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Abstract
Finding a meaningful molecular representation
that can be leveraged for a variety of tasks
in chemical sciences and drug discovery is of
wide interest, and new representation learning
techniques are continuously being explored. Here,
we investigate the fusion of graph attention
neural networks with recurrent neural networks
within a variational autoencoder framework
for molecular representation learning. This
combination leverages the strengths of both
architectures to capture properties of molecular
structures, enabling more effective encoding
and flexible decoding processes. With the
resulting representation, we observe competitive
performance in quantitative structure-activity
relationship (QSAR) benchmarks, a high validity
and drug-likeness of randomly sampled molecules
and robustness for linear latent space interpolation
between two molecules. Our approach holds
promise for facilitating downstream tasks such
as clustering, QSAR, virtual screening and
generative molecular design, all unified in one
molecular representation.

1. Introduction
In drug discovery, the goal is to find chemical structures
with desired properties and experimental outcomes, such as
a biological activity on a target protein of interest (Hughes
et al., 2011). To navigate the vast chemical space,
computer-assisted drug design approaches necessitate
molecular representations that can be correlated with such
outcomes (Schneider, 2018). More recent endeavors have
focused on obtaining global models for drug discovery that
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do not only capture aspects of small molecules for single
proteins, cell lines or diseases, but can be applied globally.
Ultimately, there is interest to move from discovering to
designing desired compounds from scratch (Schneider et al.,
2020).

We are interested in finding a single molecular feature
extraction method, also termed foundation model (Ahmad
et al., 2022), to create a representation that can be
used for multiple down-stream tasks such as quantitative
structure–activity relationship (QSAR), virtual screening
and de novo molecular design. The representation should
cover the diverse aspects of chemical space, from molecular
properties to structures, scaffolds and functional groups
of small molecules. Instead of relying on human expert
knowledge or rule-based feature engineering, representation
learning with deep learning models has become a status
quo in the field of molecular descriptors (Fabian et al.,
2020; Duvenaud et al., 2015). Once trained on specific
tasks relevant to drug discovery, the model’s latent space
representation can be used for QSAR modeling, virtual
screening tasks, de novo design and to cluster physical
samples in a high-throughput screening library.

1.1. Molecular Representations

A plethora of molecular descriptors exist as a way to
represent chemical structures in numerical form (Todeschini
& Consonni, 2008). However, we are hereafter focusing on
representations that are learned by using neural networks.

Chemical language models are recurrent neural networks
(RNNs) or transformers trained on string representations
of molecules, such as simplified molecular-input
line-entry system (SMILES) string (Weininger, 1988) and
Self-Referencing Embedded Strings (SELFIES) (Krenn
et al., 2020). Chemical language models have shown
successful applications in reaction prediction (Schwaller
et al., 2019), retrosynthesis planning (Segler et al., 2018),
QSAR modeling and virtual screening (Muratov et al., 2020;
van Tilborg et al., 2022) as well as in de novo molecular
design (Gupta et al., 2018; Müller et al., 2018). A notable
example for meaningful molecular representation learning
is MolBERT, a bidirectional encoder representation from
transformer (BERT) architecture with property prediction,
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string equivalence and language modeling heads (Fabian
et al., 2020). Other more recent examples using the
BERT architecture are ChemBERTa (Chithrananda et al.,
2020) and ChemBERTa-2 (Ahmad et al., 2022), as
well as MolFORMER (Ross et al., 2022). Wen et al.
used transformers on unhashed extended-connectivity
fingerprints (ECFP) (Rogers & Hahn, 2010) with radius
one as inputs to train a BERT model, termed FP-BERT, in a
self-supervised manner (Wen et al., 2022).

