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Abstract

Optimal Transport (OT) problem investigates a transport map that bridges two
distributions while minimizing a given cost function. In this regard, OT between
tractable prior distribution and data has been utilized for generative modeling
tasks. However, OT-based methods are susceptible to outliers and face optimization
challenges during training. In this paper, we propose a novel generative model based
on the semi-dual formulation of Unbalanced Optimal Transport (UOT). Unlike OT,
UOT relaxes the hard constraint on distribution matching. This approach provides
better robustness against outliers, stability during training, and faster convergence.
We validate these properties empirically through experiments. Moreover, we study
the theoretical upper-bound of divergence between distributions in UOT. Our
model outperforms existing OT-based generative models, achieving FID scores
of 2.97 on CIFAR-10 and 6.36 on CelebA-HQ-256. The code is available at
https://github.com/Jae-Moo/UOTM.

1 Introduction

Optimal Transport theory [57, 77] explores the cost-optimal transport to transform one probability
distribution into another. Since WGAN [6], OT theory has attracted significant attention in the
field of generative modeling as a framework for addressing important challenges in this field. In
particular, WGAN introduced the Wasserstein distance, an OT-based probability distance, as a loss
function for optimizing generative models. WGAN measures the Wasserstein distance between the
data distribution and the generated distribution, and minimizes this distance during training. The
introduction of OT-based distance has improved the diversity [6, 27], convergence [63], and stability
[36, 52] of generative models, such as WGAN [6] and its variants [27, 45, 56]. However, several
works showed that minimizing the Wasserstein distance still faces computational challenges, and the
models tend to diverge without a strong regularization term, such as gradient penalty [51, 63].

Recently, there has been a surge of research on directly modeling the optimal transport map between
the input prior distribution and the real data distribution [2, 3, 49, 61, 82]. In other words, the optimal
transport serves as the generative model itself. These approaches showed promising results that
are comparable to WGAN models. However, the classical optimal transport-based approaches are
known to be highly sensitive to outlier-like samples [8]. The existence of a few outliers can have
a significant impact on the overall OT-based distance and the corresponding transport map. This
sensitivity can be problematic when dealing with large-scale real-world datasets where outliers and
noises are inevitable.

To overcome these challenges, we suggest a new generative algorithm utilizing the semi-dual formu-
lation of the Unbalanced Optimal Transport (UOT) problem [12, 44]. In this regard, we refer to our
model as the UOT-based generative model (UOTM). The UOT framework relaxes the hard constraints
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Figure 1: Generated Samples from UOTM trained on Left: CIFAR-10 and Right: CelebA-HQ.

of marginal distribution in the OT framework by introducing soft entropic penalties. This soft con-
straint provides additional robustness against outliers [8, 66]. Our experimental results demonstrate
that UOTM exhibits such outlier robustness, as well as faster and more stable convergence compared
to existing OT-based models. Particularly, this better convergence property leads to a tighter matching
of data distribution than the OT-based framework despite the soft constraint of UOT. Our UOTM
achieves FID scores of 2.97 on CIFAR-10 and 6.36 on CelebA-HQ, outperforming existing OT-based
adversarial methods by a significant margin and approaching state-of-the-art performance. Further-
more, this decent performance is maintained across various objective designs. Our contributions can
be summarized as follows:

• UOTM is the first generative model that utilizes the semi-dual form of UOT.
• We analyze the theoretical upper-bound of divergence between marginal distributions in

UOT, and validate our findings through empirical experiments.
• We demonstrate that UOTM presents outlier robustness and fast and stable convergence.
• To the best of our knowledge, UOTM is the first OT-based generative model that achieves

near state-of-the-art performance on real-world image datasets.

2 Background

Notations Let X , Y be two compact complete metric spaces, µ and ν be probability distributions
on X and Y , respectively. We regard µ and ν as the source and target distributions. In generative
modeling tasks, µ and ν correspond to tractable noise and data distributions. For a measurable map
T , T#µ represents the pushforward distribution of µ. Π(µ, ν) denote the set of joint probability
distributions on X ×Y whose marginals are µ and ν, respectively. M+(X ×Y) denote the set of joint
positive measures defined on X ×Y . For convenience, for π ∈ M+(X ×Y), let π0(x) and π1(y) be
the marginals with respect to X and Y . c(x, y) refers to the transport cost function defined on X ×Y .
Throughout this paper, we consider X = Y ⊂ Rd with the quadratic cost, c(x, y) = τ∥x − y∥22,
where d indicates the dimension of data. Here, τ is a given positive constant. For the precise notations
and assumptions, see Appendix A.

Optimal Transport (OT) OT addresses the problem of searching for the most cost-minimizing way
to transport source distribution µ to target ν, based on a given cost function c(·, ·). In the beginning,
Monge [53] formulated this problem with a deterministic transport map. However, this formulation is
non-convex and can be ill-posed depending on the choices of µ and ν. To alleviate these problems, the
Kantorovich OT problem [33] was introduced, which is a convex relaxation of the Monge problem.
Formally, the OT cost of the relaxed problem is given by as follows:

C(µ, ν) := inf
π∈Π(µ,ν)

[∫
X×Y

c(x, y)dπ(x, y)

]
, (1)

where c is a cost function, and π is a coupling of µ and ν. Unlike Monge problem, the minimizer π⋆

of Eq 1 always exists under some mild assumptions on (X , µ), (Y, ν) and the cost c ([77], Chapter
5). Then, the dual form of Eq 1 is given as:

C(µ, ν) = sup
u(x)+v(y)≤c(x,y)

[∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

]
, (2)
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where u and v are Lebesgue integrable with respect to measure µ and ν, i.e., u ∈ L1(µ) and
v ∈ L1(ν). For a particular case where c(x, y) is equal to the distance function between x and y,
then u = −v and u is 1-Lipschitz [77]. In such case, we call Eq 2 a Kantorovich-Rubinstein duality.
For the general cost c(·, ·), the Eq 2 can be reformulated as follows ([77], Chapter 5):

C(µ, ν) = sup
v∈L1(ν)

[∫
X
vc(x)dµ(x) +

∫
Y
v(y)dν(y)

]
, (3)

where the c-transform of v is defined as vc(x) = inf
y∈Y

(c(x, y)− v(y)). We call this formulation (Eq

3) a semi-dual formulation of OT.

