends the range of  $\alpha$ , allows us to discover the high-performance assistant distribution. This generalization leads to consistent improvements over the baselines, achieving the best performance on all tasks.

## 4.2 ABLATION STUDY AND ADDITIONAL ANALYSIS

**Balancing Mode-covering and Mode-seeking via  $\alpha$ .** As mentioned in Section 3.3, we have demonstrated that even when employing the same divergence, adjusting the  $\alpha$  of the  $\alpha$ -mixture assistant distribution allows us to control the mode-covering or mode-seeking property of the optimized student distribution. To further substantiate this analysis, we examine the trends of ROUGE-L, representing quality, and (Negative) Self-BLEU, representing diversity, by adjusting  $\alpha$  with a fixed divergence. Figure 5 exhibits a clear quality-diversity trade-off for both KL divergence  $D_{KL}$  and  $\alpha$ - $\beta$  divergence  $D_{AB}$ . Specifically, as  $\alpha$  increases, quality decreases and diversity increases, supporting the theoretical analysis that the mode-covering property is enhanced. Decreasing  $\alpha$  shows the opposite effect, aligning with the mode of teacher distribution, which indicates mode-seeking. These results demonstrate that, even under a fixed divergence,  $\alpha$  serves as an effective control knob to balance quality and diversity.

**Relationship between  $\alpha$  and  $\lambda$ .** To further examine the relationship between  $\alpha$  and  $\lambda$ , we conduct the experiments on  $\lambda = 0.1, 0.5, 0.9$  with  $D_{AB}(p||r_\theta^{(\alpha, \lambda)})$ . Figure 6 presents the average performance of five instruction-following datasets among the various  $\alpha$  and  $\lambda$  combinations. The analyses of experimental results are as follows: (1) Across all tested values of  $\lambda$ , using a smaller  $\alpha$  consistently achieves higher performance. This observation aligns with our theoretical analysis, indicating

486  
 487  
 488  
 489  
 490  
 491 Table 6: Performances on instruction-following, code generation, and mathematical reasoning. We  
 492 utilize the Qwen2.5-Instruct models, which are appropriate for each task, employing a 7B model as  
 493 the teacher and a 1.5B model as the student. For evaluation, we employ LLM-as-a-Judge (Zheng  
 494 et al., 2023) with GPT-4o for AlpacaEval and Evol-Instruct, GPT-4o-mini for UltraFeedback.  
 495  
 496

| Model                        | Instruction-following           |                                |                                |                           | Code generation                    |                               |                               | Math reasoning<br>GSM8K ( $\uparrow$ ) |
|------------------------------|---------------------------------|--------------------------------|--------------------------------|---------------------------|------------------------------------|-------------------------------|-------------------------------|----------------------------------------|
|                              | AlpacaEval<br>WR ( $\uparrow$ ) | Evol-Inst<br>WR ( $\uparrow$ ) | UltraFeed<br>WR ( $\uparrow$ ) | Avg.<br>WR ( $\uparrow$ ) | HumanEval<br>pass@1 ( $\uparrow$ ) | MBPP<br>pass@1 ( $\uparrow$ ) | Avg.<br>pass@1 ( $\uparrow$ ) |                                        |
| Teacher                      | 93.7                            | 89.6                           | 80.8                           | 88.0                      | 90.9                               | 83.1                          | 87.0                          | 89.3                                   |
| Student                      | 64.2                            | 46.2                           | 40.0                           | 50.1                      | 70.7                               | 69.3                          | 70.0                          | 74.3                                   |
| DistiLLM-2 ( $\alpha = -1$ ) | 79.5                            | 69.0                           | 62.6                           | 70.4                      | 72.0                               | 74.6                          | 73.3                          | 76.9                                   |
| DistiLLM-2 ( $\alpha = -5$ ) | <b>80.7</b>                     | <b>71.0</b>                    | <b>63.3</b>                    | <b>71.7</b>               | <b>73.2</b>                        | <b>73.5</b>                   | <b>73.4</b>                   | <b>77.4</b>                            |

497 that a smaller  $\alpha$  relatively induces a more mode-seeking behavior. (2) When  $\lambda$  is too large ( $\lambda = 0.9$ ),  
 498 performance slightly degrades and exhibits a larger standard deviation. We attribute this to the assis-  
 499 tant distribution being overly close to the teacher distribution, which 1) limits effective knowledge  
 500 transfer and 2) makes the optimization more sensitive to curvature variations. In contrast,  $\lambda = 0.5$   
 501 achieves both high and stable performance, demonstrating that choosing a midpoint provides ro-  
 502 bustness against curvature changes. (3) Compared to  $\lambda$ , the performance is generally more robust  
 503 to changes in  $\alpha$ , as indicated by lower standard deviations. However, the  $\alpha$  values close to 1 show  
 504 noticeably higher standard deviations. We conjecture that this instability arises because the change  
 505 of mixing coefficient ( $\lambda$ ) between the teacher and student distributions makes hard mode-covering.  
 506

507 **Compatibility with Divergences.** As mentioned in Section 3.3, AMiD allows the use of the arbi-  
 508 trary divergence  $D$  since the  $\alpha$ -mixture assistant distribution  $r_\theta^{(\alpha, \lambda)}$  is a valid distribution. Therefore,  
 509 we conduct performance comparisons across various combinations of divergences and  $\alpha$  values to  
 510 demonstrate the versatility of AMiD. In Table 3, we observed that AMiD generally achieves higher  
 511 performance than the no-assistant baseline regardless of divergence in most settings. Notably, the  
 512 highest-performing  $\alpha$  was discovered in  $\alpha \neq \pm 1$  regions beyond the limited scope of prior works,  
 513 and its values are generally small. These results confirm the universality of AMiD to generic di-  
 514 vergences, representing its wide adaptiveness and flexibility. Please refer to Appendix C.3 for the  
 515 student-assistant cases  $D(q_\theta, r_\theta^{(\alpha, \lambda)})$ .

516 **Universality to SGOs.** AMiD is a generalized framework from the view of assistant distribution  
 517  $r_\theta^{(\alpha, \lambda)}$  and divergence  $D$ , and therefore is not constrained by the dataset  $\mathcal{D}$ . In Table 4, we confirm the  
 518 universality of AMiD across various student-generated output (SGO) strategies. AMiD ( $\alpha \neq \pm 1$ )  
 519 outperforms the no-assistant baseline and previous mixtures ( $\alpha = \pm 1$ ) by a significant margin across  
 520 almost all metrics. These results indicate that AMiD is compatible with diverse SGO pipelines and  
 521 remains effective regardless of how the datasets are collected.

522 **Cooperation with Contrastive-based Distillation.** The proposed  $\alpha$ -mixture assistant distribution  
 523  $r_\theta^{(\alpha, \lambda)}$  is a theoretically valid probability distribution for any  $\alpha$  and  $\lambda$ . Therefore, the  $r_\theta^{(\alpha, \lambda)}$  can be  
 524 combined with the contrastive-based distillation methods beyond the divergence-based distillation  
 525 methods. To validate this applicability, we replace the assistant distribution of DistiLLM-2 (Ko  
 526 et al., 2025), which utilizes  $m$ -mixture ( $\alpha = -1$ ), with our  $\alpha$ -mixture assistant distribution. As  
 527 shown in Table 6, incorporating our  $\alpha$ -mixture assistant distribution exhibits further performance  
 528 improvements or competitive performances over the base contrastive method, DistiLLM-2.

529 **Scalability to Large Teacher.** To demonstrate the extensibility, we conduct an experiment by dis-  
 530 tilling Qwen2.5-14B-Instruct into Qwen2.5-1.5B-Instruct under the instruction-following task. As  
 531 shown in Table 5, integrating  $\alpha$ -mixture assistant distribution exhibits performance improvements  
 532 over the DistiLLM-2. These results indicate that AMiD remains effective in a large teacher model.  
 533

## 5 CONCLUSION

535 This work introduces a unified framework for KD in LLMs by proposing the  $\alpha$ -mixture assistant  
 536 distribution and the corresponding distillation method, AMiD. Our approach systematically gener-  
 537 alizes previous fragmented methods and enables flexible interpolation between teacher and student.  
 538 Theoretical and empirical analyses congruently demonstrate that the design parameter  $\alpha$  controls  
 539 the mode-seeking vs. mode-covering behavior. AMiD consistently outperforms prior KD methods  
 across diverse settings and establishes a new foundation for assistant-guided KD for LLMs.

540 REFERENCES  
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-  
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical  
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu  
546 Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-  
547 generated mistakes. In *The twelfth international conference on learning representations*, 2024.

548 Shun-ichi Amari. Integration of stochastic models by minimizing  $\alpha$ -divergence. *Neural computa-*  
549 *tion*, 19(10):2780–2796, 2007.

550 Shun-ichi Amari. *Information geometry and its applications*, volume 194. Springer, 2016.

551 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,  
552 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language  
553 models. *arXiv preprint arXiv:2108.07732*, 2021.

554 Peter S Bullen. *Handbook of means and their inequalities*, volume 560. Springer Science & Business  
555 Media, 2013.

556 Mark Chen. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*,  
557 2021.

558 Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang. DialogSum: A real-life scenario dia-  
559 logue summarization dataset. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli  
560 (eds.), *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pp. 5062–  
561 5074, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.  
562 findings-acl.449. URL <https://aclanthology.org/2021.findings-acl.449/>.

563 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,  
564 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An  
565 open-source chatbot impressing gpt-4 with 90%\* chatgpt quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.

566 Andrzej Cichocki, Sergio Cruces, and Shun-ichi Amari. Generalized alpha-beta divergences and  
567 their application to robust nonnegative matrix factorization. *Entropy*, 13(1):134–170, 2011.

568 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
569 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to  
570 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

571 Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick  
572 Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open  
573 instructiontuned llm. 2023.

574 Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan,  
575 Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left behind: Scaling  
576 human-centered machine translation. *arXiv preprint arXiv:2207.04672*, 2022.

577 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong  
578 Xie, Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai  
579 feedback. *arXiv preprint arXiv:2310.01377*, 2023.

580 Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos  
581 Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for  
582 methods that learn from human feedback. *Advances in Neural Information Processing Systems*,  
583 36:30039–30069, 2023.