A challenge of string-based molecular representations is
that one molecule can be represented by multiple different
strings. This is overcome when molecules are represented
as undirected graphs, fitting more naturally the connectivity
of atoms and bonds. In graph representations, the molecular
graph G consists of a set of vertices V and edges E , i.e.,
G = (V, E). Vertices (i.e., vi ∈ V) represent atoms, and
whose edges (i.e., ei ∈ E) constitute their bonds. Based
on G, graph neural networks (GNNs) (Kipf & Welling,
2016) can be used to learn molecular representations. Atz
et al. provide a structured and harmonized overview of
molecular geometric deep learning (Atz et al., 2021), and a
more recent survey gives an overview on a large number of
methods for graph-based molecular representation learning
and related applications, categorized by input representation,
algorithm, domain knowledge and task (Guo et al., 2023).
As with transformers, applications of GNNs range from
molecular representation learning (Duvenaud et al., 2015;
Fang et al., 2022; Atz et al., 2024), QSAR (Kearnes et al.,
2016), chemical reaction prediction (Nippa et al., 2024)
to generative molecular design (Maziarz et al., 2021; Isert
et al., 2023) and quantum property prediction by modeling a
computationally expensive density functional theory (DFT)
calculations (Gilmer et al., 2017; Atz et al., 2022).

A noteworthy example proposed a graph neural network
with attention mechanisms at both the atom and molecule
level for small molecule representation (called Attentive FP),
which is able to learn both local and non-local properties
of a two dimensional (2D) molecular graph (Xiong et al.,
2019). The Attentive FP model was evaluated for acute
toxicity prediction tasks, where it was identified as the
best-performing model among five GNNs (Ketkar et al.,
2023), and further showed competitive performance on
proprietary ADME datasets (Broccatelli et al., 2022).
Also, the presence of graph attention weights allows for
visualization of atom importance for specific prediction
tasks. Other evaluations of Attentive FP have shown
its performance for drug-target interactions (Lei et al.,
2022), LogD prediction (Duan et al., 2023) or to improve
the performance of band gap approximation of organic
materials (Khan et al., 2023).

Further examples that also include three-dimensional
geometry information are spatial graph convolutional

networks (SGCN) (Danel et al., 2020), directional message
passing neural networks (DimeNet) (Gasteiger et al.,
2020), heterogeneous molecular graph neural networks
(HMGNN) (Shui & Karypis, 2020) and geometry-enhanced
molecular representation learning (GEM) (Fang et al.,
2022). In GEM, message passing is made sensitive to both
topology and geometry, whereas (Zhu et al., 2022) unify 2D
molecular graphs and 3D conformers for pre-training.

Regardless of the applied method, representation learning
methods aim to transform a discrete representation, i.e., a
molecular graph or a SMILES-string, into a continuous
descriptor space, where chemically similar molecules
have similar representations. This allows to sample new
molecules in close regions of chemical space, e.g. for
hit expansion in drug discovery projects. The general
advantages of continuous over discrete representations were
already discussed in detail by (Gómez-Bombarelli et al.,
2018).

1.2. Variational Autoencoders

Most of the aforementioned methods undergo
self-supervised training or are designed as autoencoders.
A challenge with autoencoders is that they tend to overfit
and thereby create an irregular, non-continuous latent
space. Different regularization approaches have been
tried to obtain continuous latent representations. Most
notably, a variational autoencoder (VAE) (Kingma &
Welling, 2013), where not a single point in latent space is
learned, but a probabilistic latent space with a distribution
for each training example. One of the first examples for
learning continuous molecular representations was to use
VAEs trained on SMILES-strings (Gómez-Bombarelli
et al., 2018). VAEs have also already been established for
molecular graphs, where (Jin et al., 2018) used a junction
tree VAE to incrementally create molecules, and (Maziarz
et al., 2021) improved this approach by using structurally
relevant motifs to ensure chemical validity. Jin et al.
adequately summarized the advantage of a continuous
representation obtained by VAEs as ”learning to represent
molecules in a continuous manner that facilitates the
prediction and optimization of their properties (encoding);
and learning to map an optimized continuous representation
back into a molecular graph with improved properties
(decoding)” (Jin et al., 2018).

