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ABSTRACT

Autoregressive large language models (LLMs) have achieved remarkable im-
provement across many tasks but incur high computational and memory costs.
Knowledge distillation (KD) mitigates this issue by transferring knowledge from a
large teacher to a smaller student through distributional alignment. Previous stud-
ies have proposed various discrepancy metrics, but the capacity gap and training
instability caused by near-zero probabilities, stemming from the high-dimensional
output of LLMs, remain fundamental limitations. To overcome these challenges,
several approaches implicitly or explicitly incorporating assistant distribution have
recently been proposed. However, the past proposals of assistant distributions
have been a fragmented approach without a systematic investigation of the inter-
polation path and the divergence. This paper proposes a-mixture assistant distri-
bution, a novel generalized family of assistant distributions, and a-mixture dis-
tillation, coined AMIiD, a unified framework for KD using the assistant distribu-
tion. The a-mixture assistant distribution provides a continuous extension of the
assistant distribution by introducing a new distribution design variable «, which
has been fixed in all previous approaches. Furthermore, AMiD generalizes the
family of divergences used with the assistant distributions based on optimality,
which has also been restricted in previous works. Through extensive experiments,
we demonstrate that AMiD offers superior performance and training stability by
leveraging a broader and theoretically grounded assistant distribution space.

1 INTRODUCTION

Autoregressive large language models (LLMs) have recently achieved remarkable advances, deliv-
ering outstanding performance across a wide spectrum of tasks and application domains (Achiam
et al., 2023; Touvron et al., 2023; Team et al., 2024). However, their massive parameter scales
impose prohibitive computational and memory costs, which hinder their deployment in practical
applications. Accordingly, an essential objective for practical deployment is to compress these high-
capacity models by reducing the parameter count while preserving their strong performance.

Knowledge distillation (KD) (Hinton et al., 2015) is a widely adopted compression technique that
transfers knowledge from a large teacher model to a smaller student model by aligning their token-
level predictive distributions. The selection of a discrepancy metric is an important research topic
in KD for LLMs. Several prior studies have proposed either (1) the use of various forms of diver-
gence, including the capability of regulating the quality-diversity trade-off (Wang et al., 2025), or
(2) employing a combination of these divergences (Agarwal et al., 2024; Wu et al., 2024) as the
discrepancy metric. However, these approaches do not fundamentally resolve the large capacity gap
between the high-capacity teacher and smaller student models, and the optimization instability due
to near-zero probabilities, which is prevalent in the high-dimensional probability space of LLMs.

A practical remedy is to introduce an assistant distribution that interpolates teacher and student
distributions to stabilize optimization and bridge this capacity gap. Recently, several methodologies
have been proposed that either (1) utilize the discrepancy metric that inherently includes a specific
form of assistant distribution (Agarwal et al., 2024; Ko et al., 2024; 2025) or (2) explicitly model the
assistant distribution (Shing et al., 2025). However, these approaches have generally been treated as
independent recipes in different papers without a systematic study, which hinders the development
of general and effective methodologies.
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In this paper, we propose a generalized framework that integrates the fragmentarily employed as-
sistant distribution and divergence. First, we interpret the existing assistant distributions from the
information theory view, revealing that the existing methodology can be expressed as an m-mixture,
which mixes two probability distributions via arithmetic mean, and an e-mixture, which mixes them
via geometric mean. Next, we present a new assistant distribution family, coined a-mixture assistant
distribution, by extending the mean concept via the generalized f, mean. The a-mixture assistant
distribution introduces a new design variable « for the assistant distribution, which adjusts the ge-
ometry of the interpolation path. Here, « is an independent parameter distinct from the well-utilized
parameter A\, which controls the portion of interpolation. The a-mixture assistant distribution not
only includes the existing assistant distributions as a special case (o« = %1) but also provides several
new assistant distribution that were not investigated in KD for LLMs area.

Under the concept of a-mixture assistant distribution, we investigate several properties of the a-
mixture assistant distribution, which are meaningful in KD for LLMs, such as the analysis with
a-divergence, controllable support via o, and continuity with respect to a. Next, we propose a new
KD framework for LLMs, coined as a-mixture distillation (AMiD), which generalizes the optimiza-
tion schemes of prior research by unifying both the assistant distribution and the divergence. AMiD
aims to align the a-mixture assistant distribution and either the teacher or student. We theoreti-
cally prove the optimality of AMiD, which enables us to achieve the primary goal of KD (teacher
= student) even when employing arbitrary divergence, «, and A, under the perfect optimization as-
sumption. Furthermore, through gradient analysis when employing f-divergence, we theoretically
demonstrate that « adjusts the mode-covering and mode-seeking properties of the student distribu-
tion, with both toy experiments and real-world experiment results supporting this finding. Across
various evaluation scenarios, our proposed framework AMiD consistently demonstrates superior
performance compared to methodologies that do not utilize the assistant distribution and those em-
ploying limited assistant distribution.

2 PRELIMINARY

2.1 KNOWLEDGE DISTILLATION FOR LARGE LANGUAGE MODELS

We denote the input prompt and output token sequences as x and y, respectively, where y =
(y1,¥2,-..,y1) € VI is a token sequence of length L, with each token drawn from the vocabu-
lary set V. Given the input x, an autoregressive large language model (LLM) outputs a next-token
distribution p(y;|x, y<;), conditioned on both the prompt = and the previously generated tokens
y<i = (Y1, Y2, .- ., Yi—1). We assume access to two LLMs: a large fixed teacher model p(y;|z, y<1),
and a smaller student model gy (y;|2z, y<;) parameterized by #. The goal of knowledge distillation
(KD) for LLMs is to transfer the knowledge of the teacher into the student. Concretely, KD for
LLMs is typically formulated as aligning the next-token distributions of the teacher and student:

L

min B y)~p ZD(p(y;Ix,y<l)7qe(yl|x,y<z)) (1)
=1

where D denotes the divergence and the dataset D is composed of the predefined dataset (Hinton
et al., 2015), or various strategies using the student-generated outputs (SGOs): on-policy (Lin et al.,
2020), a mixed approach (Agarwal et al., 2024; Gu et al., 2024; Xu et al., 2024b), and an adaptive
off-policy (Ko et al., 2024). For notational brevity, we omit the explicit dependence on = and y
whenever it is clear from context, writing p := p(yi|z, y<;) and gg = qo(yi1|x, y<i)-

The choice of divergence D plays a pivotal role in KD for LLMs. The widely used Kullback—Leibler

(KL) divergence Dxr.(pllgs) = 3, p(k)log i in KD (Hinton et al,, 2015; Kim & Rush,
2016) emphasizes mode-covering, often assigning mass to less informative regions. To mitigate
this effect, the reverse KL divergence Dgrkr(pllgs) = Dxw(gellp) is employed for its mode-
seeking properties (Gu et al., 2024), which possesses mode-seeking properties, but either choice
entails a trade-off between quality and diversity. Recent studies address this by (1) combining
divergences, e.g., GKD (Agarwal et al., 2024) with the generalized Jensen—Shannon divergence
Dais(plas) == ADkr(pl[Ap + (1 — A)gs) + (1 — A)Dkr(go/|[Ap + (1 — A)gp). and (2) extending
classical divergences to enable explicit control, as in ABKD (Wang et al., 2025), which adopts the
a-p-divergence Dap (Cichocki et al., 2011) as a generic framework.
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Meanwhile, several methodologies have recently been proposed to improve the optimiza-
tion stability of KD for LLMs. Ko et al. (2024) leverages the skew KL divergence
Dsk1.(pllge) = DkrL(®||Ap + (1 — A)gp) and the skew reverse KL divergence Dsrkr(p||qs) =
Dxr(go||Ap + (1 — X)gp). TAID (Shing et al., 2025) introduces an adaptive intermediate distri-
bution that gradually shifts from the student’s initial distribution to the teacher distribution, i.e.,
Dramn(pllge) == Dxr(r¢|lge) where r, := softmax((1 — A¢) - logit(gy) + A - logit(p)) with time-
dependent interpolation parameter \;, detached student logits logit(gj ), and teacher logits logit(p).

2.2  m-MIXTURE AND e-MIXTURE

Mixture models are a standard tool for integrating information from multiple distributions. Informa-
tion geometry (Amari, 2016; Nielsen, 2020; Eguchi & Komori, 2022) provides a dualistic structure
on the manifold of probability distributions, characterized by two affine connections: the mixture
connection and the exponential connection. These connections induce two natural ways of interpo-
lating between distributions, commonly referred to as the m-mixture and the e-mixture.

Given two probability distributions p and ¢ defined on the same measureable space, the m-mixture
is defined as a convex combination of p and ¢:

P (@) = (1= tp(e) +ta(x),  te[0,1] 2)
In contrast, the e-mixture is defined multiplicatively:
T t T 1-t _
PO = PO 20 [ttt ®

The m-mixture forms a straight line in probability space, while the e-mixture forms one in log-
probability space. Some studies leverage m- and e-mixtures, for example, to construct paths for
annealed importance sampling (Grosse et al., 2013; Masrani et al., 2021).

2.3  GENERALIZED f-MEAN

Generalized f-mean (Kolmogorov & Castelnuovo, 1930) is a general-

ized framework of the mean by using a monotonically increasing dif- _WJ %)
ferentiable function f : R — R. Given a set of weights {w; € RT | R

>; w; = 1} and the set of corresponding input elements {u; € R}, the 1
generalized f-mean is defined as: f f

my({w}, {ui}) = f7! (Z wif(“i)) 4)

The m applies a nonlinear transformation to the inputs, combines them

with weights in the transformed domain, and maps the result back to the  Figure 1: Illustration of
original domain. The well-known means, such as the arithmetic mean  generalized f-mean.

and geometric mean, have homogeneity, which stands for a scale-free

property my ({w;}, {c-u;}) = ¢ my({w;}, {u;}) for ¢ > 0. The generalized f-mean is homoge-
neous only when f belongs to the unique class of functions (Hardy, 1952; Amari, 2007):

mwzmwz{“?”¢l

logu, a=1
This family includes various notable examples, such as the weighted arithmetic mean for o =
—1, the weighted geometric mean for @ = 1, the weighted harmonic mean for « = 3, and
min{u; }, max{u;} for « — oo and o« — —o0, respectively.

