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ABSTRACT

Autoregressive large language models (LLMs) have achieved remarkable im-
provement across many tasks but incur high computational and memory costs.
Knowledge distillation (KD) mitigates this issue by transferring knowledge from a
large teacher to a smaller student through distributional alignment. Previous stud-
ies have proposed various discrepancy metrics, but the capacity gap and training
instability caused by near-zero probabilities, stemming from the high-dimensional
output of LLMs, remain fundamental limitations. To overcome these challenges,
several approaches implicitly or explicitly incorporating assistant distribution have
recently been proposed. However, the past proposals of assistant distributions
have been a fragmented approach without a systematic investigation of the inter-
polation path and the divergence. This paper proposes α-mixture assistant distri-
bution, a novel generalized family of assistant distributions, and α-mixture dis-
tillation, coined AMiD, a unified framework for KD using the assistant distribu-
tion. The α-mixture assistant distribution provides a continuous extension of the
assistant distribution by introducing a new distribution design variable α, which
has been fixed in all previous approaches. Furthermore, AMiD generalizes the
family of divergences used with the assistant distributions based on optimality,
which has also been restricted in previous works. Through extensive experiments,
we demonstrate that AMiD offers superior performance and training stability by
leveraging a broader and theoretically grounded assistant distribution space.

1 INTRODUCTION

Autoregressive large language models (LLMs) have recently achieved remarkable advances, deliv-
ering outstanding performance across a wide spectrum of tasks and application domains (Achiam
et al., 2023; Touvron et al., 2023; Team et al., 2024). However, their massive parameter scales
impose prohibitive computational and memory costs, which hinder their deployment in practical
applications. Accordingly, an essential objective for practical deployment is to compress these high-
capacity models by reducing the parameter count while preserving their strong performance.

Knowledge distillation (KD) (Hinton et al., 2015) is a widely adopted compression technique that
transfers knowledge from a large teacher model to a smaller student model by aligning their token-
level predictive distributions. The selection of a discrepancy metric is an important research topic
in KD for LLMs. Several prior studies have proposed either 1) the use of various forms of diver-
gence, including the capability of regulating the quality-diversity trade-off (Wang et al., 2025), or
2) employing a combination of these divergences (Agarwal et al., 2024; Wu et al., 2024) as the dis-
crepancy metric. However, these approaches do not fundamentally resolve the large capacity gap
between the high-capacity teacher and smaller student models, and the optimization instability due
to near-zero probabilities, which is prevalent in the high-dimensional probability space of LLMs.

A practical remedy is to introduce an assistant distribution that interpolates teacher and student
distributions to stabilize optimization and bridge this capacity gap. Recently, several methodologies
have been proposed that either 1) utilize the discrepancy metric that inherently includes a specific
form of assistant distribution (Agarwal et al., 2024; Ko et al., 2024; 2025) or 2) explicitly model the
assistant distribution (Shing et al., 2025). However, these approaches have generally been treated as
independent recipes in different papers without a systematic study, which hinders the development
of general and effective methodologies.
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In this paper, we propose a generalized framework that integrates the fragmentary employed as-
sistant distribution and divergence. First, we interpret the existing assistant distributions from the
information theory view, revealing that the existing methodology can be expressed as anm-mixture,
which mixes two probability distributions via arithmetic mean, and an e-mixture, which mixes them
via geometric mean. Next, we present a new assistant distribution family, coined α-mixture assistant
distribution, by extending the mean concept via the generalized fα mean. The α-mixture assistant
distribution introduces a new design variable α for the assistant distribution, which adjusts the ge-
ometry of the interpolation path. Here, α is an independent parameter distinct from the well-utilized
parameter λ, which controls the portion of interpolation. The α-mixture assistant distribution not
only includes the existing assistant distributions as a special case (α = ±1) but also provides several
new assistant distribution that were not investigated in KD for LLMs area.

Under the concept of α-mixture assistant distribution, we investigate several properties of the α-
mixture assistant distribution, which are meaningful in KD for LLMs, such as the analysis with
α-divergence, controllable support via α, and continuity with respect to α. Next, we propose a new
KD framework for LLMs, coined as α-mixture distillation (AMiD), which generalizes the optimiza-
tion schemes of prior research by unifying both the assistant distribution and the divergence. AMiD
aims to align the α-mixture assistant distribution and either the teacher or student. We theoreti-
cally prove the optimality of AMiD, which enables us to achieve the primary goal of KD (teacher
= student) even when employing arbitrary divergence, α, and λ, under the perfect optimization as-
sumption. Furthermore, through gradient analysis when employing f -divergence, we theoretically
demonstrate that α adjusts the mode-covering and mode-seeking properties of the student distribu-
tion, with both toy experiments and real-world experiment results supporting this finding. Across
various evaluation scenarios, our proposed framework AMiD consistently demonstrates superior
performance compared to methodologies that do not utilize the assistant distribution and those em-
ploying limited assistant distribution.

2 PRELIMINARY

2.1 KNOWLEDGE DISTILLATION FOR LARGE LANGUAGE MODELS

We denote the input prompt and output token sequences as x and y, respectively, where y :=
(y1, y2, . . . , yL) ∈ VL is a token sequence of length L, with each token drawn from the vocabu-
lary set V . Given the input x, an autoregressive large language model (LLM) outputs a next-token
distribution p(yl|x, y<l), conditioned on both the prompt x and the previously generated tokens
y<l := (y1, y2, . . . , yl−1). We assume access to two LLMs: a large fixed teacher model p(yl|x, y<l),
and a smaller student model qθ(yl|x, y<l) parameterized by θ. The goal of knowledge distillation
(KD) for LLMs is to transfer the knowledge of the teacher into the student. Concretely, KD for
LLMs is typically formulated as aligning the next-token distributions of the teacher and student:

min
θ

E(x,y)∼D

[
L∑

l=1

D(p(yl|x, y<l), qθ(yl|x, y<l))

]
(1)

where D denotes the divergence and the dataset D is composed of the predefined dataset (Hinton
et al., 2015), or various strategies using the student-generated outputs (SGOs): on-policy (Lin et al.,
2020), a mixed approach (Agarwal et al., 2024; Gu et al., 2024; Xu et al., 2024), and an adaptive
off-policy (Ko et al., 2024). For notational brevity, we omit the explicit dependence on x and y
whenever it is clear from context, writing p := p(yl|x, y<l) and qθ := qθ(yl|x, y<l).

The choice of divergenceD plays a pivotal role in KD for LLMs. The widely used Kullback–Leibler
(KL) divergence DKL(p∥qθ) :=

∑
k p(k) log

p(k)
qθ(k)

in KD (Hinton et al., 2015; Kim & Rush,
2016) emphasizes mode-covering, often assigning mass to less informative regions. To mitigate
this effect, the reverse KL divergence DRKL(p∥qθ) := DKL(qθ∥p) is employed for its mode-
seeking properties (Gu et al., 2024), which possesses mode-seeking properties, but either choice
entails a trade-off between quality and diversity. Recent studies address this by (1) combining
divergences, e.g., GKD (Agarwal et al., 2024) with the generalized Jensen–Shannon divergence
DGJS(p|qθ) := λDKL(p∥λp+ (1− λ)qθ) + (1− λ)DKL(qθ∥λp+ (1− λ)qθ), and (2) extending
classical divergences to enable explicit control, as in ABKD (Wang et al., 2025), which adopts the
α-β-divergence DAB (Cichocki et al., 2011) as a generic framework.
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Meanwhile, several methodologies have recently been proposed to improve the optimiza-
tion stability of KD for LLMs. Ko et al. (2024) leverages the skew KL divergence
DSKL(p∥qθ) := DKL(p∥λp+ (1− λ)qθ) and the skew reverse KL divergence DSRKL(p∥qθ) :=
DKL(qθ∥λp+ (1− λ)qθ). TAID (Shing et al., 2025) introduces an adaptive intermediate distri-
bution that gradually shifts from the student’s initial distribution to the teacher distribution, i.e.,
DTAID(p∥qθ) := DKL(rt∥qθ) where rt := softmax((1− λt) · logit(q′θ) + λt · logit(p)) with time-
dependent interpolation parameter λt, detached student logits logit(q′θ), and teacher logits logit(p).

2.2 m-MIXTURE AND e-MIXTURE

Mixture models are a standard tool for integrating information from multiple distributions. Informa-
tion geometry (Amari, 2016; Nielsen, 2020; Eguchi & Komori, 2022) provides a dualistic structure
on the manifold of probability distributions, characterized by two affine connections: the mixture
connection and the exponential connection. These connections induce two natural ways of interpo-
lating between distributions, commonly referred to as the m-mixture and the e-mixture.