Herein, we introduce a Graph Infused Representation
Assembled From a multi-Faceted variational auto-Encoder
(GIRAFFE). GIRAFFE is a VAE model with a graph attention
neural network (Xiong et al., 2019) as encoder and a RNN
with LSTM cells (Hochreiter & Schmidhuber, 1997) as
decoder. Even though graph-based models with sequential
generation such as MoLeR would enjoy perfect validity
of generated molecules (Maziarz et al., 2021), RNNs have
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Figure 1. Neural network architecture of GIRAFFE. Molecules are represented as two-dimensional graphs, i.e., G = (V, E), where V and
E are transformed using graph attention neural networks (i.e., Attentive FP). As a result of the subsequent pooling process, mean µ and
standard deviation σ tensors are obtained, from which a latent space representation is sampled using the reparametrization trick with ϵ as
the source of stochasticity. The resulting vector z describes a condensed latent representation, which is fed to a multilayer perceptron
(MLP) to predict calculated molecular properties of the molecule, and a LSTM to reconstruct a SMILES representation of the input graph.

shown high validity and successful applications in drug
design (Merk et al., 2018), have a steerable curiosity
component by using temperature and are not limited to
previously observed motifs (Moret et al., 2023). In
addition to the encoder and decoder models, and similar
to (Winter et al., 2019), we include the prediction of RDKit
descriptors (RDKit) from the latent space during training
to improve the relevance of the learned representation
for QSAR and help with latent space disentaglement.
The training hence encompasses a translation task from
molecular graphs to a compressed latent representation
and from there back to SMILES-strings and calculable
properties. We use Attentive FP (Xiong et al., 2019) on 2D
graphs due to its proven performance in QSAR tasks and
potential explainability. Finally, we attempt to disentangle
and enforce a continuous latent representation by utilizing
Kullback-Leibler Divergence (KLD) as a regularization term
in a β-VAE loss setting. This should enforce the constraint
that the learned latent variable distribution matches the
standard normal distribution of the prior (Kingma & Welling,
2013).

2. Methods
2.1. Dataset

10M random molecules were extracted from PubChem (Kim
et al., 2019) with valid SMILES-strings of maximum
128 characters. The dataset was randomly split into 9M
molecules for training and 1M molecules for validation.

2.2. Model

GIRAFFE consists of three parts: (I) an attention-based
graph neural network encoder, (II) a LSTM decoder and (III)
a fully-connected multi-layer perceptron (MLP) regressor
for property prediction (Figure 1). We use the Attentive
FP implementation in PyTorch Geometric (Fey & Lenssen,
2019) with 2 layers, 2 time steps and 512 hidden dimensions
as the encoder. As decoder, a 2-layer LSTM with 512 hidden
dimensions and 64 token embedding dimensions is used,
whereas the MLP for property prediction consisted of 2 fully
connected layers with 512 hidden dimensions. Both LSTM
and MLP are implemented in PyTorch (Ansel et al., 2024).

2.3. Training

We trained all parts of GIRAFFE end to end using the
Adam optimizer (Kingma & Ba, 2014) with an initial
learning rate of 0.001 and a step-wise decay of 0.75
every 10 epochs for a total of 150 epochs with 1000
steps per epoch. In each step, a batch of 256 molecules
was randomly sampled from the available training pool.
Molecules were represented as graphs G = (V, E) using
32 node (V) and 10 edge (E) features adapted from (Xiong
et al., 2019) as described in Table A.2. For each batch
of molecules, a PyTorch Geometric (Fey & Lenssen,
2019) data object was constructed containing the graphs
with node and edge features. During training, the graph
is fed to the encoder, which produces a mean µ and
standard deviation σ (both with 512 dimensions) as output,
from which a latent space representation is sampled in
VAE-fashion using the reparametrization trick (Kingma &
Welling, 2013). The resulting vector z is used as the initial
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Table 1. RMSE values for regression benchmarks. The best values
per task are presented in bold. Values for the other representations
were taken from (Wen et al., 2022) and (Fabian et al., 2020). *our
models.