Uuq mf U,

, u€eRY (5)

3 METHODOLOGY

This section introduces a new KD framework for LLMs, coined a-mixture distillation (AMiD),
which generalizes both the assistant distribution and the associated optimization scheme. Section 3.1
reveals the connection among the existing assistant distributions and highlights the need for a sys-
tematic study. Section 3.2 proposes the a-mixture assistant distribution, which provides a unified
and generalized assistant distribution family via a-mixture distribution. Finally, Section 3.3 extends
the assistant-based KD objective into a generic divergence framework.
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Figure 2: Visualization of the a-mixture assistant distribution family. (a) The a-mixture assistant
distribution provides a generalized framework for assistant distributions, with prior studies (Agarwal
et al., 2024; Ko et al., 2024; Shing et al., 2025) recoverable as special cases. (b-f) Illustration of the
a-mixture assistant distribution where p = N(0,0.5%), go = N'(3,12), and A = 0.3. For o < 1, the
support of the a-mixture assistant distribution corresponds to the union of the supports of p and gy,
whereas for o > 1, it corresponds to their intersection.

3.1 MOTIVATION

Our primary motivation stems from the observation that recent studies inherently include the com-
position of the teacher distribution p and the student distribution gy, which we will refer as assistant
distribution ry in this paper. For example, several studies (Agarwal et al., 2024; Ko et al., 2024)
utilize the divergences that include ry = Ap + (1 — \)gg with A € [0, 1], which is an weighted
arithmetic mean, also known as m-mixture. Moreover, we have newly discovered that the assistant
distribution of TAID (Shing et al., 2025) is e-mixture, also known as a weighted geometric mean.

Proposition 3.1. The assistant distribution of TAID (Shing et al., 2025) is e-mixture of p and qg:'
re = softmax((1 — \) - logit(gs) + A - logit(p)) oc p*qp > (6)

Please refer to Appendix A.2 for proof. Using the assistant distribution provides several advantages
in KD for LLMs. First, the assistant distribution facilitates more effective knowledge transfer be-
tween the teacher and the student. In KD, a significant capacity gap often arises due to differences in
model size (Mirzadeh et al., 2020), and this issue becomes particularly pronounced in LLMs (Zhang
et al., 2023; Sun et al., 2025) due to the high-dimensional nature. This gap makes it difficult for
the student to faithfully capture the knowledge encoded in the teacher (Mirzadeh et al., 2020; Shing
et al., 2025). By introducing the assistant distribution that serves as a bridge between the teacher
and student, the information transfer might be more efficient (Shing et al., 2025). Second, the assis-
tant distribution improves training stability. Due to the high-dimensional nature of LLMs, most of
probabilites in p and gy are inevitably close to zero. These near-zero probabilities might cause insta-
bility in both the loss and the gradient computation when divergences involving density ratios (e.g.,
KL divergence) are used (Ko et al., 2024). A suitably constructed assistant distribution yields more
stable density-ratio estimates, thereby enhancing the robustness of optimization (Ko et al., 2024).

Despite these advantages, no systematic study has examined (1) the distinction between m- and e-
mixture assistant distributions, (2) alternative candidates, (3) their compatibility with diverse diver-
gences, and (4) their implications for KD in LLMs, supported by theoretical and empirical analyses.
This gap hinders the development of general and effective methodologies, so the recent studies often
fall into sub-optimal performances by relying on an isolated design of assistant distribution. In this
paper, we alleviate this gap by unifying the existing assistant distributions into a generalized design
principle of assistant distribution.

"We omit the time index ¢ and detached notation for the sake of uniformity.
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3.2 «-MIXTURE ASSISTANT DISTRIBUTION

As discussed in Section 3.1, the existing assistant distributions can be formulated as the mixture of
the teacher distribution and the student distribution via the mean function. To integrate the frag-
mentarily employed assistant distributions, we employ the generalized f,-mean (Amari, 2016) and
introduce a new assistant distribution family, coined a-mixture assistant distribution as follows:

Definition 1 (a-mixture assistant distribution). Let & € R and A € [0, 1]. For distributions p and g
defined either on a discrete support X indexed by k or on a continuous domain X with variable z,
define the unnormalized o-mixture assistant distribution as:

2

(Ap(x) =" + (1= N gp(2) =" )77, ifa#1,

iy (z) = )
p(2)* qo(2)12, ifa=1,
where z = k in the discrete case and z = x in the continuous case.
Consequently, the (normalized) o-mixture assistant distribution is defined as:
@y _ o) N ) ()
ry U (2) = Yz Z, = Zre (k) or /X 7o (z)dx (8)

k
The o-mixture assistant distribution réa’k) contains two tunable parameters: o and A. The A de-

termines the portion of the interpolation between teacher p and student model ¢y, which has been
fine-tuned in previous works (Agarwal et al., 2024; Ko et al., 2024; Shing et al., 2025). The other
parameter « is a new axis of distribution design variable, which was only employed as a specialized
case (o« = £1), controls the geometry of the interpolation path, as depicted in Figure 3a. Since the
form of the generalized f,-mean is solely governed by «, once « is fixed, A only serves to control
the portion between p and gy along that determined path. In addition, Theorem 3.2 provides an
helpful information geometric perspective of the a-mixture (assistant) distribution:

Theorem 3.2. (Amari, 2007) Given a fixed o and \, the r*™) defined as Eq. (8) is unique minizer
of a weighted sum of Amari’s a-dviergences D,, (see Appendix A.1 for the definition):

r(@N = argmin A - Do (pl|r) + (1= A) - Dalqllr) ©)
Theorem 3.2 indicates that réa’/\) is the internal division distribution of p and ¢y in terms of a-
divergence, which bridges the generalization of the mean concept and the geodesic in information
geometry. Due to the generalized f,-mean, the existing assistant distributions are recoverable as

special instances of 7*5)“’)‘): 7’((9_1”\) is m-mixture (Agarwal et al., 2024; Ko et al., 2024) that is

minimizer of a weighted sum of Dk, and rél’/\) is e-mixture (Shing et al., 2025) that is minimizer

of a weighted sum of Drkr,. Furthermore, réa’/\) provides several new assistant distributions that

were not previously used in KD literature, as depicted in Figure 2a.

Moreover, the support of a-mixture assistant distribution determined by the range of a:

supp(rg™™) = supp(p) U supp(ge) when o < 1, and supp(ry™™) = supp(p) N supp(q)
when o > 1. This property demonstrates the necessity of determining the range of « based on the
characteristics at the intersection of p and gg. For instance, if p and gy overlap significantly, setting
« > 1 can strengthen the matching within the intersection region. Conversely, if they overlap min-
imally, setting v < 1 indicates that matching occurs across a broader range. Although in KD for
LLMs, p and gy typically share the same support defined by the vocabulary set, this property remains
useful because many probabilities are very small values close to zero due to the high dimensionality.

Figures 2b-2f shows the different behaviors of réa”\) among the various « values.

Lastly, we also demonstrate that r(ga”\) is a continuous function with respect to « in Proposition 3.3,

even though the réa”\) is a piecewise-defined function. This property enables the design of a

curriculum-based adaptive v scheduling, paralleling prior work (Shing et al., 2025; Ko et al., 2025)
that investigated adaptive strategies for A. Please refer to Appendix A.3 for proof.

Proposition 3.3. (Continuity) Assume that p and qg are not both zero. Then, Téa’)\) is continuous

function w.r.t o under the fixed \ € [0, 1].
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(a) Role of o and A in the distribution space. (b) Optimization dynamics. (c) Role of « for gj.

Figure 3: Visualization of the characteristics of the a-mixture distillation, AMiD. (a) o determines
the geometry of interpolation while A controls the portion between p and gy. In general, the cur-

vature of the path increases as « moves farther away from —1 (the straight line). (b) r((,a”\) can
be interpreted as the internal division point in terms of a-divergence. Due to the uniqueness, the
updated parameter 0’ via optimization of AMIiD, directly affects the student distribution. (c) Toy
experiment with two-modal p and uni-modal gy. « controls the property of the optimized student
distribution g between the mode-covering and mode-seeking, even though we minimize the fixed

divergence DKL(p||réa”\)). In particular, when « < 1, increasing « encourages ¢ to exhibit more

mode-covering behavior, whereas using smaller « strengthens mode-seeking behavior.

3.3 AMiID: KNOWLEDGE DISTILLATION WITH o-MIXTURE ASSISTANT DISTRIBUTION

In this section, we present a token-level KD for LLMs with a-mixture assistant distribution, coined
as a-mixture distillation (AMiD), which aims to align )
optimization of AMiD is defined as follows, similar to Eq. (1):

L L
ZD(P,Téa’A))] or HgnE(z,y)ND[ZD(QQ,Téa7/\))] (10)

=1 =1

and either p or gg. Specifically, the

minE g y)~p

‘We highlight that AMiD allows the use of arbitrary divergence D and any dataset D (see Section 2.1)

since réa”\) is a valid distribution. Furthermore, AMiD generalizes the optimization schemes of
prior research by extending both the assistant distribution and the divergence. For example, Dis-

tLLM (Ko et al., 2024) corresponds to Dk, (p|rs ") and Dk (g5 ""); and TAID (Shing
etal., 2025) corresponds to D, (rél’k) lgo). Next, we aim to characterize the optimality of AMiD.
Theorem 3.4. (Optimality) Let D be any proper divergence and o € R.

* If\€0,1) and 30 s.t. D(p, réu’/w) =0, then D(p, Téu)‘)) = 0ifand only if p = qq.

o If\ € (0,1] and 30 s.t. D(q, 7‘6()%)‘)) =0, then D(qy, Té{Y’M) = 0ifand only if p = qq.

Please refer to Appendix B.3 for the proof. Theorem 3.4 demonstrates that even if we minimize the

divergence between p (or ) and rea’/\), the primary goal of KD is guaranteed i.e., p = gp. It is in-
tuitive because the interpolation point needs to coincide with one of the endpoints when it coincides
with the other (see Figure 3b). Therefore, leveraging the benefits of the assistant distribution, we
establish optimality. Although Theorem 3.4 establishes theoretical optimality for any choice of D,
a € R,and X € (0, 1), the effectiveness of AMiD might depend on selecting an appropriate « value
due to the imperfect practical optimization. Please refer to Appendix B.3 for the theoretical insights
based « tuning guidelines, Appendix C.4 for overlap-based adaptive a scheduling.