584 Shinto Eguchi and Osamu Komori. Minimum divergence methods in statistical machine learning.  
585 *No Title*, 2022.

594 Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL [https://github.com/openlm-research/open\\_llama](https://github.com/openlm-research/open_llama).  
 595  
 596

597 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. <http://Skylion007.github.io/OpenWebTextCorpus>, 2019.  
 598  
 599

600 Roger B Grosse, Chris J Maddison, and Russ R Salakhutdinov. Annealing between distributions by  
 601 averaging moments. *Advances in Neural Information Processing Systems*, 26, 2013.  
 602

603 Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large  
 604 language models. In *The Twelfth International Conference on Learning Representations*, 2024.  
 605 URL <https://openreview.net/forum?id=5h0qf7IBZZ>.  
 606

607 GH Hardy. *Inequalities*. Cambridge University Press, 1952.  
 608

609 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv  
 preprint arXiv:1503.02531*, 2015.  
 610

611 Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tun-  
 612 ing language models with (almost) no human labor. In Anna Rogers, Jordan Boyd-Graber,  
 613 and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for  
 614 Computational Linguistics (Volume 1: Long Papers)*, pp. 14409–14428, Toronto, Canada, July  
 615 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.806. URL  
<https://aclanthology.org/2023.acl-long.806/>.  
 616

617 Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In *Proceedings of the  
 618 2016 conference on empirical methods in natural language processing*, pp. 1317–1327, 2016.  
 619

620 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint  
 621 arXiv:1412.6980*, 2014.  
 622

623 Jongwoo Ko, Sungyun Kim, Tianyi Chen, and Se-Young Yun. Distillm: Towards streamlined  
 624 distillation for large language models. In *International Conference on Machine Learning*, pp.  
 625 24872–24895. PMLR, 2024.  
 626

627 Jongwoo Ko, Tianyi Chen, Sungyun Kim, Tianyu Ding, Luming Liang, Ilya Zharkov, and Se-  
 628 Young Yun. Distillm-2: A contrastive approach boosts the distillation of llms. *arXiv preprint  
 629 arXiv:2503.07067*, 2025.  
 630

631 Andrei Nikolaevich Kolmogorov and Guido Castelnovo. *Sur la notion de la moyenne*. G. Bardi,  
 632 tip. della R. Accad. dei Lincei, 1930.  
 633

634 Alexander Lin, Jeremy Wohlwend, Howard Chen, and Tao Lei. Autoregressive knowledge distilla-  
 635 tion through imitation learning. *arXiv preprint arXiv:2009.07253*, 2020.  
 636

637 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization  
 638 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-  
 639 tics. URL <https://aclanthology.org/W04-1013/>.  
 640

641 Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing  
 642 Ma, Qingwei Lin, and Dixin Jiang. Wizardcoder: Empowering code large language models with  
 643 evol-instruct. *arXiv preprint arXiv:2306.08568*, 2023.  
 644

645 Vaden Masrani, Rob Brekelmans, Thang Bui, Frank Nielsen, Aram Galstyan, Greg Ver Steeg, and  
 646 Frank Wood. q-paths: Generalizing the geometric annealing path using power means. In *Uncer-  
 647 tainty in Artificial Intelligence*, pp. 1938–1947. PMLR, 2021.  
 648

649 Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan  
 650 Ghasemzadeh. Improved knowledge distillation via teacher assistant. In *Proceedings of the AAAI  
 651 conference on artificial intelligence*, volume 34, pp. 5191–5198, 2020.  
 652

653 Frank Nielsen. An elementary introduction to information geometry. *Entropy*, 22(10):1100, 2020.  
 654

648 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong  
 649 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-  
 650 low instructions with human feedback. *Advances in neural information processing systems*, 35:  
 651 27730–27744, 2022.

652 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic  
 653 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association  
 654 for Computational Linguistics*, pp. 311–318, 2002.

655 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language  
 656 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

657 Makoto Shing, Kou Misaki, Han Bao, Sho Yokoi, and Takuya Akiba. Taid: Temporally adap-  
 658 tive interpolated distillation for efficient knowledge transfer in language models. *arXiv preprint  
 659 arXiv:2501.16937*, 2025.

660 Zengkui Sun, Yijin Liu, Fandong Meng, Yufeng Chen, Jinan Xu, and Jie Zhou. Warmup-distill:  
 661 Bridge the distribution mismatch between teacher and student before knowledge distillation.  
 662 *arXiv preprint arXiv:2502.11766*, 2025.

663 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya  
 664 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open  
 665 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

666 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.

667 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-  
 668 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-  
 669 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

670 Guanghui Wang, Zhiyong Yang, Zitai Wang, Shi Wang, Qianqian Xu, and Qingming Huang. Abkd:  
 671 Pursuing a proper allocation of the probability mass in knowledge distillation via  $\alpha$ - $\beta$ -divergence.  
 672 *arXiv preprint arXiv:2505.04560*, 2025.

673 Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,  
 674 Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Es-  
 675 haan Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob An-  
 676 derson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi,  
 677 Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravse-  
 678 haj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan  
 679 Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generaliza-  
 680 tion via declarative instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva,  
 681 and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natu-  
 682 ral Language Processing*, pp. 5085–5109, Abu Dhabi, United Arab Emirates, December 2022.  
 683 Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.340. URL  
 684 <https://aclanthology.org/2022.emnlp-main.340/>.

685 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and  
 686 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.  
 687 In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual  
 688 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13484–  
 689 13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/  
 690 v1/2023.acl-long.754. URL <https://aclanthology.org/2023.acl-long.754/>.

691 Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming Yang, Zhe Zhao, and Ngai Wong. Rethinking  
 692 kullback-leibler divergence in knowledge distillation for large language models. *arXiv preprint  
 693 arXiv:2404.02657*, 2024.

694 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei  
 695 Lin, and Dixin Jiang. Wizardlm: Empowering large pre-trained language models to follow com-  
 696 plex instructions. In *The Twelfth International Conference on Learning Representations*, 2024a.

702 Wenda Xu, Rujun Han, Zifeng Wang, Long T Le, Dhruv Madeka, Lei Li, William Yang Wang,  
 703 Rishabh Agarwal, Chen-Yu Lee, and Tomas Pfister. Speculative knowledge distillation: Bridging  
 704 the teacher-student gap through interleaved sampling. *arXiv preprint arXiv:2410.11325*, 2024b.  
 705

706 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-  
 707 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions  
 708 for large language models. *arXiv preprint arXiv:2309.12284*, 2023.

709 Chen Zhang, Yang Yang, Jiahao Liu, Jingang Wang, Yunsen Xian, Benyou Wang, and Dawei Song.  
 710 Lifting the curse of capacity gap in distilling language models. In Anna Rogers, Jordan Boyd-  
 711 Gruber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association  
 712 for Computational Linguistics (Volume 1: Long Papers)*, pp. 4535–4553, Toronto, Canada, July  
 713 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.249. URL  
 714 <https://aclanthology.org/2023.acl-long.249/>.

715 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,  
 716 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and  
 717 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

718 Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texxygen:  
 719 A benchmarking platform for text generation models. In *The 41st international ACM SIGIR  
 720 conference on research & development in information retrieval*, pp. 1097–1100, 2018.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A DEFINITION AND PROOF**  
757758 **A.1 AMARI'S  $\alpha$ -DIVERGENCE**  
759760 **Definition.** Let  $\alpha \in \mathbb{R}$  be a real parameter. The  $\alpha$ -function  $f_\alpha(u)$  is defined for  $\alpha \neq \pm 1$  by  
761

762 
$$f_\alpha(u) = \frac{4}{1 - \alpha^2} \left( 1 - u^{\frac{1+\alpha}{2}} \right). \quad (12)$$
  
763

764 Using this  $\alpha$ -function, the  $\alpha$ -divergence between two probability distributions  $p = \{p_i\}$  and  $q =$   
765  $\{q_i\}$  is defined as  
766

767 
$$D_\alpha[p||q] = \frac{4}{1 - \alpha^2} \left( 1 - \sum_i p_i^{\frac{1+\alpha}{2}} q_i^{\frac{1-\alpha}{2}} \right), \quad \alpha \neq \pm 1. \quad (13)$$
  
768

769 The dual divergence is obtained by replacing  $\alpha$  with  $-\alpha$ :  
770

771 
$$D_\alpha[p||q] = D_{-\alpha}[q||p]. \quad (14)$$
  
772

773 We also define the limiting cases at  $\alpha = \pm 1$  by continuity. When  $\alpha = \pm 1$ , the  $\alpha$ -function becomes  
774

775 
$$f_\alpha(u) = \begin{cases} u \log u, & \alpha = 1, \\ -\log u, & \alpha = -1. \end{cases} \quad (15)$$
  
776

777 **Connection to KL and reverse KL.** Correspondingly, the  $\alpha$ -divergence reduces to  
778

779 
$$D_\alpha[p||q] = \begin{cases} \sum_i q_i \log \frac{q_i}{p_i}, & \alpha = 1, \\ \sum_i p_i \log \frac{p_i}{q_i}, & \alpha = -1, \end{cases} \quad (16)$$
  
780

781 which correspond to the KL divergence ( $\alpha = -1$ ) and the reverse KL divergence ( $\alpha = 1$ ).  
782783 **Relation to Rényi divergence.** Since the Amari  $\alpha$ -divergence includes KL and reverse KL as the  
784 limiting cases, it can be viewed as a one-parameter generalization of the KL divergence. Moreover,  
785 it is closely related to the Rényi divergence. If we define a reparameterized order  
786

787 
$$\beta = \frac{1 + \alpha}{2},$$
  
788

789 then the quantity appearing in the Amari divergence,  
790

791 
$$\sum_i p_i^{\frac{1+\alpha}{2}} q_i^{\frac{1-\alpha}{2}},$$
  
792

793 is exactly the same expression inside the discrete Rényi divergence,  
794

795 
$$R_\beta[p||q] = \frac{1}{\beta - 1} \log \left( \sum_i p_i^\beta q_i^{1-\beta} \right). \quad (17)$$
  
796

802 Thus, the Amari and Rényi divergences represent the same underlying one-parameter family through  
803 the invertible reparameterization  $\beta = (1 + \alpha)/2$   
804805 **A.2 PROOF OF PROPOSITION 3.1**  
806807 **Proposition 3.1.** *The assistant distribution of TAID (Shing et al., 2025) is  $e$ -mixture of  $p$  and  $q_\theta$ .<sup>3</sup>*  
808

809 
$$r_\theta := \text{softmax}((1 - \lambda) \cdot \text{logit}(q_\theta) + \lambda \cdot \text{logit}(p)) \propto p^\lambda q_\theta^{1-\lambda} \quad (6)$$

<sup>3</sup>We omit the time index  $t$  and detached notation for the sake of uniformity.