DESCRIPTOR ESOL FREESOLV LIPOP

RDKIT 0.69 ± 0.08 1.67 ± 0.45 0.74 ± 0.04
ECFP4 0.90 ± 0.06 2.88 ± 0.38 0.77 ± 0.03
CDDD 0.57 ± 0.06 1.46 ± 0.43 0.67 ± 0.02

MOLBERT 0.55 ± 0.07 1.52 ± 0.66 0.60 ± 0.01
FP-BERT 0.67 ± 0.07 1.07 ± 0.18 0.67 ± 0.02

NONVAE* 0.57 ± 0.07 1.07 ± 0.34 0.61 ± 0.01
GIRAFFE* 0.55 ± 0.08 1.11 ± 0.31 0.67 ± 0.03

Table 2. AUROC values for classification benchmarks. The best
values per task are presented in bold. Values for the other
representations were taken from (Wen et al., 2022) and (Fabian
et al., 2020). *our models.

DESCRIPTOR BACE BBBP HIV

RDKIT 0.83 ± 0.00 0.70 ± 0.00 0.71 ± 0.00
ECFP4 0.85 ± 0.00 0.68 ± 0.00 0.71 ± 0.00
CDDD 0.83 ± 0.00 0.76 ± 0.00 0.75 ± 0.00

MOLBERT 0.85 ± 0.00 0.75 ± 0.00 0.75 ± 0.00
FP-BERT – 0.71 ± 0.01 0.78 ± 0.01

NONVAE* 0.85 ± 0.00 0.72 ± 0.00 0.71 ± 0.00
GIRAFFE* 0.85 ± 0.00 0.71 ± 0.00 0.72 ± 0.00

hidden state for first layer of the decoder LSTM, which
is trained to reconstruct the corresponding SMILES-string.
SMILES-strings are recreated starting from a random atom
in every training step. In parallel, the sampled latent
space vector is fed to a fully-connected MLP regressor to
predict all available RDKit descriptors (RDKit) for the given
compound, normalized to [0, 1]. An overview of the process
is provided in Figure 1. Training was stopped once the
total validation loss increased. All models were trained on a
single NVIDIA A100-SXM4-40GB GPU.

2.3.1. LOSS

We employ a standard VAE loss (Kingma & Welling, 2013)
with the following modifications: The total training loss
L (Eq. 1) is constructed from the SMILES categorical
cross-entropy reconstruction error LS of the decoder, the
mean squared error LP of the property prediction MLP
as well as a KLD distance loss LKLD. LP is weighted
by a factor λP = 10, whereas LKLD is weighted by a
variable factor β. As a comparison, we also trained the
same model architecture on the same data and using the
same hyperparameters but without the loss term LKLD. We
call the resulting model ”nonVAE”.

L = LS + λP × LP + β × LKLD (1)

2.3.2. β ANNEALING

To achieve a stable training run, we utilized a cyclical
KLD annealing technique for the factor β of the term
LKLD to optimize our VAE. β was gradually increased
following a cyclical linear schedule to reach a maximum
of 0.2 over 5 cycles, allowing the model to initially
focus on the reconstruction losses LS and LP before
progressively concentrating more on the KLD term. After
this initial cyclical annealing, the cyclical linear schedule
was continued until the end of the training (Fu et al., 2019).
We investigated different annealing schedules with cycle
sizes varying between 1000 and 20’000 steps, linear or
sigmoid slopes and maximum values of 0.05 to 0.25.

2.4. Benchmark

We followed (Wen et al., 2022) and (Fabian et al.,
2020) to benchmark the learned representation of our
model using support vector machine models with the
same hyperparameters. Results from previously published
representations were taken directly from (Fabian et al., 2020)
and (Wen et al., 2022) and not reproduced. For a fair
comparison to our non-fine-tuned model, the results without
fine-tuning were used for MolBERT (Fabian et al., 2020).