Now, we provide the gradient analysis to investigate the specific role of «. In particular, we consider
f-divergence, which is widely used in many areas, including KD for LLMs.

Proposition 3.5. (Gradient analysis) The gradient of f-divergence D ¢(p |réa’)‘)) be expressed as:

VoDy (pllréa’”) =E @» [w {wf <(SA)> —E e [wf ((fk))] } - Vg log qe] (11)
o o

1—a
where w = — =28 2 and s (v) == f(v) — vf(v).
A (1N 2
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Table 1: ROUGE-L scores (1) on five task-agnostic instruction-following datasets. Bold and
Underline mean the best and second-best performance of each column, except the teacher, respec-
tively. All results are based on our own re-implementation. We use D45 and A = 0.1 for AMiD.
We conduct the evaluation with five random seeds. More results of baselines are in Appendix C.1.

Model | Val. (1) | Dolly Eval (t) SelfInst (1) Vicuna (1) Super NI(t)  UnNI() | Avg. (1)
GPT-2 XL (Teacher) | — | 27.14 015 14.55 +052 16124031 27.21 +025  31.41 +o06 | 23.29
GPT-2 XL (1.5B) — GPT-2 (0.1B)

GKD 27.06 24.58 +0.13 11.78 044  14.60 +037  22.84 +0.12  25.04 +0.09 19.77
TAID 28.37 25.74 +027 1291 +031  17.09 +o1s  23.66 +031  26.82 +005 21.24
DistiLLM (SKL) 27.88 25.50 +0.28 12.35 +039  16.10 022 23.87 039 26.16 +0.06 20.80
DistiLLM (SRKL) 28.21 25.74 +020 12.13 +023  16.34 +0.15  25.40 010  26.91 +0.12 21.30
ABKD 28.61 25.49 024 12.52 +052 17.36 +055  26.07 +0.14  27.36 +0.10 21.76
AMID (Ours) 29.24 26.44 012 13.74 +049  16.76 +024  29.71 +00s  30.35 +0.09 23.40
GPT-2 XL (1.5B) — GPT-2 Medium (0.3B)

GKD 27.90 25.06 +055 12.36 042 15.71 +0s8  23.83 +026  27.14 +0.09 20.82
TAID 29.45 27.01 +027 14.53 +047  17.58 +020  25.14 +015  29.79 +0.14 22.81
DistiLLM (SKL) 29.65 26.87 +0.13 14.11 +029  16.85 4054  25.59 022 28.84 +0.03 22.45
DistiLLM (SRKL) 29.72 26.50 +0.20 13.79 +071 17.14 052 26.25 011 29.31 +0.16 22.60
ABKD 29.64 26.93 +0.17 13.69 +032  17.45 +027  28.15 +018  30.94 +0.06 23.43
AMiD (Ours) 30.83 27.34 +o0.18 15.26 +046  17.69 +027  29.04 +020  33.15 +0.13 24.50
GPT-2 XL (1.5B) — GPT-2 Large (0.8B)

GKD 29.36 26.38 +0.24 14.44 <066 17.02 +046  26.64 +0.16  30.99 +0.13 23.09
TAID 29.83 26.85 +032 15.07 +031  17.02 +048  26.71 +023  31.09 +0.17 23.35
DistiLLM (SKL) 29.69 26.12 +027 15.69 +075 1691 +043 2723 +0a8  30.73 +o0.12 23.34
DistiLLM (SRKL) 30.59 27.09 +0.40 14.61 +066  16.39 +027  28.44 +045  31.04 +0.06 23.51
ABKD 30.49 27.67 +0.34 15.46 +0s1  17.43 +025  30.74 022 33.11 +0.15 24.88
AMID (Ours) 31.10 27.86 +029 16.46 041 16.62 +0s50  32.64 +026  35.64 +0.07 25.84

Table 2: Experimental results on the task-specific distillation. “Trans.” and
“Summ.” indicate translation and summarization task, respectively. We use

’T‘
726 D sp and A = 0.1 for AMiD.
S | —— TAD
2_ 24 DistiLLM (SKL) SFTed Gemma-7B-It — Gemma-2B-It SFTed Qwen2-7B-It to Qwen2-0.5B-It
g [ : E:;”[;LM (SRidL) Model Trans. Summ. GSMSK. Trans. Summ. GSMSK
2 o (ours) ode COMET (1) ROUGE-L () Acc(f) | COMET () ROUGE-L(1) Acc (1)
TAID 74.20 34.93 24.49 58.17 31.65 33.28
0 Traini 10 N 20 DistiLLM 52.83 26.51 00.00 57.23 3227 35.63
. raining epoc ABKD 74.21 34.88 24.26 58.07 31.67 33.13
Figure 4: ROUGE-L AMID(a # +1) 74.78 35.22 24.94 58.31 32.51 36.24

curve on Dolly dataset.

Please refer to Appendix A.5 for the proof. Proposition 3.5 implies the following properties. First, w
controls the magnitude of the instance-wise gradient V log go(y; | «, y<;). While w does not affect
the individual gradient direction due to 0 < w < 1, its weighting effect may shift the batch-wise
gradient direction. Second, the « plays a crucial role in enabling w to perform instance-wise weight-

ing based on the density ratio % This property originates from the unique characteristic of

the a-mixture assistant distribution that cannot be achieved by A or learning rate scheduling. Third,
« (relatively) adjusts the mode-covering and mode-seeking behavior of the optimized student distri-
bution. Let us assume 1_70‘ >0,ie., a < 1.2 When P > qp, a larger « produces a correspondingly
larger value of w. Thus, it amplifies the gradient magnitude in regions where the student underes-
timates the teacher. As a result, choosing a large « (relatively) encourages the student distribution
qp to exhibit a mode-covering behavior. In contrast, employing the small o in p < gp results in a
large w value. It assigns a large gradient magnitude to the area where the student overestimates,

ultimately exhibiting that the small « (relatively) reinforces mode-seeking property.

To support the results from the gradient analysis, we investigate the property of the optimized student
distribution g through the toy experiments. Figure 3¢ shows that the optimized student distribution
gp with small o converges to one of the peak, which indicates the mode-seeking. As increasing a,
the ¢; gradually have thick tails while moving towards the average of p, which implies the mode-
covering. These analyses indicate that the balance between mode-covering and mode-seeking, often
attributed to divergence selection, might be controlled by « in the a-mixture assistant distribution.

2 Although o can be any real number, we assume o < 1 for the sake of simplicity.
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Table 3: ROUGE-L scores (1) with various divergences D and «. We utilize GPT-2 XL (1.5B) —
GPT-2 (0.1B). We use A = 0.1 for AMiD. gy indicates the no-assistant baseline. « = —1 and a = 1
correspond to the assistant distribution employed in DistiLLM and TAID, respectively.

Divergence D ‘ Assistant réa’)‘) ‘ Val. (1) ‘ Dolly Eval (1)  Self Inst (1)  Vicuna () Super NI (1)  UnNI (1) ‘ Avg. (1)
q0 25.25 22.96 +0.23 10.54 <014 1533 +003  18.10 026 21.10 +0.16 17.61
AMiD (o« = —5.0) | 28.99 25.86 +0.10 13.72 +042 1590 +020 2832 +024  29.52 t00s | 22.66
AMID (a = —3.0) 28.47 25.72 +o.1 13.68 +0.19 16,71 +030  27.30 +030  29.03 +0.12 | 22.49
(@,)) AMID (a = —1.0) 27.88 25.50 +0.28 12.35 +039 1610 +022  23.87 4030 26.16 +006 | 20.80
Drr(plre™™) | AMiD (@ = —0.5) | 2737 | 2417057 1215040 1637 <035 2434 1000 2436 006 | 2028
AMID (a = 0.0) 26.37 24.08 +0.25 10.65 +020  16.27 1024 20.09 1020  22.71 +0.13 18.76
AMID (a = 0.5) 25.56 22.81 +022 10.77 040 1624 +023  18.96 +045  22.13 +0.10 18.18
AMID (a = 1.0) 25.31 22.99 +0.12 11.17 o051 1597 1046 18.74 +040  21.94 +0.16 18.16
qo 28.85 26.67 +0.50 12.32 043 17.48 +030 24.25 +0.19 26.56 +0.19 21.46
AMID (o = —5.0) 28.39 26.16 +0.33 1295 057 17.39 4030 24.59 +020 2717 +009 | 21.65
AMiD (¢ = —3.0) 28.75 26.47 +0.12 12.71 +021 17.17 042 27.00 +0.11 28.16 +0.12 22.30
(@,2), | AMID (a = —1.0) 28.97 22.96 +0.23 12.34 +024  17.27 +0e4 2244 1036 25.68 +0.10 | 20.83
Drcr(pllrg™™) | AMiD (@ = —0.5) | 2825 | 26.15-050 1181 <0 16540 2349 1005 2587 <006 | 2077
AMiID (a = 0.0) 28.80 25.84 022 12.06 o013 17.71 o065  22.72 +024  25.36 +0.10 20.74
AMID (a = 0.5) 28.45 25.42 +o.11 1145 +026  17.31 +038  21.58 +024  24.43 1010 20.04
AMID (a = 1.0) 0.16 4.27 +0.01 2.81 +0.02 9.12 +0.06 1.64 +0.00 1.84 o0 3.94
Qo 28.61 25.49 +0.24 12.52 +052  17.36 +055  26.07 +0.14  27.36 +0.10 | 21.76
AMID (o« = —5.0) | 29.24 26.44 0.2 13.74 <049 16.76 024 29.71 o008 30.35 +0.09 23.40
AMID (a = —3.0) 29.07 26.38 +0.18 13.58 +057 1611 <018 29.27 +0.14  30.14 +006 | 23.10
(@) AMID (a = —1.0) 28.70 26.10 +0.24 13.34 +025 1671 +027  26.55 +0.17  29.55 +0.11 2245
Dag(plrg™™) | AMiD (a = —0.5) | 2870 | 26370  13.59 w005 170203  27.06 <051 2850 +016 | 22.51
AMID (o = 0.0) 28.86 25.77 +0.34 13.57 +022 16.14 1036 27.26 +02 28.52 +020 | 22.25
AMID (o = 0.5) 28.46 25.80 +0.32 12.94 +036 1659 +034 2629 +022  27.73 +o0s | 21.87
AMiID (a = 1.0) 24.93 22.36 +0.22 9.72 4058 16.29 +030  15.09 +0.19  16.15 +0.12 15.92
T2 TN <
o -0.2 o
O m
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Figure 5: Performance curve on ROUGE-L (quality) and Self-BLEU (diversity). Colored dashed
lines: no-assistant baseline (gg). We use A = 0.1.

