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ABSTRACT

The exact modeling of modern physical systems is challenging due to the ex-
panding system territory and insufficient sensors. To tackle this problem, existing
methods utilize sparse regression to find physical parameters or add another vir-
tual learning model like a Neural Network (NN) to universally approximate the
unobserved physical quantities. However, the two models can’t perfectly play
their own roles in joint learning without proper restrictions. Thus, we propose (1)
sparsity regularization for the physical model and (2) physical superiority over
the virtual model. They together define output boundaries for the physical and
virtual models. Further, even the two models output properly, the joint model still
can’t guarantee learning maximal physical knowledge. For example, if the data
of an observed node can linearly represent those of an unobserved node, these
two nodes can be aggregated. Therefore, we propose (3) to seek the dissimilar-
ity of physical and virtual outputs to obtain maximal physics. To achieve goals
(1) − (3), we design a twin structure of the Physical Neural Network (PNN) and
Virtual Neural Network (VNN), where sparse regularization and skip-connections
are utilized to guarantee (1) and (2). Then, we propose an adversarial learning
scheme to maximize output dissimilarity, achieving (3). We denote the model as
the Adversarial Twin Neural Network (ATN). Finally, we conduct extensive ex-
periments over various systems to demonstrate the best performance of ATN over
other state-of-the-art methods.

1 INTRODUCTION

Internet of Everything (IoE) expands quickly to interconnect various devices. The systematic plan-
ning, modeling, and control of IoE can bring many benefits to society (Li et al., 2020). However,
it remains an open question on how to efficiently model various grids with different levels of sys-
tem information. For example, cyber-physical systems may be partially traceable by physical laws
with limited sensing (Mulani et al., 2020). Such scenarios have a significant appearance nowadays
on the grid edges of various physical systems due to the availability of low-cost, low-power sensor
technology. These edge areas have unequal sensors but can be used to recover some physical laws
completely or partially (Divan et al., 2014; Hu & Tang, 2020).

Learning physical equations from data is a central topic of Artificial Intelligence (Sahoo et al., 2018;
Udrescu & Tegmark, 2020). While there are many related studies, e.g., symbolic regression (Pe-
tersen, 2019) and its variation with sparsity regularization (Brunton et al., 2016b), these methods
are inapplicable to IoE or other complex physical systems due to the incomplete system observ-
ability. To tackle the issue, (Li & Weng, 2021) builds a shallow-deep structure to learn physics in
a shallow neural network and simultaneously approximate the hidden components in a deep NN.
Such a method, however, doesn’t give a clear boundary between two NNs and suffers risks of im-
balanced representation power between the physical and the virtual. Thus, there is a need to enforce
restrictions for the model output within the boundary and keep the physical consistency.

Further, existing methods can hardly guarantee that the extracted physical model is operationally
optimal. For example, in the realistic operation, if the data of an observed node can linearly represent
those of an unobserved node, these two nodes can be aggregated, leading to the so-called Network
Reduction (NR) (Oh, 2012; Zheng et al., 2021). On the other hand, some components of hidden
quantities that can’t be represented via the observed data can be treated as noise. Thus, our target is
to identify an optimal reduced grid with operationally maximal physics. Namely, the reduced grid
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should fully represent the input-output relationship of the observed measurements under a certain
noise level.

Based on the above observations, we propose Adversarial Twin NNs (ATN) for optimal system mod-
eling, where a Physical Neural Network (PNN) represents the physical parameters of the reduced
grid and a Virtual Neural Network (VNN) approximates the noise. To find the proper output bound-
ary, we first restrict the PNN using sparse regularization. Simultaneously, we encourage PNN to
approximate the final output with priority, indirectly restricting the output of VNN. We show that
such a mechanism can be easily achieved via a skip-connection (He et al., 2016b). Secondly, to
achieve physical knowledge maximization, the output of PNN should be independent of the noise
output of the VNN. Thus, we propose an adversarial learning scheme with Embedding Neural Net-
works (ENNs) to extract similar features from outputs of PNN and VNN. Adversarially, training
PNN and VNN leads to maximized output dissimilarity.

