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Abstract

Foundation models have become a cornerstone in deep learning, with tech-
niques like Low-Rank Adaptation (LoRA) offering efficient fine-tuning of
large models. Similarly, methods such as Retrieval-Augmented Genera-
tion (RAG), which leverage vectorized databases, have further improved
model performance by grounding outputs in external information. While
these approaches have demonstrated notable success, they often require
extensive training or labeled data, which can limit their adaptability in
resource-constrained environments. To address these challenges, we in-
troduce Retrieval-based Parameter Ensemble (RPE), a new method that
creates a vectorized database of LoRAs, enabling efficient retrieval and ap-
plication of model adaptations to new tasks. RPE minimizes the need for
extensive training and eliminates the requirement for labeled data, making
it particularly effective for zero-shot learning. Additionally, RPE is well-
suited for privacy-sensitive domains like healthcare, as it modifies model
parameters without accessing raw data. When applied to tasks such as
medical report generation and image segmentation, RPE not only proved
effective but also surpassed supervised fine-tuning methods in certain cases,
highlighting its potential to enhance both computational efficiency and pri-
vacy in deep learning applications.

1 Introduction

In recent years, foundation models such as CLIP (Radford et al., 2021), LLaMA (Touvron
et al., 2023) and SAM (Kirillov et al., 2023) have captured significant attention for their
ability to handle various tasks with minimal adaptation. Pre-trained on large datasets,
these models have been successfully applied in fields such as natural language processing,
computer vision, and healthcare, driving major advancements in artificial intelligence (Shu
et al., 2024; Zhao et al., 2024; Rezayi et al., 2024; Yang et al., 2024).
However, fine-tuning these large models for specific tasks remains resource-intensive, of-
ten requiring substantial computational power and large-scale data. Low-Rank Adaptation
(LoRA) (Hu et al., 2021) offers a solution by freezing most of the model parameters and
fine-tuning only a small portion, significantly reducing the computational overhead while
maintaining high performance. This is especially valuable in resource-constrained environ-
ments. Nonetheless, LoRA and similar methods are still susceptible to hallucinations—
where the model generates plausible but inaccurate content—which can undermine the re-
liability of predictions. To address hallucination, Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020) incorporates an external retrieval step, grounding model outputs in
factual data. Additionally, RAG excels at zero-shot learning, allowing models to handle
tasks or categories without prior exposure. This is particularly important in healthcare,
where models may need to recognize new diseases or interpret unfamiliar medical data with
minimal labeled examples, accelerating diagnostic advancements.
Despite their strengths, fine-tuning and RAG each present significant challenges. Fine-
tuning delivers superior task-specific performance but requires extensive computational and
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Figure 1: Pipeline of the retrieval-based parameter ensemble (RPE) model. First, a vec-
torized database (LoRA-VecDB) is established, containing LoRAs {δθi} and their represen-
tation {zi} across various tasks. When a new task arises, the target representation ztrg is
extracted and used to query the database for similar LoRAs {δθref

i }. The retrieved LoRAs
are then combined using weighted ensemble methods to adapt the model to the new task
without extensive fine-tuning.

data resources. RAG, on the other hand, mitigates hallucination and supports zero-shot
learning but relies on access to raw data, which poses privacy concerns in fields like health-
care. Our research seeks to combine the strengths of LoRA and RAG to address both
computational and privacy concerns in model adaptation. Specifically, we introduce the
Retrieval-based Parameter Ensemble (RPE) model, which leverages retrieval techniques to
replace traditional fine-tuning.
Our RPE model is designed to assign weights to the most relevant LoRA weights in a model
ensemble. These weights are determined based on the similarity between the target task
and the tasks associated with each relevant LoRA. As shown in Figure 1, the pipeline of
RPE begins by establishing a vectorized database, LoRA-VecDB, for a given foundation
model. This database serves as a comprehensive repository of LoRAs {δθi} and their cor-
responding representations {zi} across various tasks. Rather than being created by a single
entity, LoRA-VecDB is a community-driven effort, promoting collaboration and ensuring
the database remains accessible, diverse, and up-to-date. When a new task or dataset arises,
especially in cases with limited labels or computational resources, the model’s represen-
tation ztrg can be extracted and used to query LoRA-VecDB for similar adaptors {δθref

i }.
By calculating appropriate weights {wi}, these LoRAs are combined to form a parameter
ensemble, effectively adapting the model to the new task without the need for extensive
fine-tuning.
This approach offers several key advantages. First, it significantly reduces the redundancy
and computational costs typically associated with traditional fine-tuning methods. Addi-
tionally, it enhances privacy by avoiding the need to access raw data during the adaptation
process. As foundation models continue to scale, the energy consumption (Samsi et al.,
2023) and privacy issues (Bommasani et al., 2021) associated with their deployment become
more pressing, making our RPE method a timely and valuable solution.
Our main contributions are summarized as follows:

• Zero-shot Learning Model via LoRA Retrieval: We introduce a pioneering
zero-shot learning framework that leverages LoRA retrieval, eliminating the need
for additional labeling or training, while also preserving data privacy.