Unbalanced Optimal Transport (UOT) Recently, a new type of optimal transport problem has
emerged, which is called Unbalanced Optimal Transport (UOT) [12, 44]. The Csiszàr divergence
Df (µ|ν) associated with f is a generalization of f -divergence for the case where µ is not absolutely
continuous with respect to ν (See Appendix A for the precise definition). Here, the entropy function
f : [0,∞) → [0,∞] is assumed to be convex, lower semi-continuous, and non-negative. Note that
the f -divergence families include a wide variety of divergences, such as Kullback-Leibler (KL)
divergence and χ2 divergence. (See [71] for more examples of f -divergence and its corresponding
generator f .) Formally, the UOT problem is formulated as follows:

Cub(µ, ν) := inf
π∈M+(X×Y)

[∫
X×Y

c(x, y)dπ(x, y) +DΨ1
(π0|µ) +DΨ2

(π1|ν)
]
. (4)

The UOT formulation (Eq 4) has two key properties. First, UOT can handle the transportation of
any positive measures by relaxing the marginal constraint [12, 23, 44, 57], allowing for greater
flexibility in the transport problem. Second, UOT can address the sensitivity to outliers, which is a
major limitation of OT. In standard OT, the marginal constraints require that even outlier samples
are transported to the target distribution. This makes the OT objective (Eq 1) to be significantly
affected by a few outliers. This sensitivity of OT to outliers implies that the OT distance between two
distributions can be dominated by these outliers [8, 66]. On the other hand, UOT can exclude outliers
from the consideration by flexibly shifting the marginals. Both properties are crucial characteristics of
UOT. However, in this work, we investigate a generative model that transports probability measures.
Because the total mass of probability measure is equal to 1, we focus on the latter property.

3 Method

3.1 Dual and Semi-dual Formulation of UOT

Similar to OT, UOT also provides a dual formulation [12, 21, 72]:

Cub(µ, ν) = sup
u(x)+v(y)≤c(x,y)

[∫
X
−Ψ∗

1(−u(x))dµ(x) +

∫
Y
−Ψ∗

2(−v(y))dν(y)

]
, (5)

with u ∈ C(X ), v ∈ C(Y) where C denotes a set of continuous functions over its domain. Here, f∗

denotes the convex conjugate of f , i.e., f∗(y) = supx∈R{⟨x, y⟩ − f(x)} for f : R → [−∞,∞].
Remark 3.1 (UOT as a Generalization of OT). Suppose Ψ1 and Ψ2 are the convex indicator
function of {1}, i.e. have zero values for x = 1 and otherwise ∞. Then, the objective in Eq 4
becomes infinity if π0 ̸= µ or π1 ̸= ν, which means that UOT reduces into classical OT. Moreover,
Ψ∗

1(x) = Ψ∗
2(x) = x. If we replace Ψ∗

1 and Ψ∗
2 with the identity function, Eq 5 precisely recovers

the dual form of OT (Eq 2). Note that the hard constraint corresponds to Ψ∗(x) = x.

Now, we introduce the semi-dual formulation of UOT [72]. For this formulation, we assume that Ψ∗
1

and Ψ∗
2 are non-decreasing and differentiable functions (f∗ is non-decreasing for the non-negative

entropy function f [65]):

Cub(µ, ν) = sup
v∈C

[∫
X
−Ψ∗

1 (−vc(x))) dµ(x) +

∫
Y
−Ψ∗

2(−v(y))dν(y)

]
, (6)

where vc(x) denotes the c-transform of v as in Eq 3.
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Remark 3.2 (Ψ∗ Candidate). Here, we clarify the feasible set of Ψ∗ in the semi-dual form of UOT.
As aforementioned, the assumption for deriving Eq 6 is that Ψ∗ is a non-decreasing, differentiable
function. Recall that for any function f , its convex conjugate f∗ is convex and lower semi-continuous
[9]. Also, for any convex and lower semi-continuous f , f is a convex conjugate of f∗ [7]. Combining
these two results, any non-decreasing, convex, and differentiable function can be a candidate of Ψ∗.

3.2 Generative Modeling with the Semi-dual Form of UOT

In this section, we describe how we implement a generative model based on the semi-dual form (Eq
6) of UOT. Following [18, 28, 41, 54, 61], we introduce Tv to approximate vc as follows:

Tv(x) ∈ arginf
y∈Y

[c(x, y)− v(y)] ⇔ vc(x) = c (x, Tv(x))− v (Tv(x)) , (7)

Note that Tv is measurable ([10], Prop 7.33). Then, the following objective J(v) can be derived from
the equation inside supremum in Eq (6) and the right-hand side of Eq 7:

J(v) :=

∫
X
Ψ∗

1 (− [(c(x, Tv(x))− v (Tv(x))]) dµ(x) +

∫
Y
Ψ∗

2 (−v(y)) dν(y). (8)

In practice, there is no closed-form expression of the optimal Tv for each v. Hence, the optimization
Tv for each v is required as in the generator-discriminator training of GAN [25]. In this work, we
parametrize v = vϕ and Tv = Tθ with neural networks with parameter ϕ and θ. Then, our learning
objective Lvϕ,Tθ

can be formulated as follows:

Lvϕ,Tθ
= inf

vϕ

[∫
X
Ψ∗

1

(
− inf

Tθ

[c (x, Tθ(x))− vϕ (Tθ(x))]

)
dµ(x) +

∫
Y
Ψ∗

2 (−vϕ(y)) dν(y)

]
. (9)

Finally, based on Eq 9, we propose a new training algorithm (Algorithm 1), called the UOT-based
generative model (UOTM). Similar to the training procedure of GANs, we alternately update the
potential vϕ (lines 2-4) and generator Tθ (lines 5-7).

Algorithm 1 Training algorithm of UOTM

Require: The source distribution µ and the target distribution ν. Non-decreasing, differentiable,
convex function pair (Ψ∗

1,Ψ
∗
2). Generator network Tθ and the discriminator network vϕ. Total

iteration number K.
1: for k = 0, 1, 2, . . . ,K do
2: Sample a batch X ∼ µ, Y ∼ ν, z ∼ N (0, I).
3: Lv = 1

|X|
∑

x∈X Ψ∗
1 (−c (x, Tθ(x, z)) + vϕ (Tθ(x, z))) +

1
|Y |

∑
y∈Y Ψ∗

2(−vϕ(y))

4: Update ϕ by using the loss Lv .
5: Sample a batch X ∼ µ, z ∼ N (0, I).
6: LT = 1

|X|
∑

x∈X (c (x, Tθ(x, z))− vϕ(Tθ(x, z))).
7: Update θ by using the loss LT .
8: end for

Following [26, 42], we add stochasticity in our generator Tθ by putting an auxiliary variable z as an
additional input. This allows us to obtain the stochastic transport plan π(·|x) for given input x ∈ X ,
motivated by the Kantorovich relaxation [33]. The role of the auxiliary variable has been extensively
discussed in the literature [13, 26, 42, 80], and it has been shown to be useful in generative modeling.
Moreover, we incorporate R1 regularization [60], Lreg = λ∥∇xvϕ(y)∥22 for real data y ∈ Y , into the
objective (Eq 9), which is a popular regularization method employed in various studies [13, 51, 80].