4 EXPERIMENTS

We consider both general instruction-following distillation and task-specific distillation to validate
the effectiveness of AMiD. AMID is primarily compared with methodologies, which inherently
include the assistant distribution, such as GKD (Agarwal et al., 2024), DistiLLM (Ko et al., 2024),
TAID (Shing et al., 2025); and the state-of-the-art ABKD (Wang et al., 2025). Please refer to
Table 15 in Appendix C for further performance comparisons with additional baselines. We use
aap-Bap-divergence with aap = 0.2,84p = 0.7 and adopt adaptive off-policy training (Ko
et al., 2024) as default. We explore « over the range {—5, —3,—1,—0.5,0,0.5,1.0} and employ
A = 0.1 as default by following prior work (Ko et al., 2024). Additional details on datasets, models,
and training details are provided in Appendix B.

4.1 PERFORMANCE COMPARISON

Instruction-following Experiments. Table 1 reports results on the GPT-2 family (Radford et al.,
2019) across different model sizes. AMiD consistently achieves the best performance in most eval-
uation settings, surpassing prior methods such as GKD, TAID, and DistiLLM, which also exploit
assistant distributions. Notably, AMiD delivers substantial gains on SuperNI and UnNI, benchmarks
requiring generalization to diverse and unseen instructions (Wang et al., 2022). These improvements
suggest that AMiD promotes superior mode coverage and distributional alignment, thereby enhanc-
ing out-of-distribution generalization. Even when the capacity gap narrows for larger models (e.g.,
GPT-2 Large), AMiD continues to yield significant improvements, demonstrating that the a-mixture
assistant distribution benefits not only small students but also stronger ones, thereby validating its
scalability and robustness. Figure 4 further shows that AMiD consistently envelopes the baseline’s
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Table 4: ROUGE-L scores (1) with various SGOs. We utilize GPT-2 XL (1.5B) — GPT-2 (0.1B). We
use A = 0.1 for these experiments. ¢y indicates no-assistant baseline ABKD for these experiments.
We use D45 for AMiID. o = —1 and o = 1 correspond to the assistant distribution employed in
DistiLLM and TAID, respectively.

Dataset D | Assistant 7™ | Val (1) | Dolly Eval (1) SelfInst (1) Vicuna (1) SuperNI() UnNI(1) | Avg. ()
qo 27.06 24.81 +0.28 11.25 026 15.05 021 21.78 =05 23.73 +0.09 19.32
Fixed AMID (o = —1) 27.35 25.34 o028 11.54 +026 1534 +030  21.77 +019 2445 1006 19.69
(Hinton et al., 2015) AMID (a =1) 27.09 24.36 +0.34 12.40 +o.41 14.37 1031 24.36 028 26.28 +0.05 20.35
AMID (o # £1) | 27.84 25.32 +0.15 1344 041 1544 1011 27.03 w02 28.19 +006 | 21.88
qe 28.25 25.70 +0.20 13.03 <017 16.86 034 24.67 <016 27.47 +0.15 21.55
On-policy AMID (a = —1) 28.60 25.43 +0.34 12.96 +058  16.59 1030 27.35 to16  29.93 to07 | 22.45
(Lin et al., 2020) AMID (a =1) 28.60 25.12 +os5 13.28 +038  17.08 +0s52 2435 +023  26.94 +0.19 21.35
AMiID (o # £1) | 28.90 26.22 4031 14.31 =022 17.37 +022 28.59 +02 31.00 ~o0s | 23.50
qe 29.08 25.67 +0.16 1238 =029 17.15 052 2298 <026 26.20 +0.14 20.88
Mixed AMID (a = —1) 28.79 25.65 +0.25 11.98 <028 16.94 +013  23.82 4017 26.25 <006 | 20.93
(Agarwal et al., 2024) | AMID (aw = 1) 28.06 25.68 +0.39 12.81 +020 1697 +027  24.91 021 26.52 +0.08 21.38
AMID (a # £1) | 29.24 26.46 0.6 13.62 <027 1691 +030 2813 <006 29.39 +0.07 2290
qo 28.61 25.49 024 1252 w052 17.36 +055  26.07 =014 27.36 010 | 21.76
Adaptive off-policy AMID (a = —1) 28.70 26.10 +0.24 13.34 025 16.71 +02 26.55 +o.1 29.55 +o.11 22.45
(Ko et al., 2024) AMID (o = 1) 27.80 25.78 +0.44 13.74 +019 1642 <022 26.04 <022 27.79 +0.00 21.95
AMID (o # £+1) | 29.24 26.44 0.2 13.74 <049 16.76 +024  29.71 <008 30.35 +0.09 23.40

Table 5: Win Rate (WR, %) scores on three
instruction-following benchmarks. We uti-
lize Qwen2.5-14B-Instruct as a teacher and
Qwen2.5-1.5B-Instruct as a student.

0.1 | 23.40 | 23.10 | 2245 | 2251 | 22.25

< 0.5 | 2329 | 23.05 | 23.13 | 22.80 | 21.87

AlpacaEval  Evol-Inst UltraFeed Ave. (1)
WR(D  WR()  WR®MD | ®

Teacher ‘ 95.7 92.2 84.9 ‘ 90.9

Model ‘

0.9 | 2312 | 2325 | 22.80 | 22.75 | 21.99

Student 64.3 47.2 40.4 50.6

-50 -30 -10 -05 00 0.5 1.0 D(‘(i“EI;Nl[;z 80.2 70.4 61.7 70.8
o =

DistiLLM-2
. . . 81.3 71.1 63.6 72.0
Figure 6: Relationship between o and A under D 4. (a=-5)

validation ROUGE-L curve, indicating both efficient and stable optimization. Additional compar-
isons with other baselines and experiments on OpenLLaMA?2 are provided in Appendix C.

Task-specific Experiments. To further investigate the effectiveness of AMiD, we consider various
task-specific distillation, such as translation, summarization, and reasoning tasks. We adopt the im-
plementation of SKD (Xu et al., 2024b) and employ the fixed dataset strategy. As shown in Table 2,
using an assistant distribution achieves higher performance compared to the no-assistant baseline
ABKD. Nevertheless, in the previous framework, where only o« = %1 is available, it exhibits mixed
performance depending on the task and network. Our proposed framework, AMiD, which extends
the range of «, allows us to discover the high-performance assistant distribution. This generalization
leads to consistent improvements over the baselines, achieving the best performance on all tasks.

4.2 ABLATION STUDY AND ADDITIONAL ANALYSIS

Balancing Mode-covering and Mode-seeking via o. As mentioned in Section 3.3, we have
demonstrated that even when employing the same divergence, adjusting the « of the a-mixture assis-
tant distribution allows us to control the mode-covering or mode-seeking property of the optimized
student distribution. To further substantiate this analysis, we examine the trends of ROUGE-L, rep-
resenting quality, and (Negative) Self-BLEU, representing diversity, by adjusting « with a fixed
divergence. Figure 5 exhibits a clear quality-diversity trade-off for both KL divergence Dgj, and
a-f divergence Dap. Specifically, as « increases, quality decreases and diversity increases, sup-
porting the theoretical analysis that the mode-covering property is enhanced. Decreasing o shows
the opposite effect, aligning with the mode of teacher distribution, which indicates mode-seeking.
These results demonstrate that, even under a fixed divergence, « serves as an effective control knob
to balance quality and diversity.

Relationship between o and A\. To further examine the relationship between o and A, we conduct
the experiments on A = 0.1,0.5,0.9 with DAB(p\|réa’>‘>). Figure 6 presents the average perfor-
mance of five instruction-following datasets among the various v and A combinations. The analyses
of experimental results are as follows: (1) Across all tested values of A, using a smaller o consis-

tently achieves higher performance. This observation aligns with our theoretical analysis, indicating
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Table 6: Performances on instruction-following, code generation, and mathematical reasoning. We
utilize the Qwen2.5-Instruct models, which are appropriate for each task, employing a 7B model as
the teacher and a 1.5B model as the student. For evaluation, we employ LLM-as-a-Judge (Zheng
et al., 2023) with GPT-4o for AlpacaEval and Evol-Instruct, GPT-40-mini for UltraFeedback.

Model | Instruction-following | Code generation | Math reasoning
AlpacaEval  Evol-Inst  UltraFeed Avg. HumanEval MBPP Avg. GSMSK (1)
WR (1) WR (1) WR (1) WR() | pass@1 (1) pass@l (1) pass@] (1)
Teacher 93.7 89.6 80.8 88.0 90.9 83.1 87.0 89.3
Student 64.2 46.2 40.0 50.1 70.7 69.3 70.0 74.3
DistiLLM-2 (o = —1) 79.5 69.0 62.6 70.4 72.0 74.6 733 76.9
DistiLLM-2 (o« = —5) 80.7 71.0 63.3 71.7 73.2 73.5 734 774

that a smaller « relatively induces a more mode-seeking behavior. (2) When A is too large (A = 0.9),
performance slightly degrades and exhibits a larger standard deviation. We attribute this to the assis-
tant distribution being overly close to the teacher distribution, which 1) limits effective knowledge
transfer and 2) makes the optimization more sensitive to curvature variations. In contrast, A = 0.5
achieves both high and stable performance, demonstrating that choosing a midpoint provides ro-
bustness against curvature changes. (3) Compared to A, the performance is generally more robust
to changes in «, as indicated by lower standard deviations. However, the o values close to 1 show
noticeably higher standard deviations. We conjecture that this instability arises because the change
of mixing coefficient (\) between the teacher and student distributions makes hard mode-covering.