Given two probability distributions p and q defined on the same measureable space, the m-mixture
is defined as a convex combination of p and q:

p(m)(x) := (1− t)p(x) + tq(x), t ∈ [0, 1] (2)

In contrast, the e-mixture is defined multiplicatively:

p(e)(x) :=
p(x)tq(x)1−t

Z(t)
, Z(t) :=

∫
p(x)tq(x)1−tdx (3)

The m-mixture forms a straight line in probability space, while the e-mixture forms one in log-
probability space. Some studies leverage m- and e-mixtures, for example, to construct paths for
annealed importance sampling (Grosse et al., 2013; Masrani et al., 2021).

2.3 GENERALIZED f -MEAN

Generalized f -mean (Kolmogorov & Castelnuovo, 1930) is a generalized framework of the mean
by using a monotonically increasing differentiable function f : R → R. Given a set of weights
{wi ∈ R+ |

∑
i wi = 1} and the set of corresponding input elements {ui ∈ R}, the generalized

f -mean is defined as:

mf ({wi}, {ui}) := f−1

(∑
i

wif(ui)

)
(4)

The mf applies a nonlinear transformation to the inputs, combines them with weights in the trans-
formed domain, and maps the result back to the original domain. The well-known means, such as
the arithmetic mean and geometric mean, have homogeneity, which stands for a scale-free property
mf

(
{wi}, {c ·ui}

)
= c ·mf

(
{wi}, {ui}

)
for c > 0. The generalized f -mean is homogeneous only

when f belongs to the unique class of functions (Hardy, 1952; Amari, 2007):

f(u) := fα(u) =

{
u

1−α
2 , α ̸= 1

log u, α = 1
, u ∈ R+ (5)

This family includes various notable examples, such as the weighted arithmetic mean for α =
−1, the weighted geometric mean for α = 1, the weighted harmonic mean for α = 3, and
min{ui},max{ui} for α→ ∞ and α→ −∞, respectively.

3 METHODOLOGY

3.1 MOTIVATION

Our primary motivation stems from the observation that recent studies inherently include the com-
position of the teacher distribution p and the student distribution qθ, which we will refer as assistant
distribution rθ in this paper. For example, several studies (Agarwal et al., 2024; Ko et al., 2024)
utilize the divergences that include rθ := λp + (1 − λ)qθ with λ ∈ [0, 1], which is an weighted
arithmetic mean, also known as m-mixture. Moreover, we have newly discovered that the assistant
distribution of TAID (Shing et al., 2025) is e-mixture, also known as a weighted geometric mean.

3
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(a) Illustration of α-mixture assistant distributions r(α,λ)
θ with varying α.

Teacher p
Student q

-mixture

(b) α = −3

Teacher p
Student q

-mixture

(c) α = −1

Teacher p
Student q

-mixture

(d) α = 0

Teacher p
Student q

-mixture

(e) α = 1

Teacher p
Student q

-mixture

(f) α = 3

Figure 1: Visualization of the α-mixture assistant distribution family. (a) The α-mixture assistant
distribution provides a generalized framework for assistant distributions, with prior studies (Agarwal
et al., 2024; Ko et al., 2024; Shing et al., 2025) recoverable as special cases. (b-f) Illustration of the
α-mixture assistant distribution where p = N (0, 0.52), qθ = N (3, 12), and λ = 0.3.

Proposition 3.1. The assistant distribution of TAID (Shing et al., 2025) is e-mixture of p and qθ:1

r := softmax((1− λ) · logit(qθ) + λ · logit(p)) ∝ pλq1−λ
θ (6)

Please refer to Appendix A.1 for proof. Using the assistant distribution provides several advantages
in KD for LLMs. First, the assistant distribution facilitates more effective knowledge transfer be-
tween the teacher and the student. In KD, a significant capacity gap often arises due to differences in
model size (Mirzadeh et al., 2020), and this issue becomes particularly pronounced in LLMs (Zhang
et al., 2023; Sun et al., 2025) due to the high-dimensional nature. This gap makes it difficult for
the student to faithfully capture the knowledge encoded in the teacher (Mirzadeh et al., 2020; Shing
et al., 2025). By introducing the assistant distribution that serves as a bridge between the teacher
and student, the information transfer might be more efficient (Shing et al., 2025). Second, the assis-
tant distribution improves training stability. Due to the high-dimensional nature of LLMs, most of
probabilites in p and qθ are inevitably close to zero. These near-zero probabilities might cause insta-
bility in both the loss and the gradient computation when divergences involving density ratios (e.g.,
KL divergence) are used (Ko et al., 2024). A suitably constructed assistant distribution yields more
stable density-ratio estimates, thereby enhancing the robustness of optimization (Ko et al., 2024).

Despite these advantages, no systematic study has examined (1) the distinction between m- and e-
mixture assistant distributions, (2) alternative candidates, (3) their compatibility with diverse diver-
gences, and (4) their implications for KD in LLMs, supported by theoretical and empirical analyses.
This gap hinders the development of general and effective methodologies, so the recent studies often
fall into sub-optimal performances by relying on an isolated design of assistant distribution. In this
paper, we tackle this gap by unifying the existing assistant distributions into a generalized design
principle of assistant distribution. In Section 3.2, we extend the assistant distribution family from the
perspective of mean functions and examine its properties. Furthermore, we analyze its optimality
under generic divergences and study its impact on KD for LLMs by gradient analysis in Section 3.3.

3.2 α-MIXTURE ASSISTANT DISTRIBUTION

We introduce a new assistant distribution family, coined α-mixture assistant distribution, by em-
ploying the generalized fα-mean (Amari, 2016) as follows:

Definition 1 (α-mixture assistant distribution). Let α ∈ R and λ ∈ [0, 1]. For distributions p and qθ
defined either on a discrete support X indexed by k or on a continuous domain X with variable x,

1We omit the time index t and detached notation for the sake of uniformity.
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define the unnormalized α-mixture assistant distribution as:

r̃
(α,λ)
θ (z) =


(
λ p(z)

1−α
2 + (1− λ) qθ(z)

1−α
2

) 2
1−α , if α ̸= 1,

p(z)λ qθ(z)
1−λ, if α = 1,

(7)

where z = k in the discrete case and z = x in the continuous case.

Consequently, the (normalized) α-mixture assistant distribution is defined as:

r
(α,λ)
θ (z) =

r̃
(α,λ)
θ (z)

Zr
, Zr :=

∑
k

r̃
(α,λ)
θ (k) or

∫
X
r̃
(α,λ)
θ (x) dx (8)

The α-mixture assistant distribution r(α,λ)θ contains two tunable parameters: α and λ. The λ de-
termines the portion of the interpolation between teacher p and student model qθ, which has been
fine-tuned in previous works (Agarwal et al., 2024; Ko et al., 2024; Shing et al., 2025). The other
parameter α is a new axis of distribution design variable, which was only employed as a specialized
case (α = ±1), controls the geometry of the interpolation path, as depicted in Figure 2a. Since the
form of the generalized fα-mean is solely governed by α, once α is fixed, λ only serves to control
the portion between the teacher and student along that defined distribution family. Theorem 3.2
provides an additional helpful perspective of the α-mixture (assistant) distribution:

Theorem 3.2. (Amari, 2007) Given a fixed α and λ, the r(α,λ) defined as Eq. (8) is unique minizer
of a weighted sum of α-dviergences Dα:

r(α,λ) = argmin
r
λ ·Dα(p∥r) + (1− λ) ·Dα(q∥r) (9)

Theorem 3.2 indicates that r(α,λ)θ is the internal division distribution of p and qθ in terms of α-
divergence, which bridges the generalization of the mean concept and the geodesic in information
geometry. It should be noted that r(α,λ)θ generalizes existing assistant distribution and its analysis:
r
(−1,λ)
θ is m-mixture (Agarwal et al., 2024; Ko et al., 2024) that is minimizer of a weighted sum

of DKL, and r(1,λ)θ is e-mixture (Shing et al., 2025) that is minimizer of a weighted sum of DRKL.
Furthermore, adjusting r(α,λ)θ provides several new assistant distributions that were not previously
used in KD literature, as depicted in Figure 1a.