Notably, such an idea is the reverse thinking of traditional deep learning-based adversarial learning
that seeks maximal similarity between two targets (e.g., feature distributions). Namely, we aim to
find the maximized feature dissimilarity of two NNs. Under this condition, classical training loss
like binary loss in Generative Adversarial Networks (GANs) easily suffers instability. Thus, we
address the problem using the similarity and dissimilarity measures of contrastive learning (Hadsell
et al., 2006). Finally, we conduct extensive experiments over various systems to demonstrate the
much better performance of our model compared to other state-of-the-art methods.

2 RELATED WORK

Physical System Identification. Physical system identification is a central topic for modern phys-
ical systems, especially in the edge areas. The target is to identify system governing equations
using sensor measurements (Li & Weng, 2021). While the problem is similar to learning underlying
equations from data, the key challenge for physical system identification is the incomplete measure-
ment availability due to the sensor cost in a wide area of the system. Thus, traditional methods of
learning equations using symbolic regression (Schmidt & Lipson, 2009; Petersen, 2019) can easily
suffer overfitting. Then, (Brunton et al., 2016c; Champion et al., 2019) assume that the system is
sparse and utilize Least Absolute Shrinkage and Selection Operator (LASSO) regularization to re-
strict physical equation representation and avoid overfitting. This regularization, however, causes
inaccuracy to learn physical parameters due to the penalty term.

Thus, (Li & Weng, 2021) proposes a deep-shallow architecture to learn physics with a shallow neu-
ral network as well as approximating the hidden components with a deep neural network. However,
the DNN model easily suffers from local optima, making the output boundary between the shallow
neural network and the DNN deviate from the true boundary. Consequently, the recovery accuracy
of the physical parameters in the shallow neural network deteriorates. To restrict the output bound-
ary, (Yin et al., 2020) also assumes physical and augmented neural networks and propose a l2 norm
to regularize the parameters of the augmented NN. However, such regularization may easily cause
overfitting of the physical NN. Finally, (Takeishi & Kalousis, 2021) can restricts both the physical
and the virtual NNs. However, their regularization requires strict assumptions on variable distribu-
tions and the prior physical knowledge, which may not be available for general physical systems.

Adversarial Learning. Adversarial learning is a popular approach for training two adversarial
components in a NN. Primarily, the mini-max game training helps to achieve the Nash equilibrium
for optimal policy. For example, Generative Adversarial Network (GAN) (Goodfellow et al., 2014;
Sauder & Sievers, 2019) utilizes a generator to generate fake data and, adversarially, utilize a dis-
criminator to distinguish between the fake data and the true data. The optimal status is to enable the
generator to accurately approximate the distribution of the true data. Such an idea is further utilized
in various machine learning domains like domain adaptation (Ganin et al., 2016) to extract similar
features between two domains and disentangled representation learning (Tran et al., 2017).

Contrastive Learning. Contrastive learning seeks representation with a minimal distance of similar
samples and maximal distance of dissimilar samples (Hadsell et al., 2006). Usually, the distance is
measured in an embedding space to seek the best embedding. The elaborated contrastive loss can
thus guarantee stable training due to the soft comparisons between the positive and the negative sam-
ples. Such a technique is widely utilized in image embedding (Park et al., 2020), feature clustering
(Li et al., 2021c), text recognition (Aberdam et al., 2021), etc.
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3 METHODS

3.1 PROBLEM FORMULATION
In this paper. we study physical systems that can be modeled as a directed weighted graph G =
{V, E}, where V represents the vertex (node) set, and E ⊆ V × V represents the edge set. All
nodes in V have physical variables x and y, where x represents the system state variables, and y
represents the system net outputs. Then, the system equations can be written as y = f(x). For
example, in electric grids, x denotes the voltage phasor, and y denotes the net power (i.e., the
power consumption minus the power injection). Then, f can represent the power flow equation (Yu
et al., 2017). Parameters in f are usually (partially) unknown to us due to the growing system size,
evolving system properties, events, and maintenance, etc. Thus, it’s essential to estimate parameters
of f using data of x and y.