3.3 Some Properties of UOTM

Divergence Upper-Bound of Marginals UOT relaxes the hard constraint of marginal distributions
in OT into the soft constraint with the Csiszàr divergence regularizer. Therefore, a natural question is
how much divergence is incurred in the marginal distributions because of this soft constraint in UOT.
The following theorem proves that the upper-bound of divergences between the marginals in UOT
is linearly proportional to τ in the cost function c(x, y). This result follows our intuition because
down-scaling τ is equivalent to the relative up-scaling of divergences DΨ1

, DΨ2
in Eq 4. (Notably,

in our experiments, the optimization benefit outweighed the effect of soft constraint (Sec 5.2).)
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Theorem 3.3. Suppose that µ and ν are probability densities defined on X and Y . Given the
assumptions in Appendix A, suppose that µ, ν are absolutely continuous with respect to Lebesgue
measure and Ψ∗ is continuously differentiable. Assuming that the optimal potential v⋆ = infv∈C J(v)
exists, v⋆ is a solution of the following objective

J̃(v) =

∫
X
−vc(x)dµ̃(x) +

∫
Y
−v(y)dν̃(y), (10)

where µ̃(x) = Ψ∗
1
′(−v⋆c(x))µ(x) and ν̃(y) = Ψ∗

2
′(−v⋆(y))ν(y). Note that the assumptions

guarantee the existence of optimal transport map T ⋆ between µ̃ and ν̃. Furthermore, T ⋆ satisfies
T ⋆(x) ∈ arginfy∈Y [c(x, y)− v⋆(y)] , (11)

µ-almost surely. In particular, DΨ1(µ̃|µ)+DΨ2(ν̃|ν) ≤ τW2
2 (µ, ν) where W2(µ, ν) is a Wasserstein-

2 distance between µ and ν.

Theorem 3.3 shows that Tv⋆ (Eq 7) is a valid parametrization of the optimal transport map T ⋆ that
transports µ̃ to ν̃. Moreover, if τ is sufficiently small, then µ̃ and ν̃ are close to µ and ν, respectively.
Therefore, we can infer that Tv⋆ will transport µ to a distribution that is similar to ν.

Stable Convergence We discuss convergence properties of UOT objective J and the corresponding
OT objective J̃ for the potential v through the theoretical findings of Gallouët et al. [21].
Theorem 3.4 ([21]). Under some mild assumptions in Appendix A, the following holds:

J(v)− J(v⋆) ≥ 1

2λ
Eµ̃

[
∥∇ (vc − v⋆c)∥22

]
+ C1Eµ

[
(vc − v⋆c)2

]
+ C2Eν

[
(v − v⋆)2

]
, (12)

for some positive constant C1 and C2. Furthermore, J̃(v)− J̃(v⋆) ≥ 1
2λEµ̃

[
∥∇ (vc − v⋆c)∥22

]
.

Theorem 3.4 suggests that the UOT objective J gains stability over the OT objective J̃ in two aspects.
First, while J̃ only bounds the gradient error ∥∇ (vc − v⋆c)∥22, J also bounds the function error
(vc − v⋆c)

2. Second, J provides control over both the original function v and its c-transform vc in L2

sense. We hypothesize this stable convergence property conveys practical benefits in neural network
optimization. In particular, UOTM attains better distribution matching despite its soft constraint (Sec
5.2) and faster convergence during training (Sec 5.3).

4 Related Work

Optimal Transport Optimal Transport (OT) problem addresses a transport map between two
distributions that minimizes a specified cost function. This OT map has been extensively utilized in
various applications, such as generative modeling [2, 45, 61], point cloud approximation [50], and
domain adaptation [20]. The significant interest in OT literature has resulted in the development of
diverse algorithms based on different formulations of OT problem, e.g., primary (Eq 1), dual (Eq 2),
and semi-dual forms (Eq 3). First, several works were proposed based on the primary form [47, 81].
These approaches typically involved multiple adversarial regularizers, resulting in a complex and
challenging training process. Hence, these methods often exhibited sensitivity to hyperparameters.
Second, the relationship between the OT map and the gradient of dual potential led to various dual
form based methods. In specific, when the cost function is quadratic, the OT map can be represented
as the gradient of the dual potential [77]. This correspondence motivated a new methodology that
parameterized the dual potentials to recover the OT map [2, 64]. Seguy et al. [64] introduced the
entropic regularization to obtain the optimal dual potentials u and v, and extracted the OT map
from them via the barycentric projection. Some methods [40, 49] explicitly utilized the convexity of
potential by employing input-convex neural networks [1].

Recently, Korotin et al. [39] demonstrated that the semi-dual approaches [18, 61] are the ones that
best approximate the OT map among existing methods. These approaches [18, 61] properly recovered
OT maps and provided high performance in image generation and image translation tasks for large-
scale datasets. Because our UOTM is also based on the semi-dual form, these methods show some
connections to our work. If we let Ψ∗

1 and Ψ∗
2 in Eq 9 as identity functions, our Algorithm 1 reduces

to the training procedure of Fan et al. [18] (See Remark 3.2). For convenience, we denote Fan et al.
[18] as a OT-based generative model (OTM). Moreover, note that Rout et al. [61] can be considered
as a minor modification of parametrization from OTM. In this paper, we denote Rout et al. [61] as
Optimal Transport Modeling (OTM*), and regard it as one of the main counterparts for comparison.
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Figure 2: Outlier Robustness Test on Toy dataset with 1% outlier. For each subfigure, Left:
Comparison of target density ν and generated density T#µ and Right: Transport map of the trained
model (x, T (x)). While attempting to fit the outlier distribution, OTM generates undesired samples
outside ν and learns the non-optimal transport map. In contrast, UTOM mainly generates in-
distribution samples and achieves the optimal transport map. (For better visualization, the y-scale of
the density plot is manually adjusted.)

Figure 3: Outlier Robustness Test on Image dataset (CIFAR-10 + 1% MNIST). Left: OTM exhibits
artifacts on both in-distribution and outlier samples. Right: UOTM attains higher-fidelity samples
while generating MNIST-like samples more sparingly, around 0.2%. FID scores of CIFAR-10-like
samples are 13.82 for OTM and 4.56 for UOTM, proving that UOTM is more robust to outliers.

Unbalanced Optimal Transport The primal problem of UOT (Eq 4) relaxes hard marginal
constraints of Kantorovich’s problem (Eq 1) through soft entropic penalties [12]. Most of the recent
UOT approaches [11, 19, 48, 58] estimate UOT potentials on discrete space by using the dual
formulation of the problem. For example, Pham et al. [58] extended the Sinkhorn method to UOT,
and Lübeck et al. [48] learned dual potentials through cyclic properties. To generalize UOT into the
continuous case, Yang and Uhler [82] suggested the GAN framework for the primal formulation of
unbalanced Monge OT. This method employed three neural networks, one for a transport map, another
for a discriminator, and the third for a scaling factor. Balaji et al. [8] claimed that implementing a
GAN-like procedure using the dual form of UOT is hard to optimize and unstable. Instead, they
proposed an alternative dual form of UOT, which resembles the dual form of OT with a Lagrangian
regularizer. Nevertheless, Balaji et al. [8] still requires three different neural networks as in [82].
To the best of our knowledge, our work is the first generative model that leverages the semi-dual
formulation of UOT. This formulation allows us to develop a simple but novel adversarial training
procedure that does not require the challenging optimization of three neural networks.