• Insights into Relationship between Parameter and Feature Spaces: Our
analysis reveals how parameter and feature spaces interact, leading to a new weight-
ing strategy that enhances model adaptability and accuracy.

• Real-world Validation: We validate our approach in real-world scenarios, demon-
strating its effectiveness in medical language and image processing tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

This paper is organized as follows: Section 2 reviews related work, providing background for
our approach. Section 3 details the methodology, including the construction of the LoRA
vectorized database and the retrieval process. Section 4 presents experiments evaluating
the RPE model in medical applications. Sections 5 and 6 discuss the implications of our
findings and suggest future research directions.

2 Related Work

We review related work on RAG, parameter combination methods, and zero-shot learning,
highlighting key advancements and differences from our approach.
RAG integrates external knowledge into large language models (LLMs) by retrieving rel-
evant information to enhance generation accuracy (Ma et al., 2023). Recent advancements
focus on optimizing query prompting, indexing structures, and retrieval mechanisms (Ma
et al., 2023; Peng et al., 2024; Gao et al., 2022), addressing limitations of naive RAG ap-
proaches. These improvements enhance retrieval precision and reduce hallucinations in gen-
erated outputs, especially in low-resource domains. For instance, (Seo et al., 2024) leverages
retrieved instances to generate new training samples with LLMs, mitigating data scarcity
in specialized areas. Similarly, (Parvez et al., 2022) expands positive examples in privacy
policy question-answering tasks through retriever models. However, reliance on external
data introduces challenges related to privacy and computational constraints, limiting ap-
plicability in certain scenarios. For instance, some RAG methods used in LLMs retrieve
raw data for the input to improve prompt quality. Others retrieve data in the feature
space, which can still pose significant data privacy concerns, particularly when dealing with
sensitive datasets such as those in the medical domain. In contrast, our method retrieves
representations of tasks rather than specific data, ensuring the preservation of data privacy
while still enabling effective task-specific adaptations.
Parameter Combination Methods Various methods have been developed to combine
model parameters to enhance performance, robustness, and generalization. However, most
current methods still require additional data for fine-tuning or additional neural network
evaluations for optimization. A more detailed comparison can be found in Appendix A.1.
We aim to focus on parameter combination methods without labeled data and additional
neural network evaluations. One such method is Model Soup (Wortsman et al., 2022), which
simplifies model combination through parameter averaging. Another method is Federated
Learning (FL) (McMahan et al., 2017), which focuses on distributed learning. In FL, mul-
tiple devices train models locally on their own data, and only parameter updates are sent
to a central server, which aggregates them into a global model. This decentralized setup
preserves privacy, making FL ideal for privacy-sensitive applications. FL often incorporates
secure protocols and privacy-enhancing techniques, such as secret sharing (Cheng et al.,
2021), to ensure data security.
Zero-shot Learning is a machine learning technique where a model is trained to recognize
objects, categories, or concepts that it has not seen during training (Wang et al., 2019;
Xian et al., 2017; Fu et al., 2018). This technique relies on the transfer of knowledge from
known (seen) tasks to unknown (unseen) tasks by utilizing shared attributes or semantic
relationships. In the realm of zero-shot learning, a model must from familiar tasks, denoted
as T ref

i with corresponding parameters θref
i to a novel task T trg. This process requires a

specific task representation zref
i , which is often extracted from prior knowledge sources such

as textual data or structured entities. Notable studies in this field have employed neural
networks to facilitate the mapping A from zi to θi. For instance, DeViSE (Frome et al., 2013)
used a linear mapping from image features to a joint embedding space. GCN-ZL (Wang
et al., 2018) utilized Graph Neural Networks to map from word embeddings to semantic
embeddings. DGP-ZL (Kampffmeyer et al., 2019) introduced Dense Graph Propagation to
learn mappings from word embeddings to semantic embeddings.
Our work leverages pretrained models to obtain representations zi, and replaces the tradi-
tional neural network approach with a retrieval and algorithm-based method to perform the
mapping A. This not only simplifies the generalization process but also improves the adapt-
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ability of the model to new, unseen tasks. By combining advanced retrieval techniques with
pretrained models, our method offers a scalable and efficient alternative to conventional
zero-shot learning approaches, particularly beneficial where acquiring labeled data for all
potential classes is impractical.

3 Method

In this section, we elaborate on two key components of our approach: the construction of the
LoRA-VecDB, a vectorized database for storing model adaptations and their corresponding
representations, and the retrieval and weighted ensemble mechanism. This mechanism uti-
lizes the database to adapt foundation models dynamically to new tasks by transforming
task data into query representations, retrieving relevant LoRAs, and calculating weights
to configure a tailored model, thus enabling significant flexibility and performance in data-
scarce or privacy-sensitive scenarios.
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Figure 2: Workflow of retrieval and weighted ensemble stage: (1) transforming the dataset
for the new task into the query representation ztrg; (2) retrieving relevant LoRAs, including
{zref

i } and {δθref
i }; (3) computing weights wi based on the similarity between ztrg and {zref

i }
in the representation space; (4) applying these weights in the parameter space to adjust
δθtrg

i .

