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Abstract—The occurrence of smoke during endoscopic surgery
hampers the ease of navigation and obstructs clear visibility,
thereby presenting challenges and amplifying risks within surgi-
cal procedures. Current image processing-based smoke removal
methods predominantly utilize machine learning approaches,
specifically Generative Adversarial Networks (GAN). However,
they encounter challenges in effectively preserving fine details
and generating realistic images, a critical reason being the i.i.d
assumption of the inputs. To tackle these issues, we present SR-
TGAN: an innovative approach for Smoke Removal with the
Temporal Generative Adversarial Network. Our model leverages
the temporal dynamics inherent in surgical videos to significantly
enhance the reconstructed images’ quality. Specifically, SR-
TGAN integrates sequential contextual information from closely
preceding frames to effectively eliminate smoke, especially in
regions where inferring the background is challenging such
as in a highly occluded region. By comparing our SR-TGAN
with the state-of-the-art DeSmoke-LAP, our method exhibits
enhanced effectiveness in eliminating smoke from a dataset
of 500 test images. Both visual inspection and quantitative
metrics support this conclusion. In particular, the JNBM metric
exhibits improvement from 1.37 (input images) to 1.49 (DeSmoke-
LAP generated images) to 1.51 (SR-TGAN generated images),
while FADE decreases from 0.737 to 0.360 to 0.346 for the
corresponding image sets. The implications of this study are
significant as they have the potential to reduce surgical risks,
alleviate surgeons’ workload by reducing the need to remove
smoke physically, and enhance the precision of other computer
vision algorithms utilized in live endoscopic surgeries. The code
is available at https://github.com/XuMengyaAmy/SR-TGAN.
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Fig. 1. The presence of smoke during surgical procedures poses a challenge
for surgeons, hindering their ability to operate effectively. Desmoking algo-
rithms have been developed to assist in removing smoke, ultimately improving
the visibility of surgeons.

work, Temporal Consistency, Robot-assisted Surgery

I. INTRODUCTION

Robot-assisted surgery is an advancing field that allows
for minimally invasive procedures with improved ergonomics
and vision manipulation. However, one issue hampering the
widespread adoption of robotic surgery is the presence of sur-
gical smoke produced during common steps such as cautery. A
considerable amount of smoke is generated in routine surgical
procedures such as laser ablation and electrocautery. Surgical
smoke hinders the surgeon’s view of the surgical site and
makes it difficult for them to navigate the endoscope tubes.
Reduced visibility increases the risk of surgical errors and
inadvertent injuries. It also poses potential health hazards to



operating room staff through inhalation of smoke particulate
matter over prolonged exposure [1]. While smoke evacuation
systems have helped, residual smoke still affects the quality
of video feeds used by the surgeon for navigation. In such
surgical procedures, eliminating or minimizing smoke occlu-
sion from the endoscopy camera feed, where live feedback
and quick response is important, requires specialized tools and
manual effort and consumes time. A precise, automated and
less obstructive smoke removal approach can, therefore, be
a valuable asset, allowing for time efficiency and potentially
providing a clearer surgical field. Thus, developing effective
computational methods for real-time smoke removal from
endoscopic video streams can help address this challenge and
further improve the capabilities of robotic surgical systems, as
illustrated in Fig. 1.

With the availability of high computation power, memory,
and parallelization of work via GPUs and cloud resources
in the past decade and a half, deep learning approaches to
standard computer vision tasks have been increasingly on the
rise. Consequently, there have been numerous medical appli-
cations that benefit from the use of deep learning models such
as image super resolution [2], augmentation & synthesis [3],
image-to-image translation tasks [4] and noise removal [5].