5 Experiments

In this section, we evaluate our model on the various datasets to answer the following questions:

1. Does UOTM offer more robustness to outliers than OT-based model (OTM)? (§5.1)
2. Does the UOT map accurately match the source distribution to the target distribution? (§5.2)
3. Does UOTM provide stable and fast convergence? (§5.3)
4. Does UOTM provide decent performance across various choices of Ψ∗

1 and Ψ∗
2? (§5.4)

5. Does UOTM show reasonable performance even without a regularization term Lreg? (§5.4)
6. Does UOTM provide decent performance across various choices of τ in c(x, y)? (§5.4)

Unless otherwise stated, we set Ψ := Ψ1 = Ψ2 and DΨ as a KL divergence in our UOTM model (Eq
9). The source distribution µ is a standard Gaussian distribution N (0, I) with the same dimension as
the target distribution ν. In this case, the entropy function Ψ is given as follows:

Ψ(x) =

{
x log x− x+ 1, if x > 0

∞, if x ≤ 0
, Ψ∗(x) = ex − 1. (13)

In addition, when the generator Tθ and potential vϕ are parameterized by the same neural networks
as OTM* [61], we call them a small model. When we use the same network architecture in RGM
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Table 1: Target Distribution Matching Test.
UOTM achieves a better approximation of target
distribution ν, i.e., T#µ ≈ ν. † indicates the
results conducted by ourselves.

Model Toy (τ = 0.1) Toy (τ = 0.02) CIFAR-10

Metric DKL(T#µ|ν) (↓) FID (↓)

OTM† 0.05 0.05 7.68
Fixed-µ† 0.02 0.004 7.53
UOTM† 0.02 0.005 2.97

Table 3: Image Generation on CelebA-HQ.

Class Model FID (↓)

Diffusion

Score SDE (VP) [69] 7.23
Probability Flow [69] 128.13

LSGM [74] 7.22
UDM [37] 7.16

DDGAN [80] 7.64
RGM [13] 7.15

GAN

PGGAN [34] 8.03
Adv. LAE [59] 19.2
VQ-GAN [16] 10.2
DC-AE [55] 15.8

StyleSwin [83] 3.25

VAE
NVAE [73] 29.7

NCP-VAE [4] 24.8
VAEBM [79] 20.4

OT-based UOTM† 6.36

Table 2: Image Generation on CIFAR-10.

Class Model FID (↓) IS (↑)

GAN

SNGAN+DGflow [5] 9.62 9.35
AutoGAN [24] 12.4 8.60
TransGAN [31] 9.26 9.02

StyleGAN2 w/o ADA [35] 8.32 9.18
StyleGAN2 w/ ADA [35] 2.92 9.83

DDGAN (T=1)[80] 16.68 -
DDGAN [80] 3.75 9.63

RGM [13] 2.47 9.68

Diffusion

NCSN [68] 25.3 8.87
DDPM [30] 3.21 9.46

Score SDE (VE) [69] 2.20 9.89
Score SDE (VP) [69] 2.41 9.68
DDIM (50 steps) [67] 4.67 8.78

CLD [15] 2.25 -
Subspace Diffusion [32] 2.17 9.94

LSGM [74] 2.10 9.87

VAE&EBM

NVAE [73] 23.5 7.18
Glow [38] 48.9 3.92

PixelCNN [75] 65.9 4.60
VAEBM [79] 12.2 8.43

Recovery EBM [22] 9.58 8.30

OT-based

WGAN [6] 55.20 -
WGAN-GP[27] 39.40 6.49
Robust-OT [8] 21.57 -

AE-OT-GAN [3] 17.10 7.35
OTM* (Small) [61] 21.78 -

OTM (Large)† 7.68 8.50
UOTM (Small)† 12.86 7.21
UOTM (Large)† 2.97±0.07 9.68

[13], we refer to them as large model. Unless otherwise stated, we consider the large model. For
implementation details of experiments, please refer to Appendix B.2.

5.1 Outlier Robustness of UOTM

One of the main features of UOT is its robustness against outliers. In this subsection, we investigate
how this robustness is reflected in generative modeling tasks by comparing our UOTM and OT-based
model (OTM). For evaluation, we generated two datasets that have 1-2% outliers: Toy and Image
datasets. The toy dataset is a mixture of samples from N (1, 0.52) (in-distribution) and N (−1, 0.52)
(outlier). Similarly, the image dataset is a mixture of CIFAR-10 [43] (in-distribution) and MNIST
[14] (outlier) as in Balaji et al. [8].

Figure 2 illustrates the learned transport map T and the probability density T#µ of generated
distribution for OTM and UOTM models trained on the toy dataset. The density in Fig 2a demonstrates
that OTM attempts to fit both the in-distribution and outlier samples simultaneously. However, this
attempt causes undesirable behavior of transporting density outside the target support. In other words,
in order to address 1-2% of outlier samples, OTM generates additional failure samples that do not
belong to the in-distribution or outlier distribution. On the other hand, UOTM focuses on matching
the in-distribution samples (Fig 2b). Moreover, the transport maps show that OTM faces challenging
optimization. The right-hand side of Figure 2a and 2b visualize the correspondence between the
source domain samples x and the corresponding target domain samples T (x). Note that the optimal
T ⋆ should be a monotone-increasing function. However, OTM failed to learn such a transport map
T , while UOTM succeeded.

Figure 3 shows the generated samples from OTM and UOTM models on the image dataset. A similar
phenomenon is observed in the image data. Some of the generative images from OTM show some
unintentional artifacts. Also, MNIST-like generated images display a red or blue-tinted background.
In contrast, UOTM primarily generates in-distribution samples. In practice, UTOM generates MNIST-
like data at a very low probability of 0.2%. Notably, UOTM does not exhibit artifacts as in OTM.
Furthermore, for quantitative comparison, we measured Fréchet Inception Distance (FID) score [29]
by collecting CIFAR-10-like samples. Then, we compared this score with the model trained on a clean
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Figure 4: Visualization of OT Map (x, T (x)) trained on clean Toy data. The comparison suggests
that Fixed-µ and UOTM models are closer to the optimal transport map compared to OTM.

dataset. The presence of outliers affected OTM by increasing FID score over 6 (7.68 → 13.82) while
the increase was less than 2 in UOTM (2.97 → 4.56). In summary, the experiments demonstrate that
UOTM is more robust to outliers.

5.2 UOTM as Generative Model

Target Distribution Matching As aforementioned in Sec 3.3, UOT allows some flexibility to the
marginal constraints of OT. This means that the optimal generator T ⋆

θ does not necessarily transport
the source distribution µ precisely to the target distribution ν, i.e., T#µ ≈ ν. However, the goal of
the generative modeling task is to learn the target distribution ν. In this regard, we assessed whether
our UOTM could accurately match the target (data) distribution. Specifically, we measured KL
divergence [78] between the generated distribution T#µ and data distribution ν on the toy dataset
(See the Appendix B.1 for toy dataset details). Also, we employed the FID score for CIFAR-10
dataset, because FID assesses the Wasserstein distance between the generated samples and training
data in the feature space of the Inception network [70].