3.1 Construction of LoRA-VecDB

The vectorized database, named LoRA-VecDB, stands as a central repository that catalogs
LoRAs {δθi} and their corresponding representations {zi} for various tasks. This database
not only facilitates accessibility but also encourages ongoing contributions from the com-
munity, maintaining a collaborative and up-to-date resource.
For each specific dataset Di, a LoRA δθi is trained using the foundation model F (·, θ0).
LoRA achieves this by freezing the pre-trained model weights and introducing trainable low-
rank matrices into each layer, significantly reducing the number of parameters required for
adaptation. This process also generates a representation zi, capturing the essential features
or transformations unique to Di. Typically, the representation zi is derived directly from
the feature map of F ’s encoder, maintaining a raw projection of data features. However,
for enhanced interpretability and to manage multiple adaptations, an additional encoder
can be employed to refine these features into a more contextually appropriate form. This
strategy draws from techniques such as RAG, where specialized encoders are employed to
effectively handle large datasets.
In our application, unless explicitly stated, we utilize the feature map output from the
encoder of F , denoted as EF (xj , θ0), for individual data items xj , which may represent an
image or a document. This approach aligns with the strategy used in the encoder component
of the MoE, where feature maps serve a pivotal role in the model architecture. It is crucial
to emphasize that these feature maps are utilized in their original form, without any fine-
tuning, ensuring that the integrity and the originality of the model’s initial pre-training are
maintained.
For simplicity and practicality in representing dataset features, we initially explored us-
ing various distribution distance metrics, such as the Chamfer distance (Borgefors, 1986),
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Nearest Neighbor Distance (Alt & Godau, 1995), Mean Distance (Carroll & Arabie, 1998),
to measure similarities between datasets. However, these metrics did not show significant
differences in dataset characteristics. Therefore, to streamline our approach, we represent
the features of dataset Di by averaging all associated data feature maps:

zi =
1

|Di|
∑

xj∈Di

EF (xj , θ0), (1)

where |Di| denotes the number of elements in dataset Di, ensuring each dataset’s char-
acteristic is represented as the mean of its features. This method not only simplifies the
computational process but also facilitates the efficient storage of these averaged features in
the VecDB, maintaining the integrity and accessibility of the original data representation.
Through these methodologies, LoRA-VecDB not only provides a structured and efficient way
to store and retrieve adaptations but also supports a scalable framework for experimentation
and enhancement in model adaptability. This open and maintained database promises to
be a valuable asset for researchers and practitioners aiming to leverage existing foundation
models to new datasets and problems.

3.2 Retrieval and Weighted Ensemble

The process begins by transforming the dataset for the new task into a query representation
ztrg. We then search for the most relevant LoRAs, retrieving a set of {zref

i } and {δθref
i }.

The weights {wi} are computed as a function of ztrg and {zref
i }, enabling the model to

utilize F (·, θ0 +
∑

wiδθ
ref
i ), where θ0 represents the parameters of the foundational model

and wiδθ
ref
i are the weighted adjustments from the retrieved LoRAs. This methodology

supports dynamic adaptation of foundational models to new tasks, leveraging community-
generated adaptations and sophisticated retrieval techniques to enhance model performance
without extensive retraining. The algorithm is detailed in Algorithm 1.

Algorithm 1 Retrieval and Weighted Ensemble
Require: Foundation model F (·, θ0), LoRA-VecDB {δθ, zi}, target dataset Dtrg

Ensure: F (·, θtrg)
1: ztrg = 1

|Dtrg|
∑

xj∈Dtrg EF (xj , θ0) ▷ Compute feature representation for Dtrg

2: {zref
i }ki=1 = argsort(d(zi, ztrg), k) ▷ Using k−NN retrieve closest LoRAs

3: {wi} = A({zref
i }, ztrg) ▷ Compute weights

4: θtrg = θ0 +
∑

wiδθ
ref
i ▷ Parameter Ensemble

In the subsequent section, we introduce various strategies, denoted as A, to calculate the
most effective parameter inter-relationships based on latent space structures. Our findings
suggest that transferring a learned LoRA from one dataset to another becomes more effective
as the similarity between the datasets increases. For a clear and visual reference, please see
Figure 3.
Further, we hypothesize that specific correspondences between data representations and
optimal parameters allow our methods to deduce relationships between δθi based on the
relationships among zi. The assumptions made about the connections between the repre-
sentation space and the parameter space significantly influence the derivation of different
A. This understanding aids in tailoring the algorithms to better capture and leverage these
relationships, enhancing the model’s performance across varied datasets.
Similarity Calculation: The strategy is premised on the assumption that tasks with
similar feature representations are likely to benefit from similar parameter adjustments.
This approach is rooted in the concept of transfer learning, where knowledge from one
domain is leveraged to enhance performance in another domain. The strategy calculates
the similarity between the target feature vector ztrg and and each reference feature vector
zref
i stored in VecDB using the squared ℓ2 norm:

d2(zi, z
trg) = ∥zi − ztrg∥22. (2)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Weights are then assigned using a softmax function, which normalizes the inverse of these
distances:

wi =
exp(−λ1d

2
i )∑

j exp(−λ1d2j )
, (3)

where λ1 is a temperature parameter that controls the sharpness of the distribution, allowing
the model to emphasize more similar LoRAs.
Linear Combination: The strategy is based on the assumption that a linear relationship
exists between the latent representations and their corresponding parameter adjustments.
This method seeks to find a linear combination of the retrieved LoRAs that best approxi-
mates the target representation, under the constraint that the combination of weights equals
one, thus maintaining a normalized contribution from each LoRA.
The objective is to minimize the error between the target representation and a weighted
sum of reference representations:

wi = arg min∑
wi=1

∥ztrg −
∑

wiz
ref
i ∥22. (4)

This optimization problem ensures that the combined parameter adjustments from the re-
trieved LoRAs closely match the target task’s requirements.
Regularization: Regularization is introduced into the ensemble method to manage the
influence of each LoRA, particularly when dealing with sparse or high-dimensional data.
The regularization term penalizes the weights, encouraging the model to prefer simpler
solutions that may generalize better. This method assumes that in the presence of many
possible solutions, a sparse solution (in terms of few non-zero weights) could lead to better
performance and interpretability.
The regularization strategy incorporates an ℓ1 norm penalty to encourage sparsity among
the weights:

wi = arg min∑
wi=1

∥ztrg −
∑

wiz
ref
i ∥22 + λ2∥wi∥1, (5)

where λ2 is the regularization parameter that balances the trade-off between the fidelity of
the approximation and the sparsity of the solution. This approach is particularly useful when
the number of potential LoRAs (parameters) is large, and only a subset is truly relevant for
the target task.
Figure 2 illustrates demos of these methods, highlighting how similarity calculation focuses
on proximity relationships with positive coefficients, while linear combination can include
structural information and potentially negative coefficients. The experimental section will
showcase the distinct advantages of each method.

4 Experiments

4.1 Implementation detail

To validate our approach, we conduct experiments using two foundational models: Llama
3.1 8B (Dubey et al., 2024) and SAM (Kirillov et al., 2023). We use 8 H100 80G GPUs for
the training and fine-tuning.
For Llama 3.1 8B model, we evaluate its performance on generating medical report impres-
sions from provided findings. Specifically, we fine tune four LoRA models derived from the
pre-trained Llama 3.1 8B model using four distinct datasets collected from Massachusetts
General Hospital (MGH). These datasets comprise 24,801 CT abdomen reports, 63,745 CT
head reports, 18,157 MR image reports, and 60,000 X-ray image reports. Each report
includes detailed image findings and corresponding impressions. We create 20 different in-
structions asking for impressions and remove all the names in the reports by using regular
expression. The fine-tuning process employ consistent hyperparameter settings: training
batch size = 8, gradient accumulation steps = 4, optimizer = paged adamw 32bit,
learning rate = 5 ∗ 10−6, weight decay = 0.001, maximum gradient normal = 0.3,

6
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LoRA r = 16, LoRA alpha = 0.05. The number of training epochs is set as follows: 2
for CT abdomen, 1 for CT head, 3 for MR, and 1 for X-ray reports. In testing, we collecte
200 new reports for each type of medical image.
For SAM model, we focus on medical image segmentation tasks. Consistent with the MA-
SAM framework (Chen et al., 2023), we use the same hyperparameter settings. We reproduce
and train six individual MA-SAM models, each corresponding to one prostate dataset (Liu
et al., 2020) that the original MA-SAM applies. For both tasks, each dataset is iteratively
treated as the target dataset, while the remaining datasets serve as reference datasets for
zero-shot learning. In all experiments, λ1 in Eq 3 is set to 1 by default, and λ2 in Eq 5 is
set to 100 by default.

4.2 Medical report impression

We form ensemble models for each type of medical report by utilizing both similarity cal-
culation and linear combination but without regularization. Following (Shi et al., 2024), we
apply ROUGE-L (Lin, 2004), BertScore (Zhang et al., 2019) and GPT score defined in (Shi
et al., 2024) in our evaluation to have a comprehensive observation for both fundamental
word matching and semantic level accuracy.

Metrics Pre-trained SFT Zero-shot
AVG Ours (sim) Ours (lin)

ROUGE-L 0.1264 0.1387 0.1369 0.1374 0.1393
BertScore Precision 0.7779 0.7789 0.7811 0.7815 0.7816
BertScore Recall 0.8321 0.8355 0.8348 0.835 0.8358
BertScore F1 0.8039 0.806 0.8068 0.8071 0.8076
GPT score 2.89 3.215 3.36 3.095 3.285

Table 1: Performance comparison of our models against pre-trained Llama 3.1 8B, LoRA
Supervised Fine-tuning (SFT), and zero-shot models on CT abdomen medical report im-
pression task. AVG: average ensemble, sim: similarity combination, lin: linear combination.
The best values are highlighted in bold, and the second-best values are underlined.