However, not all nodes in V can be equipped with sensors due to the sensor cost. Thus, we denote
V = O ∪ U , where O represents the observable nodes, and U represents the unobservable nodes.
The physical function can then be written as [yO,yU ]> = f

(
[xO,xU ]>

)
, where > is the transpose

operation. Subsequently, we denote the observed data samples as {xn
O}Nn=1 and {yn

O}Nn=1, whereN
is the number of samples. Based on the above measurements, we aim to find an accurate mapping gθ
such that yO ≈ gθ(xO). Further, a subset of the parameters θp ⊂ θ should represent the physical
parameters in f as many as possible.

The missing quantities of xU and yU make the problem challenging as the under-estimate or over-
estimate of xU and yU will easily cause the inaccurate results of θp and further hurt the generaliza-
tion ability of gθ. Subsequently, this causes negative impacts on the downstream tasks like system
resource optimization, reliability evaluation, and optimal expansion.

To solve the above problem, we propose twin NNs to approximate both of them. As shown in
Fig. 1, the twin NNs try to map from xO to yO with physics consistency, where Physical Neu-
ral Network (PNN) learns physical parameters and outputs physical quantities and Virtual Neural
Network (VNN) approximates the remaining quantities, i.e., the uncertainties and hidden measure-
ments. Thus, they jointly contribute to the final output yO.

Before illustrating the design details, we first introduce a moderate assumption for the system prior.
Specifically, we assume the physical bases z are known in the physical equation. Namely, there
is a mapping z = φ(x) such that y = Az, where A is a constant matrix representing system
parameters. Then, all the system non-linearity is incorporated in φ and A contains all physical
information and needs to be estimated. If we know all nodes’ measurements, a linear regression
can help to identify A. However, we only have measurements of xO and yO. Correspondingly, we
denote z = [zO, zU ]>, where zO are physical bases purely calculated via xO and zU are the bases
calculated via xU or [xO,xU ]>. Thus, we fix the parameters from xO to zO and place the learnable
parameters in the mapping from zO to yO. Namely, we build a physical library, as shown in the
left part of Fig. 1. Note that for some complex systems, the mapping φ may not be known, and
we may demand symbolic regression-based methods to generate the base symbols first (Petersen,
2019). However, in this paper, we focus on the issue of incomplete system observability with the
prior knowledge of φ, e.g., the quadratic and sinusoidal functions in an electric grid.

3.2 PHYSICAL NEURAL NETWORK (PNN): LEARN PHYSICS WITH SPARSE REGULARIZATION
Due to the linear relationship between zO and yO, we introduce a linear mapping gp such that
h1 = gp(zO) = W1zO in PNN. Usually, the system structure is sparse (Brunton et al., 2016c;
Champion et al., 2019). To maintain the physical consistency, we enforce a sparse regularization,
i.e., the LASSO term, to guarantee sparse connections of the system. Specifically, the LASSO
regularization is created as ||W1||1 =

∑
i,j |W1[i, j]|, where W1[i, j] is the (i, j)th element in W1.

3.3 VIRTUAL NEURAL NETWORK (VNN): UNIVERSAL APPROXIMATION UNDER PHYSICAL
SUPERIORITY

After showing the regularized PNN, this section will explain the modeling and benefits of VNN.
The goal for VNN is to (1) approximate the remaining quantities, and (2) avoid deteriorating the
output of PNN. Namely, we want to find a boundary to let PNN and VNN output properly. For the
first goal, we build VNN as a fully connected neural network with multiple layers, which has a high
capacity to approximate the remaining quantities. Specifically, let the mapping of the VNN be gv ,
and we have hM+1 = gv(h1), where M is the number of layers for VNN.
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Figure 1: The structure of the proposed twin NNs.
.