The removal of smoke from endoscopic surgical videos
has also garnered significant attention, mainly because of its
prevalence and significance in medical surgeries. Additionally,
the presence of atmospheric modeling and computer vision
research has further intensified this focus. To accomplish
this goal, multiple deep learning methods have been utilized,
such as augmenting datasets and refining model losses and
architectures which have achieved varying levels of success.
Currently, GAN [6] models have emerged as one of the
most prominent networks for achieving smoke removal, often
serving as the benchmark. Specifically, CycleGANs [7] have
gained popularity in smoke removal due to the impracticality
of obtaining a corresponding set of smoky and non-smoky
images for training purposes. Despite this distinction, these
methods struggle to preserve fine details, generate realistic im-
ages and achieve complete smoke removal in highly occluded
regions, which limits their practical usability.

An important factor underlying this limitation is that all
current deep learning-based methods treat each image input
in isolation, the independent and identically distributed (i.i.d)
images assumption. This approach overlooks the fact that
surgical video frames form a sequence and share a consistent
background or have the correlation among the successive
frames. As a result, valuable contextual information is lost
when analyzing individual images independently. It hence
becomes important to incorporate information from previous
frames while leveraging existing i.i.d techniques and models
to enhance the effectiveness of smoke removal.

Therefore, in this study, we address this issue of the lack
of short-term past context by providing the following contri-
butions:

• We propose a novel model, namely SR-TGAN, specif-
ically designed to remove smoke in surgical videos.

In contrast to DeSmoke-LAP, a state-of-the-art smoke
removal model [8], our proposed SR-TGAN method
incorporates temporal information from successive video
frames using the designed attention-based temporal rela-
tion network. This enhancement improves smoke removal
performance while maintaining computational and stor-
age efficiency.

• We compare our attention-based Temporal Neural Net-
work (TRN), integrated into the generator, with two other
commonly used models for utilizing temporal informa-
tion, namely, 3D Convolution Neural Network (3D CNN)
and Long Short-Term Memory (LSTM). Our attention-
based TRN achieves a better balance between computa-
tional complexity and smoke removal performance. By
performing the ablation experiments, and demonstrating
flexibility w.r.t where the attention-based TRN is inserted,
we show that such attention-based TRN is model-agnostic
and can potentially utilized in other architectures.

• We conduct extensive validations on the public bench-
mark surgical datasets. Our method demonstrates signifi-
cantly improved performance, outperforming the current
leading method substantially.

• We explore our approach’s robustness by introducing
varying corruption levels to images. The outcomes in-
dicate stable performance as the severity of corruption
intensifies.

II. RELATED WORK

A. Haze and Smoke Removal

The task of removing smoke in robotic surgery has sim-
ilarities with the process of dehazing images in computer
vision. Existing methods for image dehazing mostly rely on
the principles of image-dehazing theory, utilizing atmospheric
models, priors, and parameter estimation. Navalel et al. [9]
propose an approach that focuses on estimating an atmo-
spheric model using an equation based on the assumption
that the density of haze can indicate depth. Subsequently,
a simple regressor is trained to determine the parameters
in the equation. In contrast, Chunming et al. [10] employ
more advanced modeling equations and heuristics, including
the use of dark channel (DC) loss and inter-channel (IC)
loss. However, relying solely on human heuristics may not
adequately address the intricate distribution and edge cases
present in smoky images.

Recently alongside, deep learning methodologies have been
employed for smoke removal tasks [11]. Several studies have
focused on improving the smoke removal dataset and integrat-
ing various smoke removal losses into standard model losses.
Additionally, researchers have employed convolutional neural
networks (CNNs) for the task of transmission map predic-
tion [12]. Fully end-to-end deep learning approaches, such as
CycleDehaze [13], have also been explored. CycleDehaze [13]
introduces an unsupervised approach that integrates a per-
ceptual loss, similar to a CycleGAN. Another improvement
to this work involves using an attention-based mechanism to
achieve smooth transitions in non-smoke-heavy regions [14].



The benchmark DeSmoke-LAP [8] model is based on the Cy-
cleGAN [7] and enhances the effectiveness of smoke removal
by incorporating inter-channel discrepancies and leveraging a
dark channel prior loss function. This approach not only aids
in eliminating smoke but also prioritizes the preservation of
the original semantic information and lighting characteristics
of the scene.