3. Results
For all performance assessments, we used the model
checkpoint at the epoch which corresponded to the
lowest total validation loss, as defined in Section 2.3.1.
We evaluated different annealing strategies and found
the following strategies performed similarly in terms of
validation loss and equally well in the tested benchmarks: (I)
cycles of 7’500 steps of linear increase followed by a plateau
of 2’500 steps of constant values, with 4 growing cycles
and a maximum β of 0.2 (Figure A.5, top, red) achieved the
lowest validation loss after 45’000 steps; and (II) cycles of
3’750 steps of sigmoidal increase followed by a plateau of
1’250 steps of constant values, with 20 growing cycles and
a maximum β of 0.2 (Figure A.5, bottom, blue).

3.1. QSAR Benchmark

Benchmark results are presented in Table 1 for regression
tasks and in Table 2 for classification tasks of the Molecule
Net benchmark (Wu et al., 2018). Both the GIRAFFE and
the nonVAE model match the performance of most of the
existing representations in several QSAR benchmarks.

3.2. Validity of Sampled SMILES

During training, the validity of the sampled SMILES-strings
plateaued at around 96%. To investigate the advantage of a
continuous latent space obtained by a VAE, we performed
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Figure 2. Linear interpolation with constant steps between two
molecules in the latent space of GIRAFFE. 100 valid molecules
were sampled using a temperature of 0.1. Top: Examples
of sampled structures visualized with SmilesDrawer (Probst &
Reymond, 2018) at given interpolation steps. Bottom: The ECFP4
Tanimoto similarity of each sampled molecule compared to the
start (Amoxicillin, red) and the end (Diazepam, blue).

a linear interpolation between two example molecules
in latent space using 100 equally-sized steps. Figure 2
shows the resulting similarities of sampled molecules during
interpolation to both the start and end point. All 100
sampled SMILES-strings (96 unique molecules checked
by InChI key) could be converted to valid molecules using
RDKit (RDKit). As a comparison and as mentioned in
Section 2.3.1, we performed the same experiment using the
same model architecture but without variational sampling,
which we call ”nonVAE”. Interpolating the latent space
of nonVAE only decoded to 80 valid SMILES-strings (56
unique molecules).

We further evaluated the SMILES validity when randomly
sampling ∼ N (0, 1) in the latent space of GIRAFFE. Out
of 10’000 randomly sampled points in latent space, 9’436
reconstructed to valid molecules (all unique, checked by
InChI key) using a temperature of 0.5. This corresponds
to the observed validity during training of approximately
96%. Randomly sampling the latent space of the
nonVAE model the same way only decoded to 3’616 valid
SMILES-strings (3’565 unique molecules). A sampling
speed of around 35 SMILES per second was observed on
a NVIDIA A100-SXM4-40GB GPU for random sampling
with maximum 128 allowed characters.

To compare the similarity of sampled molecules to the
training data, we assessed the ECFP4 Tanimoto similarity of
10’000 sampled structures compared to their ”seeds”, which
were 10’000 random training molecules embedded using
the Attentive FP encoder before sampling. The Tanimoto
similarity distribution of the sampled structures to their

Figure 3. Density distribution of ECFP4 Tanimoto similarities
of sampled molecules to their seeds. Red: similarity of 1’000
molecules to the seed Amoxicillin. Blue: similarity of 1’000
molecules to the seed Diazepam. Gray: Similarity of 10’000
sampled structures to their randomly selected seeds in the training
data.

seeds is shown in Figure 3 with a mean of 0.64 ± 0.17
standard deviation. Depending on the seed structure, the
similarity varied, which can be observed for Amoxicilin and
Diazepam in Figure 3.