For the second goal of finding the boundary, we need to restrict the output of VNN and encourage
PNN to output as much as possible. On the other hand, we do not worry about the overfitting
of the PNN as PNN has been strictly regularized via LASSO regularization to guarantee physical
consistency. Thus, we employ a skip-connection from the output of PNN directly to the final output
(He et al., 2016a). Mathematically, we have: yO = h1 + gv(h1) = gp(zO) + gv

(
gp(zO)

)
.

The skip-connection further ensures the possibility to create physical superiority, i.e., to encourage
PNN to output as much as possible. Namely, we encourage gp(zO) to directly approximate yO. In
general, we have the following objective for the twin NNs.

minE
[(
yO − gp(zO)− gv

(
gp(zO)

))2]
+ γE

[(
yO − gp(zO)

)2]
+ λ||W1||1, (1)

where γ and λ are positive constants for the penalty terms.

3.4 MINI-MAX GAME TO ADVERSARIALLY TRAIN TWIN NNS FOR MAXIMIZED PHYSICAL
KNOWLEDGE

In this subsection, we propose the Adversarial Twin NNs (ATN) based on the above twin NNs.
Primarily, we show that ATN helps recover maximized physics, which is much better than previous
work for physical system modeling.

As we mentioned in the Introduction Section, even if the boundary between the observed and unob-
served measurements is successfully found, the physics may not be maximized. Essentially, we aim
to find a reduced grid to govern the model and operation of observed measurements. Mathemati-
cally, we can treat the hidden components as zU = BzO + e, where B is another constant matrix
for the linear representation of the unobservable parts using the observable parts, and e is the noise
term.

Based on the above formulation, the maximized physics can only be achieved when gp(zO) rep-
resents the linear relationships from both zO and zU ≈ BzO, and gv(zO) represents the output
transformed from the noise term e. This inspires a clear probabilistic distance between gp(zO)
and gv(zO). Specifically, we aim to maximize the distribution dissimilarity between gp(zO) and
gv(zO), thus achieving maximized physics. As distribution dissimilarity can hardly be explicitly
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written in a neural network framework, we propose an adversarial learning framework to achieve
the goal.

Specifically, we intend to drive the training process to gradually convert physical knowledge from
VNN to PNN, which needs to measure and transfer the common knowledge. Thus, we utilize a third
neural network, Embedding Neural Network (ENN), to transform the output of PNN and VNN into
embedding vectors with large common knowledge, i.e., similarity of embedding distributions. On
the other hand, our PNN and VNN should dynamically adjust the parameters to achieve minimal
similarity. In general, the complete framework is shown in Fig. 1, where two ENNs convert the
original output of PNN and VNN for the similarity loss in a mini-max game. Since we have the
given output pair from PNN and VNN, the task of finding the similarity of two embeddings can be
formalized as a contrastive learning framework (Hadsell et al., 2006). Thus, we define the similarity
distance as follows:

D
(
ge1
(
gp(zO)

)
, ge2

(
gv(gp(zO))

))
=

√
E
[(
ge1
(
gp(zO)

)
− ge2

(
gv(gp(zO))

))2
]
, (2)

where ge1 and ge2 represent the mappings of two ENNs, respectively. Namely, we utilize the
Euclidean distance in the embedding space to measure the distribution similarity. Based on Equation
(2), we subsequently define the similarity loss for training as follows:

L(Θe,Θp,Θv, Y ) = (1− Y )D2
(
ge1
(
gp(zO)

)
, ge2

(
gv(gp(zO))

))
+ Y

(
max{0,m−D

(
ge1
(
gp(zO)

)
, ge2

(
gv(gp(zO))

))
}
)2

,
(3)

where Θe represent the set of parameters in ge1 and ge2 , and Θv and Θp represent the parameter
sets for PNN and VNN, respectively. Y is a scalar to indicate if the sample pair is similar (Y = 0)
or dissimilar (Y = 1), and m is a threshold to achieve stability in contrastive learning.