810 *Proof.* Note that  $p = \text{softmax}(\text{logit}(p)) = \frac{1}{Z_p} \exp(\text{logit}(p))$  where  $\text{logit}(p)$  is logit of  $p$  and  $Z_p$  is  
 811 normalization constant of  $p$ . Therefore,  $\text{logit}(p) = \log(p \cdot Z_p)$ .

$$813 \quad r = \text{softmax}(\lambda \text{logit}(p) + (1 - \lambda) \text{logit}(q)) \quad (18)$$

$$814 \quad = \frac{1}{Z_r} \exp(\lambda \text{logit}(p) + (1 - \lambda) \text{logit}(q)) \quad (19)$$

$$816 \quad = \frac{1}{Z_r} \exp(\lambda \log(pZ_p) + (1 - \lambda) \log(qZ_q)) \quad (20)$$

$$819 \quad = \frac{1}{Z_r} \exp(\log(p^\lambda q^{1-\lambda}) + \log(Z_p^\lambda Z_q^{1-\lambda})) \quad (21)$$

$$821 \quad = \frac{Z_p^\lambda Z_q^{1-\lambda}}{Z_r} p^\lambda q^{1-\lambda} \quad (22)$$

$$823 \quad = \frac{1}{Z'} p^\lambda q^{1-\lambda}, \quad \text{where } Z' := \frac{Z_r}{Z_p^\lambda Z_q^{1-\lambda}}. \quad (23)$$

826 Now, it is sufficient to show that  $Z' = \sum p^\lambda q^{1-\lambda}$ :

$$827 \quad Z' = \frac{1}{Z_p^\lambda Z_q^{1-\lambda}} \sum \exp(\lambda \text{logit}(p) + (1 - \lambda) \text{logit}(q)) \quad (24)$$

$$830 \quad = \sum \left( \frac{1}{Z_p} \exp(\text{logit}(p)) \right)^\lambda \left( \frac{1}{Z_q} \exp(\text{logit}(q)) \right)^{1-\lambda} \quad (25)$$

$$832 \quad = \sum p^\lambda q^{1-\lambda}. \quad (26)$$

834 Therefore,  $r_\theta \propto p^\lambda q^{1-\lambda}$  and it is a valid distribution with normalization.  $\square$

### A.3 PROOF OF PROPOSITION 3.3

838 **Proposition 3.3.** *(Continuity) Assume that  $p$  and  $q_\theta$  are not both zero. Then,  $r_\theta^{(\alpha, \lambda)}$  is continuous  
 839 function w.r.t  $\alpha$  under the fixed  $\lambda \in [0, 1]$ .*

841 *Proof.* We begin with the proof for the continuity of the unnormalized assistant distribution  $\tilde{r}_\theta^{(\alpha, \lambda)}$ .  
 842 The  $\alpha \neq 1$  case is trivial since it is a composition of continuous functions. For the  $\alpha = 1$  case, it is  
 843 a well-known fact that the power mean is a continuous function (Bullen, 2013). Especially, we can  
 844 show that as follows:

$$845 \quad \lim_{\alpha \rightarrow 1} \log \tilde{r}_\theta^{(\alpha, \lambda)} = \lim_{\alpha \rightarrow 1} \frac{2}{1 - \alpha} \log \left( \lambda p^{\frac{1-\alpha}{2}} + (1 - \lambda) q^{\frac{1-\alpha}{2}} \right) \quad (27)$$

$$848 \quad = \lim_{\alpha \rightarrow 1} \frac{\lambda p^{\frac{1-\alpha}{2}} \log p + (1 - \lambda) q^{\frac{1-\alpha}{2}} \log q}{\lambda p^{\frac{1-\alpha}{2}} + (1 - \lambda) q^{\frac{1-\alpha}{2}}} \quad (28)$$

$$851 \quad = \lambda \log p + (1 - \lambda) \log q \quad (29)$$

$$853 \quad = \log(p^\lambda q^{1-\lambda}). \quad (30)$$

855 By the continuity of the exponential function, we can get  $\lim_{\alpha \rightarrow 1} \tilde{r}_\theta^{(\alpha, \lambda)} = p^\lambda q^{1-\lambda}$ . We use L'Hôpital's  
 856 rule in the second equality. Note that  $Z = \sum_i \tilde{r}_\theta^{(\alpha, \lambda)}(i)$  is continuous function w.r.t  $\alpha$  since it is a  
 857 finite sum of continuous functions w.r.t  $\alpha$ . Also, since  $p$  and  $q$  cannot be both zero,  $\tilde{r}_\theta^{(\alpha, \lambda)}$  is not  
 858 zero, so  $Z > 0$ . Therefore, the  $r_\theta^{(\alpha, \lambda)} = \frac{1}{Z} \tilde{r}_\theta^{(\alpha, \lambda)}$  is continuous function w.r.t.  $\alpha$ .  $\square$

### A.4 PROOF OF THEOREM 3.4

862 **Theorem 3.4. (Optimality)** *Let  $D$  be any proper divergence and  $\alpha \in \mathbb{R}$ .*

- If  $\lambda \in [0, 1]$  and  $\exists \theta$  s.t.  $D(p, r_\theta^{(\alpha, \lambda)}) = 0$ , then  $D(p, r_\theta^{(\alpha, \lambda)}) = 0$  if and only if  $p = q_\theta$ .
- If  $\lambda \in (0, 1]$  and  $\exists \theta$  s.t.  $D(q_\theta, r_\theta^{(\alpha, \lambda)}) = 0$ , then  $D(q_\theta, r_\theta^{(\alpha, \lambda)}) = 0$  if and only if  $p = q_\theta$ .

*Proof.* We first prove that  $D(p, r_\theta^{(\alpha, \lambda)})$  implies  $p = q_\theta$ . By the definition of divergence, we have that  $D(p, r_\theta^{(\alpha, \lambda)}) = 0$  if and only if  $p = r_\theta^{(\alpha, \lambda)}$ .

**Case  $\alpha = 1$ .** In this case,  $r_\theta^{(\alpha, \lambda)} = \frac{1}{Z} p^\lambda q_\theta^{(1-\lambda)}$ .

$$p = \frac{1}{Z} p^\lambda q_\theta^{1-\lambda} \Leftrightarrow Z p^{1-\lambda} = q_\theta^{1-\lambda} \Leftrightarrow Z^{\frac{1}{1-\lambda}} p = q_\theta \quad (31)$$

By integrating both sides,  $Z^{\frac{1}{1-\lambda}} = 1$  which implies  $Z = 1$ . Therefore,  $p = q_\theta$

$$\text{Case } \alpha \neq 1. \quad \text{In this case, } r_\theta^{(\alpha, \lambda)} = \frac{1}{Z} \left\{ \lambda p^{\frac{1-\alpha}{2}} + (1-\lambda) q_\theta^{\frac{1-\alpha}{2}} \right\}^{\frac{2}{1-\alpha}} \quad (32)$$

$$p = \frac{1}{Z} \left\{ \lambda p^{\frac{1-\alpha}{2}} + (1-\lambda) q_\theta^{\frac{1-\alpha}{2}} \right\}^{\frac{2}{1-\alpha}} \Leftrightarrow Z^{\frac{1-\alpha}{2}} p^{\frac{1-\alpha}{2}} = \lambda p^{\frac{1-\alpha}{2}} + (1-\lambda) q_\theta^{\frac{1-\alpha}{2}} \quad (32)$$

$$\Leftrightarrow (Z^{\frac{1-\alpha}{2}} - \lambda) p^{\frac{1-\alpha}{2}} = (1-\lambda) q_\theta^{\frac{1-\alpha}{2}} \quad (33)$$

$$\Leftrightarrow C p^{\frac{1-\alpha}{2}} = q_\theta^{\frac{1-\alpha}{2}}, \quad \text{where } C := \frac{Z^{\frac{1-\alpha}{2}} - \lambda}{1-\lambda} \quad (34)$$

$$\Leftrightarrow C^{\frac{2}{1-\alpha}} p = q_\theta \quad (35)$$

By integrating both sides,  $C^{\frac{2}{1-\alpha}} = 1$  which implies  $C = 1$ . Therefore,  $p = q_\theta$ .

$D(q_\theta, r_\theta^{(\alpha, \lambda)})$  is similar.  $\square$

## A.5 PROOF OF PROPOSITION 3.5

**Proposition 3.5.** (Gradient analysis) The gradient of  $f$ -divergence  $D_f(p||r_\theta^{(\alpha, \lambda)})$  be expressed as:

$$\nabla_\theta D_f(p||r_\theta^{(\alpha, \lambda)}) = \mathbb{E}_{r_\theta^{(\alpha, \lambda)}} \left[ w \cdot \left\{ \psi_f \left( \frac{p}{r_\theta^{(\alpha, \lambda)}} \right) - \mathbb{E}_{r_\theta^{(\alpha, \lambda)}} \left[ \psi_f \left( \frac{p}{r_\theta^{(\alpha, \lambda)}} \right) \right] \right\} \cdot \nabla_\theta \log q_\theta \right] \quad (11)$$

where  $w := \frac{(1-\lambda)q_\theta^{\frac{1-\alpha}{2}}}{\lambda p^{\frac{1-\alpha}{2}} + (1-\lambda)q_\theta^{\frac{1-\alpha}{2}}}$  and  $\psi_f(v) := f(v) - vf'(v)$ .

*Proof.* From the basic calculus, we can derive the following equation for fixed  $p$ :

$$\frac{\partial}{\partial r} \left[ r f \left( \frac{p}{r} \right) \right] = f \left( \frac{p}{r} \right) - \frac{p}{r} f' \left( \frac{p}{r} \right) = \psi_f \left( \frac{p}{r} \right). \quad (36)$$

Hence,

$$\nabla_\theta D_f(p||r_\theta^{(\alpha, \lambda)}) = \sum_{y_t \in \mathcal{V}} \psi_f \left( \frac{p(y_t | x, y_{<t})}{r_\theta^{(\alpha, \lambda)}(y_t | x, y_{<t})} \right) \cdot \nabla_\theta r_\theta^{(\alpha, \lambda)}(y_t | x, y_{<t}) \quad (37)$$

$$= \mathbb{E}_{r_\theta^{(\alpha, \lambda)}} \left[ \psi_f \left( \frac{p}{r_\theta^{(\alpha, \lambda)}} \right) \cdot \nabla_\theta \log r_\theta^{(\alpha, \lambda)} \right] \quad (38)$$