Compatibility with Divergences. As mentioned in Section 3.3, AMiD allows the use of the arbi-
trary divergence D since the a-mixture assistant distribution réa’/\) is a valid distribution. Therefore,
we conduct performance comparisons across various combinations of divergences and « values to
demonstrate the versatility of AMiD. In Table 3, we observed that AMiD generally achieves higher
performance than the no-assistant baseline regardless of divergence in most settings. Notably, the
highest-performing o was discovered in o # =+1 regions beyond the limited scope of prior works,
and its values are generally small. These results confirm the universality of AMiD to generic di-
vergences, representing its wide adaptiveness and flexibility. Please refer to Appendix C.3 for the
: (e, 2)
student-assistant cases D(gg, 7y ).

Universality to SGOs. AMiD is a generalized framework from the view of assistant distribution

r(a’A) and divergence D, and therefore is not constrained by the dataset D. In Table 4, we confirm the
universality of AMiD across various student-generated output (SGO) strategies. AMiD (a # +1)
outperforms the no-assistant baseline and previous mixtures (o« = =£1) by a significant margin across
almost all metrics. These results indicate that AMiD is compatible with diverse SGO pipelines and
remains effective regardless of how the datasets are collected.

Cooperation with Contrastive-based Distillation. The proposed a-mixture assistant distribution
7’(§a”\> is a theoretically valid probability distribution for any « and A. Therefore, the r((,o")‘) can be
combined with the contrastive-based distillation methods beyond the divergence-based distillation
methods. To validate this applicability, we replace the assistant distribution of DistiLLM-2 (Ko
et al., 2025), which utilizes m-mixture (¢« = —1), with our a-mixture assistant distribution. As
shown in Table 6, incorporating our c-mixture assistant distribution exhibits further performance
improvements or competitive performances over the base contrastive method, DistiLLM-2.

Scalability to Large Teacher. To demonstrate the extensibility, we conduct an experiment by dis-
tilling Qwen2.5-14B-Instruct into Qwen2.5-1.5B-Instruct under the instruction-following task. As
shown in Table 5, integrating a-mixture assistant distribution exhibits performance improvements
over the DistiLLM-2. These results indicate that AMiD remains effective in a large teacher model.

5 CONCLUSION

This work introduces a unified framework for KD in LLMs by proposing the a-mixture assistant
distribution and the corresponding distillation method, AMiD. Our approach systematically gener-
alizes previous fragmented methods and enables flexible interpolation between teacher and student.
Theoretical and empirical analyses congruently demonstrate that the design parameter « controls
the mode-seeking vs. mode-covering behavior. AMiD consistently outperforms prior KD methods
across diverse settings and establishes a new foundation for assistant-guided KD for LLMs.

10
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A DEFINITION AND PROOF

A.1 AMARI’S a-DIVERGENCE

Definition. Let o € R be a real parameter. The a-function f, (u) is defined for a # +1 by

Falu) 4 (1 — u%) . (12)

12

Using this a-function, the a-divergence between two probability distributions p = {p;} and ¢ =
{q;} is defined as

4 lta 1-ao
Da[pllq] <1—sz-+"‘ q° ) o # £l (13)

T 12

The dual divergence is obtained by replacing o with —a:

D.[pllq) = D_a[qllp]. (14)

We also define the limiting cases at « = %1 by continuity. When o« = +1, the a-function becomes

fa(u){ulogu, a=1, (15)

—logu, a=-1.

Connection to KL and reverse KL. Correspondingly, the a-divergence reduces to

ZlQllog&a Oézl,
g

; (16)
Zq’pilogia 0[:—1,
) qi

Dq[pllq] =

which correspond to the KL divergence (o« = —1) and the reverse KL divergence (o = 1).

Relation to Rényi divergence. Since the Amari o-divergence includes KL and reverse KL as the
limiting cases, it can be viewed as a one-parameter generalization of the KL divergence. Moreover,
it is closely related to the Rényi divergence. If we define a reparameterized order
1+a

2 )

then the quantity appearing in the Amari divergence,

8=

1+a 1—a

vt
%

is exactly the same expression inside the discrete Rényi divergence,

1 .
Rslpllgl = 5 log <prqil ) (17)

Thus, the Amari and Rényi divergences represent the same underlying one-parameter family through
the invertible reparameterization 8 = (1 + «)/2

A.2 PROOF OF PROPOSITION 3.1

Proposition 3.1. The assistant distribution of TAID (Shing et al., 2025) is e-mixture of p and qg:>
7o = softmax((1 — \) - logit(gs) + A - logit(p)) o p*qp > (6)

3We omit the time index ¢ and detached notation for the sake of uniformity.
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Proof. Note that p = softmax(logit(p)) = - exp(logit(p)) where logit(p) is logit of p and Z,, is
normalization constant of p. Therefore, logit(p) = log(p - Z,).

r = softmax(Alogit(p) + (1 — \)logit(q)) (18)
1
= exp(Mlogit(p) + (1 — N)logit(q)) (19)
1
= e exp(Alog(pZ,) + (1 — X)log(qZ,)) (20)
1 _ _
= e exp(log(p*q' ) +1og(Z)Z)*)) (21)
Z)‘Zl A
p“q A 1A
_ 2
Z. pq (22)
1 Zy
= —p*¢*~*, where Z’ Ve (23)
p “q
Now, it is sufficient to show that Z' = >_ p*¢' =
1 . .
7 = g Z exp(Alogit(p) + (1 — A)logit(g)) (24)
p “q
1 A 1-A
=5 (5 eplionies) ) (- exploginta) @5)
q
_ pr 1— >\ (26)
Therefore, 79 o< p*q'~* and it is a valid distribution with normalization. O

A.3 PROOF OF PROPOSITION 3.3

)

Proposition 3.3. (Continuity) Assume that p and qg are not both zero. Then, 7"9 is continuous

function w.r.t a under the fixed A € [0, 1].

Proof. We begin with the proof for the continuity of the unnormalized assistant distribution féa”\).

The o # 1 case is trivial since it is a composition of continuous functions. For the a = 1 case, it is
a well-known fact that the power mean is a continuous function (Bullen, 2013). Especially, we can
show that as follows:

(a,\) . 2 1l-a 1l-a
hm log 7" = lim log{ Ap 2 +(1—X)q 2 (27)
a—1 1 —«
Ap 21 (1-N)g 21
, 7 logp+(1—MNgqg 2 lo
 jig 222 LoE? a2 logg 28)
° Ap T +(1-Ng 2
=Alogp+ (1 —XN)logg (29)
_ log(p/\ql /\) (30)

By the continuity of the exponential function, we can get lim1 féa’A)
a—

= p*q'~*. We use L’'Hopital’s
rule in the second equality. Note that Z = Z Ty (2 ( ) is continuous function w.r.t « since it is a

e §

finite sum of continuous functions w.r.t a. Also since p and ¢ cannot be both zero, is not
zero, so Z > (. Therefore, the réo‘ A — Eréa A § is contiuous function w.r.t. . O

A.4 PROOF OF THEOREM 3.4

Theorem 3.4. (Optimality) Let D be any proper divergence and o € R.
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* IfA€0,1)and 30 s.t. D(p, 1y (o A>) =0, then D(p, 7“<a A)) = 0ifand only if p = qq.

* If A € (0,1] and 30 s.1. D(qg.,r((, ' )) =0, then D(qy, 79 ) = 0ifand only if p = qq.

Proof. We first prove that D(p,r, (@A )) implies p = gp. By the definition of divergence, we have

that D(p, ré )) = 0 if and only if p = réa’A).

Case o = 1. In this case, réa’)‘) = %pAqél_A).

1 _ _ _ 1
p=§pkq91“:> ZptTr=¢) M e ZT 3 p=gq (31)

By integrating both sides, Z ™ = 1 which implies Z = 1. Therefore, p = gy

1 l1-a Layi-a l—a l1-a l1-a iza
p=Z{Ap2 +(1-Ng? } S Z2p2 =xp 2 +(1-Ng? (32)
11—« — l1-o
S (Z72 =Np 2 =(1-Ng? (33)
1 l—a Z% A
& Cp2 =q %, where C:= Y A‘ (34)
2
& Cl-ap=gq (35)
By integrating both sides, C' & = 1 which implies C' = 1. Therefore, p = qp.
D(qp, réa '\)) is similar. O
A.5 PROOF OF PROPOSITION 3.5
Proposition 3.5. (Gradient analysis) The gradient of f-divergence D ¢(p| |r(ga’)‘)) be expressed as:

VyDy (PHTéa’A)) =E@» [w {wf <(SA)> —E @ lwf ((SA)H } - Vg log qe] (11)
Tg To

where w = — 1= S = and Py(v) = f(v) —vf'(v).
)\p 2 +(1-XN)go 2

Proof. From the basic calculus, we can derive the following equation for fixed p:

0 P\1 _ .(P\ P .(P\ _ P
o) =1() -7 (F) =ws(7)- (36)
Hence,
VoD (llri™™) = 3 vy (W) Vory ™y | v y<) 37
Y€V (yl \ r,y<1)
=K (a ) |"¢f< ap)\)> V@ logr(a )\)] (38)
9
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(e, M)

Before deriving the gradient of the log probability of r, ", let us first derive Vgr(a

Vors™™ = Vo{h (A ha(®) + (1 = N halas) }

(1 —=A) Voha(gs)

1 /
= W (1= X) he(g0) Voage
1 /
() (1= X) hiy(g0) a0 Ve log g

h/
=(1-2MX) _halaa N( Y Vg log g

e (7D 7
—(1-)\) (43%) A ¥, log go
T
l1-a
1—2A n
= ( )4 — 7o Vg log go

11—«
Ap 2 +(1-X)g,?
=w- réa N -Vylogqp .

Therefore,

« v ~(a,
Vologri™ = f’(fjA Zv ()
Ty

=w- Vg log qo — ]Eréa,)\)[w . V@ log qQ]

Lastly, placing Eq. (48) into Eq. (38) and rearranging will yield the final result.