However, all current implementations are based on the
assumption that the modeling function receives an i.i.d image
as input. In the case of real-time surgical image frames,
it is important to consider the actual distribution of these
frames. By analyzing the surrounding frames with the current
keyframe, it may be possible to enhance smoke removal, which
is the primary objective of our research. This approach can be
particularly effective in image regions where the background
cannot be accurately determined due to a significant amount
of smoke, necessitating contextual information from preceding
video frames.

B. Unpaired Image-to-Image Translation

There are a lot of real-life scenarios where paired images
may not be available, in part due to the impracticality of
replicating the exact process flow such as having paired smoky
and clear images from live surgical feeds. Additionally, it
is not the prime objective of the surgeon to obtain such
pairs. In scenarios where paired inputs and outputs, which
relate two distinct data domains, are not available, several
methods have been proposed. Rosales et al. [15] present an
approach based on Bayesian principles that incorporates a
prior derived from a patch-based Markov random field of an
original image and a probability component obtained from
various images with different styles. Instead of directly em-
ploying separate models for each domain, recent approaches
like Coupled Generative Adversarial Networks [16] and cross-
modal scene networks [17] utilize a weight-sharing method.
This technique aims to develop a common representation
that can be applied across different domains. Liu et al. [18]
expand this framework by merging Variational Autoencoders
(VAEs) [19] with Generative Adversarial Networks (GANs).
Concurrent research [20], [21] promotes a connection be-
tween the input and output by encouraging them to have
some common ”content” characteristics, despite differences in
”style”. These techniques incorporate adversarial networks and
introduce additional components to guarantee that the output
closely resembles the input within a specified measurement
framework. Examples of such frameworks, as highlighted in
various studies ( [20], [21]), include class label spaces, image
pixel spaces, and image feature spaces. In our case, we utilize a
commonly employed cycle consistency loss, a key component
of the CycleGAN architecture, to cater to the unpaired nature
of the data.

C. Robustness

A significant portion of research in computer vision ro-
bustness has focused on the substantial challenges posed by
adversarial examples designed to mislead models [22], [23]. To

evaluate classifier robustness, benchmark datasets have been
created for two additional robustness aspects: corruption and
perturbation [24]. These datasets facilitate the assessment and
validation of robustness improvements across a varied test set,
comprising both corrupted and perturbed images [25], [26].
In our research, we generate a new test dataset through the
application of corruption and perturbation techniques, which
allows us to evaluate the robustness of our method.

III. METHODOLOGY

A. Preliminaries
The Cycle Generative Adversarial Networks (Cycle-

GAN) [7] model, widely utilized in various evaluated bench-
marks on datasets and its aptness for unpaired data training,
serves as the backbone of our study.

1) GAN: Before discussing CycleGAN, we briefly discuss
the regular Generative Adversarial Network (GAN) [6] which
is composed of a generator and discriminator network. The
training process involves training a generator to generate false
data, and simultaneously training a discriminator network to
differentiate between the generator’s artificially created data
and genuine examples. If the discriminator quickly detects the
fabricated data generated by the generator, the generator faces
a penalty. Through the continuous feedback loop between
these adversarial networks, the generator gradually improves
its output, generating higher-quality and more convincing
results, while the discriminator becomes more adept at identi-
fying artificially constructed data. Ultimately, the GAN model
can produce highly realistic images.

2) CycleGAN: Similar to GAN [6], CycleGAN [7] consists
of generator and discriminator networks. However, unlike
GAN, CycleGAN consists of two generators and two dis-
criminators which transform images between the two domains,
smoky and smoke-free images in our case. They also employ
adversarial and cycle-consistency losses to achieve unpaired
image-to-image translation between the source X and target
Y domains.

3) DeSmoke LAP: We build our SR-TGAN model based
on the DeSmoke LAP [8] and incorporate the temporal re-
lation network into the generator while maintaining identical
configurations to ensure fairness in our comparison.