918 Before deriving the gradient of the log probability of  $r_\theta^{(\alpha, \lambda)}$ , let us first derive  $\nabla_\theta \tilde{r}_\theta^{(\alpha, \lambda)}$  as follows:  
 919

$$920 \quad \nabla_\theta \tilde{r}_\theta^{(\alpha, \lambda)} = \nabla_\theta \left\{ h_\alpha^{-1}(\lambda h_\alpha(p) + (1 - \lambda) h_\alpha(q_\theta)) \right\} \quad (39)$$

$$922 \quad = \frac{1}{h'_\alpha(\tilde{r}_\theta^{(\alpha, \lambda)})} (1 - \lambda) \nabla_\theta h_\alpha(q_\theta) \quad (40)$$

$$925 \quad = \frac{1}{h'_\alpha(\tilde{r}_\theta^{(\alpha, \lambda)})} (1 - \lambda) h'_\alpha(q_\theta) \nabla_\theta q_\theta \quad (41)$$

$$928 \quad = \frac{1}{h'_\alpha(\tilde{r}_\theta^{(\alpha, \lambda)})} (1 - \lambda) h'_\alpha(q_\theta) q_\theta \nabla_\theta \log q_\theta \quad (42)$$

$$931 \quad = (1 - \lambda) \frac{h'_\alpha(q_\theta) q_\theta}{h'_\alpha(\tilde{r}_\theta^{(\alpha, \lambda)}) \tilde{r}_\theta^{(\alpha, \lambda)}} \nabla_\theta \log q_\theta \quad (43)$$

$$934 \quad = (1 - \lambda) \left( \frac{q_\theta}{\tilde{r}_\theta^{(\alpha, \lambda)}} \right)^{\frac{1-\alpha}{2}} \tilde{r}_\theta^{(\alpha, \lambda)} \nabla_\theta \log q_\theta \quad (44)$$

$$938 \quad = \frac{(1 - \lambda) q_\theta^{\frac{1-\alpha}{2}}}{\lambda p^{\frac{1-\alpha}{2}} + (1 - \lambda) q_\theta^{\frac{1-\alpha}{2}}} \tilde{r}_\theta^{(\alpha, \lambda)} \nabla_\theta \log q_\theta \quad (45)$$

$$942 \quad = w \cdot \tilde{r}_\theta^{(\alpha, \lambda)} \cdot \nabla_\theta \log q_\theta. \quad (46)$$

944 Therefore,  
 945

$$946 \quad \nabla_\theta \log r_\theta^{(\alpha, \lambda)} = \frac{\nabla_\theta \tilde{r}_\theta^{(\alpha, \lambda)}}{\tilde{r}_\theta^{(\alpha, \lambda)}} - \frac{1}{Z_r} \sum_k \nabla_\theta \tilde{r}_\theta^{(\alpha, \lambda)}(k) \quad (47)$$

$$949 \quad = w \cdot \nabla_\theta \log q_\theta - \mathbb{E}_{r_\theta^{(\alpha, \lambda)}}[w \cdot \nabla_\theta \log q_\theta] \quad (48)$$

951 Lastly, placing Eq. (48) into Eq. (38) and rearranging will yield the final result.  
 952

$$953 \quad \nabla_\theta D_f(p || r_\theta^{(\alpha, \lambda)}) = \mathbb{E}_{r_\theta^{(\alpha, \lambda)}} \left[ \psi_f \left( \frac{p}{r_\theta^{(\alpha, \lambda)}} \right) \cdot \nabla_\theta \log r_\theta^{(\alpha, \lambda)} \right] \quad (49)$$

$$956 \quad = \mathbb{E}_{r_\theta^{(\alpha, \lambda)}} \left[ \psi_f \left( \frac{p}{r_\theta^{(\alpha, \lambda)}} \right) \cdot \left\{ w \cdot \nabla_\theta \log q_\theta - \mathbb{E}_{r_\theta^{(\alpha, \lambda)}}[w \cdot \nabla_\theta \log q_\theta] \right\} \right] \quad (50)$$

$$959 \quad = \mathbb{E}_{r_\theta^{(\alpha, \lambda)}} \left[ w \cdot \left\{ \psi_f \left( \frac{p}{r_\theta^{(\alpha, \lambda)}} \right) - \mathbb{E}_{r_\theta^{(\alpha, \lambda)}} \left[ \psi_f \left( \frac{p}{r_\theta^{(\alpha, \lambda)}} \right) \right] \right\} \cdot \nabla_\theta \log q_\theta \right] \quad (51)$$

963  $\square$

## 965 B EXPERIMENTAL DETAILS

### 966 B.1 TOY EXPERIMENT

968 We employ a two-modal Gaussian mixture for the teacher  $p = 0.7\mathcal{N}(-3, 2) + 0.3\mathcal{N}(3, 0.8)$  and a  
 969 unimodal Gaussian for the student  $q_\theta = \mathcal{N}(\mu, \sigma^2)$  with  $\mu_0 = 0, \sigma_0^2 = 1$ . We optimize  $\theta = \{\mu, \sigma^2\}$   
 970 by minimizing  $D_{\text{KL}}(p || r_\theta^{(\alpha, \lambda)})$  with Adam optimizer (Kingma & Ba, 2014) with 5000 steps and 5e-2  
 971 learning rate.

972 B.2 DATASETS  
973

- 974 • **databricks-dolly-15k** (Conover et al., 2023): An open-source dataset of instruction–response pairs created by thousands of Databricks employees. It covers diverse behavioral categories defined in Ouyang et al. (2022), including brainstorming, classification, closed QA, generation, information extraction, open QA, and summarization.
- 975
- 976
- 977
- 978 • **Self-instruct** (Wang et al., 2023): A framework for improving instruction-following ability by iteratively using model outputs to generate new instructional data. The dataset contains 52K instructions and 82K input–output pairs for tuning, 252 expert-written tasks for practical evaluation, and 50K additional examples from public datasets for benchmarking.
- 979
- 980
- 981
- 982 • **Vicuna** (Chiang et al., 2023): A benchmark consisting of 80 challenging open-ended questions originally used to assess Vicuna. It provides a compact but difficult testbed for evaluating instruction-following performance.
- 983
- 984
- 985 • **Super-Natural Instructions** (Wang et al., 2022): A large-scale benchmark comprising 1,616 expert-written NLP tasks spanning 76 task categories. Its test set includes 9K examples drawn from 119 tasks, covering a wide spectrum of instruction types.
- 986
- 987
- 988 • **Unnatural Instructions** (Honovich et al., 2023): An AI-generated dataset containing 240K instructions created with minimal human intervention. The collection demonstrates that synthetic data can serve as an effective substitute for human-curated data. Its core subset includes 60K examples.
- 989
- 990
- 991
- 992 • **AlpacaEval** (Dubois et al., 2023): AlpacaEval is derived from the AlpacaFarm evaluation suite but includes simplified formatting. In particular, Dubois et al. (2023) combined the original instruction and input fields into one unified instruction, a change that influences about a quarter of the samples sourced from Self-Instruct (Wang et al., 2023). The dataset ultimately comprises 805 difficult instruction-following queries.
- 993
- 994
- 995
- 996
- 997 • **Evol-Instruct Evaluation** (Xu et al., 2024a): This evaluation set includes 218 prompts produced through the Evol-Instruct generation pipeline. The questions span a wide range of topics and serve as a compact benchmark for instruction-following ability
- 998
- 999
- 1000 • **UltraFeedback** (Cui et al., 2023): UltraFeedback is a large and detailed preference dataset tailored for building high-quality reward and critic models. It contains roughly 64k prompts collected from UltraChat, ShareGPT, and Evol-Instruct. Each prompt was used to elicit four responses from different LLMs, and GPT-4 subsequently annotated these outputs based on dimensions such as following instructions, factual correctness, honesty, and helpfulness.
- 1001
- 1002
- 1003
- 1004
- 1005 • **MetaMathQA** (Yu et al., 2023): MetaMathQA was created to strengthen mathematical reasoning in LLMs. The dataset is generated through a bootstrapping method in which each math question is re-expressed using multiple reasoning viewpoints, including forward reasoning, backward reasoning, and paraphrased formulations.
- 1006
- 1007
- 1008
- 1009 • **GSM8K** (Cobbe et al., 2021): GSM8K consists of 8.5K meticulously written grade-school math word problems. Designed to require multi-step inference, it is widely used as a standard benchmark for evaluating basic mathematical reasoning skills.
- 1010
- 1011
- 1012 • **WizardCoder** (Luo et al., 2023): WizardCoder is an instruction-tuned code dataset built via the Evol-Instruct method. Starting with the 20K-sample Code Alpaca corpus, the creators iteratively evolved prompts by increasing complexity, adding constraints, inserting misleading code, and introducing time/space complexity requirements. The final dataset contains about 78K evolved examples, which were used to fine-tune StarCoder and substantially improve its coding performance.
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018 • **HumanEval** (Chen, 2021): HumanEval provides 164 hand-crafted programming tasks with function signatures, natural-language descriptions, and unit tests. It is one of the primary benchmarks for assessing code generation and was explicitly designed to avoid overlap with existing training data.
- 1019
- 1020
- 1021
- 1022 • **MBPP** (Austin et al., 2021): MBPP includes roughly 1,000 Python programming exercises aimed at novice programmers. Each problem comes with a textual description, a reference code solution, and three automatic test cases. Portions of the dataset were manually validated to ensure consistency and correctness.
- 1023
- 1024
- 1025

1026 B.3 IMPLEMENTATION SETTINGS  
1027

1028 **Training.** For instruction-following distillation, we use databricks-dolly-15K (Conover et al.,  
1029 2023) for the distillation loss and OpenWebText (Gokaslan & Cohen, 2019) for the pretraining  
1030 loss. Teacher models include GPT-2 XL (1.5B) with SFT, and students are GPT-2 (0.1B), GPT-2  
1031 Medium (0.3B), and GPT-2 Large (0.8B). To test scalability, OpenLLaMA2-7B (Geng & Liu, 2023)  
1032 is distilled into OpenLLaMA2-3B using LoRA.

1033 For task-specific evaluation, we use Flores-200 (Costa-Jussà et al., 2022) for translation, Dialog-  
1034 Sum (Chen et al., 2021) for summarization, and GSM8K (Cobbe et al., 2021) for mathematical  
1035 reasoning. Teacher models are Gemma-7B-It (Team et al., 2024) and Qwen2-7B-Instruct (Team,  
1036 2024), while Gemma-2B-It and Qwen2-0.5B-Instruct serve as students. Teachers are fine-tuned on  
1037 the full dataset, while students are trained with about 1,000 samples.

1038 We use  $\alpha_{AB}$ - $\beta_{AB}$ -divergence with  $\alpha_{AB} = 0.2$ ,  $\beta_{AB} = 0.7$  and adopt adaptive off-policy training  
1039 (Ko et al., 2024) as default. We explore  $\alpha$  over the range  $\{-5, -3, -1, -0.5, 0, 0.5, 1.0\}$  and  
1040 employ  $\lambda = 0.1$  as default by following prior work (Ko et al., 2024). We utilize the AdamW  
1041 optimizer and cosine learning rate scheduling by following the previous work (Ko et al., 2024;  
1042 Wang et al., 2025). We search the learning rate over the range  $\{0.0005, 0.0001, 0.00005\}$  except  
1043 for the cooperation with contrastive-based distillation experiments, which use the default setting of  
1044 DistiLLM-2 (Ko et al., 2025).