With the loss function above, we derive the the value function for the mini-max game between PNN
and VNN:

min
Θe

max
Θv,Θp

V (Θe,Θp,Θv) = L(Θe,Θp,Θv, Y )− γE[(yO − gp(z1))2]

− E[(yO − gp(z1)− gv(gp(z1))2]− λ||W1||1.
(4)

During the training, we denote Y = 0 for the maximization process as we want to train PNN and
VNN to maximize the distance in Equation (2). Conversely, we denote Y = 1 in the minimization
process to minimize the defined distance. The adversarial training process finally leads to the maxi-
mized dissimilarity between outputs of PNN and VNN, which implies that the physical knowledge
is maximally represented in PNN. Since we do the adversarial training, we denote our model as
Adversarial Twin NNs (ATN).

4 EXPERIMENTS
To extensively verify the performances of ATN, we elaborate our models on different datasets from
different physical systems. Meanwhile, we consider testing under different system observability
levels, i.e., the ratio of the number of observed nodes to the total nodes, in the set {0.2, 0.4, 0.6, 0.8}
and different Signal-to-Noise-Ratios (SNRs) in the set {60, 80, 100, 120} to mimic the realistic con-
ditions. Then, we employ 8000 samples and conduct 5-fold cross-validation to obtain the average
results for demonstration. For all the NN training, we use Adam optimizer with a learning rate hyper-
parameter set {0.001, 0.0002, 0.00005}, and momentum parameters β1 = 0.5, β2 = 0.999 to train
200 epochs for each experiment. All the experiments are completed with a computer equipped with
Intel(R) Core(TM) i7-9700k CPU and Nvidia Geforce RTX 2080Ti GPU. The detailed experimental
settings are described as follows.
4.1 DATASETS

Synthetic Data. We first utilize synthetic datasets for demonstration. Specifically, we propose a
4-node system such that:

y1 = x2
1 + cos(x2), y2 = x3

2 + x2
1,

y3 = x3 − cos(x4), y4 = x2
4 + x1.

(5)

5



Under review as a conference paper at ICLR 2022

The vector variable x is simulated using uniform distribution U(0, 1), and we construct the set z
based on the physical mappings (e.g., square or cosinusoidal.) in Equation (5).

IEEE Power Systems and PJM Load Data. There are standard power system models in IEEE,
including the grid nodes, edges, and attributes. Especially, we can download the model files and
the simulation platform in MATPOWER (MATPOWER community, 2020). In this experiment, we
incorporate IEEE 85-node systems for testing. To conduct the simulation, we further employ real-
world power consumptions in PJM Interconnection LLC (PJM) data (PJM Interconnection LLC,
2018). The load files contain hourly electricity consumption in 2017 for the PJM RTO regions.
With the above data, MATPOWER produces the system states of voltage phasor to represent the
system input x. In the meantime, the nodal net power represents the system output y for training.
In the power system dataset, we have φ = [x2, sinx].

Mass-damper system data. We can utilize the following equation to represent the governing law of
the mass-damper system: q̇ = −DRD>M−1q, where q is the vector of momenta of the masses,
D is the incidence matrix of the graph, R is the diagonal matrix of the damping coefficients of the
damper attached to the edges, and M is the diagonal mass matrix (van der Schaft, 2017). Using
MATLAB, we simulate the dynamic process of the mass-damper system with 10 nodes for testing.
In the mass damper system dataset, we have φ = [dxdt , x].

UF sparse matrix-based system. We can find a large set of sparse matrix-based networks in the UF
sparse matrix systems (Texas A&M University, 2011). In this experiment, we utilize the 274-node
system to test. For the convenience of later presentation, we simply utilize 4-, 10-, 85-, and 274-node
systems to denote the above datasets. In the UF sparse matrix dataset, we have φ = [x].

4.2 BENCHMARK MODELS

To validate the performance of learning physical system representation, the following benchmark
methods from related literature are used.

• Deep Residual network (Resnet). Similar to ATN, Resnet (He et al., 2016b) also utilizes
the shortcut design to pass the representation of shallow layers to deeper layers. Such a
design helps Resnet to achieve excellent performances over various machine learning tasks
(Guo & Du, 2019; Ma et al., 2020).

• Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al., 2016a). SINDy
method conducts a sparse regression to recover the physical parameters. Especially, in our
paper, we assume the physical bases are known. Thus, the essence of SINDy is to utilize a
LASSO regularization to select correct bases from the built-in library.

• Deep Symbolic Regression (DSR) (Petersen et al., 2021). DSR employs a risk-seeking
policy gradient to train a reinforcement learning agent for symbolic regression.

• Equation Learner (EQL÷) (Sahoo et al., 2018). EQL÷ treat the physical bases as activation
functions in a neural network. Also, the operators like summation, multiplication, and
division are included in the neural network. Finally, the target neural network includes
sparsity constraints for symbol selections.

• Physics-Consistent Neural Network (PCNN) (Li & Weng, 2021). PCNN has a deep-
shallow architecture to represent the physical model, which is similar to our ATN. However,
PCNN doesn’t include a skip-connection for physical superiority, and mini-max game for
training.

In this paper, the hyper-parameters of NNs (i.e., ATN, Resnet, DSR, EQL÷, and PCNN) are selected
via cross-validation for the best performance.

4.3 MODEL EVALUATION

We propose the following metrics to evaluate the generalizability and the parameter estimation re-
sults of different models.

Generalizability. We utilize the Mean square error (MSE) of the testing set to evaluate the model
performance of predicting yO.
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Parameter estimation. To evaluate the parameter estimation performance, we utilize the so-called
normalized Total Vector Error (nTV E) (Li et al., 2021b) to evaluate the difference between the
estimated L̂ and the true physical system parameter matrix L:

nTV E(%) = 100× ||L̂−L||2
||L||2

.

4.4 MODEL GENERALIZABILITY: ATN ACHIEVES THE LOWEST MSE IN ALL CASES

(a) 4-node result. (b) 10-node result. (c) 85-node result. (d) 274-node result.

Figure 2: The results of testing MSE for different physical systems.

Firstly, we evaluate the model operational performance via generalizability for different grids and
under different SNR levels. Specifically, we fix the number of observability to be 0.6 and vary SNRS
in the set {60, 80, 100, 120}. Fig. 2 demonstrates the testing MSE results for different physical
systems. Clearly, we first observe that our ATN model (red line) achieves the lowest MSE for all the
result points. This implies that ATN model is the most suitable model for physical system real-time
operations. The following reasons help to explain the observation. (1) ATN vs. Resnet. In ATN
model, we embed physical bases to learn a physical equation. However, for Resnet, no physics is
learned. Due to the high generalizability of physical models in the observed regions, ATN performs
much better than Resnet. (2) ATN vs. SINDy. ATN and SINDy have the ability to estimate
the parameters of physical equations. However, SNIDy only utilizes LASSO as the regularization
term, but ATN utilizes LASSO in PNN and employs another VNN to approximate the remaining
quantities. Thus, SINDy typically suffers underfitting when there are unobserved values, which
deteriorates the predicting performance.

(3) ATN vs. DSR & EQL÷. DSR and EQL÷ utilize symbolic regression to sparsely select symbols
to form an equation that fits data. The missing values make the symbolic regression incapable of
finding the true governing law. However, ATN can find governing equations for the reduced grid to
best fit the data. (4) ATN vs. PCNN. Though PCNN also enjoys a twin structure to use shallow NN
to learn physics and deep NN to approximate the remaining components, there is no design of the
adversarial learning. Thus, training PCNN can’t find the maximal physics of the reduced grid for
optimal operations.