CT (head) MR XR
Ours (sim) 0.34 0.33 0.33
Ours (lin) 0.80 0.18 0.02

Table 2: Comparison of weight distributions in our similarity-based and linear combination
methods for CT abdomen medical report impression task.

As shown in Table 1, we compare our models against the pre-trained Llama 3.1 8B which
is the general model without additional training data, LoRA Supervised Fine-tuning (SFT)
on corresponding MGH dataset, and zero-shot model that is only fine tuned on other three
MGH datasets separately with average parameter ensemble. Our linear combination model
achieves the best performance on CT abdomen reports across most metrics, even surpass-
ing the SFT method. The similarity-based ensemble model also demonstrates competitive
performance compared to the SFT model, which is significantly better than zero-shot pre-
trained model. These results highlight that our zero-shot learning framework is not only
competitive but can also outperform traditional SFT approaches in some cases. From Table
2, we observe that the similarity ensemble’s weight has slightly difference from the average
ensemble while surpassing it in all metrics except for the GPT score. We hypothesize that
GPT may favor the average ensemble’s responses, as this trend is consistent in other cases
(refer to Appendix A.2), where only the GPT score is higher while other evaluation metrics
are significantly lower compared to SFT and our methods. Regarding the linear combina-
tion weights, our model integerates 80% weight from the CT head model and 18% from the
MR model, which is reasonable given that CT head reports share a similar pattern with CT
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abdomen reports. The model also leverages knowledge from MR reports, contributing to
the overall performance improvement.

4.3 Medical Image segmentation

We initiated our experiments by training LoRAs on six distinct datasets sourced from var-
ious manufacturers, each differing significantly in signal strength and resolution. This di-
versity introduced notable shifts in data distribution, which posed significant challenges for
a single LoRA model, underscoring the necessity of training models on similar datasets to
enhance task performance. For an in-depth analysis of the datasets and specific numerical
evaluations, please refer to Appendix A.3.
To evaluate the efficacy of our methodology, we investigated the correlation between the
similarity of datasets and the accuracy of LoRA models. Figure 3 illustrates this relationship.
On the left side of the figure, each row ranks the similarity of a testing set to various training
sets, with higher rankings indicating greater similarity. Correspondingly, the right side of
the figure displays the accuracy rankings of LoRA models when applied to these testing sets,
where higher rankings denote better performance. This visual representation confirms our
hypothesis: testing sets more similar to the training sets tend to achieve higher accuracy in
LoRA applications, substantiating the significant impact of dataset characteristics on model
performance.

Training set

Te
st

in
g

se
t

Dataset Similarity Ranking

Training set
Te

st
in

g
se

t

Ranking Difference
LoRA Accuracy Ranking

Figure 3: Correlation between dataset similarity rankings and LoRA model accuracy. The
left side ranks the similarity of testing sets to various training sets, while the right side ranks
the corresponding LoRA model accuracy. Higher rankings indicate greater similarity and
better accuracy, respectively.

Adopting a similar approach to our medical report impression task, we computed the simi-
larity between datasets and adjusted the LoRA representations through linear combinations,
both with and without regularization, to optimize model performance for each dataset. We
evaluated the effectiveness of these models using the DICE Score, a common metric for seg-
mentation accuracy. The DICE Score is calculated as DICE = 2×|X∩Y |

|X|+|Y | , where X denotes
the set of pixels in the predicted segmentation and Y denotes the set of pixels in the ground
truth segmentation. The outcomes are presented in Table 3.
The pre-trained SAM model without LoRA failed to produce meaningful results. This
ineffectiveness is attributed to the absence of LoRA, which deprived the model of the task-
specific information necessary for accurate organ segmentation. For a detailed analysis,
please refer to Appendix A.4. Our findings reveal that models employing regularized linear
combinations, denoted as Ours (lin+R), significantly outperformed other methods, achieving
results comparable to supervised fine-tuning.
To better understand this phenomenon, we analyzed the weights derived from different
methods, focusing on testing set E as an example, detailed in Table 4. It is evident that
testing set E significantly differs from the other datasets. Relying solely on similarity may
not be representative. Linear interpolation without regularization results in weights that
deviate significantly from the trained LoRAs, leading to suboptimal performance. Employ-
ing regularized linear combinations effectively addresses the challenges posed by significant
distribution shifts in the testing set, thereby enhancing robustness and overall performance.
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Dataset Pre-trained SFT Zero-shot
AVG Ours (sim) Ours (lin) Ours (lin+R)

A - 95.4% 80.3% 87.8% 86.3% 90.5%
B - 92.8% 77.5% 85.0% 83.4% 86.0%
C - 90.5% 51.0% 59.8% 61.9% 64.7%
D - 91.2% 74.9% 82.6% 86.7% 90.3%
E - 92.7% 64.6% 56.9% 52.0% 79.1%
F - 93.0% 82.2% 80.8% 82.4% 90.3%

Table 3: Comparison of DICE scores for our models across different testing sets against pre-
trained SAM, LoRA Supervised Fine-tuning (SFT), and zero-shot models on the medical
image segmentation task. AVG: average ensemble, sim: similarity combination, lin: linear
combination, lin+R: regularized linear combination. The best values are highlighted in bold,
and the second-best values are underlined.