1045 **Theoretical insights based  $\alpha$  tuning guidelines.** Herein, we provide a principled tuning guide-  
1046 lines grounded in the theoretical properties of  $\alpha$ . First, in Section 3.2, we show that the support  
1047 of the assistant distribution varies with  $\alpha$ :  $supp(r_\theta^{(\alpha, \lambda)}) = supp(p) \cup supp(q_\theta)$  when  $\alpha < 1$ ,  
1048  $supp(r_\theta^{(\alpha, \lambda)}) = supp(p) \cap supp(q_\theta)$  when  $\alpha \geq 1$ . In KD for LLMs, the teacher and student of-  
1049 ten exhibit a capacity gap and produce high-dimensional outputs with many near-zero probabilities.  
1050 As a result, they do not share a sufficiently large common support in general. For this reason, we  
1051 recommend using  $\alpha < 1$  in most practical settings, as this choice improves training stability and  
1052 enables more reliable knowledge transfer.  
1053

1054 Furthermore, our gradient analysis and (toy) experiments demonstrate that  $\alpha$  directly controls the  
1055 trade-off between mode-covering and mode-seeking behavior of the optimized student. Under the  
1056  $\alpha < 1$ , increasing  $\alpha$  encourages relatively stronger mode covering, thereby improving output di-  
1057 versity. Conversely, smaller  $\alpha$  emphasizes mode seeking, which enhances fidelity to the teacher.  
1058 Therefore, for enhancing the teacher–student alignment and performance, we suggest using small  $\alpha$   
1059 values. However, since too small  $\alpha$  can induce high curvature in the geometry of the interpolation  
1060 path, which may reduce optimization efficiency, so such choices should be used with caution.

1061 Based on these theoretical insights, we explore  $\alpha$  over the range  $\{-5, -3, -1, -0.5, 0, 0.5, 1.0\}$ .  
1062 Table 7 provides the detailed configuration for each task.

1063  
1064 Table 7: Configuration of hyperparameters for AMiD

| 1065 Task                      | 1066 Dataset                 | 1067 Teacher                                                         | 1068 Student                                  | 1069 Divergence  | 1070 $\alpha$ |
|--------------------------------|------------------------------|----------------------------------------------------------------------|-----------------------------------------------|------------------|---------------|
| 1069<br>Instruction following  | 1070<br>databricks-dolly-15k | 1071<br>GPT-2 XLarge                                                 | GPT-2 Base                                    | $D_{KL}(p  r)$   | -5.0          |
|                                |                              |                                                                      |                                               | $D_{RKL}(p  r)$  | -3.0          |
|                                |                              |                                                                      |                                               | $D_{AB}(p  r)$   | -5.0          |
|                                |                              |                                                                      |                                               | $D_{KL}(q  r)$   | 0.5           |
|                                |                              |                                                                      | GPT-2 Medium                                  | $D_{AB}(p  r)$   | -5.0          |
|                                |                              |                                                                      | GPT-2 Large                                   | $D_{AB}(p  r)$   | -3.0          |
| 1074<br>Translation            | 1075<br>Flores-200           | 1076<br>Gemma-7B-It<br>Qwen2-7B-Instruct                             | OpenLLaMA2-3B                                 | $D_{AB}(p  r)$   | -3.0          |
|                                |                              |                                                                      | OpenLLaMA2-7B                                 | $D_{AB}(p  r)$   | -3.0          |
|                                |                              |                                                                      | UltraChat200k                                 | $D_{DistiLLM-2}$ | -5.0          |
|                                |                              |                                                                      | Qwen2.5-1.5B-Instruct<br>Qwen2.5-14B-Instruct | $D_{DistiLLM-2}$ | -5.0          |
| 1077<br>Summarization          | 1078<br>DialogSum            | 1079<br>Gemma-7B-It<br>Qwen2-7B-Instruct                             | Gemma-2B-It                                   | $D_{AB}(p  r)$   | -0.5          |
|                                |                              |                                                                      | Qwen2-0.5B-Instruct                           | $D_{AB}(p  r)$   | 0.5           |
|                                |                              |                                                                      | Gemma-2B-It                                   | $D_{AB}(p  r)$   | 0.5           |
| 1077<br>Mathematical reasoning | 1078<br>GSM8k<br>MetaMathQA  | 1079<br>Gemma-7B-It<br>Qwen2-7B-Instruct<br>Qwen2.5-Math-7B-Instruct | Qwen2-0.5B-Instruct                           | $D_{AB}(p  r)$   | -3.0          |
|                                |                              |                                                                      | Gemma-2B-It                                   | $D_{AB}(p  r)$   | 0.5           |
|                                |                              |                                                                      | Qwen2.5-Math-1.5B-Instruct                    | $D_{DistiLLM-2}$ | -5.0          |
| 1079<br>Code generation        | 1080<br>WizardCoder          | 1081<br>Qwen2.5-Coder-7B-Instruct                                    | Qwen2.5-Coder-1.5B-Instruct                   | $D_{DistiLLM-2}$ | -5.0          |

1080  
 1081 **Evaluation.** For evaluating generation quality, we adopt ROUGE-L (Lin, 2004) and Self-  
 1082 BLEU (Zhu et al., 2018). ROUGE-L measures the similarity between the generated output and  
 1083 the reference text by computing the Longest Common Subsequence (LCS). Specifically, recall and  
 1084 precision are defined as

$$1085 \quad R_{\text{LCS}} = \frac{LCS(x, y)}{L_x}, P_{\text{LCS}} = \frac{LCS(x, y)}{L_y}, \quad (52)$$

1087 where  $LCS(x, y)$  is the length of the longest common subsequence between the reference  $x$  and the  
 1088 generated text  $y$ , and  $L_x, L_y$  denote their respective lengths. The final ROUGE-L score is given by  
 1089 the harmonic mean:

$$1091 \quad ROUGE-L = \frac{2 \cdot R_{\text{LCS}} \cdot P_{\text{LCS}}}{R_{\text{LCS}} + P_{\text{LCS}}}. \quad (53)$$

1093 A higher ROUGE-L score indicates that the generated text more closely matches the reference in  
 1094 terms of sequence overlap.

1095 Self-BLEU evaluates the diversity of generated outputs by leveraging the BLEU metric (Papineni  
 1096 et al., 2002). BLEU computes the geometric mean of modified  $n$ -gram precisions with a brevity  
 1097 penalty (BP):

$$1099 \quad BP = \begin{cases} 1 & \text{if } c > r, \\ e^{(1-r/c)} & \text{if } c \leq r, \end{cases} \quad (54)$$

$$1102 \quad \text{BLEU}(c, R) = BP \cdot \exp \left( \sum_{n=1}^N w_n \log p_n(c, R) \right), \quad (55)$$

1104 where  $c$  is the candidate length,  $r$  is the effective reference length,  $p_n(c, R)$  denotes the modified  
 1105  $n$ -gram precision, and  $w_n$  are positive weights summing to one. Building on this definition, Self-  
 1106 BLEU is calculated by treating each generated sample  $s_i$  as the hypothesis and the remaining set  
 1107  $S \setminus \{s_i\}$  as references:

$$1109 \quad \text{Self-BLEU}(S) = \frac{1}{M} \sum_{i=1}^M \text{BLEU}(s_i, S \setminus \{s_i\}). \quad (56)$$

1112 A higher Self-BLEU score (close to 1) indicates that the outputs are highly similar to each other,  
 1113 reflecting low diversity and more deterministic behavior, while a lower score (close to 0) suggests  
 1114 greater diversity across generations.

## 1116 C ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

### 1119 C.1 MORE COMPARISON WITH BASELINES

1120 Table 15 presents the complete results on the GPT-2 family, where we extend the comparison to a  
 1121 broader set of baseline methods beyond those reported in the main paper. We observe that AMiD  
 1122 consistently outperforms all competing approaches across different student sizes (0.1B, 0.3B, 0.8B),  
 1123 further validating the robustness of our method. In particular, while methods such as SeqKD, Im-  
 1124 itKD, MiniLLM, and AKL yield modest improvements over standard knowledge distillation (KD),  
 1125 they still fall short of strong assistant-based methods like GKD, TAID, and DistiLLM. Among these  
 1126 baselines, ABKD often emerges as the strongest competitor. Nevertheless, AMiD achieves clear  
 1127 performance gains over ABKD in nearly every evaluation setting.

### 1129 C.2 RESULTS ON OPENLLAMA2

1131 Table 8 reports results on the OpenLLaMA2 family, where a 7B teacher is distilled into a 3B student.  
 1132 Consistent with our findings on the GPT-2 series, AMiD achieves the best overall performance  
 1133 across most evaluation benchmarks. In particular, AMiD surpasses prior assistant-based approaches  
 such as TAID and DistiLLM (both SKL and SRKL variants), as well as the strong baseline ABKD.

Table 8: ROUGE-L scores ( $\uparrow$ ) on OpenLLaMA2-7B  $\rightarrow$  OpenLLaMA2-3B. **Bold** and Underline mean the best and second-best performance of each column, except the teacher, respectively. All results are based on our own re-implementation. We conduct the evaluation with five random seeds.

| Model                                                              | Val. ( $\uparrow$ ) | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ )   | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ )     | Avg. ( $\uparrow$ ) |
|--------------------------------------------------------------------|---------------------|---------------------------|--------------------------|-------------------------|-------------------------|-------------------------|---------------------|
| Teacher                                                            | —                   | 27.60 $\pm$ 0.34          | 18.17 $\pm$ 0.80         | 17.85 $\pm$ 0.48        | 31.05 $\pm$ 0.31        | 32.40 $\pm$ 0.28        | 25.41               |
| <b><i>OpenLLaMA2-7B <math>\rightarrow</math> OpenLLaMA2-3B</i></b> |                     |                           |                          |                         |                         |                         |                     |
| TAID                                                               | 30.85               | 26.53 $\pm$ 0.23          | 17.73 $\pm$ 0.69         | 18.14 $\pm$ 0.39        | 31.93 $\pm$ 0.23        | 31.55 $\pm$ 0.12        | 25.18               |
| DistiLLM (SKL)                                                     | 33.07               | 28.63 $\pm$ 0.28          | 20.20 $\pm$ 0.66         | 19.15 $\pm$ 0.32        | 35.31 $\pm$ 0.19        | 34.74 $\pm$ 0.10        | 27.61               |
| DistiLLM (SRKL)                                                    | 33.18               | 28.83 $\pm$ 0.41          | <u>20.76</u> $\pm$ 0.37  | 19.37 $\pm$ 0.15        | 36.82 $\pm$ 0.14        | 35.76 $\pm$ 0.13        | 28.31               |
| ABKD                                                               | 33.91               | 29.43 $\pm$ 0.42          | 20.46 $\pm$ 0.28         | <u>20.42</u> $\pm$ 0.12 | <b>39.51</b> $\pm$ 0.25 | <b>38.07</b> $\pm$ 0.08 | <u>29.58</u>        |
| <b>AMiD (Ours)</b>                                                 | <b>34.39</b>        | <b>29.69</b> $\pm$ 0.47   | <b>20.99</b> $\pm$ 0.37  | <b>21.03</b> $\pm$ 0.40 | 39.06 $\pm$ 0.21        | 37.31 $\pm$ 0.11        | <b>29.62</b>        |

### C.3 COMPATIBILITY WITH DIVERGENCES $D_{\text{KL}}(q_{\theta} \| r_{\theta}^{(\alpha, \lambda)})$

Table 9 provides the complementary results when employing the divergence  $D_{\text{KL}}(q_{\theta} \| r_{\theta}^{(\alpha, \lambda)})$ , contrasting the student distribution against the  $\alpha$ -mixture assistant. Similar to the findings in the main text (Table 3), AMiD consistently outperforms the no-assistant baseline across most evaluation benchmarks, confirming that the proposed method is broadly compatible with different divergence directions.