The distribution of physicochemical properties of randomly
sampled compounds from latent space matched the one of
the training data (Table A.1 and Figure A.1). The property
distribution was also assessed by interpolation between two
points in latent space. Figure 4 shows how the values of four
properties change while linearly traversing the GIRAFFE
latent space from Amoxicillin to Diazepam. The overall
distribution of selected properties is visualized in Figure 5
and Figure A.6.

4. Discussion
With GIRAFFE we present a novel method to learn a
globally applicable molecular representation. We combine
the advantages of graphs as the natural molecular structure
with the flexibility of SMILES-string generation and employ
the VAE loss to enforce a continuous latent space. As
argued by (Winter et al., 2019), a translation task is more
robust than simple reconstruction, which we adopted as
graph to SMILES and property translation. Our results
show that the learned representation is robust for sampling
novel molecules that are similar to the training data, and
useful to successfully interpolate between seeds. The
variability of the generated molecules can both be steered
by sampling around a point of interest in latent space (i.e.,
a molecule of interest), or by using higher temperature
values for the decoder LSTM. In addition, the same
representation shows successful results for QSAR tasks,
enabling global applications like clustering, QSAR, virtual
screening and de novo molecular design all in one. We
argue that the relevance of the GIRAFFE latent space for
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Figure 4. Changing values of molecular properties relevant for
drug discovery during a linear interpolation between two points in
latent space. The start and end points are the same as in Figure 2.

QSAR applications is achieved by making use of the
readily available priors in the training data with a property
prediction task.

Our linear interpolation and sampling experiments have
shown that β-VAE loss helps to disentangle the latent space
compared to the nonVAE model. (Jin et al., 2018) argue
that using SMILES prevents generative VAEs from learning
smooth molecular embeddings, which we disprove in this
work, as the validity of our randomly sampled molecules
is the same as theirs. Also, no reinforcement learning was
needed to get a high fraction of valid molecules with our
approach (Blaschke et al., 2020).

To mitigate the issue of posterior collapse, where the model
underutilizes the latent space, we implement a cyclical
annealing schedule for the factor β weighting LKLD (Eq. 1).
Cyclical annealing has been shown to be beneficial over
monotonic annealing (Fu et al., 2019), which we could
confirm in our case with a sigmoid annealing schedule.

We did not employ fine-tuning on the benchmark datasets,
as we want to obtain a global representation applicable
for multiple challenges and endpoints, including molecular
design. Even though GIRAFFE did not outperform existing
learned representations in the presented benchmarks,
it outperforms ECFP4 fingerprints and scaled RDKit
descriptors.

5. Conclusion and Outlook
With GIRAFFE, we showed that it is possible to obtain a
smooth latent space representation by using a VAE with
GNN encoder and LSTM decoder. The obtained latent

Figure 5. Visualization of the latent space of 25’600 random
molecules from the training set embedded with GIRAFFE, using
a principal component analysis for dimensionality reduction
and selected scaled RDKit properties for coloring. The same
visualization reduced using t-distributed Stochastic Neighbor
Embedding (tSNE) is shown in Figure A.6.

space can be traversed or randomly sampled to recreate
SMILES-strings with high validity and similarity to the
training data, and is well performing for QSAR and drug
design tasks at the same time. Still, more work is needed
to find a molecular representation that works satisfactorily
well on predictive tasks important in drug discovery (Dias
et al., 2023). We will continue to train and evaluate our
GIRAFFE model using actual assay readouts of compounds
on biological targets, cells or from physicochemical end
points to see if this further improves the performance
of the learned representation, potentially also employing
contrastive learning. Finally, we are looking forward to
expanding this approach to property-, similarity-, docking-
or scaffold-constrained generation approaches with direct
impact on drug discovery projects.

Data and Code Availability
The code used to train the here presented models together
with the model weights of the GIRAFFE model is made
available in the supplementary information as well as on
https://github.com/alexarnimueller/giraffe. The dataset with
10M molecules from PubChem will be made available upon
request.