Moreover, the support of α-mixture assistant distribution determined by the range of α:
supp(r

(α,λ)
θ ) = supp(p) ∪ supp(qθ) when α < 1, and supp(r

(α,λ)
θ ) = supp(p) ∩ supp(q)

when α ≥ 1. This property demonstrates the necessity of determining the range of α based on the
characteristics at the intersection of p and qθ. For instance, if p and qθ overlap significantly, setting
α ≥ 1 can strengthen the matching within the intersection region. Conversely, if they overlap min-
imally, setting α < 1 indicates that matching occurs across a broader range. Although in KD for
LLMs, p and qθ typically share the same support defined by the vocabulary set, this property remains
useful because many probabilities are very small values close to zero due to the high dimensionality.
Figure 1 shows the different behaviors of r(α,λ)θ among the various α.

We also demonstrate that r(α,λ)θ is a continuous function with respect to α in Proposition 3.3, even
though the r(α,λ)θ is a piecewise-defined function. This property enables the design of a curriculum-
based adaptive α scheduling, paralleling prior work (Shing et al., 2025; Ko et al., 2025) that inves-
tigated adaptive strategies for λ. Please refer to Appendix A.2 for proof.

Proposition 3.3. (Continuity) Assume that p and qθ are not both zero. Then, r(α,λ)θ is continuous
function w.r.t α under the fixed λ ∈ [0, 1].

3.3 AMID: KNOWLEDGE DISTILLATION WITH α-MIXTURE ASSISTANT DISTRIBUTION

In this section, we present a token-level KD for LLMs with α-mixture assistant distribution, coined
as α-mixture distillation (AMiD), which aims to align r(α,λ)θ and either p or qθ. Specifically, the
optimization of AMiD is defined as follows, similar to Eq. (1):

min
θ

E(x,y)∼D

[
L∑

l=1

D(p, r
(α,λ)
θ )

]
or min

θ
E(x,y)∼D

[
L∑

l=1

D(qθ, r
(α,λ)
θ )

]
(10)
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(c) Role of α for q∗θ .

Figure 2: Visualization of the characteristics of the α-mixture distillation, AMiD. (a) α determines
the geometry of interpolation while λ controls the portion between p and qθ. (b) r(α,λ)θ can be
interpreted as the internal division point in terms of α-divergence. Due to the uniqueness, updates of
r
(α,λ)
θ also affect qθ. (c) Toy experiment with two-modal p and uni-modal qθ. α controls the property

of q∗θ between the mode-covering and mode-seeking, even though we minimize DKL(p∥r(α,λ)θ ).

It is worth noting that AMiD allows the use of arbitrary divergence D and any dataset D (see
Section 2.1) since r(α,λ)θ is a valid distribution. Furthermore, AMiD generalizes the optimization
schemes of prior research by extending both the assistant distribution and the divergence. For
example, DistiLLM (Ko et al., 2024) corresponds to DKL(p∥r(−1,λ)

θ ) and DKL(qθ∥r(−1,λ)
θ ); and

TAID (Shing et al., 2025) corresponds to DRKL(p∥r(1,λ)θ ).

Next, we aim to characterize the optimality of our proposed framework, AMiD.
Theorem 3.4. (Optimality) Under the perfect optimization, the following statements are true for
any divergence D and α ∈ R:

• For λ ∈ [0, 1), D(p, r
(α,λ)
θ ) = 0 if and only if p = qθ.

• For λ ∈ (0, 1], D(qθ, r
(α,λ)
θ ) = 0 if and only if p = qθ.

Please refer to Appendix A.3 for the proof. Theorem 3.4 demonstrates that even if we minimize the
divergence between p (or qθ) and r(α,λ)θ , the primary goal of KD is guaranteed i.e., p = qθ. It is in-
tuitive because the interpolation point needs to coincide with one of the endpoints when it coincides
with the other (see Figure 2b). Therefore, leveraging the benefits of the assistant distribution (see
Section 3.1), we establish optimality. Although Theorem 3.4 establishes theoretical optimality for
any choice ofD, α ∈ R, and λ ∈ (0, 1), the effectiveness of AMiD depends on selecting appropriate
values due to the imperfect practical optimization.

Now, we provide the gradient analysis to investigate the specific role of α. In particular, we consider
f -divergence, which is widely used in many areas, including KD for LLMs.

Proposition 3.5. (Gradient analysis) The gradient of f -divergence Df (p||r(α,λ)θ ) be expressed as:

∇θDf

(
p||r(α,λ)θ

)
= E

r
(α,λ)
θ

[
w ·

{
ψf

(
p

r
(α,λ)
θ

)
− E

r
(α,λ)
θ

[
ψf

(
p

r
(α,λ)
θ

)]}
· ∇θ log qθ

]
(11)

where w := (1−λ)qθ
1−α
2

λp
1−α
2 +(1−λ)qθ

1−α
2

and ψf (v) := f(v)− vf ′(v).

Please refer to Appendix A.4 for the proof. Proposition 3.5 implies the following properties. First, w
controls the magnitude of the instance-wise gradient ∇θ log qθ(yl | x, y<l). While w does not affect
the individual gradient direction due to 0 ≤ w ≤ 1, its weighting effect may shift the batch-wise
gradient direction. Second, the α plays a crucial role in enabling w to perform instance-wise weight-
ing based on the density ratio p(yl|x,y<l)

qθ(yl|x,y<l)
. This property originates from the unique characteristic of

the α-mixture assistant distribution that cannot be achieved by λ or learning rate scheduling. Third,
α (relatively) adjusts the mode-covering and mode-seeking behavior of the optimized student distri-
bution. Let us assume 1−α

2 ≥ 0, i.e., α ≤ 1.2 When p ≥ qθ, a larger α produces a correspondingly

2Although α can be any real number, we assume α ≤ 1 for the sake of simplicity.
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Table 1: ROUGE-L scores (↑) on five task-agnostic instruction-following datasets. Bold and
Underline mean the best and second-best performance of each column, except the teacher, respec-
tively. All results are based on our own re-implementation. We conduct the evaluation with five
random seeds. More results of baselines are in Appendix C.1.

Model Val. (↑) Dolly Eval (↑) Self Inst (↑) Vicuna (↑) Super NI (↑) UnNI (↑) Avg. (↑)

GPT-2 XL (Teacher) − 27.14 ±0.15 14.55 ±0.82 16.12 ±0.31 27.21 ±0.25 31.41 ±0.06 23.29

GPT-2 XL (1.5B) → GPT-2 (0.1B)
GKD 27.06 24.58 ±0.13 11.78 ±0.44 14.60 ±0.37 22.84 ±0.12 25.04 ±0.09 19.77
TAID 28.37 25.74 ±0.27 12.91 ±0.31 17.09 ±0.18 23.66 ±0.31 26.82 ±0.05 21.24
DistiLLM (SKL) 27.88 25.50 ±0.28 12.35 ±0.39 16.10 ±0.22 23.87 ±0.39 26.16 ±0.06 20.80
DistiLLM (SRKL) 28.21 25.74 ±0.20 12.13 ±0.23 16.34 ±0.15 25.40 ±0.10 26.91 ±0.12 21.30
ABKD 28.61 25.49 ±0.24 12.52 ±0.52 17.36 ±0.55 26.07 ±0.14 27.36 ±0.10 21.76
AMiD (Ours) 29.24 26.44 ±0.12 13.74 ±0.49 16.76 ±0.24 29.71 ±0.08 30.35 ±0.09 23.40
GPT-2 XL (1.5B) → GPT-2 Medium (0.3B)
GKD 27.90 25.06 ±0.55 12.36 ±0.42 15.71 ±0.58 23.83 ±0.26 27.14 ±0.09 20.82
TAID 29.45 27.01 ±0.27 14.53 ±0.47 17.58 ±0.20 25.14 ±0.15 29.79 ±0.14 22.81
DistiLLM (SKL) 29.65 26.87 ±0.13 14.11 ±0.29 16.85 ±0.54 25.59 ±0.22 28.84 ±0.03 22.45
DistiLLM (SRKL) 29.72 26.50 ±0.20 13.79 ±0.71 17.14 ±0.52 26.25 ±0.11 29.31 ±0.16 22.60
ABKD 29.64 26.93 ±0.17 13.69 ±0.32 17.45 ±0.27 28.15 ±0.18 30.94 ±0.06 23.43
AMiD (Ours) 30.83 27.34 ±0.18 15.26 ±0.46 17.69 ±0.27 29.04 ±0.20 33.15 ±0.13 24.50
GPT-2 XL (1.5B) → GPT-2 Large (0.8B)
GKD 29.36 26.38 ±0.24 14.44 ±0.66 17.02 ±0.46 26.64 ±0.16 30.99 ±0.13 23.09
TAID 29.83 26.85 ±0.32 15.07 ±0.31 17.02 ±0.48 26.71 ±0.23 31.09 ±0.17 23.35
DistiLLM (SKL) 29.69 26.12 ±0.27 15.69 ±0.75 16.91±0.43 27.23 ±0.18 30.73 ±0.12 23.34
DistiLLM (SRKL) 30.59 27.09 ±0.40 14.61 ±0.66 16.39 ±0.27 28.44 ±0.45 31.04 ±0.06 23.51
ABKD 30.49 27.67 ±0.34 15.46 ±0.81 17.43 ±0.25 30.74 ±0.22 33.11 ±0.15 24.88
AMiD (Ours) 31.10 27.86 ±0.29 16.46 ±0.41 16.62 ±0.50 32.64 ±0.26 35.64 ±0.07 25.84
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Figure 3: ROUGE-L
curve on Dolly dataset.