Table 9: ROUGE-L scores ( $\uparrow$ ) with  $D_{\text{KL}}(q_{\theta} \| r_{\theta}^{(\alpha, \lambda)})$  and various  $\alpha$ . We utilize GPT-2 XL (1.5B)  $\rightarrow$  GPT-2 (0.1B). We use a fixed  $\lambda = 0.9$  for these experiments.

| Divergence $D$                                                | Assistant $r_{\theta}^{(\alpha, \lambda)}$ | Val. ( $\uparrow$ ) | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ )   | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ )     | Avg. ( $\uparrow$ ) |
|---------------------------------------------------------------|--------------------------------------------|---------------------|---------------------------|--------------------------|-------------------------|-------------------------|-------------------------|---------------------|
| $D_{\text{KL}}(q_{\theta} \  r_{\theta}^{(\alpha, \lambda)})$ | $q_{\theta}$                               | 28.71               | 26.22 $\pm$ 0.35          | 12.57 $\pm$ 0.16         | <u>16.97</u> $\pm$ 0.34 | 24.75 $\pm$ 0.20        | 26.59 $\pm$ 0.14        | 21.42               |
|                                                               | AMiD ( $\alpha = -5.0$ )                   | 27.54               | 24.23 $\pm$ 0.23          | 12.59 $\pm$ 0.32         | 15.80 $\pm$ 0.43        | 24.50 $\pm$ 0.14        | 26.38 $\pm$ 0.07        | 20.70               |
|                                                               | AMiD ( $\alpha = -3.0$ )                   | 27.96               | 25.13 $\pm$ 0.29          | 12.80 $\pm$ 0.48         | 16.32 $\pm$ 0.45        | 25.54 $\pm$ 0.30        | 26.86 $\pm$ 0.14        | 21.33               |
|                                                               | AMiD ( $\alpha = -1.0$ )                   | 28.21               | 25.74 $\pm$ 0.20          | 12.13 $\pm$ 0.23         | 16.34 $\pm$ 0.15        | 25.40 $\pm$ 0.10        | 26.91 $\pm$ 0.12        | 21.30               |
|                                                               | AMiD ( $\alpha = -0.5$ )                   | 28.89               | 26.01 $\pm$ 0.32          | 12.84 $\pm$ 0.59         | <b>17.04</b> $\pm$ 0.05 | <b>27.43</b> $\pm$ 0.14 | 27.59 $\pm$ 0.03        | <u>22.18</u>        |
|                                                               | AMiD ( $\alpha = 0.0$ )                    | 28.84               | <b>26.70</b> $\pm$ 0.33   | <u>13.36</u> $\pm$ 0.31  | 15.95 $\pm$ 0.36        | 26.23 $\pm$ 0.17        | <u>27.70</u> $\pm$ 0.10 | 21.99               |
|                                                               | <b>AMiD (<math>\alpha = -0.5</math>)</b>   | <b>29.02</b>        | <b>26.48</b> $\pm$ 0.17   | <b>13.73</b> $\pm$ 0.44  | 16.78 $\pm$ 0.30        | <b>26.78</b> $\pm$ 0.34 | <b>28.65</b> $\pm$ 0.10 | <b>22.48</b>        |
|                                                               | AMiD ( $\alpha = 1.0$ )                    | 28.40               | 26.01 $\pm$ 0.34          | 12.03 $\pm$ 0.33         | 16.96 $\pm$ 0.31        | 24.84 $\pm$ 0.24        | 27.01 $\pm$ 0.11        | 21.37               |

### C.4 OVERLAP-BASED ADAPTIVE $\alpha$ SCHEDULING

The theoretical insights based  $\alpha$  tuning guidelines efficiently exclude low potential candidates. However, applying a single fixed global  $\alpha$  value can still be sub-optimal in certain cases.

To address this concern, we introduce a curriculum-based adaptive  $\alpha$  scheduling based on the degree of overlap between token-level teacher distribution  $p(y_l|y_{<l}, x)$  and student distribution  $q_{\theta}(y_l|y_{<l}, x)$ . The intuition is that when the teacher and student distributions are highly overlapped, we encourage mode-covering to align further, whereas when the overlap is low, we enhance mode-seeking to find the mode first.

We define token-level overlap as  $ovl_{i,l} := \sum_{y_l} \min(p(y_l|y_{<l}, x), q_{\theta}(y_l|y_{<l}, x))$ . Obviously, the overlap value  $ovl_{i,l}$  is bounded into  $[0, 1]$ . Also,  $ovl_{i,l}$  approaches 0 when  $p(y_l|y_{<l}, x)$  and  $q_{\theta}(y_l|y_{<l}, x)$  significantly differ, and approaches 1 when they are well-aligned. Furthermore,  $ovl_{i,l}$  can be expressed in terms of total variation distance  $1 - TVD(p(y_l|y_{<l}, x), q_{\theta}(y_l|y_{<l}, x))$ , which provides same interpretation.

Given the predefined  $\alpha_{\min}$  and  $\alpha_{\max}$ , we set the token-level  $\alpha_{i,l}$  as the linearly increasing value along the line passing through  $(0, \alpha_{\min})$  and  $(1, \alpha_{\max})$  i.e.  $\alpha_{i,l} \leftarrow (\alpha_{\max} - \alpha_{\min}) * ovl_{i,l} + \alpha_{\min}$ . Under this idea, when the teacher and student distributions differ substantially, the  $ovl_{i,l}$  becomes small, leading to a smaller assigned  $\alpha$ , which strengthens mode-seeking. Conversely, when the teacher and student distributions are similar, both  $ovl_{i,l}$  and  $\alpha$  have larger values, thereby reinforcing mode-covering. This mechanism systematically determines  $\alpha$  by combining the degree of alignment between the teacher and student distribution, which continuously changes through training, with the theoretical characteristics of  $\alpha$ .

1188 Table 10: ROUGE-L scores ( $\uparrow$ ) on five task-agnostic instruction-following datasets with fixed  $\alpha$   
 1189 versus adaptive  $\alpha$  scheduling. **Bold** means the best performance of each column. We use  $D_{AB}$  and  
 1190  $\lambda = 0.1$  for AMiD.

1191

| Assistant                 | Val. ( $\uparrow$ ) | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ ) | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ ) | Avg. ( $\uparrow$ ) |
|---------------------------|---------------------|---------------------------|--------------------------|-----------------------|-------------------------|---------------------|---------------------|
| AMiD (Fixed $\alpha$ )    | 29.24               | 26.44                     | 13.74                    | 16.76                 | 29.71                   | 30.35               | 23.40               |
| AMiD (Adaptive $\alpha$ ) | 29.31               | 26.50                     | 14.02                    | 16.59                 | 29.87                   | 30.60               | <b>23.52</b>        |

1195

1196

### 1197 C.5 ROBUSTNESS TO OPTIMIZER

1198

1199 To investigate whether the effectiveness of AMiD depends on a particular optimization setup, we  
 1200 evaluate its performance under the Lion optimizer. Table 11 exhibits the robustness of AMiD w.r.t.  
 1201 the optimizer.

1202

1203 Table 11: ROUGE-L scores ( $\uparrow$ ) on five task-agnostic instruction-following datasets under the Lion  
 1204 optimizer across different  $\alpha$ -mixture configurations. **Bold** means the best performance of each col-  
 1205 umn. We use  $D_{AB}$  and  $\lambda = 0.1$  for AMiD.

1206

| Assistant | Val. ( $\uparrow$ )       | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ ) | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ ) | Avg. ( $\uparrow$ ) |              |
|-----------|---------------------------|---------------------------|--------------------------|-----------------------|-------------------------|---------------------|---------------------|--------------|
| Lion      | No assistant              | 28.38                     | $26.02 \pm 0.28$         | $12.19 \pm 0.34$      | $17.24 \pm 0.37$        | $26.29 \pm 0.19$    | $28.88 \pm 0.10$    | 22.12        |
|           | AMiD ( $\alpha = -1$ )    | 28.68                     | $25.29 \pm 0.16$         | $12.21 \pm 0.25$      | $17.81 \pm 0.36$        | $24.82 \pm 0.13$    | $27.87 \pm 0.08$    | 21.60        |
|           | AMiD ( $\alpha = +1$ )    | 24.98                     | $22.33 \pm 0.27$         | $9.50 \pm 0.28$       | $15.50 \pm 0.52$        | $15.71 \pm 0.34$    | $18.01 \pm 0.08$    | 16.21        |
|           | AMiD ( $\alpha = \pm 1$ ) | 27.85                     | $26.14 \pm 0.21$         | $12.55 \pm 0.12$      | $17.25 \pm 0.48$        | $28.28 \pm 0.26$    | $29.69 \pm 0.06$    | <b>22.78</b> |

1210

1211

1212

### 1213 C.6 ROBUSTNESS TO LEARNING RATE SCHEDULING

1214

1215 To further assess the robustness of AMiD to optimization hyperparameters, we evaluate its perfor-  
 1216 mance under the Noam learning rate schedule, originally designed for transformer architectures.  
 1217 Table 12 also support the robustness of AMiD.

1218

1219

1220 Table 12: ROUGE-L scores ( $\uparrow$ ) on five task-agnostic instruction-following datasets under the Noam  
 1221 learning rate schedule across different  $\alpha$ -mixture configurations. **Bold** means the best performance  
 1222 of each column. We use  $D_{AB}$  and  $\lambda = 0.1$  for AMiD.