A B C D F
Ours (sim) 0.06 0.31 0.44 0.08 0.12
Ours (lin) -1.13 0.67 0.26 0.11 1.09
Ours (lin+R) -0.49 0.47 0.06 -0.03 0.99

Table 4: Weight distribution of our methods applied to testing dataset E, with columns
representing reference datasets for the medical image segmentation task. sim: similarity
combination, lin: linear combination, lin+R: regularized linear combination.

4.4 Ablation Study

In this section, we present a series of ablation studies aimed at evaluating the efficacy of
using the nearest LoRA compared to an ensemble approach. Additionally, we explore the
potential benefits of incorporating LoRAs derived from multiple training sets in enhancing
the performance of models developed through Supervised Fine-Tuning.

4.4.1 Nearest LoRA vs. Ensemble Methods

A natural concern arises regarding whether it is more effective to use a model trained on
the most similar dataset directly, or to employ a fusion of parameters. In this context,
we explore a boundary scenario where we select only the nearest dataset’s LoRA during
retrieval, effectively setting k = 1 in a k-NN search.
Results from different datasets displayed in Table 5 reveal that relying solely on the most
similar training set exhibit highly variable outcomes. Compared to the ensemble approach,
using a single model tends to result in overfitting to the specific dataset it was trained on.
For a more detailed discussion and numerical analysis, please refer to Table 15 in Appendix
A.3. This suggests that integrating multiple models might provide a more robust and stable
performance across diverse datasets.

4.4.2 Whether to Improve SFT

Our model is capable of performing zero-shot learning and also serves as a method to enhance
SFT. This approach proves particularly effective in scenarios where there is a shift in data
distribution between the training and testing datasets, outperforming the original LoRA in
certain tasks and data contexts.
Table 6 illustrates an example where ensemble coefficients are derived using all LoRA (in-
cluding C’s training set) variants on dataset C’s testing set using linear combination. This
reflects the inter-dataset relationships; notably, a negative correlation exists between the
testing set of dataset C and the training set of dataset A. Using these weights, we achieved
a performance of 90.8%, which slightly surpasses the 90.5% achieved by SFT. Although the
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A B C D E F
top-1 similar 90.5% 86.4% 54.6% 90.0% 0.1% 91.0%

Table 5: DICE scores for different testing datasets obtained using the nearest LoRA.

A B C D E F
weight -0.21 -0.07 1.10 0.05 0.03 0.11

Table 6: Weight distribution of linear combination including Supervised Fine-tuning LoRA
applied to testing dataset C.

improvement is marginal, it suggests potential for further enhancing SFT methods, marking
a promising direction for future research.

4.4.3 Training Cost Comparision

Fine-tuning each LoRA model for the medical report task requires around half an hour,
while fine-tuning for more complex tasks and models can take several hours. In contrast,
our RPE model ensembles the most relevant models for a target task in just a few minutes,
making it significantly faster and more efficient. This efficiency extends to medical image
segmentation tasks, where fine-tuning traditionally demands extensive computational time,
but RPE achieves comparable results in a fraction of the time.

5 Discussion and Future work

From the experiments, it is evident that our approach yields promising results. An overall
analysis based on the experimental section reveals that the RPE model significantly enhances
the adaptability and efficiency of foundational models in tasks where labeled data is scarce
or unavailable.
However, there are still some limitations to consider. Due to the limited number of LoRAs
available, some aspects of our architecture merit further discussion. One such aspect is
the potential for improving the encoder used to derive the representation z. This could
involve utilizing a pre-trained model or specifically training an encoder to optimize weight
determination. Another challenge arises when there is a large pool of LoRAs: how to
efficiently retrieve and compute weights. This may necessitate further compression of both
z and the LoRAs themselves, although such explorations exceed the scope of this paper.
This issue presents a valuable direction for future work, where enhancing the scalability and
efficiency of retrieval processes could open new avenues for the application of retrieval-based
machine learning models.
These insights pave the way for improving the model’s robustness and applicability, particu-
larly in privacy-sensitive or resource-constrained environments. Future research could focus
on refining these aspects to fully leverage the potential of retrieval-based learning systems
in broader and more diverse settings.