Table 2: Experimental results on the task-specific distillation. “Trans.” and
“Summ.” indicate translation and summarization task, respectively. We use
DAB for a divergence and a fixed λ = 0.1 for these experiments.

SFTed Gemma-7B-It → Gemma-2B-It SFTed Qwen2-7B-It to Qwen-0.5B-It

Assistant r(α,λ)θ

Trans. Summ. GSM8K. Trans. Summ. GSM8K
COMET (↑) ROUGE-L (↑) Acc (↑) COMET (↑) ROUGE-L (↑) Acc (↑)

qθ 74.21 34.88 24.26 58.07 31.67 33.13
DistiLLM 52.83 26.51 00.00 57.23 32.27 35.63
TAID 74.20 34.93 24.49 58.17 31.65 33.28
AMiD (α ̸= ±1) 74.78 35.22 24.94 58.31 32.51 36.24

larger value of w. Thus, it amplifies the gradient magnitude in regions where the student underes-
timates the teacher. As a result, choosing a large α (relatively) encourages the student distribution
qθ to exhibit a mode-covering behavior. In contrast, employing the small α in p < qθ results in a
large w value. It assigns a large gradient magnitude to the area where the student overestimates,
ultimately exhibiting that the small α (relatively) reinforces mode-seeking property.

To support the results from the gradient analysis, we investigate the property of the optimized stu-
dent model q∗θ through the toy experiments. Figure 2c shows that the optimized student distribution
q∗θ with small α converges to one of the peak, which indicates the mode-seeking. As increasing α,
the q∗θ gradually have thick tails while moving towards the average of p, which implies the mode-
covering. These analyses demonstrate that the balance between mode-covering and mode-seeking,
often attributed to divergence selection, might be controlled by α in the α-mixture assistant distri-
bution. Please refer to Figure 4 for the diversity analysis of the practical model and dataset.

4 EXPERIMENTS

We consider both general instruction-following distillation and task-specific distillation to validate
the effectiveness of AMiD. AMiD is primarily compared against GKD (Agarwal et al., 2024), Dis-
tiLLM (Ko et al., 2024), TAID (Shing et al., 2025), and the state-of-the-art ABKD (Wang et al.,
2025). Please refer to Table 5 in Appendix C for further performance comparisons with additional
baselines. Additional details on datasets, models, and training details are provided in Appendix B.
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Table 3: ROUGE-L scores (↑) with various divergences D and α. We utilize GPT-2 XL (1.5B) →
GPT-2 (0.1B). We use a fixed λ = 0.1 for these experiments. The assistant distribution employed
by DistiLLM and TAID corresponds to α = −1 and α = 1, respectively.

Divergence D Assistant r(α,λ)θ Val. (↑) Dolly Eval (↑) Self Inst (↑) Vicuna (↑) Super NI (↑) UnNI (↑) Avg. (↑)

DKL(p∥r(α,λ)θ )

qθ 25.25 22.96 ±0.23 10.54 ±0.14 15.33 ±0.13 18.10 ±0.26 21.10 ±0.16 17.61
AMiD (α = −5.0) 28.99 25.86 ±0.10 13.72 ±0.42 15.90 ±0.29 28.32 ±0.24 29.52 ±0.06 22.66
AMiD (α = −3.0) 28.47 25.72 ±0.17 13.68 ±0.19 16.71 ±0.30 27.30 ±0.30 29.03 ±0.12 22.49
AMiD (α = −1.0) 27.88 25.50 ±0.28 12.35 ±0.39 16.10 ±0.22 23.87 ±0.39 26.16 ±0.06 20.80
AMiD (α = −0.5) 27.37 24.17 ±0.37 12.15 ±0.49 16.37 ±0.38 24.34 ±0.20 24.36 ±0.06 20.28
AMiD (α = 0.0) 26.37 24.08 ±0.25 10.65 ±0.20 16.27 ±0.24 20.09 ±0.20 22.71 ±0.13 18.76
AMiD (α = 0.5) 25.56 22.81 ±0.22 10.77 ±0.40 16.24 ±0.23 18.96 ±0.45 22.13 ±0.10 18.18
AMiD (α = 1.0) 25.31 22.99 ±0.12 11.17 ±0.51 15.97 ±0.46 18.74 ±0.40 21.94 ±0.16 18.16

DRKL(p∥r(α,λ)θ )

qθ 28.85 26.67 ±0.50 12.32 ±0.43 17.48 ±0.30 24.25 ±0.19 26.56 ±0.19 21.46
AMiD (α = −5.0) 28.39 26.16 ±0.33 12.95 ±0.57 17.39 ±0.39 24.59 ±0.22 27.17 ±0.09 21.65
AMiD (α = −3.0) 28.75 26.47 ±0.12 12.71 ±0.21 17.17 ±0.42 27.00 ±0.11 28.16 ±0.12 22.30
AMiD (α = −1.0) 28.97 22.96 ±0.23 12.34 ±0.24 17.27 ±0.64 22.44 ±0.36 25.68 ±0.10 20.83
AMiD (α = −0.5) 28.25 26.15 ±0.30 11.81 ±0.29 16.54 ±0.22 23.49 ±0.25 25.87 ±0.06 20.77
AMiD (α = 0.0) 28.80 25.84 ±0.22 12.06 ±0.13 17.71 ±0.65 22.72 ±0.24 25.36 ±0.10 20.74
AMiD (α = 0.5) 28.45 25.42 ±0.11 11.45 ±0.26 17.31 ±0.38 21.58 ±0.24 24.43 ±0.10 20.04
AMiD (α = 1.0) 0.16 4.27 ±0.01 2.81 ±0.02 9.12 ±0.06 1.64 ±0.00 1.84 ±0.0 3.94

DAB(p∥r(α,λ)θ )

qθ 28.61 25.49 ±0.24 12.52 ±0.52 17.36 ±0.55 26.07 ±0.14 27.36 ±0.10 21.76
AMiD (α = −5.0) 29.24 26.44 ±0.12 13.74 ±0.49 16.76 ±0.24 29.71 ±0.08 30.35 ±0.09 23.40
AMiD (α = −3.0) 29.07 26.38 ±0.18 13.58 ±0.57 16.11 ±0.18 29.27 ±0.14 30.14 ±0.06 23.10
AMiD (α = −1.0) 28.70 26.10 ±0.24 13.34 ±0.25 16.71 ±0.27 26.55 ±0.17 29.55 ±0.11 22.45
AMiD (α = −0.5) 28.70 26.37 ±0.27 13.59 ±0.25 17.02 ±0.34 27.06 ±0.31 28.50 ±0.16 22.51
AMiD (α = 0.0) 28.86 25.77 ±0.34 13.57 ±0.22 16.14 ±0.36 27.26 ±0.27 28.52 ±0.20 22.25
AMiD (α = 0.5) 28.46 25.80 ±0.32 12.94 ±0.36 16.59 ±0.34 26.29 ±0.22 27.73 ±0.08 21.87
AMiD (α = 1.0) 24.93 22.36 ±0.22 9.72 ±0.58 16.29 ±0.30 15.09 ±0.19 16.15 ±0.12 15.92
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Figure 4: Performance curve on ROUGE-L (quality) and Self-BLEU
(diversity). Colored dashed lines: no-assistant baseline. λ = 0.1.
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Figure 5: Sensitivity analysis
for λ under fixed α = −5.0.