1223

| Assistant | Val. ( $\uparrow$ )       | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ ) | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ ) | Avg. ( $\uparrow$ ) |              |
|-----------|---------------------------|---------------------------|--------------------------|-----------------------|-------------------------|---------------------|---------------------|--------------|
| Noam      | No assistant              | 28.42                     | $25.83 \pm 0.17$         | $13.35 \pm 0.54$      | $16.43 \pm 0.28$        | $28.30 \pm 0.24$    | $29.90 \pm 0.11$    | 22.76        |
|           | AMiD ( $\alpha = -1$ )    | 28.91                     | $26.02 \pm 0.34$         | $14.07 \pm 0.25$      | $17.09 \pm 0.19$        | $27.78 \pm 0.11$    | $29.49 \pm 0.04$    | 22.93        |
|           | AMiD ( $\alpha = +1$ )    | 28.33                     | $25.59 \pm 0.25$         | $13.61 \pm 0.49$      | $16.25 \pm 0.34$        | $26.42 \pm 0.20$    | $28.26 \pm 0.19$    | 22.09        |
|           | AMiD ( $\alpha = \pm 1$ ) | 29.39                     | $26.12 \pm 0.35$         | $13.07 \pm 0.52$      | $16.53 \pm 0.46$        | $29.06 \pm 0.14$    | $30.86 \pm 0.09$    | <b>23.19</b> |

1226

1227

### 1228 C.7 MITIGATE THE CONFLICT VIA TEMPERATURE SCALING

1229

1230 As discussed in Section 3.2, combining an assistant distribution with a narrow support and a diver-  
 1231 gence that requires the expectation w.r.t. the assistant distribution can lead to training instability and  
 1232 poor knowledge transfer.

1233

1234 Since the primary cause of this issue is the narrow support of the assistant distribution, we conjecture  
 1235 that applying distribution softening technique could alleviate the instability even for such problem-  
 1236 atic combinations. To verify this conjecture, we employ temperature  $T > 1$ , which is a widely used  
 1237 flattening technique in various area. The table below shows the performance when using various  
 1238 temperature values under  $D_{RKL}(p || r_{\theta}^{(\alpha, \lambda)})$  with  $\alpha = 1$ . The results exhibit that introducing the  
 1239 temperature leads to stable training and can even yield strong performance with an appropriately  
 1240 chosen temperature value. However, large temperature causes an over-flattening effect, inducing  
 1241 large shift in the assistant distribution and consequently degrading performance. Overall, we demon-  
 1242 strate that temperature scaling can empirically mitigate the instability associated with problematic  
 1243 combinations under the appropriate temperature value.

1242 Table 13: ROUGE-L scores ( $\uparrow$ ) on five task-agnostic instruction-following datasets under  
 1243  $D_{\text{RKL}}(p||r_{\theta}^{(\alpha, \lambda)})$  with  $\alpha = 1$  when applying temperature scaling to soften the assistant distribution.  
 1244

| Assistant                         | Val. ( $\uparrow$ ) | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ ) | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ ) | Avg. ( $\uparrow$ ) |
|-----------------------------------|---------------------|---------------------------|--------------------------|-----------------------|-------------------------|---------------------|---------------------|
| AMiD ( $\alpha = 1.0, T = 1.0$ )  | 0.16                | 4.27                      | 2.81                     | 9.12                  | 1.64                    | 1.84                | 3.94                |
| AMiD ( $\alpha = 1.0, T = 1.5$ )  | 27.40               | 24.61                     | 11.55                    | 17.11                 | 21.41                   | 23.39               | 19.61               |
| AMiD ( $\alpha = 1.0, T = 2.0$ )  | 28.64               | 26.83                     | 12.74                    | 17.62                 | 23.56                   | 27.01               | 21.55               |
| AMiD ( $\alpha = 1.0, T = 5.0$ )  | 28.78               | 26.78                     | 12.43                    | 17.30                 | 25.87                   | 27.74               | 22.02               |
| AMiD ( $\alpha = 1.0, T = 10.0$ ) | 27.33               | 24.73                     | 12.11                    | 16.95                 | 23.65                   | 26.80               | 20.85               |

1252 Table 14: ROUGE-L scores ( $\uparrow$ ) across different combinations of  $\lambda$  and the  $\alpha$ -mixture assistant  
 1253 distribution.  
 1254

| $\lambda$ | Assistant                | Val. ( $\uparrow$ ) | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ ) | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ ) | Avg. ( $\uparrow$ ) |
|-----------|--------------------------|---------------------|---------------------------|--------------------------|-----------------------|-------------------------|---------------------|---------------------|
|           | No Assistant             | 28.61               | 25.49                     | 12.52                    | 17.36                 | 26.07                   | 27.36               | 21.76               |
| 0.1       | AMiD ( $\alpha = -5.0$ ) | 29.24               | 26.44                     | 13.74                    | 16.76                 | 29.71                   | 30.35               | <b>23.40</b>        |
|           | AMiD ( $\alpha = -3.0$ ) | 29.07               | 26.38                     | 13.58                    | 16.11                 | 29.27                   | 30.14               | 23.10               |
|           | AMiD ( $\alpha = -1.0$ ) | 28.70               | 26.10                     | 13.34                    | 16.71                 | 26.55                   | 29.55               | 22.45               |
|           | AMiD ( $\alpha = -0.5$ ) | 28.70               | 26.37                     | 13.59                    | 17.02                 | 27.06                   | 28.50               | 22.51               |
|           | AMiD ( $\alpha = 0.0$ )  | 28.86               | 25.77                     | 13.57                    | 16.14                 | 27.26                   | 28.52               | 22.25               |
|           | AMiD ( $\alpha = 0.5$ )  | 28.46               | 25.80                     | 12.94                    | 16.59                 | 26.29                   | 27.73               | 21.87               |
|           | AMiD ( $\alpha = 1.0$ )  | 24.93               | 22.36                     | 9.72                     | 16.29                 | 15.09                   | 16.15               | 15.92               |
|           | AMiD ( $\alpha = -5.0$ ) | 29.38               | 26.41                     | 13.81                    | 16.44                 | 29.19                   | 30.58               | <b>23.29</b>        |
| 0.5       | AMiD ( $\alpha = -3.0$ ) | 29.38               | 26.45                     | 13.71                    | 16.43                 | 28.23                   | 30.44               | 23.05               |
|           | AMiD ( $\alpha = -1.0$ ) | 29.11               | 26.31                     | 14.09                    | 16.70                 | 28.68                   | 29.89               | 23.13               |
|           | AMiD ( $\alpha = -0.5$ ) | 28.79               | 26.55                     | 13.85                    | 16.30                 | 27.85                   | 29.46               | 22.80               |
|           | AMiD ( $\alpha = 0.0$ )  | 28.74               | 25.68                     | 13.01                    | 16.51                 | 26.32                   | 27.83               | 21.87               |
|           | AMiD ( $\alpha = 0.5$ )  | 26.73               | 24.13                     | 12.06                    | 16.19                 | 22.88                   | 24.82               | 20.02               |
|           | AMiD ( $\alpha = 1.0$ )  | 22.88               | 21.31                     | 10.41                    | 14.87                 | 19.35                   | 21.34               | 17.46               |
|           | AMiD ( $\alpha = -5.0$ ) | 29.26               | 26.64                     | 13.49                    | 16.40                 | 28.65                   | 30.40               | 23.12               |
|           | AMiD ( $\alpha = -3.0$ ) | 29.14               | 26.02                     | 13.62                    | 17.03                 | 28.99                   | 30.59               | <b>23.25</b>        |
| 0.9       | AMiD ( $\alpha = -1.0$ ) | 29.32               | 26.19                     | 13.24                    | 15.83                 | 29.23                   | 29.97               | 22.89               |
|           | AMiD ( $\alpha = -0.5$ ) | 29.12               | 26.19                     | 13.32                    | 16.40                 | 28.15                   | 29.68               | 22.75               |
|           | AMiD ( $\alpha = 0.0$ )  | 28.28               | 25.23                     | 13.01                    | 15.51                 | 27.52                   | 28.66               | 21.99               |
|           | AMiD ( $\alpha = 0.5$ )  | 22.05               | 19.92                     | 10.76                    | 12.33                 | 25.09                   | 24.78               | 18.58               |
|           | AMiD ( $\alpha = 1.0$ )  | 21.52               | 19.17                     | 9.16                     | 13.60                 | 15.53                   | 17.73               | 15.04               |

## D DISCUSSION OF OPTIMALITY

Theorem 3.4 guarantees the optimality of AMiD, yet experimentally demonstrated extremely poor performance for the reverse KL divergence  $D_{\text{RKL}}(p||r_{\theta}^{(\alpha, \lambda)})$  and  $\alpha = 1$  in Table 3. We conjecture that it is caused by the conflict between RKL and the support intersection property, which leads to instability. RKL includes the expectation of the assistant distribution  $\mathbb{E}_{r_{\theta}^{(\alpha, \lambda)}}[\cdot]$  by definition.

However, when  $\alpha = 1$ , since  $\text{supp}(r_{\theta}^{(\alpha, \lambda)})$  is  $\text{supp}(p) \cap \text{supp}(q_{\theta})$  (see Section 3.2),  $\mathbb{E}_{r_{\theta}^{(\alpha, \lambda)}}[\cdot]$  is conducted on an unstable and narrow region, and this phenomenon intensifies further in the early stages of optimization. In addition, we experimentally find that the combination of  $D_{\text{RKL}}(p||r_{\theta}^{(\alpha, \lambda)})$  and  $\alpha = 1$  produces highly unstable loss and gradient within a few early steps. In conclusion, while AMiD theoretically guarantees optimality, it might be necessary to employ appropriate divergence and alpha values, taking into account the imperfect optimization.

## E THE USE OF LARGE LANGUAGE MODELS (LLMs)

We employed the LLM to polish the paper writing. Specifically, it was used to request grammatical corrections once the author had drafted the text.