6 Conclusion

We have introduced a RPE model that achieves zero-shot learning without the need for
additional data and training, while also maintaining data privacy. This model has produced
promising results in medical application scenarios. Such a paradigm significantly reduces
the redundant computational resource consumption of community groups and holds the
potential to become an important framework in the future.
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A Appendix

A.1 Compare with Parameter Ensemble Methods

Parameter Ensemble Methods, particularly LoRA ensembles, can be categorized into three
distinct types based on the requirement for labeled data and neural network evaluation:
Fine-tuning, zero-shot with Neural Network Evaluation (NNE), and zero-shot without NNE.
Fine-tuning is applicable where labeled data are available for new tasks. In such scenarios,
it is possible to learn coefficients for parameter combinations. For example, Zoo-Tuning
(Shu et al., 2021) adapts the parameters of pretrained models to target tasks adaptively.
Similarly, Mixture of Experts (MoE) methods (Xue et al., 2024; Lin et al., 2024) determine
the combination weights of sub-models, termed as ”routers”. MoE architectures utilize a
gating network to direct inputs to specialized sub-models, or ”experts”, that are tailored for
specific tasks.
Zero-shot learning is pertinent when no labels are available for new tasks. Within this cate-
gory, some methods still necessitate extensive neural network evaluations, often employing
consistency regularization to enhance network performance. For instance, AdaMix (Wang
et al., 2022) uses stochastic routing and consistency regularization during the training phase.
UP-RLHF (Zhai et al., 2023) optimizes weights using reinforcement learning, and IOP-FL
(Jiang et al., 2023) employs a consistency loss for weight optimization.
Particularly, as the computational costs of foundation models increase, zero-shot learning
without NNE becomes essential in contexts lacking both labels and computational resources.
Model Soup (Wortsman et al., 2022) simplifies model combination through parameter aver-
aging. While AdaMix (Wang et al., 2022) and LoRA-Ensemble (Halbheer et al., 2024) also
employ averaging during the inference phase, their contributions are often focused on other
aspects. In contrast, our proposed RPE model doesn’t require fine-tuning but achieve com-
petitive performance. Unlike zero-shot with NNE, RPE doesn’t optimize sub-networks or
object functions. We are a zero-shot method without NNE. However, our model appliesad-
vanced algorithms instead of simple average. Notice that our model utilizes several datasets
for ensemble while Model Soup, AdaMix and LoRA-Ensemble focus on one dataset. Our
research specifically addresses the ensemble weights among different models, highlighting a
unique perspective on model integration.

A.2 Other Experiments on Medical Report Impression

Table 7 to Table 12 shows the experiment results in other three types of medical image and
corresponding weight in our methods. Our results indicate that the SFT model consistently
dominates across most metrics in all experiments, with our proposed methods following
closely behind. Both of our approaches significantly outperform the zero-shot pre-trained
Llama 3.1 8B model, demonstrating the effectiveness of our designs. Furthermore, we ob-
serve that by making slight adjustments to the weights, the similarity ensemble model can
surpass the average ensemble model in performance. Overall, our two methods are sta-
ble and consistently outperform other zero-shot approaches, showing competitiveness even
against the SFT model.

A.3 Comparison of weight distributions in our similarity-based and linear
combination methods for X-ray medical report impression task.

Table 13 illustrates the variability among different data sources used in our experiments.
The MR datasets differ significantly in terms of strength, resolution, and manufacturer,
leading to notable shifts in data distribution. Using a single LoRA for segmentation tasks
tends to result in overfitting to specific data distributions and fails to generalize across
diverse datasets.
To quantify the impact of these distribution shifts, we analyzed the Euclidean distances
||zi − zj ||22 between different training and testing sets, as detailed in Table 14. Each row
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Metrics Pre-trained SFT Zero-shot
AVG Ours (sim) Ours (lin)

ROUGE-L 0.201 0.2477 0.2124 0.2161 0.214
BertScore Precision 0.8166 0.8278 0.8194 0.8202 0.8201
BertScore Recall 0.8625 0.8739 0.8617 0.864 0.8629
BertScore F1 0.8387 0.8499 0.8397 0.8412 0.8405
GPT score 4.021 4.735 4.725 4.27 4.237

Table 7: Performance comparison of our models against pre-trained Llama 3.1 8B, LoRA
Supervised Fine-tuning (SFT), and zero-shot models on CT head medical report impression
task.

CT (abdomen) MR XR
Ours (sim) 0.32 0.32 0.36
Ours (lin) 0.25 0.33 0.42

Table 8: Comparison of weight distributions in our similarity-based and linear combination
methods for CT head medical report impression task.

in this table shows how one testing set differs from other training sets. Correspondingly,
Table 15 displays the DICE scores achieved when applying models trained on these various
sets to a given testing set. The results highlight the challenges posed by dataset variability
and underscore the necessity for adaptive segmentation strategies that can effectively handle
diverse data characteristics.