Acknowledgements
We would like to thank all reviewers who gave useful
comments and thereby helped to improve the manuscript.
We further thank Eugen Eirich and the Roche SMDA
network for their ideas, feedback and critical discussions.
Finally, we are indebted to the communities behind the
multiple open-source software packages on which this
research depends.

https://github.com/alexarnimueller/giraffe


Combining Graph and Recurrent Neural Networks in a Variational Autoencoder for Molecular Representation Learning

References
Ahmad, W., Simon, E., Chithrananda, S., Grand, G.,

and Ramsundar, B. Chemberta-2: Towards chemical
foundation models. arXiv preprint arXiv:2209.01712,
2022.

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A.,
Voznesensky, M., Bao, B., Bell, P., Berard, D., Burovski,
E., Chauhan, G., Chourdia, A., Constable, W., Desmaison,
A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind,
M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L.,
Lazos, M., Lezcano, M., Liang, Y., Liang, J., Lu, Y., Luk,
C., Maher, B., Pan, Y., Puhrsch, C., Reso, M., Saroufim,
M., Siraichi, M. Y., Suk, H., Suo, M., Tillet, P., Wang, E.,
Wang, X., Wen, W., Zhang, S., Zhao, X., Zhou, K., Zou,
R., Mathews, A., Chanan, G., Wu, P., and Chintala, S.
PyTorch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi:
10.1145/3620665.3640366. URL https://pytorch.
org/assets/pytorch2-2.pdf.

Atz, K., Grisoni, F., and Schneider, G. Geometric deep
learning on molecular representations. Nat. Mach. Intell.,
3:1023–1032, 2021.
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A. Appendix

Table A.1. Value distribution comparing training data and 25’600 sampled molecules for selected calculated properties.

PROPERTY TRAINING DATA GIRAFFE SAMPLED

LOGP 3.37 ± 1.34 3.20 ± 1.85
MOLWEIGHT 365 ± 133 359 ± 113

FCSP3 0.42 ± 0.24 0.42 ± 0.21
NR. HBD 1.34 ± 1.23 1.36 ± 1.11

AROM. RINGS 1.96 ± 1.46 1.87 ± 1.12
QED 0.59 ± 0.23 0.59 ± 0.21

Figure A.1. Histograms of properties presented in Table A.1 of the training data (yellow) and randomly sampled 25’000 molecules (teal).
The y-axis describes the relative frequency.

Figure A.2. Example molecules decoded from randomly sampled points in GIRAFFE latent space.
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Figure A.3. Example molecules randomly sampled in proximity of Amoxicillin (marked by red star).

Figure A.4. Example molecules randomly sampled in proximity of Diazepam (marked by red star).

Table A.2. List of one-hot encoded atom and bond features to describe the vertices and edges of the input graph.

Features Nr. Features

Atom Features atom type: C, N, O, S, P, F, Cl, Br, I, B, Si, other; degree: 0, 1, 2, 3, 4, 5, 6, other;
charge, has radical electrons; hypbridization: sp, sp2, sp3, sp3d, sp3d2, other; aromatic;
total Nr. of hydrogens: 0, 1, 2, 3, other; chirality: R, S, possible

32

Bond Features bond type: single, double, triple, aromatic, conjugated, ring; stereo: none, any, Z, E 10
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Figure A.5. Two best performing cyclical annealing strategies for β values during training. Top (red): Linear increase over 4 cycles with
cycle sizes of 10’000 steps with 7’500 increasing and 2’500 constant steps. Bottom (blue): Sigmoidal increase over 20 cycles with cycle
sizes of 5’000 steps with 3’750 increasing and 1’250 constant steps. Both strategies were allowed to reach a maximum β value of 0.2, and
performed best in the tested benchmarks at the step indicated by a dashed line.

Figure A.6. Visualization of the latent space of 25’600 random molecules from the training set embedded with GIRAFFE, using tSNE
(Van der Maaten & Hinton, 2008) for dimensionality reduction and selected scaled RDKit properties for coloring. A PCA of the same
data is shown in Figure 5.