1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307

Table 15: ROUGE-L scores ( $\uparrow$ ) on five task-agnostic instruction-following datasets. **Bold** and Underline mean the best and second-best performance of each column, except the teacher, respectively. All results are based on our own re-implementation. We conduct the evaluation with five random seeds.

| Model                                               | Val. ( $\uparrow$ ) | Dolly Eval ( $\uparrow$ ) | Self Inst ( $\uparrow$ ) | Vicuna ( $\uparrow$ )   | Super NI ( $\uparrow$ ) | UnNI ( $\uparrow$ )     | Avg. ( $\uparrow$ ) |
|-----------------------------------------------------|---------------------|---------------------------|--------------------------|-------------------------|-------------------------|-------------------------|---------------------|
| Teacher                                             | —                   | 27.14 $\pm$ 0.15          | 14.55 $\pm$ 0.82         | 16.12 $\pm$ 0.31        | 27.21 $\pm$ 0.25        | 31.41 $\pm$ 0.06        | 23.29               |
| <b><i>GPT-2 XL (1.5B) → GPT-2 (0.1B)</i></b>        |                     |                           |                          |                         |                         |                         |                     |
| SFT                                                 | 25.81               | 23.54 $\pm$ 0.42          | 9.62 $\pm$ 0.21          | 14.79 $\pm$ 0.56        | 18.42 $\pm$ 0.23        | 19.33 $\pm$ 0.13        | 17.14               |
| KD                                                  | 25.25               | 23.44 $\pm$ 0.33          | 10.12 $\pm$ 0.28         | 14.93 $\pm$ 0.29        | 16.88 $\pm$ 0.24        | 18.87 $\pm$ 0.16        | 16.85               |
| SeqKD                                               | 26.07               | 24.20 $\pm$ 0.31          | 11.12 $\pm$ 0.09         | 15.82 $\pm$ 0.37        | 19.29 $\pm$ 0.09        | 22.74 $\pm$ 0.05        | 18.63               |
| ImitKD                                              | 23.91               | 22.02 $\pm$ 0.29          | 10.34 $\pm$ 0.53         | 15.32 $\pm$ 0.26        | 17.34 $\pm$ 0.26        | 19.68 $\pm$ 0.15        | 16.94               |
| GKD                                                 | 27.06               | 24.58 $\pm$ 0.13          | 11.78 $\pm$ 0.44         | 14.60 $\pm$ 0.37        | 22.84 $\pm$ 0.12        | 25.04 $\pm$ 0.09        | 19.77               |
| MiniLLM                                             | —                   | 24.47 $\pm$ 0.18          | 12.83 $\pm$ 0.50         | 16.94 $\pm$ 0.40        | 25.58 $\pm$ 0.33        | 26.38 $\pm$ 0.17        | 21.24               |
| AKL                                                 | 25.62               | 23.23 $\pm$ 0.35          | 11.18 $\pm$ 0.21         | 14.94 $\pm$ 0.23        | 19.36 $\pm$ 0.39        | 22.41 $\pm$ 0.08        | 18.22               |
| TAID                                                | 28.37               | 25.74 $\pm$ 0.27          | 12.91 $\pm$ 0.31         | 17.09 $\pm$ 0.18        | 23.66 $\pm$ 0.31        | 26.82 $\pm$ 0.05        | 21.24               |
| DistiLLM (SKL)                                      | 27.88               | 25.50 $\pm$ 0.28          | 12.35 $\pm$ 0.39         | 16.10 $\pm$ 0.22        | 23.87 $\pm$ 0.39        | 26.16 $\pm$ 0.06        | 20.80               |
| DistiLLM (SRKL)                                     | 28.21               | 25.74 $\pm$ 0.20          | 12.13 $\pm$ 0.23         | 16.34 $\pm$ 0.15        | 25.40 $\pm$ 0.10        | 26.91 $\pm$ 0.12        | 21.30               |
| ABKD                                                | 28.61               | 25.49 $\pm$ 0.24          | 12.52 $\pm$ 0.52         | <b>17.36</b> $\pm$ 0.55 | 26.07 $\pm$ 0.14        | 27.36 $\pm$ 0.10        | <b>21.76</b>        |
| <b>AMiD (Ours)</b>                                  | <b>29.24</b>        | <b>26.44</b> $\pm$ 0.12   | <b>13.74</b> $\pm$ 0.49  | 16.76 $\pm$ 0.24        | <b>29.71</b> $\pm$ 0.08 | <b>30.35</b> $\pm$ 0.09 | <b>23.40</b>        |
| <b><i>GPT-2 XL (1.5B) → GPT-2 Medium (0.3B)</i></b> |                     |                           |                          |                         |                         |                         |                     |
| SFT                                                 | 27.96               | 25.70 $\pm$ 0.35          | 12.60 $\pm$ 0.37         | 16.51 $\pm$ 0.19        | 24.21 $\pm$ 0.13        | 27.51 $\pm$ 0.17        | 21.31               |
| KD                                                  | 26.03               | 24.27 $\pm$ 0.42          | 10.58 $\pm$ 0.10         | 15.59 $\pm$ 0.10        | 18.15 $\pm$ 0.13        | 20.49 $\pm$ 0.24        | 17.82               |
| SeqKD                                               | 28.41               | 26.61 $\pm$ 0.34          | 13.01 $\pm$ 0.46         | 16.42 $\pm$ 0.63        | 23.44 $\pm$ 0.20        | 26.93 $\pm$ 0.08        | 21.28               |
| ImitKD                                              | 25.93               | 24.46 $\pm$ 0.62          | 12.00 $\pm$ 0.41         | 15.56 $\pm$ 0.46        | 20.12 $\pm$ 0.34        | 25.11 $\pm$ 0.16        | 19.45               |
| GKD                                                 | 27.90               | 25.06 $\pm$ 0.55          | 12.36 $\pm$ 0.42         | 15.71 $\pm$ 0.58        | 23.83 $\pm$ 0.26        | 27.14 $\pm$ 0.09        | 20.82               |
| MiniLLM                                             | —                   | 25.80 $\pm$ 0.57          | 14.87 $\pm$ 0.35         | 17.62 $\pm$ 0.33        | 26.78 $\pm$ 0.26        | 30.70 $\pm$ 0.11        | 23.15               |
| AKL                                                 | 27.81               | 25.57 $\pm$ 0.10          | 12.06 $\pm$ 0.56         | 15.98 $\pm$ 0.17        | 22.22 $\pm$ 0.20        | 26.17 $\pm$ 0.13        | 20.40               |
| TAID                                                | 29.45               | 27.01 $\pm$ 0.27          | 14.53 $\pm$ 0.47         | <u>17.58</u> $\pm$ 0.20 | 25.14 $\pm$ 0.15        | 29.79 $\pm$ 0.14        | 22.81               |
| DistiLLM (SKL)                                      | 29.65               | 26.87 $\pm$ 0.13          | 14.11 $\pm$ 0.29         | 16.85 $\pm$ 0.54        | 25.59 $\pm$ 0.22        | 28.84 $\pm$ 0.03        | 22.45               |
| DistiLLM (SRKL)                                     | 29.72               | 26.50 $\pm$ 0.20          | 13.79 $\pm$ 0.71         | 17.14 $\pm$ 0.52        | 26.25 $\pm$ 0.11        | 29.31 $\pm$ 0.16        | 22.60               |
| ABKD                                                | 29.64               | 26.93 $\pm$ 0.17          | 13.69 $\pm$ 0.32         | 17.45 $\pm$ 0.27        | <u>28.15</u> $\pm$ 0.18 | 30.94 $\pm$ 0.06        | <b>23.43</b>        |
| <b>AMiD (Ours)</b>                                  | <b>30.83</b>        | <b>27.34</b> $\pm$ 0.18   | <b>15.26</b> $\pm$ 0.46  | <b>17.69</b> $\pm$ 0.27 | <b>29.04</b> $\pm$ 0.20 | <b>33.15</b> $\pm$ 0.13 | <b>24.50</b>        |
| <b><i>GPT-2 XL (1.5B) → GPT-2 Large (0.8B)</i></b>  |                     |                           |                          |                         |                         |                         |                     |
| SFT                                                 | 28.48               | 26.17 $\pm$ 0.41          | 13.78 $\pm$ 0.21         | 16.64 $\pm$ 0.48        | 23.76 $\pm$ 0.30        | 26.64 $\pm$ 0.12        | 21.40               |
| KD                                                  | 28.52               | 26.27 $\pm$ 0.26          | 13.72 $\pm$ 0.44         | 16.43 $\pm$ 0.25        | 25.24 $\pm$ 0.18        | 28.94 $\pm$ 0.09        | 22.12               |
| SeqKD                                               | 28.24               | 26.16 $\pm$ 0.41          | 13.93 $\pm$ 0.56         | 16.35 $\pm$ 0.20        | 25.03 $\pm$ 0.27        | 28.58 $\pm$ 0.06        | 22.01               |
| ImitKD                                              | 26.96               | 23.37 $\pm$ 0.40          | 13.26 $\pm$ 0.60         | 16.00 $\pm$ 0.33        | 23.31 $\pm$ 0.16        | <b>27.59</b> $\pm$ 0.14 | 20.71               |
| GKD                                                 | 29.36               | 26.38 $\pm$ 0.24          | 14.44 $\pm$ 0.66         | 17.02 $\pm$ 0.46        | 26.64 $\pm$ 0.16        | 30.99 $\pm$ 0.13        | 23.09               |
| MiniLLM                                             | —                   | 26.30 $\pm$ 0.35          | 16.50 $\pm$ 0.52         | 18.14 $\pm$ 0.49        | 29.45 $\pm$ 0.17        | 34.40 $\pm$ 0.17        | 24.96               |
| AKL                                                 | 27.69               | 25.45 $\pm$ 0.40          | 13.83 $\pm$ 0.82         | 15.85 $\pm$ 0.35        | 25.41 $\pm$ 0.25        | 28.91 $\pm$ 0.05        | 21.89               |
| TAID                                                | 29.83               | 26.85 $\pm$ 0.32          | 15.07 $\pm$ 0.31         | <u>17.02</u> $\pm$ 0.48 | 26.71 $\pm$ 0.23        | 31.09 $\pm$ 0.17        | 23.35               |
| DistiLLM (SKL)                                      | 29.69               | 26.12 $\pm$ 0.27          | <u>15.69</u> $\pm$ 0.75  | 16.91 $\pm$ 0.43        | 27.23 $\pm$ 0.18        | 30.73 $\pm$ 0.12        | 23.34               |
| DistiLLM (SRKL)                                     | 30.59               | 27.09 $\pm$ 0.40          | 14.61 $\pm$ 0.66         | 16.39 $\pm$ 0.27        | 28.44 $\pm$ 0.45        | 31.04 $\pm$ 0.06        | 23.51               |
| ABKD                                                | 30.49               | <u>27.67</u> $\pm$ 0.34   | 15.46 $\pm$ 0.81         | <b>17.43</b> $\pm$ 0.25 | <u>30.74</u> $\pm$ 0.22 | <u>33.11</u> $\pm$ 0.15 | <b>24.88</b>        |
| <b>AMiD (Ours)</b>                                  | <b>31.10</b>        | <b>27.86</b> $\pm$ 0.29   | <b>16.46</b> $\pm$ 0.41  | 16.62 $\pm$ 0.50        | <b>32.64</b> $\pm$ 0.26 | <b>35.64</b> $\pm$ 0.07 | <b>25.84</b>        |

1343  
1344  
1345  
1346  
1347  
1348  
1349