In this experiment, our UOTM model is compared with two other methods: OTM [18] (Constraints in
both marginals) and UOTM with fixed µ (Constraints only in the source distribution). We introduced
Fixed-µ variant because generative models usually sample directly from the input noise distribution
µ. This direct sampling implies the hard constraint on the source distribution. Note that this
hard constraint corresponds to setting Ψ∗

1(x) = x in Eq 9 (Remark 3.1). (See Appendix B.2 for
implementation details of UOTM with fixed µ.)

Table 1 shows the data distribution matching results. Interestingly, despite the soft constraint, our
UOTM matches data distribution better than OTM in both datasets. In the toy dataset, UOTM
achieves similar KL divergence with and without fixed µ for each τ , which is much smaller than
OTM. This result can be interpreted through the theoretical properties in Sec 3.3. Following Thm 3.3,
both UOTM models exhibit smaller DKL(T#µ|ν) for the smaller τ in the toy dataset. It is worth
noting that, unlike UOTM, DKL(T#µ|ν) does not change for OTM. This is because, in the standard
OT problem, the optimal transport map π⋆ does not depend on τ in Eq 1. Moreover, in CIFAR-10,
while Fixed-µ shows a similar FID score to OTM, UOTM significantly outperforms both models. As
discussed in Thm 3.4, we interpret that relaxing both marginals improved the stability of the potential
network v, which led to better convergence of the model on the more complex data. This convergence
benefit can be observed in the learned transport map in Fig 4. Even on the toy dataset, the UTOM
transport map presents a better-organized correspondence between source and target samples than
OTM and Fixed-µ. In summary, our model is competitive in matching the target distribution for
generative modeling tasks.

Image Generation We evaluated our UOTM model on the two generative model benchmarks:
CIFAR-10 [43] (32×32) and CelebA-HQ [46] (256×256). For quantitative comparison, we adopted
FID [29] and Inception Score (IS) [62]. The qualitative performance of UOTM is depicted in Fig 1.
As shown in Table 2, UOTM model demonstrates state-of-the-art results among existing OT-based
methods, with an FID of 2.97 and IS of 9.68. Our UOTM outperforms the second-best performing
OT-based model OTM(Large), which achieves an FID of 7.68, by a large margin. Moreover,
UOTM(Small) model surpasses another UOT-based model with the same backbone network (Robust-
OT), which achieves an FID of 21.57. Furthermore, our model achieves the state-of-the-art FID
score of 6.36 on CelebA-HQ (256×256). To the best of our knowledge, UOTM is the first OT-based
generative model that has shown comparable results with state-of-the-art models in various datasets.
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5.3 Fast Convergence

The discussion in Thm 3.4 suggests that UOTM offers some optimization benefits over OTM, such as
faster and more stable convergence. In addition to the transport map visualization in the toy dataset
(Fig 2 and 4), we investigate the faster convergence of UOTM on the image dataset. In CIFAR-10,
UOTM converges in 600 epochs, whereas OTM takes about 1000 epochs (Fig 5). To achieve the
same performance as OTM, UOTM needs only 200 epochs of training, which is about five times
faster. In addition, compared to several approaches that train CIFAR-10 with NCSN++ (large model)
[69], our model has the advantage in training speed; Score SDE [69] takes more than 70 hours for
training CIFAR-10, 48 hours for DDGAN [80], and 35-40 hours for RGM on four Tesla V100 GPUs.
OTM takes approximately 30-35 hours to converge, while our model only takes about 25 hours.

5.4 Ablation Studies

Table 4: Ablation Study on
Csiszàr Divergence DΨi(·|·).

(Ψ1,Ψ2) FID

(KL,KL) 2.97
(χ2, χ2) 3.02
(KL, χ2) 3.21
(χ2, KL) 2.78

(Softplus, Softplus) 3.17

Generalized Ψ1, Ψ2 We investigate the various choices of Csiszàr
divergence in UOT problem, i.e., Ψ∗

1 and Ψ∗
2 in Eq 9. As dis-

cussed in Remark 3.2, the necessary condition of feasible Ψ∗ is
non-decreasing, convex, and differentiable functions. For instance,
setting the Csiszàr divergence DΨ as f -divergence families such as
KL divergence, χ2 divergence, and Jensen-Shannon divergence sat-
isfies the aforementioned conditions. For practical optimization, we
chose Ψ∗(x) that gives finite values for all x, such as KL divergence
(Eq 13) and χ2 divergence (Eq 14):

Ψ(x) =

{
(x− 1)2, if x ≥ 0

∞, if x < 0
, Ψ∗(x) =

{
1
4x

2 + x, if x ≥ −2

−1, if x < −2
. (14)

We assessed the performance of our UOTM models for the cases where DΨ is KL divergence or
χ2 divergence. Additionally, we tested our model when Ψ∗ = Softplus (Eq 37), which is a direct
parametrization of Ψ∗. Table 4 shows that our UOTM model achieves competitive performance
across all five combinations of (Ψ∗

1,Ψ
∗
2).

λ in Regularizer Lreg We conduct an ablation study to investigate the effect of the regularization
term Lreg on our model’s performance. The WGAN family is known to exhibit unstable training
dynamics and to highly depend on the regularization term [6, 27, 51, 56]. Similarly, Figure 6 shows
that OTM is also sensitive to the regularization term and fails to converge without it (OTM shows
an FID score of 152 without regularization. Hence, we excluded this result in Fig 6 for better
visualization). In contrast, our model is robust to changes in the regularization hyperparameter and
produces reasonable performance even without the regularization.

τ in the Cost Function We performed an ablation study on τ in the cost function c(x, y) =
τ∥x − y∥22. In our model, the hyperparameter τ controls the relative weight between the cost
c(x, y) and the marginal matching DΨ1 , DΨ2 in Eq 4. In Fig 7, our model maintains a decent
performance of FID(≤ 5) for τ = {0.5, 1, 2} × 10−3. However, the FID score sharply degrades at
τ = {0.1, 5} × 10−3. Thm 3.3 suggests that a smaller τ leads to a tighter distribution matching.
However, this cannot explain the degradation at τ = 0.1 × 10−3. We interpret this is because the
cost function provides some regularization effect that prevents a mode collapse of the model (See the
Appendix C.2 for a detailed discussion).
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6 Conclusion

In this paper, we proposed a generative model based on the semi-dual form of Unbalanced Optimal
Transport, called UOTM. Our experiments demonstrated that UOTM achieves better target distribution
matching and faster convergence than the OT-based method. Moreover, UOTM outperformed existing
OT-based generative model benchmarks, such as CIFAR-10 and CelebA-HQ-256. The potential
negative societal impact of our work is that the Generative Model often learns the dependence in the
semantics of data, including any existing biases. Hence, deploying a Generative Model in real-world
applications requires careful monitoring to prevent the amplification of existing societal biases present
in the data. It is important to carefully control the training data and modeling process of Generative
Models to mitigate potential negative societal impacts.
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A Proofs

Notations and Assumptions Let X and Y be compact complete metric spaces which are subsets
of Rd, and µ, ν be positive Radon measures of the mass 1. Let Ψ1 and Ψ2 be a convex, differentiable,
nonnegative function defined on R. We assume that Ψ1(0) = Ψ2(0) = 1, and Ψ1(x) = Ψ2(x) = ∞
for x < 0. The convex conjugate of Ψ is denoted by Ψ∗. We assume that Ψ∗

1 and Ψ∗
2 are differentiable

and non-decreasing on its domain. Moreover, let c be a quadratic cost, c(x, y) = τ∥x− y∥22, where τ
is positive constant.