4.1 PERFORMANCE COMPARISON

Instruction-following Experiments. Table 1 reports results on the GPT-2 family (Radford et al.,
2019) across different model sizes. AMiD consistently achieves the best performance in most eval-
uation settings, surpassing prior methods such as GKD, TAID, and DistiLLM, which also exploit
assistant distributions. Notably, AMiD delivers substantial gains on SuperNI and UnNI, benchmarks
requiring generalization to diverse and unseen instructions (Wang et al., 2022). These improvements
suggest that AMiD promotes superior mode coverage and distributional alignment, thereby enhanc-
ing out-of-distribution generalization. Even when the capacity gap narrows for larger models (e.g.,
GPT-2 Large), AMiD continues to yield significant improvements, demonstrating that the α-mixture
assistant distribution benefits not only small students but also stronger ones, thereby validating its
scalability and robustness. Figure 3 further shows that AMiD consistently envelopes the baseline’s
validation ROUGE-L curve, indicating both efficient and stable optimization. Additional compar-
isons with other baselines and experiments on OpenLLaMA are provided in Appendix C

Task-specific Experiments. To further investigate the effectiveness of AMiD, we consider various
task-specific distillation, such as translation, summarization, and reasoning tasks. We adopt the
implementation of SKD (Xu et al., 2024) and employ the fixed dataset strategy. As shown in Table 2,
using an assistant distribution achieves higher performance compared to the no-assistant baseline
(qθ). Nevertheless, in the previous framework, where only α = ±1 is available, it exhibits mixed
performance depending on the task and network. Our proposed framework, AMiD, which extends
the range of α, allows us to discover the high-performance assistant distribution. This generalization
leads to consistent improvements over the baselines, achieving the best performance on all tasks.
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Table 4: ROUGE-L scores (↑) with various SGOs. We utilize GPT-2 XL (1.5B) → GPT-2 (0.1B).
We use a fixed λ = 0.1 for these experiments. The assistant distribution employed by DistiLLM
and TAID corresponds to α = −1 and α = 1, respectively.

Dataset D Assistant r(α,λ)θ Val. (↑) Dolly Eval (↑) Self Inst (↑) Vicuna (↑) Super NI (↑) UnNI (↑) Avg. (↑)

Fixed
(Hinton et al., 2015)

qθ 27.06 24.81 ±0.28 11.25 ±0.26 15.05 ±0.21 21.78 ±0.15 23.73 ±0.09 19.32
AMiD (α = −1) 27.35 25.34 ±0.28 11.54 ±0.26 15.34 ±0.30 21.77 ±0.19 24.45 ±0.06 19.69
AMiD (α = 1) 27.09 24.36 ±0.34 12.40 ±0.41 14.37 ±0.31 24.36 ±0.28 26.28 ±0.05 20.35
AMiD (α ̸= ±1) 27.84 25.32 ±0.15 13.44 ±0.41 15.44 ±0.11 27.03 ±0.12 28.19 ±0.06 21.88

On-policy
(Lin et al., 2020)

qθ 28.25 25.70 ±0.20 13.03 ±0.17 16.86 ±0.34 24.67 ±0.16 27.47 ±0.15 21.55
AMiD (α = −1) 28.60 25.43 ±0.34 12.96 ±0.58 16.59 ±0.39 27.35 ±0.16 29.93 ±0.07 22.45
AMiD (α = 1) 28.60 25.12 ±0.55 13.28 ±0.38 17.08 ±0.52 24.35 ±0.23 26.94 ±0.19 21.35
AMiD (α ̸= ±1) 28.90 26.22 ±0.31 14.31 ±0.22 17.37 ±0.22 28.59 ±0.27 31.00 ±0.08 23.50

Mixed
(Agarwal et al., 2024)

qθ 29.08 25.67 ±0.16 12.38 ±0.29 17.15 ±0.52 22.98 ±0.26 26.20 ±0.14 20.88
AMiD (α = −1) 28.79 25.65 ±0.25 11.98 ±0.28 16.94 ±0.13 23.82 ±0.17 26.25 ±0.06 20.93
AMiD (α = 1) 28.06 25.68 ±0.39 12.81 ±0.20 16.97 ±0.27 24.91 ±0.21 26.52 ±0.08 21.38
AMiD (α ̸= ±1) 29.24 26.46 ±0.16 13.62 ±0.27 16.91 ±0.30 28.13 ±0.06 29.39 ±0.07 22.90

Adaptive off-policy
(Ko et al., 2024)

qθ 28.61 25.49 ±0.24 12.52 ±0.52 17.36 ±0.55 26.07 ±0.14 27.36 ±0.10 21.76
AMiD (α = −1) 28.70 26.10 ±0.24 13.34 ±0.25 16.71 ±0.27 26.55 ±0.17 29.55 ±0.11 22.45
AMiD (α = 1) 27.80 25.78 ±0.44 13.74 ±0.19 16.42 ±0.22 26.04 ±0.22 27.79 ±0.09 21.95
AMiD (α ̸= ±1) 29.24 26.44 ±0.12 13.74 ±0.49 16.76 ±0.24 29.71 ±0.08 30.35 ±0.09 23.40

4.2 ADDITIONAL ANALYSIS AND ABLATION STUDY

Effect of α and λ. As mentioned in Section 3.3, we have demonstrated that even when employ-
ing the same divergence, adjusting the α of the α-mixture assistant distribution allows us to control
the mode-covering or mode-seeking property of the optimized student distribution. To further sub-
stantiate this analysis, we examine the trends of ROUGE-L, representing quality, and (Negative)
Self-BLEU, representing diversity, by adjusting α with a fixed divergence. Figure 4 exhibits a clear
quality-diversity trade-off for both KL divergence DKL and α-β divergence DAB. Specifically, as
α increases, quality decreases and diversity increases, supporting the theoretical analysis that the
mode-covering property is enhanced. Decreasing α shows the opposite effect, aligning with the
mode of teacher distribution, which indicates mode-seeking. These results demonstrate that, even
under a fixed divergence, α serves as an effective control knob to balance quality and diversity.

While this paper has primarily examined extensions from the α perspective, we study the effect of
varying the mixing coefficient λ under fixed α. As shown in Figure 5, the performance remains sta-
ble across a wide range of λ. Remarkably, for all tested λ the performance consistently outperforms
the no-assistant baseline (dashed line), demonstrating the robustness of AMiD with respect to λ.

Compatibility with Divergences. As mentioned in Section 3.3, AMiD allows the use of the arbi-
trary divergenceD since the α-mixture assistant distribution r(α,λ)θ is a valid distribution. Therefore,
we conduct performance comparisons across various combinations of divergences and α values to
demonstrate the versatility of AMiD. In Table 3, we observed that AMiD generally achieves higher
performance than the no-assistant baseline regardless of divergence in most settings. Notably, the
highest-performing α was discovered in α ̸= ±1 regions beyond the limited scope of prior works,
and its values are generally small. These results confirm the universality of AMiD to generic di-
vergences, representing its wide adaptiveness and flexibility. Please refer to Appendix C.3 for the
student-assistant cases D(qθ, r

(α,λ)
θ ).

Universality to SGOs. AMiD is a generalized framework from the view of assistant distribution
r
(α,λ)
θ and divergenceD, and therefore is not constrained by the dataset D. In Table 4, we confirm the

universality of AMiD across various student-generated output (SGO) strategies. AMiD (α ̸= ±1)
outperforms the no-assistant baseline and previous mixtures (α = ±1) by a significant margin across
almost all metrics. These results indicate that AMiD is compatible with diverse SGO pipelines and
remains effective regardless of how the datasets are collected.

5 CONCLUSION

This work introduces a unified framework for KD in LLMs by proposing the α-mixture assistant
distribution and the corresponding distillation method, AMiD. Our approach systematically gener-
alizes previous fragmented methods and enables flexible interpolation between teacher and student.
Theoretical and empirical analyses congruently demonstrate that the design parameter α controls
the mode-seeking vs. mode-covering behavior. AMiD consistently outperforms prior KD methods
across diverse settings and establishes a new foundation for assistant-guided KD for LLMs.
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A PROOF

A.1 PROOF OF PROPOSITION 3.1

Proposition 3.1. The assistant distribution of TAID (Shing et al., 2025) is e-mixture of p and qθ:3

r := softmax((1− λ) · logit(qθ) + λ · logit(p)) ∝ pλq1−λ
θ (6)

Proof. Note that p = softmax(logit(p)) = 1
Zp

exp(logit(p)) where logit(p) is logit of p and Zp is
normalization constant of p. Therefore, logit(p) = log(p · Zp).

r = softmax(λlogit(p) + (1− λ)logit(q)) (12)

=
1

Zr
exp(λlogit(p) + (1− λ)logit(q)) (13)

=
1

Zr
exp(λ log(pZp) + (1− λ) log(qZq)) (14)

=
1

Zr
exp
(
log
(
pλq1−λ

)
+ log

(
Zλ
pZ

1−λ
q

))
(15)

=
Zλ
pZ

1−λ
q

Zr
pλq1−λ (16)

=
1

Z ′ p
λq1−λ, where Z ′ :=

Zr

Zλ
pZ

1−λ
q

. (17)

Now, it is sufficient to show that Z ′ =
∑
pλq1−λ:

Z ′ =
1

Zλ
pZ

1−λ
q

∑
exp(λlogit(p) + (1− λ)logit(q)) (18)

=
∑(

1

Zp
exp(logit(p))

)λ(
1

Zq
exp(logit(q))

)1−λ

(19)

=
∑

pλq1−λ. (20)

Therefore, rθ ∝ pλq1−λ and it is a valid distribution with normalization.