DeSmoke-LAP [8] is based on the CycleGAN and employs
a blend of heuristics, perceptual, and adversarial losses to
eliminate smoke effectively. The loss equation is as follows:

Lloss = Lcyc + Ladv + λ ∗ Lidt + LDC + LIC (1)

where Ladv , Lidt, Lcyc, LDC ,LIC are the adversarial, iden-
tity, cyclic consistency, dark channel prior and inter-channel
discrepancies loss functions, respectively [8]; λ is a hyperpa-
rameter. The purpose of these losses is to eliminate smoke
from the surgical scenes while preserving the scene’s inherent
structure, including the background, and lighting.

B. SR-TGAN
Our SR-TGAN consists of the unpaired image-to-

image cycle-consistent generative adversarial network (Cycle-
GAN) [7] and the attention-based temporal relation network



Fig. 2. Architecture of the SR-TGAN. SR-TGAN is composed of 2 generators and 2 discriminators, which is similar to CycleGAN [7]. However, the
generator Gx of our SR-TGAN integrates the attention-based temporal relation network (TRN) at both the encoder and decoder layers. The attention-based
TRN captures temporal information from the preceding image sequences by utilizing the self-attention mechanism over a small spatial region.

Fig. 3. CycleGAN losses in our SR-TGAN involve explicit sequence indexing
juxtaposed with generator and discriminator modules.

(TRN) by incorporating sequential context information from
adjacent frames, as shown in Fig. 2. Our attention-based TRN
can be integrated into the generator at two stages: after the
encoding process (SR-TGAN-EN) and during the intermediate
decoding phases (SR-TGAN-DE).

The goal of our SR-TGAN is to create a mapping between
unpaired smoky images (X) and clean images (Y ). To achieve
this, the network incorporates two discriminators. The first
discriminator DX is employed to differentiate between clean
real images X and the generated clean images GX(X). The
second discriminator DY , is tasked with distinguishing be-
tween smoky images and the generated smoky images GY (X).
These two pairs of generators and discriminators work in
tandem in a zero-sum game to iteratively improve generated
image quality

Besides this conventional configuration, we can capitalize
on the temporal dynamics in the surgical videos to improve
image quality.Therefore, In our attention-based TRN, we per-
form an attention-based weighting channel-wise across a small

spatial region over the short sequence of images. The locality
of the spatial region enables us to share weights, reduce model
parameter size, be image size agnostic, and facilitate reliable
convergence. The process of attention-based TRN involves
working with three groups of vectors: queries (Q), keys (K),
and values (V). This involves computing a weighted sum of
the value vectors, determined by the similarity between the
query and key vectors. The scaled dot-product attention can
be formally expressed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (2)

Given a series of consecutive images X = xt−l, ..., xt−1, xt

that contains the current frame xt and a set of its previous
frames, the generator network Gx encodes these images into
l encodings F = ft−l, ..., ft−1, ft. After the encoder, our
designed attention-based temporal relation network (TRN) can
be used to obtain the temporal information from a set of
encodings F = ft−l, ..., ft−1, ft through the self-attention
mechanism employed in the Transformer [27]. In this scenario,
the queries, keys, and values are acquired through linear
projection of these encodings. Consequently, the attention
operator in our TRN can be defined as

TRN(F ) = Attention(WqF,WkF,WvF ) (3)

where Wq,Wk,Wv are linear projection transforms of the
encodings.

The feature representation, corresponding to the latest frame
ft, is treated as the Query (Q). The feature encodings F =
ft−l, ..., ft−1, ft are considered as keys (K). We end up with
a weighted value encoding for the color channels over the
corresponding local spatial region. This makes sense since
there is not much movement between successive frames.
However, this formulation does imply a lack of global spatial
context. On the other hand, this also makes the network very



Fig. 4. Two additional implementations of the temporal relation net-
work(TRN): (a) 3D Convolution Neural Network and (b) narrow receptive
field LSTM.

lightweight, resulting in just a 3% increase in model size.
The same attention process occurs at the decoding layer,
with the key frame being the weighted attention-based vector,
conditioned on the latest frame from the encoding stage.