First, for completeness, we present the derivation of the dual and semi-dual formulations of the UOT
problem.
Theorem A.1 ([12, 21, 72]). The dual formulation of Unbalanced OT (4) is given by

Cub(µ, ν) = sup
u(x)+v(y)≤c(x,y)

[∫
X
−Ψ∗

1(−u(x))dµ(x) +

∫
Y
−Ψ∗

2(−v(y))dν(y)

]
, (15)

where u ∈ C(X ), v ∈ C(Y) with u(x) + v(y) ≤ c(x, y). Note that strong duality holds.

Also, the semi-dual formulation of Unbalanced OT (4) is given by

Cub(µ, ν) = sup
v∈C

[∫
X
−Ψ∗

1 (−vc(x))) dµ(x) +

∫
Y
−Ψ∗

2(−v(y))dν(y)

]
, (16)

where vc(x) denotes the c-transform of v, i.e., vc(x) = inf
y∈Y

(c(x, y)− v(y)).

Proof. The primal problem Eq 4 can be rewritten as

inf
π∈M+(X×Y)

∫
X×Y

c(x, y)dπ(x, y) +

∫
X
Ψ1

(
π0(x)

dµ(x)

)
dµ(x) +

∫
Y
Ψ2

(
π1(y)

dν(y)

)
dν(y). (17)

We introduce slack variables P and Q such that P = π0 and Q = π1. By Lagrange multipliers where
u and v associated to the constraints, the Lagrangian form of Eq 17 is

L(π, P,Q, u, v) :=

∫
X×Y

c(x, y)dπ(x, y) (18)

+

∫
X
Ψ1

(
dP (x)

dµ(x)

)
dµ(x) +

∫
Y
Ψ2

(
dQ(y)

dν(y)

)
dν(y) (19)

+

∫
X
u(x)

(
dP (x)−

∫
Y
dπ(x, y)

)
+

∫
Y
v(y)

(
dQ(y)−

∫
X
dπ(x, y)

)
. (20)

The dual Lagrangian function is g(u, v) = infπ,P,Q L(π, P,Q, u, v). Then, g(u, v) reduces into
three distinct minimization problems for each variables;

g(u, v) = inf
P

[∫
X

u(x)dP (x) + Ψ1

(
dP (x)

dµ(x)

)
dµ(x)

]
+ inf

Q

[∫
Y

v(y)dQ(y) + Ψ2

(
dQ(y)

dν(y)

)
dν(y)

]
+ inf

π

[∫
X×Y

(c(x, y)− u(x)− v(y)) dπ(x, y)

]
.

(21)

Note that the first term of Eq 21 is

− sup
P

[∫
X

[
−u(x)

dP (x)

dµ(x)
−Ψ1

(
dP (x)

dµ(x)

)]
dµ(x)

]
= −

∫
X
Ψ∗

1 (−u(x)) dµ(x). (22)

Thus, Eq 21 can be rewritten as follows:

g(u, v) = inf
π

[∫
X×Y

(c(x, y)− u(x)− v(y)) dπ(x, y)

]
−
∫
X
Ψ∗

1 (−u(x)) dµ(x)−
∫
Y
Ψ∗

2 (−v(x)) dν(x).

(23)
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Suppose that c(x, y)− u(x)− v(y) < 0 for some point (x, y). Then, by concentrating all mass of
π into the point, the value of the minimization problem of Eq 23 becomes −∞. Thus, to avoid the
trivial solution, we should set c(x, y)− u(x)− v(y) ≥ 0 almost everywhere. Within the constraint,
the solution of the optimization problem of Eq 23 is c(x, y) = u(x) + v(y) π-almost everywhere.
Finally, we obtain the dual formulation of UOT:

sup
u(x)+v(y)≤c(x,y)

[∫
X
−Ψ∗

1(−u(x))dµ(x) +

∫
Y
−Ψ∗

2(−v(y))dν(y)

]
, (24)

where c(x, y) = u(x) + v(y) π-almost everywhere (since Ψ∗
1 and Ψ∗

2 is non-decreasing). In other
words,

sup
(u,v)∈C(X )×C(Y)

[∫
X
−Ψ∗

1(−u(x))dµ(x) +

∫
Y
−Ψ∗

2(−v(y))dν(y)− ı(u+ v ≤ c)

]
, (25)

where ı is a convex indicator function. Note that we assume Ψ∗
1 and Ψ∗

2 are convex, non-decreasing,
and differentiable. Since c ≥ 0, by letting u ≡ −1 and v ≡ −1, we can easily see that all three
terms in Eq 25 are finite values. Thus, we can apply Fenchel-Rockafellar’s theorem, which implies
that the strong duality holds. Finally, combining the constraint u(x) + v(y) ≤ c(x, y) with tightness
condition, i.e. c(x, y) = u(x) + v(y) π-almost everywhere, we obtain the following semi-dual form:

sup
v∈C

[∫
X
−Ψ∗

1

(
− inf

y∈Y
[c(x, y)− v(y)]

)
µ(x) +

∫
Y
−Ψ∗

2(−v(y))ν(y)

]
. (26)

Now, we state precisely and prove Theorem 3.3.
Lemma A.2. For any (u, v) ∈ C(X )× C(Y), let

I(u, v) :==

∫
X
−Ψ∗

1(−u(x))dµ(x) +

∫
Y
−Ψ∗

2(−v(y))dν(y). (27)

Then, under the assumptions in Appendix A, the functional derivative of I(u, v) is∫
X
δu(x)Ψ∗

1
′(−u(x))dµ(x) +

∫
Y
δv(y)Ψ∗

2
′(−v(y))dν(y), (28)

where where (δu, δv) ∈ C(X )× C(Y) denote the variations of (u, v), respectively.

Proof. For any (f, g) ∈ C(X )× C(Y), let

I(f, g) =

∫
X
−Ψ∗

1(−f(x))dµ(x) +

∫
Y
−Ψ∗

2(−g(y))dν(y).