A.2 PROOF OF PROPOSITION 3.3

Proposition 3.3. (Continuity) Assume that p and qθ are not both zero. Then, r(α,λ)θ is continuous
function w.r.t α under the fixed λ ∈ [0, 1].

Proof. We begin with the proof for the continuity of the unnormalized assistant distribution r̃(α,λ)θ .
The α ̸= 1 case is trivial since it is a composition of continuous functions. For the α = 1 case, it is
a well-known fact that the power mean is a continuous function (Bullen, 2013). Especially, we can
show that as follows:

lim
α→1

log r̃
(α,λ)
θ = lim

α→1

2

1− α
log

(
λ p

1−α
2 + (1− λ) q

1−α
2

)
(21)

= lim
α→1

λ p
1−α
2 log p+ (1− λ) q

1−α
2 log q

λ p
1−α
2 + (1− λ) q

1−α
2

(22)

= λ log p+ (1− λ) log q (23)

= log
(
pλq 1−λ

)
. (24)

3We omit the time index t and detached notation for the sake of uniformity.
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By the continuity of the exponential function, we can get lim
α→1

r̃
(α,λ)
θ = pλq1−λ. We use L’Hôpital’s

rule in the second equality. Note that Z =
∑
i

r̃
(α,λ)
θ (i) is continuous function w.r.t α since it is a

finite sum of continuous functions w.r.t α. Also, since p and q cannot be both zero, r̃(α,λ)θ is not
zero, so Z > 0. Therefore, the r(α,λ)θ = 1

Z r̃
(α,λ)
θ is contiuous function w.r.t. α.

A.3 PROOF OF THEOREM 3.4

Theorem 3.4. (Optimality) Under the perfect optimization, the following statements are true for
any divergence D and α ∈ R:

• For λ ∈ [0, 1), D(p, r
(α,λ)
θ ) = 0 if and only if p = qθ.

• For λ ∈ (0, 1], D(qθ, r
(α,λ)
θ ) = 0 if and only if p = qθ.

Proof. We first prove that D(p, r
(α,λ)
θ ) implies p = qθ. By the definition of divergence, we have

that D(p, r
(α,λ)
θ ) = 0 if and only if p = r

(α,λ)
θ .

Case α = 1. In this case, r(α,λ)θ = 1
Z p

λq
(1−λ)
θ .

p =
1

Z
pλ q 1−λ

θ ⇔ Z p 1−λ = q 1−λ
θ ⇔ Z

1
1−λ p = qθ (25)

By integrating both sides, Z
1

1−λ = 1 which implies Z = 1. Therefore, p = qθ

Case α ̸= 1. In this case, r(α,λ)θ = 1
Z

{
λ p

1−α
2 + (1− λ) q

1−α
2

θ

} 2
1−α

p =
1

Z

{
λ p

1−α
2 + (1− λ) q

1−α
2

θ

} 2
1−α

⇔ Z
1−α
2 p

1−α
2 = λ p

1−α
2 + (1− λ) q

1−α
2

θ (26)

⇔
(
Z

1−α
2 − λ

)
p
1−α
2 = (1− λ) q

1−α
2

θ (27)

⇔ C p
1−α
2 = q

1−α
2

θ , where C :=
Z

1−α
2 − λ

1− λ
(28)

⇔ C
2

1−α p = qθ (29)

By integrating both sides, C
2

1−α = 1 which implies C = 1. Therefore, p = qθ.

D(qθ, r
(α,λ)
θ ) is similar.

A.4 PROOF OF PROPOSITION 3.5

Proposition 3.5. (Gradient analysis) The gradient of f -divergence Df (p||r(α,λ)θ ) be expressed as:

∇θDf

(
p||r(α,λ)θ

)
= E

r
(α,λ)
θ

[
w ·

{
ψf

(
p

r
(α,λ)
θ

)
− E

r
(α,λ)
θ

[
ψf

(
p

r
(α,λ)
θ

)]}
· ∇θ log qθ

]
(11)

where w := (1−λ)qθ
1−α
2

λp
1−α
2 +(1−λ)qθ

1−α
2

and ψf (v) := f(v)− vf ′(v).
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Proof. From the basic calculus, we can derive the following equation for fixed p:
∂

∂r

[
r f
(p
r

)]
= f

(p
r

)
− p

r
f ′
(p
r

)
= ψf

(p
r

)
. (30)

Hence,

∇θDf (p||r(α,λ)θ ) =
∑
yt∈V

ψf

(
p(yl | x, y<l)

r
(α,λ)
θ (yl | x, y<l)

)
· ∇θr

(α,λ)
θ (yl | x, y<l) (31)

= E
r
(α,λ)
θ

[
ψf

(
p

r
(α,λ)
θ

)
· ∇θ log r

(α,λ)
θ

]
(32)

Before deriving the gradient of the log probability of r(α,λ)θ , let us first derive ∇θ r̃
(α,λ)
θ as follows:

∇θ r̃
(α,λ)
θ = ∇θ

{
h−1
α

(
λhα(p) + (1− λ)hα(qθ)

)}
(33)

=
1

h′α
(
r̃
(α,λ)
θ

) (1− λ)∇θhα(qθ) (34)

=
1

h′α
(
r̃
(α,λ)
θ

) (1− λ)h′α(qθ)∇θqθ (35)

=
1

h′α
(
r̃
(α,λ)
θ

) (1− λ)h′α(qθ) qθ ∇θ log qθ (36)

= (1− λ)
h′α(qθ) qθ

h′α
(
r̃
(α,λ)
θ

)
r̃
(α,λ)
θ

r̃
(α,λ)
θ ∇θ log qθ (37)

= (1− λ)

(
qθ

r̃
(α,λ)
θ

) 1−α
2

r̃
(α,λ)
θ ∇θ log qθ (38)

=
(1− λ) q

1−α
2

θ

λ p
1−α
2 + (1− λ) q

1−α
2

θ

r̃
(α,λ)
θ ∇θ log qθ (39)

= w · r̃(α,λ)θ · ∇θ log qθ . (40)

Therefore,

∇θ log r
(α,λ)
θ =

∇θ r̃
(α,λ)
θ

r̃
(α,λ)
θ

− 1

Zr

∑
k

∇θ r̃
(α,λ)
θ (k) (41)

= w · ∇θ log qθ − E
r
(α,λ)
θ

[
w · ∇θ log qθ

]
(42)

Lastly, placing Eq. (42) into Eq. (32) and rearranging will yield the final result.

∇θDf (p||r(α,λ)θ ) = E
r
(α,λ)
θ

[
ψf

(
p

r
(α,λ)
θ

)
· ∇θ log r

(α,λ)
θ

]
(43)

= E
r
(α,λ)
θ

[
ψf

(
p

r
(α,λ)
θ

)
·
{
w · ∇θ log qθ − E

r
(α,λ)
θ

[
w · ∇θ log qθ

]}]
(44)

= E
r
(α,λ)
θ

[
w ·

{
ψf

(
p

r
(α,λ)
θ

)
− E

r
(α,λ)
θ

[
ψf

(
p

r
(α,λ)
θ

)]}
· ∇θ log qθ

]
(45)
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B EXPERIMENTAL DETAILS

B.1 TOY EXPERIMENT

We employ a two-modal Gaussian mixture for the teacher p = 0.7N (−3, 2) + 0.3N (3, 0.8) and a
unimodal Gaussian for the student qθ = N (µ, σ2) with µ0 = 0, σ2

0 = 1. We optimize θ = {µ, σ2}
by minizing DKL(p∥r(α,λ)θ ) with Adam optimizer (Kingma & Ba, 2014) with 5000 steps and 5e-2
learning rate.