Then, we observe that for all methods, as the SNR increases, their MSE results decrease. This
shows that the lower noise level helps all methods to obtain better accuracy. Interestingly, we find
that for the synthetic system, SINDy performs much better than DSR and EQL÷. For the power
system, SINDy has a moderately better performance. Then, for the rest systems, SINDy, DSR, and
EQL÷ have similar performances. This is because the synthetic data has the most complex physical
bases (x, x2, x3, cos(x)), and power system has a relative lower complexity (x2, sin(x)). Then, the
mass-damper system and UF sparse matrix have the lowest complexity (x). Though we prepare all
the physical base pools for each method, SINDy can successfully select the right base with LASSO
regularization in the observed region. However, DSR and EQL÷ with a NN structure can easily
select the incorrect bases and suffer from overfitting. Finally, we find that PCNN usually performs
better than SINDy, DSR, and EQL÷. This shows that even without a mini-max game, the twin
structure can help to identify the rough boundary of the physical and virtual outputs and obtain a
more accurate approximation than methods without twin structure.
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4.5 PHYSICAL PARAMETER ESTIMATION: ATN HAS THE MOST ACCURATE RESULTS

This subsection studies the physical-parameter-recovery ability for SINDy, DSR, EQL÷, and ATN
methods. Especially, we fix the observability level to be 0.6 and SNR = 100. To make sure the
ground-truth is doable for comparison, we make the nodal inputs independent of each other
for each system. Thus, it avoids the case when the obtained reduced network is different from
the ground-truth network, causing the impossibility for ATN method to verify results.

Table 1 demonstrates the results of nTV E(%)(mean ± standard deviation) for different datasets.
First, the result shows that our proposed ATN reaches the best performance due to our sophisticated
design of twin architecture and adversarial learning for dynamic boundary seeking. Secondly, as
system size increases, SINDy, DSR, and EQL÷ have the quick boosting of the nTV E(%), almost
proportional to the system size growth. However, for the ATN method, nTV E(%) remains lower
with only slight growth. This is because the increasing system size largely promotes the number of
unobserved nodes, given fixed observability issues.

Thus, for SINDy, DSR, and EQL÷, the probability of the perfect recovery is largely decreasing for
each scalar function (i.e., a function to represent yO[i] for the ith element in yO). Specifically,
recovering yO[i] needs all the input variables in the function of yO[i]. However, more unobservy
errors for SINDy, DSR, and EQL÷ increase largely. As for PCNN method, the rate of error increas-
ing is not as high as SINDy, DSR, and EQL÷ methods, which shows that the deep neural network
in the PCNN can restrict the overfitting of the physical learner with joint training.

However, for our ATN method, though the chance for a perfect recovery decreases, our VNN can
help identify the boundary between the observed physics and the remaining components under the
mini-max game mechanism. Therefore, ATN can still have relatively small estimation errors for
different systems.

Table 1: The nTV E(%)(mean ± standard deviation) value for different methods in different sys-
tems.

ATN SINDY DSR EQL÷ PCNN

4-NODE SYSTEM 2.21± 0.68 8.67± 1.69 16.49± 3.81 14.25± 3.62 7.66± 2.01
10-NODE SYSTEM 4.33± 2.08 14.99± 4.22 16.87± 4.35 17.73± 4.21 10.97± 4.19
85-NODE SYSTEM 5.97± 2.32 34.17± 8.66 39.33± 7.46 42.21± 5.69 26.00± 6.23
274-NODE SYSTEM 6.86± 2.56 54.70± 10.02 58.29± 11.25 52.17± 10.99 33.25± 8.19

4.6 ABLATION STUDY FOR DIFFERENT COMPONENTS OF ATN

In this subsection, we conduct the ablation study for tha ATN model to test the performance of
different components. Especially, we remove the sparsity of PNN, skip-connection of VNN, and the
minimax-training, respectively. We denote the models as ATN-SP, ATN-SK, ATN-MI, respectively.
The results are shown in Table 2. Averagely, for the above three models, the nTV E(%) increases by
31.85%, 26.58%, and 20.21%. This shows that the three components have great impacts on learning
the correct physics. Further, sparsity plays the essential role as it restricts the representation of the
physics.

Table 2: The nTV E(%)(mean± standard deviation) value for the ablation study.