VoD (pllry™™) = E e W( @ A>> Vo log (™ A)l

Ty

p
v {oge) oo 2
L 2

B EXPERIMENTAL DETAILS

= ETéa,/\) ﬂ)f < (a, A)> : {w . VQ log qo — Eréa,x)[w : Vg log Q(;] }]

B.1 TOY EXPERIMENT

as follows:

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(40)

(47)

(48)

(49)

(50)

} - Vg log (Jel 61V

O

We employ a two-modal Gaussian mixture for the teacher p = 0.7A(—3,2) 4+ 0.3N(3,0.8) and a
unimodal Gaussian for the student gy = N (i, o) with g = 0,03 = 1. We optimize § = {u, 0%}

by minizing D, (p|r$®") with Adam optimizer (Kingma & Ba, 2014) with 5000 steps and Se-2

learning rate.
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B.2

DATASETS

databricks-dolly-15k (Conover et al., 2023): An open-source dataset of instruc-
tion—response pairs created by thousands of Databricks employees. It covers diverse be-
havioral categories defined in Ouyang et al. (2022), including brainstorming, classification,
closed QA, generation, information extraction, open QA, and summarization.

Self-instruct (Wang et al., 2023): A framework for improving instruction-following ability
by iteratively using model outputs to generate new instructional data. The dataset contains
52K instructions and 82K input—output pairs for tuning, 252 expert-written tasks for prac-
tical evaluation, and 50K additional examples from public datasets for benchmarking.

Vicuna (Chiang et al., 2023): A benchmark consisting of 80 challenging open-ended ques-
tions originally used to assess Vicuna. It provides a compact but difficult testbed for evalu-
ating instruction-following performance.

Super-Natural Instructions (Wang et al., 2022): A large-scale benchmark comprising
1,616 expert-written NLP tasks spanning 76 task categories. Its test set includes 9K exam-
ples drawn from 119 tasks, covering a wide spectrum of instruction types.

Unnatural Instructions (Honovich et al., 2023): An Al-generated dataset containing 240K
instructions created with minimal human intervention. The collection demonstrates that
synthetic data can serve as an effective substitute for human-curated data. Its core subset
includes 60K examples.

AlpacaEval (Dubois et al., 2023): AlpacaEval is derived from the AlpacaFarm evaluation
suite but includes simplified formatting. In particular, Dubois et al. (2023) combined the
original instruction and input fields into one unified instruction, a change that influences
about a quarter of the samples sourced from Self-Instruct (Wang et al., 2023). The dataset
ultimately comprises 805 difficult instruction-following queries.

Evol-Instruct Evaluation (Xu et al., 2024a): This evaluation set includes 218 prompts
produced through the Evol-Instruct generation pipeline. The questions span a wide range
of topics and serve as a compact benchmark for instruction-following ability

UltraFeedback (Cui et al., 2023): UltraFeedback is a large and detailed preference dataset
tailored for building high-quality reward and critic models. It contains roughly 64k prompts
collected from UltraChat, ShareGPT, and Evol-Instruct. Each prompt was used to elicit four
responses from different LLMs, and GPT-4 subsequently annotated these outputs based on
dimensions such as following instructions, factual correctness, honesty, and helpfulness.

MetaMathQA (Yu et al., 2023): MetaMathQA was created to strengthen mathematical
reasoning in LLMs. The dataset is generated through a bootstrapping method in which
each math question is re-expressed using multiple reasoning viewpoints, including forward
reasoning, backward reasoning, and paraphrased formulations.

GSMBSK (Cobbe et al., 2021): GSMS8K consists of 8.5K meticulously written grade-school
math word problems. Designed to require multi-step inference, it is widely used as a stan-
dard benchmark for evaluating basic mathematical reasoning skills.

WizardCoder (Luo et al., 2023): WizardCoder is an instruction-tuned code dataset built
via the Evol-Instruct method. Starting with the 20K-sample Code Alpaca corpus, the cre-
ators iteratively evolved prompts by increasing complexity, adding constraints, inserting
misleading code, and introducing time/space complexity requirements. The final dataset
contains about 78K evolved examples, which were used to fine-tune StarCoder and sub-
stantially improve its coding performance.

HumanEval (Chen, 2021): HumanEval provides 164 hand-crafted programming tasks
with function signatures, natural-language descriptions, and unit tests. It is one of the
primary benchmarks for assessing code generation and was explicitly designed to avoid
overlap with existing training data.

MBPP (Austin et al., 2021): MBPP includes roughly 1,000 Python programming exercises
aimed at novice programmers. Each problem comes with a textual description, a reference
code solution, and three automatic test cases. Portions of the dataset were manually vali-
dated to ensure consistency and correctness.
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B.3 IMPLEMENTATION SETTINGS

Training. For instruction-following distillation, we use databricks-dolly-15K (Conover et al.,
2023) for the distillation loss and OpenWebText (Gokaslan & Cohen, 2019) for the pretraining
loss. Teacher models include GPT-2 XL (1.5B) with SFT, and students are GPT-2 (0.1B), GPT-2
Medium (0.3B), and GPT-2 Large (0.8B). To test scalability, OpenLLaMA2-7B (Geng & Liu, 2023)
is distilled into OpenLLaMA2-3B using LoRA.

For task-specific evaluation, we use Flores-200 (Costa-Jussa et al., 2022) for translation, Dialog-
Sum (Chen et al., 2021) for summarization, and GSM8K (Cobbe et al., 2021) for mathematical
reasoning. Teacher models are Gemma-7B-It (Team et al., 2024) and Qwen2-7B-Instruct (Team,
2024), while Gemma-2B-It and Qwen2-0.5B-Instruct serve as students. Teachers are fine-tuned on
the full dataset, while students are trained with about 1,000 samples.

We use aqp-Bap-divergence with aqp = 0.2, 545 = 0.7 and adopt adaptive off-policy train-
ing (Ko et al., 2024) as default. We explore «v over the range {—5, —3,—1,—0.5,0,0.5,1.0} and
employ A = 0.1 as default by following prior work (Ko et al., 2024). We utilize the AdamW
optimizer and cosine learning rate scheduling by following the previous work (Ko et al., 2024;
Wang et al., 2025). We search the learning rate over the range {0.0005,0.0001,0.00005} except
for the cooperation with contrastive-based distillation experiments, which use the default setting of
DistiLLM-2 (Ko et al., 2025).

Theoretical insights based « tuning guidelines. Herein, we provide a principled tuning guide-
lines grounded in the theoretical properties of «. First, in Section 3.2, we show that the support

of the assistant distribution varies with a: supp(réu’k)) = supp(p) U supp(qe) when o < 1,
(a,A

supp(ry )) = supp(p) N supp(qp) when > 1. In KD for LLMs, the teacher and student of-
ten exhibit a capacity gap and produce high-dimensional outputs with many near-zero probabilities.
As a result, they do not share a sufficiently large common support in general. For this reason, we
recommend using o < 1 in most practical settings, as this choice improves training stability and
enables more reliable knowledge transfer.

Furthermore, our gradient analysis and (toy) experiments demonstrate that o directly controls the
trade-off between mode-covering and mode-seeking behavior of the optimized student. Under the
«a < 1, increasing « encourages relatively stronger mode covering, thereby improving output di-
versity. Conversely, smaller o emphasizes mode seeking, which enhances fidelity to the teacher.
Therefore, for enhancing the teacher—student alignment and performance, we suggest using small «
values. However, since too small « can induce high curvature in the geometry of the interpolation
path, which may reduce optimization efficiency, so such choices should be used with caution.

Based on these theoretical insights, we explore « over the range {—5, -3, —1,—0.5,0,0.5,1.0}.
Table 7 provides the detailed configuration for each task.

Table 7: Configuration of hyperparameters for AMiD

Task Dataset Teacher Student Divergence @
Dgr(pl|r) -5.0

GPT-2 Base g“‘K(L (ﬁi‘; ) 30

databricks-dolly-15k OGP T-2 XLarge Dies (allr) 0.5

Instruction following GPT-2 Medium Daz(pllr) 50
GPT-2 Large Dag(p|lr) -3.0

OpenLLaMA2-7B OpenLLaMA2-3B Dag(p|lr) -3.0

Qwen2.5-7B-Instruct Qwen2.5-1.5B-Instruct Dpistiiiym—2  -5.0

UltraChat200k Qwen2.5-14B-Instruct Qwen2.5-1.5B-Instruct Dpistiiyv—2  -5.0

. Gemma-7B-It Gemma-2B-It D ap(p||r) -0.5
Translation Flores-200 Qwen2-7B-Instruct Qwen2-0.5B-Instruct Dag(p|lr) 0.5
- . Gemma-7B-It Gemma-2B-It D ag(p||r) 0.5
Summarization DialogSum Qwen2-7B-Tnstruct Qwen2-0.5B-Instruct Duplllr)  -3.0
GSMS8K Gemma-7B-It Gemma-2B-It Dag(p||r) 0.5

Mathematical reasoning Qwen2-7B-Instruct Qwen2-0.5B-Instruct Dag(p|lr) -3.0
MetaMathQA Qwen2.5-Math-7B-Instruct ~ Qwen2.5-Math-1.5B-Instruct ~ Dp;stiria—2  -5.0

Code generation WizardCoder Qwen2.5-Coder-7B-Instruct  Qwen2.5-Coder-1.5B-Instruct  Dpisiirnia—2  -5.0
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Evaluation. For evaluating generation quality, we adopt ROUGE-L (Lin, 2004) and Self-
BLEU (Zhu et al., 2018). ROUGE-L measures the similarity between the generated output and
the reference text by computing the Longest Common Subsequence (LCS). Specifically, recall and
precision are defined as

LCS(v,y) , _ LCS(w,y)

L
Lg; ’ CS Ly ’

Rics = (52)

where LCS(x, y) is the length of the longest common subsequence between the reference x and the
generated text y, and L., L, denote their respective lengths. The final ROUGE-L score is given by
the harmonic mean:

2 Rres - Pues

ROUGE-L = ——————. (53)

Ryos + Pres
A higher ROUGE-L score indicates that the generated text more closely matches the reference in
terms of sequence overlap.

Self-BLEU evaluates the diversity of generated outputs by leveraging the BLEU metric (Papineni
et al., 2002). BLEU computes the geometric mean of modified n-gram precisions with a brevity
penalty (BP):

1 ife>r,
BP = {e(lr/c) ifc<r, (>4)
N
BLEU(c, R) = BP - exp <Z wy, log pr(c, R)) 7 (55)
n=1

where c is the candidate length, r is the effective reference length, p,(c, R) denotes the modified
n-gram precision, and w,, are positive weights summing to one. Building on this definition, Self-
BLEU is calculated by treating each generated sample s; as the hypothesis and the remaining set
S\{s;} as references:

M
Self-BLEU(S) = % > BLEU(s;, S\{s:}). (56)
i=1

A higher Self-BLEU score (close to 1) indicates that the outputs are highly similar to each other,
reflecting low diversity and more deterministic behavior, while a lower score (close to 0) suggests
greater diversity across generations.

C ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

C.1 MORE COMPARISON WITH BASELINES

Table 15 presents the complete results on the GPT-2 family, where we extend the comparison to a
broader set of baseline methods beyond those reported in the main paper. We observe that AMiD
consistently outperforms all competing approaches across different student sizes (0.1B, 0.3B, 0.8B),
further validating the robustness of our method. In particular, while methods such as SeqKD, Im-
itKD, MiniLLM, and AKL yield modest improvements over standard knowledge distillation (KD),
they still fall short of strong assistant-based methods like GKD, TAID, and DistiLLM. Among these
baselines, ABKD often emerges as the strongest competitor. Nevertheless, AMiD achieves clear
performance gains over ABKD in nearly every evaluation setting.

C.2 RESULTS ON OPENLLAMA?2

Table 8 reports results on the OpenLLaMA?2 family, where a 7B teacher is distilled into a 3B student.
Consistent with our findings on the GPT-2 series, AMiD achieves the best overall performance
across most evaluation benchmarks. In particular, AMiD surpasses prior assistant-based approaches
such as TAID and DistiLLM (both SKL and SRKL variants), as well as the strong baseline ABKD.
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Table 8: ROUGE-L scores (1) on OpenLLLaMA2-7B — OpenLLaMA2-3B. Bold and Underline
mean the best and second-best performance of each column, except the teacher, respectively. All
results are based on our own re-implementation. We conduct the evaluation with five random seeds.

Model \ Val. (1) \ Dolly Eval (1)  Self Inst (1)  Vicuna (1) Super NI(1)  UnNI (1) \ Avg. (1)
Teacher |  — | 27.60 03 18.17 =080 17.85 +04s  31.05 2031 32.40 +028 | 25.41
OpenLLaMA2-7B — OpenLLaMA2-3B

TAID 30.85 26.53 +0.23 17.73 +060  18.14 0390 31.93 +023  31.55 +o.12 25.18
DistiLLM (SKL) 33.07 28.63 +0.28 20.20 +0.66  19.15 032 3531 019 34.74 +o.10 27.61
DistiLLM (SRKL) | 33.18 28.83 +0.41 20.76 <037  19.37 <015 36.82 +014  35.76 +0.13 28.31
ABKD 3391 29.43 o042 20.46 +028  20.42 +012  39.51 025 38.07 +o008 29.58
AMIiD (Ours) 34.39 29.69 +0.47 20.99 1037 21.03 040  39.06 +021 37.31 +o.11 29.62

C.3 COMPATIBILITY WITH DIVERGENCES Dxr,(qo ||r§“’”)

Table 9 provides the complementary results when employing the divergence Dkr,(qg ||r§a”\)), con-
trasting the student distribution against the a-mixture assistant. Similar to the findings in the main
text (Table 3), AMiD consistently outperforms the no-assistant baseline across most evaluation
benchmarks, confirming that the proposed method is broadly compatible with different divergence
directions.

Table 9: ROUGE-L scores (1) with Dkr,(go ||ré°")‘)) and various «. We utilize GPT-2 XL (1.5B) —
GPT-2 (0.1B). We use a fixed A = 0.9 for these experiments.

(a,\)

Divergence D | Assistant | Val. (1) | Dolly Eval (1) SelfInst (1) Vicuna () SuperNI(f) UnNI(1) | Ave. ()
qp 28.71 26.22 +035 12.57 016 1697 +034 2475 +020  26.59 +o0.14 21.42
AMID (a = —5.0) 27.54 24.23 +023 12.59 +032 1580 043  24.50 +0.14  26.38 +0.07 20.70
AMID (a = —3.0) 27.96 25.13 +0.20 12.80 +048 1632 +045 2554 +030  26.86 +0.14 21.33

(a,n), | AMID (o = —1.0) 28.21 25.74 +0.20 12,13 1023 1634 +015 2540 +010 2691 o012 21.30
Dxr(aollrs™™) | AMiD (0= —0.5) | 28.89 | 2601 0> 1284405 17.04 1005 27.43 <014 27.59 w00s | 22.18
AMiID (a0 = 0.0) 28.84 26.70 +0.33 13.36 +031 1595 +036  26.23 +017  27.70 +0.10 21.99

AMiID (o = —0.5) | 29.02 26.48 +0.17 13.73 +044  16.78 030  26.78 1031 28.65 +0.10 22.48

AMID (a = 1.0) 28.40 26.01 +034 12.03 <033 16.96 +031 24.84 <024 27.01 +o.11 21.37

C.4 OVERLAP-BASED ADAPTIVE o« SCHEDULING

The theoretical insights based o tuning guidelines efficiently exclude low potential candidates. How-
ever, applying a single fixed global « value can still be sub-optimal in certain cases.

To address this concern, we introduce a curriculum-based adaptive « scheduling based on the
degree of overlap between token-level teacher distribution p(y;|y<;,«) and student distribution
qo(y1|y<i, x). The intuition is that when the teacher and student distributions are highly overlapped,
we encourage mode-covering to align further, whereas when the overlap is low, we enhance mode-
seeking to find the mode first.

We define token-level overlap as ovl;; := >, min(p(yiy<i, @), go(yi|y<i,z)). Obviously, the
overlap value ovl;; is bounded into [0,1]. Also, ovl;; approaches 0 when p(y;|y<;,«) and
q0(Y1|y<i, x) significantly differ, and approaches 1 when they are well-aligned. Furthermore, ovl; ;
can be expressed in terms of total variation distance 1 — TV D (p(yi|y<i, ), qo(yi|y<i, x)), which
provides same interpretation.

Given the predefined o4, and pq,, We set the token-level «;; as the linearly increasing value
along the line passing through (0, tip) and (1, gy ) 1. @ <= (Qmaz — Qmin) * 001 | + Qnin.
Under this idea, when the teacher and student distributions differ substantially, the ovl; ; becomes
small, leading to a smaller assigned «, which strengthens mode-seeking. Conversely, when the
teacher and student distributions are similar, both ovl; ; and a have larger values, thereby reinforcing
mode-covering. This mechanism systematically determines e by combining the degree of alignment
between the teacher and student distribution, which continuously changes through training, with the
theoretical characteristics of a.
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Table 10: ROUGE-L scores (1) on five task-agnostic instruction-following datasets with fixed «a
versus adaptive « scheduling. Bold means the best performance of each column. We use D 45 and
A = 0.1 for AMiD.

Assistant \ Val. (1) \ Dolly Eval (1)  SelfInst (1)  Vicuna (1) Super NI (1) UnNI(T) \ Avg. (1)

AMID (Fixed o) 29.24 26.44 13.74 16.76 29.71 30.35 23.40
AMID (Adaptive o) 29.31 26.50 14.02 16.59 29.87 30.60 23.52

C.5 ROBUSTNESS TO OPTIMIZER

To investigate whether the effectiveness of AMiD depends on a particular optimization setup, we
evaluate its performance under the Lion optimizer. Table 11 exhibits the robustness of AMiD w.r.t.
the optimizer.

Table 11: ROUGE-L scores (1) on five task-agnostic instruction-following datasets under the Lion
optimizer across different a-mixture configurations. Bold means the best performance of each col-
umn. We use D 45 and A = 0.1 for AMiD.

Assistant | Val (1) | Dolly Eval (t) ~ SelfInst (t)  Vicuna (1)  Super NI (1)  UnNI() | Avg. (1)
No assistant 28.38 26.02 +0.28 12.19 034 17.24 +037 2629 +0.19  28.88 +0.10 22.12
Lion AMID (a = —1) 28.68 25.29 +0.16 12.21 +025  17.81 +036  24.82 +0.13  27.87 +0.08 21.60
AMID (a = +1) 24.98 22.33 +0.27 9.50 +0.28 15.50 +0.52 15.71 +0.34 18.01 +0.08 16.21
AMID (a = £1) 27.85 26.14 +0.21 12.55 012 17.25 +048 2828 +026  29.69 +0.06 22.78

C.6 ROBUSTNESS TO LEARNING RATE SCHEDULING

To further assess the robustness of AMiD to optimization hyperparameters, we evaluate its perfor-
mance under the Noam learning rate schedule, originally designed for transformer architectures.
Table 12 also support the robustness of AMiD.

Table 12: ROUGE-L scores (1) on five task-agnostic instruction-following datasets under the Noam
learning rate schedule across different a-mixture configurations. Bold means the best performance
of each column. We use D 45 and A = 0.1 for AMiD.

Assistant | Val. (1) | Dolly Eval (1)  SelfInst ()  Vicuna () SuperNI(f)  UnNI(f) | Avg. (1)
No assistant 28.42 25.83 +0.17 13.35 054 1643 +o28  28.30 +024  29.90 +0.11 22.76
N AMID (o = —1) 28.91 26.02 +0.34 14.07 +025  17.09 +0.19  27.78 +0.11 29.49 +0.04 22.93
O AMID (v = +1) | 2833 | 25591025  13.61 £040 1625 £034 2642 1020 2826 £0.19 | 22.09
AMID (o = £1) 29.39 26.12 +0.35 13.07 +052  16.53 046 29.06 +0.14  30.86 +0.09 23.19

C.7 MITIGATE THE CONFLICT VIA TEMPERATURE SCALING

As discussed in Section 3.2, combining an assistant distribution with a narrow support and a diver-
gence that requires the expectation w.r.t. the assistant distribution can lead to training instability and
poor knowledge transfer.