A.4 SAM without LoRA

The implementation of the SAM without LoRA was found to be ineffective, as SAM lacked
the necessary guidance on which organs should be segmented. As illustrated in the examples
shown in Figure 4, the organs targeted by SAM for segmentation appeared to be selected
randomly. In contrast, LoRAs inherently contain task-specific information, such as the
identification of the organs that need to be segmented.
Despite the presence of distribution shifts across different datasets, the organ categories
required for segmentation remain consistent. This consistency is crucial, as it underlines
why employing LoRA enables the completion of tasks that pre-trained models without
retrieval capabilities fail to achieve. This finding demonstrates the importance of integrating
task-specific knowledge in the form of LoRAs to guide the segmentation process effectively,
particularly when dealing with diverse medical imaging datasets.

Figure 4: Pre-trained SAM segmentation outputs without the use of LoRA. The blue regions
represent the segmentation results produced by SAM, while the red regions indicate the
ground truth labels. This figure illustrates the randomness in organ selection by SAM when
it lacks LoRA’s task-specific guidance, highlighting the necessity of employing LoRA to
ensure accurate and consistent organ segmentation across varying datasets.
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Metrics Pre-trained SFT Zero-shot
AVG Ours (sim) Ours (lin)

ROUGE-L 0.1831 0.2153 0.1867 0.1914 0.1949
BertScore Precision 0.8107 0.8186 0.8128 0.8109 0.811
BertScore Recall 0.8644 0.8669 0.8649 0.8651 0.8671
BertScore F1 0.8365 0.8418 0.8378 0.8369 0.838
GPT score 4.255 4.655 4.85 4.285 4.41

Table 9: Performance comparison of our models against pre-trained Llama 3.1 8B, LoRA
Supervised Fine-tuning (SFT), and zero-shot models on MR medical report impression task.

CT (abdomen) CT (head) XR
Ours (sim) 0.33 0.34 0.33
Ours (lin) 0.79 0.17 0.04

Table 10: Comparison of weight distributions in our similarity-based and linear combination
methods for MR medical report impression task.

Metrics Pre-trained SFT Zero-shot
AVG Ours (sim) Ours (lin)

ROUGE-L 0.1681 0.2159 0.1776 0.1794 0.1830
BertScore Precision 0.8244 0.837 0.829 0.8273 0.8289
BertScore Recall 0.8765 0.8807 0.877 0.8778 0.8774
BertScore F1 0.8494 0.858 0.8521 0.8515 0.8522
GPT score 4.025 4.845 4.97 4.17 4.125

Table 11: Performance comparison of our models against pre-trained Llama 3.1 8B, LoRA
Supervised Fine-tuning (SFT), and zero-shot models on X-ray medical report impression
task.

CT (abdomen) CT (head) MR
Ours (sim) 0.32 0.37 0.31
Ours (lin) 0.48 0.15 0.38

Table 12: Comparison of weight distributions in our similarity-based and linear combination
methods for X-ray medical report impression task.

Dataset Institution Case strength(T) Resolution (mm) Endorectal Coil Manufactor
Site A RUNMC 30 3 0.6-0.625/3.6-4 Surface Siemens
Site B BMC 30 1.5 0.4/3 Endorectal Philips
Site C HCRUDB 19 3 0.67-0.79/1.25 No Siemens
Site D UCL 13 1.5 and 3 0.325-0.625/3-3.6 No Siemens
Site E BIDMC 12 3 0.25/2.2-3 Endorectal GE
Site F HK 12 1.5 0.625/3.6 Endorectal Siemens

Table 13: Characteristics of MRI datasets from multiple institutions used in the study. This
table details variations in magnetic field strength, spatial resolution, usage of endorectal
coils, and MRI equipment manufacturers across six different sites, highlighting the diversity
of data sources in our experiments.
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A B C D E F
A 85.0758 94.8546 95.2915 89.6767 95.514 87.1439
B 97.6358 89.4471 96.5984 95.2394 90.5619 98.885
C 97.2556 97.017 85.7178 97.4879 95.1096 98.1607
D 90.9688 94.3976 96.8321 92.7221 94.3723 92.5209
E 101.5153 96.0675 94.905 100.7156 82.0723 99.3386
F 87.463 93.2918 95.6369 91.5755 95.074 86.0333

Table 14: Euclidean distances between feature vectors of different datasets, quantifying the
distribution shifts. Each entry represents the squared Euclidean distance ||zi−zj ||22 between
testing sets and trainig sets across sites A through F. The closest distances are highlighted
in bold.

A B C D E F
A 95.4% 92.4% 44.3% 91.0% 83.3% 90.5%
B 84.1% 92.8% 44.8% 87.0% 86.4% 85.3%
C 26.1% 60.2% 90.5% 75.1% 54.6% 39.0%
D 90.0% 86.7% 49.9% 91.2% 71.5% 76.4%
E 75.5% 84.8% 0.1% 76.8% 92.7% 85.8%
F 91.0% 87.4% 58.2% 84.3% 90.1% 93.0%

Table 15: DICE scores for models tested across different datasets, reflecting model perfor-
mance variability. The highest scores are highlighted in bold.
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