C. Objective Function

The standard losses and customized losses, such as LDC

and LIC , have been slightly modified to account for the losses
incurred on the latest image frame, xt only. Specifically, the
cycle consistency loss Lcyc for the generator now includes
a perceptual comparison with the latest frame, index t. This
modification encourages the generator to exclusively focus on
the newest frame as the primary frame for generative com-
parison. A similar adjustment has been made for the identity
loss Lidt. Fig. 3 shows that the final objective functions are
similar to (1) except for the fact that frame xt is first explicitly
extracted and then used for loss computation. For instance, the
Cyclic loss for forward transformation will be as follows:

Lcyc = |GB(GA(xt...t−l)t)− xt| (4)

A similar formulation holds for the Identity loss, Lidt.

IV. EXPERIMENTS

A. Dataset

Laparoscopic Hysterectomy Dataset includes a total of 10
videos for training and cross-validation purposes. Additionally,
there are 500 sequential images from 10 separate videos which
are used exclusively for testing purposes [8].

These videos are divided into frames at a rate of 1 frame
per second (fps). Each video yielded 300 clear images and 300
hazy images, resulting in a dataset consisting of 3000 clean
images and 3000 images with smoke. All images are resized
into 720× 540.

Transoral robotic surgery (TORS) Dataset contains 10
videos. Each video contains approximately 150 clear images
and 40 smoke images. The entire data set contains 1697 clear
images and 370 images with smoke events. We use this dataset
for training and cross-validation purposes.

B. Implementation Details

1) Network Architecture: To implement the SR-TGAN, we
utilize standard AlexNet-style CNNs as the discriminators,
each initialized with 64 filters. We utilize a Unet-256 model for
the generator with 48 initial filters. LSGAN [28] loss is utilized
to reduce the saturation effect instead of the vanilla loss [6].
Additionally, the DC loss and IC loss are incorporated [8].

2) Training Details: A learning rate of 0.0002 is used
while a batch size of 16 for the CycleGAN and 2 for SR-
TGAN is employed, as the SR-TGAN receives a sequence.
Finally, as practical measures to reduce the probability of
model collapse and stabilize training, noise is incorporated
into both the input images and the intermediate images pro-
duced during the generation process, alongside incorporating
random cropping and linear learning rate decay. To better
accommodate varying numbers of consecutive images during
the deployment phase, we opt for the random sequence length
strategy during training, ranging from 1 to 6 frames, instead of
using the fixed sequence length strategy. This approach allows
for more flexibility and less computational cost. In the extreme
case where the sequence length during the deployment phase
is set to 1, our SR-TGAN can also achieve the task without
relying on temporal information.

3) Data Assistance: During the training process, we mix
the Laparoscopic Hysterectomy Dataset and the in-house
TORS Dataset because the in-house TORS Dataset can provide
richer temporal information, such as longer image sequences
and more frequent smoke events, for model learning.

C. Evaluation Metrics

As our data is unpaired and obtained from real robotic surg-
eries, we cannot attain paired ground-truth images of clear and
hazy versions. To assess the quality of the produced images,
we depend on various image quality metrics that do not require
a reference image, namely the just noticeable blur metric
(JNBM) [29] and fog aware density evaluator (FADE) [30].
This is consistent with the metrics outlined in DeSmoke-
LAP [8]. In general, improving image quality, particularly
regarding smoke removal, should lead to an increase in JNBM
and a decrease in FADE.

1) Just noticeable blur metric (JNBM): evaluates the im-
age’s perceived sharpness, with a higher number indicating
greater sharpness. It specifically examines how the human eye
and visual processing system respond to sharpness at varying
levels of contrast and captures the level of blurriness present
in the image’s edges.

2) Fog aware density evaluator (FADE): is employed to
assess the density of fog within the image. A higher number
indicates a greater amount of fog covering the image. This
algorithm is designed using the principles of natural scene
statistics (NSS) and includes features derived from statistical
analysis that are sensitive to the presence of fog.

3) Floating point operations (FLOPs) and Parameters:
are used to evaluate the speed and size of neural networks in
inference operations.