Then, for arbitrarily given potentials (u, v) ∈ C(X )× C(Y), and perturbation (η, ζ) ∈ C(X )× C(Y)
which satisfies u(x) + η(x) + v(y) + ζ(y) ≤ c(x, y),

L(ϵ) := d

dϵ
I(u+ϵη, v+ϵζ) =

∫
X
ηΨ∗

1
′(− ((u+ ϵη)(x)))dµ(x)+

∫
Y
ζΨ∗

2
′(− ((v + ϵζ)(y)))dν(y).

Note that L(ϵ) is a continuous function. Thus, the functional derivative of I(u, v), i.e. L(0), is given
by calculus of variation (Chapter 8, Evans [17])∫

X
δu(x)Ψ∗

1
′(−u(x))dµ(x) +

∫
Y
δv(y)Ψ∗

2
′(−v(y))dν(y), (29)

where (δu, δv) ∈ C(X )× C(Y) denote the variations of (u, v), respectively.

Theorem A.3. Suppose that µ and ν are probability densities defined on X and Y . Given the
assumptions in Appendix A, suppose that µ, ν are absolutely continuous with respect to Lebesgue
measure and Ψ∗ is continuously differentiable. Assuming that the optimal potential v⋆ = infv∈C J(v)
exists, v⋆ is a solution of the following objective

J̃(v) =

∫
X
−vc(x)dµ̃(x) +

∫
Y
−v(y)dν̃(y), (30)
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where µ̃(x) = Ψ∗
1
′(−v⋆c(x))µ(x) and ν̃(y) = Ψ∗

2
′(−v⋆(y))ν(y). Note that the assumptions

guarantee the existence of optimal transport map T ⋆ between µ̃ and ν̃. Furthermore, T ⋆ satisfies
T ⋆(x) ∈ arginfy∈Y [c(x, y)− v⋆(y)] , (31)

µ-a.s..In particular, DΨ1(µ̃|µ) +DΨ2(ν̃|ν) ≤ τW2
2 (µ, ν) where W2(µ, ν) is a Wasserstein-2 dis-

tance between µ and ν.

Proof. By Lemma A, derivative of Eq 27 is∫
X
δu(x)Ψ∗

1
′(−u(x))dµ(x) +

∫
Y
δv(y)Ψ∗

2
′(−v(y))dν(y), (32)

Note that such linearization must satisfy the inequality constraint u(x) + δu(x) + v(y) + δv(y) ≤
c(x, y) to give admissible variations. Then, the linearized dual form can be re-written as follows:

sup
(u,v)∈C(X )×C(Y)

∫
X

δu(x)dµ̃(x) +

∫
Y
δv(y)dν̃(y), (33)

where δu(x) + δv(y) ≤ c(x, y) − u(x) − v(y), µ̃(x) = Ψ∗
1
′(−u(x))µ(x), and ν̃(y) =

Ψ∗
2
′(−v(y))ν(y). Thus, whenever (u⋆, v⋆) is optimal, the linearized dual problem is non-positive

due to the inequality constraint and tightness (i.e. c(x, y)−u⋆(x)−v⋆(y) = 0 π-almost everywhere),
which implies that Eq 33 achieves its optimum at (u⋆, v⋆). Note that Eq 33 is a linearized dual
problem of the following dual problem:

sup
u(x)+v(y)≤c(x,y)

[∫
X
u(x)dµ̃(x) +

∫
Y
v(y)dν̃(y)

]
. (34)

Hence, the UOT problem can be reduced into standard OT formulation with marginals µ̃ and ν̃.
Moreover, the continuity of Ψ∗′ gives that µ̃, ν̃ are absolutely continuous with respect to Lebesgue
measure and have a finite second moment (Note that X ,Y are compact. Hence, Ψ∗′ is bounded on
X ,Y , and X ,Y are bounded). By Theorem 2.12 in Villani [76], there exists a unique measurable OT
map T ⋆ which solves Monge problem between µ̃ and ν̃. Furthermore, as shown in Remark 5.13 in
Villani et al. [77], T ⋆(x) ∈ arginfy∈Y [c(x, y)− v(y)].

Finally, if we constrain π into Π(µ, ν), then the solution of Eq 4 is Cub = τW2
2 (µ, ν). Thus, for the

optimal π ∈ M+ where π0 = µ̃ and π1 = ν̃, it is trivial that

τW2
2 (µ, ν) ≥ τW2

2 (µ̃, ν̃) +DΨ1
(µ̃|µ) +DΨ2

(ν̃|ν), (35)
which proves the last statement of the theorem.

Theorem A.4 ([21]). J is convex. Suppose v is a λ-strongly convex, vc and v are uniformly bounded
on the support of µ and ν, respectively, and Ψ∗

1,Ψ
∗
2 are strongly convex on every compact set. Then,

it holds

J(v)− J(v⋆) ≥ 1

2λ
Eµ̃

[
∥∇ (vc − v⋆c)∥22

]
+ C1Eµ

[
(vc − v⋆c)2

]
+ C2Eν

[
(v − v⋆)2

]
, (36)

for some positive constant C1 and C2. Furthermore, J̃(v)− J̃(v⋆) ≥ 1
2λEµ̃

[
∥∇ (vc − v⋆c)∥22

]
.

Proof. See [21].

B Implementation Details

B.1 Data

Unless otherwise stated, the source distribution µ is a standard Gaussian distribution N (0, I)
with the same dimension as the target distribution ν.

Toy Data We generated 4000 samples for each Toy dataset: Toy dataset for Outlier Robustness
(Sec 5.1) and Toy dataset for Target Distribution Matching (Sec 5.2). In Fig 2 of Sec 5.1, the target
dataset consists of 99% of samples from N (1, 0.52) and 1% of samples from N (−1, 0.52). In Tab 1
and Fig 4 of Sec 5.2, the source data is composed of 50% of samples from N (−1, 0.52) and 50% of
samples from N (1, 0.5). The target data is sampled from the mixture of two Gaussians: N (−1, 0.5)
with a probability of 1/3 and N (2, 0.5) with a probability of 2/3.

17



CIFAR-10 We utilized all 50,000 samples. For each image x, we applied random horizontal flip
augmentation of probability 0.5 and transformed it by 2x− 1 to scale the values within the [−1, 1]
range. In the outlier experiment (Fig 3 of Sec 5.1), we added additional 500 MNIST samples to
the clean CIFAR-10 dataset. When adding additional MNIST samples, each sample was resized
to 3 × 32 × 32 by duplicating its channel to create a 3-channeled image. Then, the samples were
transformed by 2x− 1. For the image generation task in Sec 5.2, we followed the source distribution
embedding of Rout et al. [61] for the small model, i.e., the Gaussian distribution µ with the size of
3× 8× 8 is bicubically upsampled to 3× 32× 32.

CelebA-HQ We used all 120,000 samples. For each image x, we resized it to 256 × 256 and
applied random horizontal flip augmentation with a probability of 0.5. Then, we linearly transformed
each image by 2x− 1 to scale the values within [−1, 1].