ATN ATN-SP ANT-SK ATN-MI

4-NODE SYSTEM 2.21± 0.68 3.02± 0.69 2.76± 0.81 2.60± 0.72
10-NODE SYSTEM 4.33± 2.08 5.76± 3.11 5.01± 3.55 4.89± 4.21
85-NODE SYSTEM 5.97± 2.32 7.01± 3.41 7.28± 3.16 7.04± 2.49
274-NODE SYSTEM 6.86± 2.56 9.75± 3.29 9.47± 3.76 8.77± 2.89
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4.7 SENSITIVITY ANALYSIS CONCERNING THE SYSTEM OBSERVABILITY AND SAMPLE
NUMBERS

In this subsection, we consider the sensitivity analysis with respect to the system observability and
the sample numbers. Specifically, for the 85-node power system, we vary the system observability,
i.e., the ratio of the number of observed nodes to the total nodes, in the set {0.2, 0.4, 0.6, 0.8}.
Secondly, we vary the sample number in {6000, 8000, 10000, 12000, 14000}with observability ratio
to be 0.6. Finally, we always fix SNR = 100 for testing.

Table 3 illustrates the results with respect to different observability. In general, as system ob-
servability increases, all methods have a better prediction accuracy, and ATN achieves the best
performance for different scenarios. Further, with system observability level increasing from
0.2 to 0.8, MSEs of ATN, Resnet, SINDy, DSR, EQL÷, and PCNN have a relative decrease of
80.70%, 41.37%, 52.94%, 66.67%, 63.64%, 60%. It shows that ATN can make the most use of the
new information from newly placed meters and achieve the most relative reduction.

Table 3: The MSE value for different methods with varying system observabilities.

SYSTEM OBSERVABILITY ATN RESNET SINDY DSR EQL÷ PCNN

0.2 0.057 0.29 0.17 0.21 0.22 0.15
0.4 0.033 0.25 0.11 0.14 0.11 0.10
0.6 0.014 0.18 0.11 0.12 0.13 0.10
0.8 0.011 0.17 0.08 0.07 0.1 0.06

Table 4 demonstrates the results with respect to different sample numbers. We find that for different
methods, when the sample number is larger than 10000, the MSE value will almost keep stable. This
shows that 10000 is a corner point for the physical model learning in the 85-bus power system. Con-
sidering the high-resolution (e.g., 30 samples per second) of the Phasor Measurement Unit (PMU)
(Li et al., 2021a), 10000 is an acceptable sample number for realistic training.

Table 4: The MSE value for different methods with varying training data samples.

SAMPLE NUMBER ATN RESNET SINDY DSR EQL÷ PCNN

6000 0.022 0.23 0.15 0.16 0.14 0.12
8000 0.014 0.18 0.11 0.12 0.13 0.10
10000 0.011 0.15 0.08 0.11 0.11 0.08
12000 0.009 0.14 0.06 0.12 0.1 0.06
14000 0.010 0.14 0.05 0.11 0.1 0.06

5 CONCLUSION AND FUTURE WORK

To accurately model modern physical systems with incomplete system observability, we propose a
twin structure of the physical neural network (PNN) and virtual neural network (VNN) to simultane-
ously learn physics and approximate the remaining components. Different from traditional methods,
our twin structure has critical designs to find the proper output boundary between PNN and VNN:
(1) we utilize sparse regularization to maintain physical consistency of PNN output, (2) we employ
skip-connections to guarantee the output of the physical superiority, thus implicitly restricting the
boundary of the VNN, and (3) we propose an adversarial learning scheme to adjust the fine-grained
boundary for maximized physical learning. Specifically, for (3), we introduce embedding neural
networks (ENNs) to extract similar features from outputs of PNN and VNN. Adversarially, training
PNN and VNN leads to maximized output dissimilarity, leading to maximized physics. To guarantee
the training stability, we employ the contrastive learning loss with excellent stability properties. Fi-
nally, we conduct extensive experiments over various systems to demonstrate the best performance
of our model compared to other methods. For the future work, we will refine the design of PNN to
tackle more complex physical systems with unknown physical bases.
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