Since the primary cause of this issue is the narrow support of the assistant distribution, we conjecture
that applying distribution softening technique could alleviate the instability even for such problem-
atic combinations. To verify this conjecture, we employ temperature 7" > 1, which is a widely used

flattening technique in various area. The table below shows the performance when using various

temperature values under Dy, (pH’rémA)) with « = 1. The results exhibit that introducing the

temperature leads to stable training and can even yield strong performance with an appropriately
chosen temperature value. However, large temperature causes an over-flattening effect, inducing
large shift in the assistant distribution and consequently degrading performance. Overall, we demon-
strate that temperature scaling can empirically mitigate the instability associated with problematic
combinations under the appropriate temperature value.
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Table 13: ROUGE-L scores (1) on five task-agnostic instruction-following datasets under
DRKL(p\|r(()a’>‘)) with & = 1 when applying temperature scaling to soften the assistant distribu-
tion.

Assistant | Val. (1) | Dolly Eval (1) ~ SelfInst (1)  Vicuna () Super NI () UnNI(1) | Avg. (D)
AMiID (a = 1.0,T = 1.0) 0.16 4.27 2.81 9.12 1.64 1.84 3.94
AMID (o = 1.0,T = 1.5) 27.40 24.61 11.55 17.11 21.41 23.39 19.61
AMID (o = 1.0,7 = 2.0) 28.64 26.83 12.74 17.62 23.56 27.01 21.55
AMID (o = 1.0,7 = 5.0) 28.78 26.78 12.43 17.30 25.87 27.74 22.02
AMID (o = 1.0,T7 = 10.0) 27.33 24.73 12.11 16.95 23.65 26.80 20.85

Table 14: ROUGE-L scores (1) across different combinations of A and the a-mixture assistant
distribution.

A\ Assistant | Val (1) | Dolly Eval (1)  SelfInst (1) Vicuna (1) Super NI(1) UnNI(1) | Avg. (1)
No Assistant ‘ 28.61 ‘ 25.49 12.52 17.36 26.07 27.36 ‘ 21.76
AMID (a = —5.0) 29.24 26.44 13.74 16.76 29.71 30.35 23.40
AMID (a = —3.0) 29.07 26.38 13.58 16.11 29.27 30.14 23.10
AMiID (o = —1.0) 28.70 26.10 13.34 16.71 26.55 29.55 22.45

0.1  AMiD (e = —0.5) 28.70 26.37 13.59 17.02 27.06 28.50 22.51
AMiID (a = 0.0) 28.86 25.77 13.57 16.14 27.26 28.52 22.25
AMID (a = 0.5) 28.46 25.80 12.94 16.59 26.29 27.73 21.87
AMID (o = 1.0) 24.93 22.36 9.72 16.29 15.09 16.15 15.92
AMID (o = —5.0) 29.38 26.41 13.81 16.44 29.19 30.58 23.29
AMID (o = —3.0) 29.38 26.45 13.71 16.43 28.23 30.44 23.05
AMID (o = —1.0) 20.11 26.31 14.09 16.70 28.68 29.89 23.13

0.5 AMiD (e = —0.5) 28.79 26.55 13.85 16.30 27.85 29.46 22.80
AMiID (o = 0.0) 28.74 25.68 13.01 16.51 26.32 27.83 21.87
AMiID (o = 0.5) 26.73 24.13 12.06 16.19 22.88 24.82 20.02
AMID (o = 1.0) 22.88 21.31 10.41 14.87 19.35 21.34 17.46
AMID (o = —5.0) 29.26 26.64 13.49 16.40 28.65 30.40 23.12
AMID (o = —3.0) 29.14 26.02 13.62 17.03 28.99 30.59 23.25
AMID (a = —1.0) 29.32 26.19 13.24 15.83 29.23 29.97 22.89

0.9 AMiD (e = —0.5) 29.12 26.19 13.32 16.40 28.15 29.68 22.75
AMiID (a = 0.0) 28.28 25.23 13.01 15.51 27.52 28.66 21.99
AMiID (a = 0.5) 22.05 19.92 10.76 12.33 25.09 24.78 18.58
AMID (o = 1.0) 21.52 19.17 9.16 13.60 15.53 17.73 15.04

D DISCUSSION OF OPTIMALITY

Theorem 3.4 guarantees the optimality of AMiD, yet experimentally demonstrated extremely poor

performance for the reverse KL divergence DRKL(pHréa”\)) and o = 1 in Table 3. We conjecture

that it is caused by the conflict between RKL and the support intersection property, which leads

to instability. RKL includes the expectation of the assistant distribution E_(a.x) [[] by definition.
6

(v

However, when a = 1, since supp(r, ’A)) is supp(p) N supp(ge) (see Section 3.2), E .y [] is
6
conducted on an unstable and narrow region, and this phenomenon intensifies further in the early

stages of optimization. In addition, we experimentally find that the combination of Dgkr, (pHrea’)‘))
and o = 1 produces highly unstable loss and gradient within a few early steps. In conclusion, while
AMIiD theoretically guarantees optimality, it might be necessary to employ appropriate divergence
and alpha values, taking into account the imperfect optimization.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed the LLM to polish the paper writing. Specifically, it was used to request grammatical
corrections once the author had drafted the text.
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Table 15: ROUGE-L scores (1) on five task-agnostic instruction-following datasets. Bold and
Underline mean the best and second-best performance of each column, except the teacher, respec-
tively. All results are based on our own re-implementation. We conduct the evaluation with five
random seeds.

DistiLLM (SKL) 29.65 26.87 +0.13 14.11 +020  16.85 054 2559 +022  28.84 +0.03 22.45

Model | Val. (1) | Dolly Eval (1) ~ SelfInst (t) Vicuna (1) SuperNI(1) UnNI(1) | Avg. ()
Teacher | — | 27.14:x015 1455 tos2 1612 2031 27.21 2025 31.41 2006 | 23.29
GPT-2 XL (1.5B) — GPT-2 (0.1B)
SFT 25.81 23.54 +042 9.62 +021 14.79 +056 18.42 +0.23 19.33 +0.13 17.14
KD 25.25 23.44 1033 10.12 +02 14.93 +0.29 16.88 +024  18.87 +0.16 16.85
SeqKD 26.07 24.20 +0.31 11.12 00 15.82 +037  19.29 +000  22.74 +0.05 18.63
ImitKD 2391 22.02 +0.29 10.34 +053  15.32 +026 17.34 +0.26 19.68 +o0.15 16.94
GKD 27.06 24.58 +0.13 11.78 1044 14.60 +037  22.84 +012  25.04 +0.09 19.77
MiniLLM - 2447 +0.18 12.83 +050  16.94 +040  25.58 +033  26.38 +0.17 21.24
AKL 25.62 23.23 +0: 11.18 +021  14.94 +023 19.36 +039  22.41 +0.08 18.22
TAID 28.37 25.74 +0.27 1291 +031  17.09 018 23.66 ~031  26.82 + 21.24
DistiLLM (SKL) 27.88 25.50 +0.28 12.35 +039  16.10 022 23.87 +039  26.16 +0.06 20.80
DistiLLM (SRKL) | 28.21 25.74 +0.20 12.13 +023  16.34 015 2540 +0.10  26.91 +o0.12 21.30
ABKD 28.61 25.49 +0.24 12.52 +052  17.36 055  26.07 +0.14  27.36 +0.10 21.76
AMIiD (Ours) 29.24 26.44 +0.12 13.74 049  16.76 +024  29.71 +00s  30.35 +0.09 23.40
GPT-2 XL (1.5B) — GPT-2 Medium (0.3B)
SFT 27.96 25.70 +035 12.60 +0.3 16.51 +0.19 2421 <013 27.51 +0.17 21.31
KD 26.03 24.27 +0.42 10.58 +0.10  15.59 +o.10 18.15 +0.13 20.49 +0.24 17.82
SeqKD 28.41 26.61 +0.34 13.01 +046 1642 <063 23.44 +020  26.93 o008 21.28
ImitKD 25.93 24.46 +0.62 12.00 +041  15.56 +046  20.12 +034  25.11 +o0.16 19.45
GKD 27.90 25.06 +0.55 12.36 +04 15.71 +o0s8  23.83 +026  27.14 +0.00 20.82
MiniLLM - 25.80 +0: 14.87 +03 17.62 +033  26.78 +026  30.70 +o.11 23.15
AKL 27.81 25.57 +0.10 12.06 +0s56 1598 +017  22.22 4020  26.17 +0.13 20.40
TAID 29.45 27.01 +02 14.53 +047  17.58 <020  25.14 +o15  29.79 +0.14 22.81

=+(

+(

+0

+(

DistiLLM (SRKL) | 29.72 26.50 +0.20 13.79 +071  17.14 ~052  26.25 +011  29.31 +o0.16 22.60
ABKD 29.64 26.93 13.69 +0.3 17.45 027 28.15 018 30.94 +0.06 23.43
AMIiD (Ours) 30.83 27.34 +0.18 15.26 046 17.69 027 29.04 1020  33.15 o013 24.50
GPT-2 XL (1.5B) — GPT-2 Large (0.8B)

SFT 28.48 26.17 +0.41 13.78 +0.2 16.64 +04s8  23.76 030  26.64 +0.12 21.40
KD 28.52 26.27 +0.26 13.72 +044 1643 +025 2524 +01s8  28.94 +0.09 22.12
SeqKD 28.24 26.16 +0.41 13.93 +os6  16.35 +020  25.03 +027  28.58 +0.06 22.01
ImitKD 26.96 23.37 +0.40 13.26 +060  16.00 +033  23.31 +0.16  27.59 +0.14 20.71
GKD 29.36 26.38 +0.24 14.44 1066 17.02 +046  26.64 +0.16  30.99 +0.13 23.09
MiniLLM - 26.30 +0.35 16.50 +052  18.14 049 29.45 017 34.40 +0.17 24.96
AKL 27.69 25.45 +0.40 13.83 +0s82  15.85 +035  25.41 +025  28.91 +0.05 21.89
TAID 29.83 26.85 +0.32 15.07 031 17.02 048 26.71 +023  31.09 +0.17 23.35
DistiLLM (SKL) 29.69 26.12 +0.27 15.69 +075  16.91+043 27.23 +0.18  30.73 +0.12 23.34
DistiLLM (SRKL) | 30.59 27.09 +0.40 14.61 +006  16.39 +027  28.44 +045  31.04 +0.06 23.51
ABKD 30.49 27.67 +034 15.46 +081  17.43 025  30.74 +022  33.11 4015 24.88
AMIiD (Ours) 31.10 27.86 029 16.46 041 16.62 050  32.64 1026  35.64 +0.07 25.84
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