B.2 DATASETS

After distillation, we evaluate models on five widely used, task-agnostic instruction-following
benchmarks: Dolly-evaluation, Self-Instruct, Vicuna-evaluation, Super-Natural Instructions, and
Unnatural Instruction. Below we summarize each dataset.

• databricks-dolly-15k (Conover et al., 2023): An open-source dataset of instruc-
tion–response pairs created by thousands of Databricks employees. It covers diverse be-
havioral categories defined in Ouyang et al. (2022), including brainstorming, classification,
closed QA, generation, information extraction, open QA, and summarization.

• Self-instruct (Wang et al., 2023): A framework for improving instruction-following ability
by iteratively using model outputs to generate new instructional data. The dataset contains
52K instructions and 82K input–output pairs for tuning, 252 expert-written tasks for prac-
tical evaluation, and 50K additional examples from public datasets for benchmarking.

• Vicuna (Chiang et al., 2023): A benchmark consisting of 80 challenging open-ended ques-
tions originally used to assess Vicuna. It provides a compact but difficult testbed for evalu-
ating instruction-following performance.

• Super-Natural Instructions (Wang et al., 2022): A large-scale benchmark comprising
1,616 expert-written NLP tasks spanning 76 task categories. Its test set includes 9K exam-
ples drawn from 119 tasks, covering a wide spectrum of instruction types.

• Unnatural Instructions (Honovich et al., 2023): An AI-generated dataset containing 240K
instructions created with minimal human intervention. The collection demonstrates that
synthetic data can serve as an effective substitute for human-curated data. Its core subset
includes 60K examples.

B.3 IMPLEMENTATION SETTINGS

Training. For instruction-following distillation, we use databricks-dolly-15K (Conover et al.,
2023) for the distillation loss and OpenWebText (Gokaslan & Cohen, 2019) for the pretraining
loss. Teacher models include GPT-2 XL (1.5B) with SFT, and students are GPT-2 (0.1B), GPT-2
Medium (0.3B), and GPT-2 Large (0.8B). To test scalability, OpenLLaMA-7B (Geng & Liu, 2023)
is distilled into OpenLLaMA-3B using LoRA.

For task-specific evaluation, we use Flores-200 (Costa-Jussà et al., 2022) for translation, Dialog-
Sum (Chen et al., 2021) for summarization, and GSM8K (Cobbe et al., 2021) for mathematical
reasoning. Teacher models are GEMMA-7B-IT (Team et al., 2024) and QWEN2-7B-IT (Team,
2024), while GEMMA-2B-IT and QWEN2-0.5B-IT serve as students. Teachers are fine-tuned on
the full dataset, while students are trained with about 1,000 samples.

We use αAB-βAB-divergence with αAB = 0.2, βAB = 0.7 and adopt adaptive off-policy train-
ing (Ko et al., 2024) as default.

Evaluation. For evaluating generation quality, we adopt ROUGE-L (Lin, 2004) and Self-
BLEU (Zhu et al., 2018). ROUGE-L measures the similarity between the generated output and
the reference text by computing the Longest Common Subsequence (LCS). Specifically, recall and
precision are defined as

RLCS =
LCS(x, y)

Lx
, PLCS =

LCS(x, y)

Ly
, (46)
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where LCS(x, y) is the length of the longest common subsequence between the reference x and the
generated text y, and Lx, Ly denote their respective lengths. The final ROUGE-L score is given by
the harmonic mean:

ROUGE-L =
2 ·RLCS · PLCS

RLCS + PLCS
. (47)

A higher ROUGE-L score indicates that the generated text more closely matches the reference in
terms of sequence overlap.

Self-BLEU evaluates the diversity of generated outputs by leveraging the BLEU metric (Papineni
et al., 2002). BLEU computes the geometric mean of modified n-gram precisions with a brevity
penalty (BP):

BP =

{
1 if c > r,

e(1−r/c) if c ≤ r,
(48)

BLEU(c,R) = BP · exp

(
N∑

n=1

wn log pn(c,R)

)
, (49)

where c is the candidate length, r is the effective reference length, pn(c,R) denotes the modified
n-gram precision, and wn are positive weights summing to one. Building on this definition, Self-
BLEU is calculated by treating each generated sample si as the hypothesis and the remaining set
S\{si} as references:

Self-BLEU(S) =
1

M

M∑
i=1

BLEU(si, S\{si}). (50)

A higher Self-BLEU score (close to 1) indicates that the outputs are highly similar to each other,
reflecting low diversity and more deterministic behavior, while a lower score (close to 0) suggests
greater diversity across generations.

C ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

C.1 MORE COMPARISON WITH BASELINES

Table 5 presents the complete results on the GPT-2 family, where we extend the comparison to a
broader set of baseline methods beyond those reported in the main paper. We observe that AMiD
consistently outperforms all competing approaches across different student sizes (0.1B, 0.3B, 0.8B),
further validating the robustness of our method. In particular, while methods such as SeqKD, Im-
itKD, MiniLLM, and AKL yield modest improvements over standard knowledge distillation (KD),
they still fall short of strong assistant-based methods like GKD, TAID, and DistiLLM. Among these
baselines, ABKD often emerges as the strongest competitor. Nevertheless, AMiD achieves clear
performance gains over ABKD in nearly every evaluation setting.

C.2 RESULTS ON OPENLLAMA

Table 6 reports results on the OpenLLaMA2 family, where a 7B teacher is distilled into a 3B student.
Consistent with our findings on the GPT-2 series, AMiD achieves the best overall performance
across most evaluation benchmarks. In particular, AMiD surpasses prior assistant-based approaches
such as TAID and DistiLLM (both SKL and SRKL variants), as well as the strong baseline ABKD.

C.3 COMPATIBILITY WITH DIVERGENCES DKL(qθ∥r(α,λ)θ )

Table 7 provides the complementary results when employing the divergence DKL(qθ∥r(α,λ)θ ), con-
trasting the student distribution against the α-mixture assistant. Similar to the findings in the main
text (Table 3), AMiD consistently outperforms the no-assistant baseline across most evaluation
benchmarks, confirming that the proposed method is broadly compatible with different divergence
directions.
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Table 5: ROUGE-L scores (↑) on five task-agnostic instruction-following datasets. Bold and
Underline mean the best and second-best performance of each column, except the teacher, respec-
tively. All results are based on our own re-implementation. We conduct the evaluation with five
random seeds.

Model Val.
ROUGE-L (↑) Dolly Eval (↑) Self Inst (↑) Vicuna (↑) Super NI (↑) UnNI (↑) Avg. (↑)