B.2 Implementation details

Toy data For all the Toy dataset experiments, we used the same generator and discriminator
architectures. The dimension of the auxiliary variable z is set to one. For a generator, we passed z
through two fully connected (FC) layers with a hidden dimension of 128, resulting in 128-dimensional
embedding. We also embedded data x into the 128-dimensional vector by passing it through three-
layered ResidualBlock [68]. Then, we summed up the two vectors and fed it to the final output
module. The output module consists of two FC layers. For the discriminator, we used three layers
of ResidualBlock and two FC layers (for the output module). The hidden dimension is 128. Note
that the SiLU activation function is used. We used a batch size of 256, a learning rate of 10−4, and
2000 epochs. Like WGAN [6], we used the number of iterations of the discriminator per generator
iteration as five. For OTM experiments, since OTM does not converge without regularization, we set
R1 regularization to λ = 0.01.

CIFAR-10 For the small model setting of UOTM, we employed the architecture of Balaji et al. [8].
Note that this is the same model architecture as in Rout et al. [61]. We set a batch size of 128, 200
epochs, a learning rate of 2× 10−4 and 10−4 for the generator and discriminator, respectively. Adam
optimizer with β1 = 0.5, β2 = 0.9 is employed. Moreover, we use R1 regularization of λ = 0.2. For
the large model setting of UOTM, we followed the implementation of Choi et al. [13] unless stated.
We trained for 600 epochs with λ = 0.2 for every iteration. Moreover, in OTM (Large) experiment,
we trained the model for 1000 epochs. The other hyperparameters are the same as UOTM. Tt For
the ablation studies in Sec 5.4, we reported the best FID score until 600 epoch for UOTM and 1000
epoch for OTM because the optimal epoch differs for different hyperparameters. Additionally, for
the ablation study on τ in the cost function (Fig 7), we reported the best FID score among three R1

regularizer parameters: λ = 0.2, 0.02, 1. To ensure the reliability of our experiments, we conducted
three experiments with different random seeds and presented the mean and standard deviation in Tab
2 (UOTM (Large)).

CelebA-HQ (256× 256) We set τ = 10−5 and used R1 regularizer with λ = 5 for every iteration.
The model is trained for 450 epochs with an exponential moving average of 0.999. The other network
architecture and optimizer settings are the same as Xiao et al. [80] and Choi et al. [13].

Evaluation Metric We used the implementation of Wang et al. [78] for the KL divergence in Tab 1
of Sec 5.2. We set k = 2 (See Wang et al. [78]). For the evaluation of image datasets, we used 50,000
generated samples to measure IS and FID scores.

Ablation Study on Csiszàr Divergence To ensure self-containedness, we include the definition of
Softplus function employed in Table 4.

Softplus(x) = log(1 + exp(x)) (37)

18



3 2 1 0 1 2 3
x

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

y

(a) KL

3 2 1 0 1 2 3
x

1

0

1

2

3

4

5

y

(b) χ2

3 2 1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

(c) Softplus

Figure 8: Various types of Ψ∗.

C Additional Discussion on UOTM

C.1 Stability of UOTM

In this section, we provide an intuitive explanation for the stability and convergence of our model.
Note that our model employs a non-decreasing, differentiable, and convex Ψ∗ (Sec 3) as depicted in
Fig 8. In contrast, OTM corresponds to the specific case of Ψ∗(x) = x. Now, recall our objective
function for the potential vϕ and the generator Tθ:

Lv =
1

|X|
∑
x∈X

Ψ∗
1 (−c (x, Tθ(x, z)) + vϕ (Tθ(x, z))) +

1

|Y |
∑
y∈Y

Ψ∗
2(−vϕ(y)), (38)

LT =
1

|X|
∑
x∈X

(c (x, Tθ(x, z))− vϕ(Tθ(x, z))) . (39)

Then, the gradient descent step of potential vϕ for a single real data y with a learning rate of γ can be
expressed as follows:

ϕ− γ∇ϕLvϕ = ϕ− γ∇ϕΨ
∗
2(−vϕ(y)) = ϕ+ γΨ∗

2
′(−vϕ(y))∇ϕvϕ(y). (40)

Suppose that our potential network vϕ assigns a low potential for y. Since the objective of the
potential network is to assign high values to the real data, this indicates that vϕ fails to allocate the
appropriate potential to the real data point y. Then, because −vϕ(y) is large, Ψ∗′(−vϕ(y)) in Eq
40 is large, as shown in Fig 8. In other words, the potential network vϕ takes a stronger gradient
step on the real data y where vϕ fails. Note that this does not happen for OTM because Ψ∗′(x) = 1
for all x. In this respect, UOTM enables adaptive updates for each sample, with weaker updates
on well-performing data and stronger updates on poor-performing data. We believe that UOTM
achieves significant performance improvements over OTM by this property. Furthermore, UOTM
attains higher stability because the smaller updates on well-behaved data prevent the blow-up of the
model output.

C.2 Qualitative Comparison on Varying τ

In the ablation study on τ , UOTM exhibited a similar degradation in FID score(≥ 20) at τ(×10−3) =
0.1, 5. However, the generated samples are significantly different. Figure 9 illustrates the generated
samples from trained UOTM for the cases when τ is too small (τ = 0.1) and when τ is too large
τ = 5. When τ is too small (Fig 9 (left)), the generated images show repetitive patterns. This lack of
diversity suggests mode collapse. We consider that the cost function c provides some regularization
effect preventing mode collapse. For the source sample (noise) x, the cost function is defined as
c(x, T (x)) = τ∥x− T (x)∥22. Hence, minimizing this cost function encourages the generated images
T (x) to disperse by aligning each image to the corresponding noise x. Therefore, increasing τ from
0.1 led to better FID results in Fig 7.

On the other hand, when τ is too large Fig 9 (right), the generative samples tend to be noisy. Because
the cost function is c(x, T (x)) = τ∥x− T (x)∥22, too large τ induces the generated image T (x) to
be similar to the noise x. This resulted in the degradation of the FID score for τ = 5 in Fig 7. As
discussed in Sec 5.4, this phenomenon can also be understood through Thm 3.3.
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Figure 9: Generated samples from UOTM trained on CIFAR-10 with Left: τ = 0.1(×10−3) and
Right: τ = 5(×10−3).

D Additional Results

Figure 10: Generated samples from UOTM trained on CIFAR10 for (Ψ1,Ψ2) = (KL,KL).
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Figure 11: Generated samples from UOTM trained on CIFAR10 for (Ψ1,Ψ2) = (χ2, χ2).

Figure 12: Generated samples from UOTM trained on CIFAR10 for (Ψ1,Ψ2) = (KL,χ2).
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Figure 13: Generated samples from UOTM trained on CIFAR10 for (Ψ1,Ψ2) = (χ2,KL).

Figure 14: Generated samples from UOTM trained on CIFAR10 for (Ψ1,Ψ2) = (Softplus,Softplus).
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Figure 15: Generated samples from UOTM trained on CelebA-HQ (256× 256).
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