Teacher − 27.14 ±0.15 14.55 ±0.82 16.12 ±0.31 27.21 ±0.25 31.41 ±0.06 23.29

GPT-2 XL (1.5B) → GPT-2 (0.1B)
SFT 25.81 23.54 ±0.42 9.62 ±0.21 14.79 ±0.56 18.42 ±0.23 19.33 ±0.13 17.14
KD 25.25 23.44 ±0.33 10.12 ±0.28 14.93 ±0.29 16.88 ±0.24 18.87 ±0.16 16.85
SeqKD 26.07 24.20 ±0.31 11.12 ±0.09 15.82 ±0.37 19.29 ±0.09 22.74 ±0.05 18.63
ImitKD 23.91 22.02 ±0.29 10.34 ±0.53 15.32 ±0.26 17.34 ±0.26 19.68 ±0.15 16.94
GKD 27.06 24.58 ±0.13 11.78 ±0.44 14.60 ±0.37 22.84 ±0.12 25.04 ±0.09 19.77
MiniLLM - 24.47 ±0.18 12.83 ±0.50 16.94 ±0.40 25.58 ±0.33 26.38 ±0.17 21.24
AKL 25.62 23.23 ±0.35 11.18 ±0.21 14.94 ±0.23 19.36 ±0.39 22.41 ±0.08 18.22
TAID 28.37 25.74 ±0.27 12.91 ±0.31 17.09 ±0.18 23.66 ±0.31 26.82 ±0.05 21.24
DistiLLM (SKL) 27.88 25.50 ±0.28 12.35 ±0.39 16.10 ±0.22 23.87 ±0.39 26.16 ±0.06 20.80
DistiLLM (SRKL) 28.21 25.74 ±0.20 12.13 ±0.23 16.34 ±0.15 25.40 ±0.10 26.91 ±0.12 21.30
ABKD 28.61 25.49 ±0.24 12.52 ±0.52 17.36 ±0.55 26.07 ±0.14 27.36 ±0.10 21.76
AMiD (Ours) 29.24 26.44 ±0.12 13.74 ±0.49 16.76 ±0.24 29.71 ±0.08 30.35 ±0.09 23.40
GPT-2 XL (1.5B) → GPT-2 Medium (0.3B)
SFT 27.96 25.70 ±0.35 12.60 ±0.37 16.51 ±0.19 24.21 ±0.13 27.51 ±0.17 21.31
KD 26.03 24.27 ±0.42 10.58 ±0.10 15.59 ±0.10 18.15 ±0.13 20.49 ±0.24 17.82
SeqKD 28.41 26.61 ±0.34 13.01 ±0.46 16.42 ±0.63 23.44 ±0.20 26.93 ±0.08 21.28
ImitKD 25.93 24.46 ±0.62 12.00 ±0.41 15.56 ±0.46 20.12 ±0.34 25.11 ±0.16 19.45
GKD 27.90 25.06 ±0.55 12.36 ±0.42 15.71 ±0.58 23.83 ±0.26 27.14 ±0.09 20.82
MiniLLM - 25.80 ±0.57 14.87 ±0.35 17.62 ±0.33 26.78 ±0.26 30.70 ±0.11 23.15
AKL 27.81 25.57 ±0.10 12.06 ±0.56 15.98 ±0.17 22.22 ±0.20 26.17 ±0.13 20.40
TAID 29.45 27.01 ±0.27 14.53 ±0.47 17.58 ±0.20 25.14 ±0.15 29.79 ±0.14 22.81
DistiLLM (SKL) 29.65 26.87 ±0.13 14.11 ±0.29 16.85 ±0.54 25.59 ±0.22 28.84 ±0.03 22.45
DistiLLM (SRKL) 29.72 26.50 ±0.20 13.79 ±0.71 17.14 ±0.52 26.25 ±0.11 29.31 ±0.16 22.60
ABKD 29.64 26.93 ±0.17 13.69 ±0.32 17.45 ±0.27 28.15 ±0.18 30.94 ±0.06 23.43
AMiD (Ours) 30.83 27.34 ±0.18 15.26 ±0.46 17.69 ±0.27 29.04 ±0.20 33.15 ±0.13 24.50
GPT-2 XL (1.5B) → GPT-2 Large (0.8B)
SFT 28.48 26.17 ±0.41 13.78 ±0.21 16.64 ±0.48 23.76 ±0.30 26.64 ±0.12 21.40
KD 28.52 26.27 ±0.26 13.72 ±0.44 16.43 ±0.25 25.24 ±0.18 28.94 ±0.09 22.12
SeqKD 28.24 26.16 ±0.41 13.93 ±0.56 16.35 ±0.20 25.03 ±0.27 28.58 ±0.06 22.01
ImitKD 26.96 23.37 ±0.40 13.26 ±0.60 16.00 ±0.33 23.31 ±0.16 27.59 ±0.14 20.71
GKD 29.36 26.38 ±0.24 14.44 ±0.66 17.02 ±0.46 26.64 ±0.16 30.99 ±0.13 23.09
MiniLLM - 26.30 ±0.35 16.50 ±0.52 18.14 ±0.49 29.45 ±0.17 34.40 ±0.17 24.96
AKL 27.69 25.45 ±0.40 13.83 ±0.82 15.85 ±0.35 25.41 ±0.25 28.91 ±0.05 21.89
TAID 29.83 26.85 ±0.32 15.07 ±0.31 17.02 ±0.48 26.71 ±0.23 31.09 ±0.17 23.35
DistiLLM (SKL) 29.69 26.12 ±0.27 15.69 ±0.75 16.91±0.43 27.23 ±0.18 30.73 ±0.12 23.34
DistiLLM (SRKL) 30.59 27.09 ±0.40 14.61 ±0.66 16.39 ±0.27 28.44 ±0.45 31.04 ±0.06 23.51
ABKD 30.49 27.67 ±0.34 15.46 ±0.81 17.43 ±0.25 30.74 ±0.22 33.11 ±0.15 24.88
AMiD (Ours) 31.10 27.86 ±0.29 16.46 ±0.41 16.62 ±0.50 32.64 ±0.26 35.64 ±0.07 25.84
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Table 6: ROUGE-L scores (↑) on OpenLLaMA2-7B → OpenLLaMA2-7B. Bold and Underline
mean the best and second-best performance of each column, except the teacher, respectively. All
results are based on our own re-implementation. We conduct the evaluation with five random seeds.

Model Val.
ROUGE-L (↑) Dolly Eval (↑) Self Inst (↑) Vicuna (↑) Super NI (↑) UnNI (↑) Avg. (↑)

Teacher − 27.60 ±0.34 18.17 ±0.80 17.85 ±0.48 31.05 ±0.31 32.40 ±0.28 25.41

OpenLLaMA2-7B → OpenLLaMA2-3B
TAID 30.85 26.53 ±0.23 17.73 ±0.69 18.14 ±0.39 31.93 ±0.23 31.55 ±0.12 25.18
DistiLLM (SKL) 33.07 28.63 ±0.28 20.20 ±0.66 19.15 ±0.32 35.31 ±0.19 34.74 ±0.10 27.61
DistiLLM (SRKL) 33.18 28.83 ±0.41 20.76 ±0.37 19.37 ±0.15 36.82 ±0.14 35.76 ±0.13 28.31
ABKD 33.91 29.43 ±0.42 20.46 ±0.28 20.42 ±0.12 39.51 ±0.25 38.07 ±0.08 29.58
AMiD (Ours) 34.39 29.69 ±0.47 20.99 ±0.37 21.03 ±0.40 39.06 ±0.21 37.31 ±0.11 29.62

Table 7: ROUGE-L scores (↑) with DKL(qθ∥r(α,λ)θ ) and various α. We utilize GPT-2 XL (1.5B) →
GPT-2 (0.1B). We use a fixed λ = 0.9 for these experiments.

Divergence D Assistant r(α,λ)θ Val. (↑) Dolly Eval (↑) Self Inst (↑) Vicuna (↑) Super NI (↑) UnNI (↑) Avg. (↑)

DKL(qθ∥r(α,λ)θ )

qθ 28.71 26.22 ±0.35 12.57 ±0.16 16.97 ±0.34 24.75 ±0.20 26.59 ±0.14 21.42
AMiD (α = −5.0) 27.54 24.23 ±0.23 12.59 ±0.32 15.80 ±0.43 24.50 ±0.14 26.38 ±0.07 20.70
AMiD (α = −3.0) 27.96 25.13 ±0.29 12.80 ±0.48 16.32 ±0.45 25.54 ±0.30 26.86 ±0.14 21.33
AMiD (α = −1.0) 28.21 25.74 ±0.20 12.13 ±0.23 16.34 ±0.15 25.40 ±0.10 26.91 ±0.12 21.30
AMiD (α = −0.5) 28.89 26.01 ±0.32 12.84 ±0.59 17.04 ±0.05 27.43 ±0.14 27.59 ±0.03 22.18
AMiD (α = 0.0) 28.84 26.70 ±0.33 13.36 ±0.31 15.95 ±0.36 26.23 ±0.17 27.70 ±0.10 21.99
AMiD (α = −0.5) 29.02 26.48 ±0.17 13.73 ±0.44 16.78 ±0.30 26.78 ±0.34 28.65 ±0.10 22.48
AMiD (α = 1.0) 28.40 26.01 ±0.34 12.03 ±0.33 16.96 ±0.31 24.84 ±0.24 27.01 ±0.11 21.37

D DISCUSSION OF OPTIMALITY

Theorem 3.4 guarantees the optimality of AMiD, yet experimentally demonstrated extremely poor
performance for the reverse KL divergence DRKL(p∥r(α,λ)θ ) and α = 1 in Table 3. We conjecture
that it is caused by the conflict between RKL and the support intersection property, which leads
to instability. RKL includes the expectation of the assistant distribution E

r
(α,λ)
θ

[·] by definition.

However, when α = 1, since supp(r
(α,λ)
θ ) is supp(p) ∩ supp(qθ) (see Section 3.2), E

r
(α,λ)
θ

[·] is
conducted on an unstable and narrow region, and this phenomenon intensifies further in the early
stages of optimization. In addition, we experimentally find that the combination of DRKL(p∥r(α,λ)θ )
and α = 1 produces highly unstable loss and gradient within a few early steps. In conclusion, while
AMiD theoretically guarantees optimality, it might be necessary to employ appropriate divergence
and alpha values, taking into account the imperfect optimization.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed the LLM to polish the paper writing. Specifically, it was used to request grammatical
corrections once the author had drafted the text.
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