V. RESULTS

A total of 500 test images from the Laparoscopic Hys-
terectomy Dataset are used to evaluate the performance of
the approaches. They are fed to the trained DeSmoke-LAP
model [8] and our trained SR-TGAN model, resulting in 500
corresponding output images for each model. We provide test



TABLE I
DESMOKING RESULTS AND INFERENCE SPEED USING DIFFERENT APPROACHES. OUR SR-TGAN ACHIEVES A BETTER BALANCE BETWEEN SMOKE

REMOVAL PERFORMANCE AND INFERENCE SPEED.

Approach
Desmokeing performance Inference speed
JNBM ↑ FADE ↓ FLOPs (G) ↓ Parameters (M) ↓

Original Input 1.370 0.737 N/A N/A

Non-Temporal DeSmoke-LAP 1.490 0.360 100.7 28.3

Temporal

Heavyweight CycleGAN+3D CNN 1.530 0.342 1532.0 1045.1

Lightweight

CycleGAN+NRF LSTM 1.480 0.383 243.2 28.4
SR-TGAN-EN 1.500 0.355 197.4 28.4
SR-TGAN-DE 1.510 0.347 224.9 28.5

SR-TGAN 1.510 0.346 333.7 28.7

Fig. 5. SR-TGAN harnesses the power of past image sequences to achieve a remarkable enhancement in generated images compared to DeSmoke-LAP. As
a result, the generated images not only excel in smoke removal but also stand out in terms of color preservation and maintaining structural integrity.

TABLE II
THE CROSS-VALIDATION RESULTS ARE OBTAINED FROM BOTH THE STATE-OF-THE-ART DESMOKE-LAP AND OUR PROPOSED SR-TGAN.

fold 1 fold 2 fold 3 fold 4 fold 5 Mean

JNBM ↑ FADE ↓ JNBM ↑ FADE ↓ JNBM ↑ FADE ↓ JNBM ↑ FADE ↓ JNBM ↑ FADE ↓ JNBM ↑ FADE ↓

DeSmoke-LAP 1.38 ± 0.14 0.38 ± 0.14 1.37 ± 0.14 0.41 ± 0.13 1.38 ± 0.16 0.42 ± 0.13 1.32 ± 0.13 0.45 ± 0.13 1.42 ± 0.12 0.37 ± 0.09 1.37 ± 0.14 0.41 ± 0.12

SR-TGAN 1.31 ± 0.12 0.34 ± 0.07 1.43 ± 0.13 0.41 ± 0.14 1.44 ± 0.15 0.42 ± 0.13 1.43 ± 0.15 0.42 ± 0.13 1.32 ± 0.11 0.34 ± 0.07 1.39 ±0.13 0.39 ± 0.11

image sequences with a uniform length of 6 to our SR-TGAN
model.

As shown in Fig. 4, we also combine two other common
strategies for handling sequence images with generators to
incorporate temporal information for smoke removal: (1) Cy-
cleGAN+3D CNN: Inception network-based 3D Convolution
Neural Network [31] is applied to cover a range of receptive
fields across the different frames. However, this significantly
increases the size of the generator by 40 times compared to
the original and leads to slower real-time inference. (2) Cy-
cleGAN+LSTM: a narrow receptive field LSTM mechanism
is employed to make the model more lightweight. By ana-
lyzing Table I, which includes the metric from input images,

DeSmoke-LAP [8], CycleGAN+3D CNN, CycleGAN+LSTM,
SR-TGAN-EN, SR-TGAN-DE, and SR-TGAN, the following
findings are observed: (1) All methods achieve higher JNBM
and lower FADE than the input smoke image with JNBM and
FADE of 1.370 and 0.737, respectively. This shows that these
methods have the effect of removing smoke. (2) The JNBM of
SR-TGAN achieves a 0.02 increase compared to the JNBM
of DeSmoke-LAP, and the FADE of SR-TGAN is 0.3 less
than that of DeSmoke-LAP. This demonstrates that our SR-
TGAN model effectively enhances the smoke removal effect
by utilizing temporal information. (3) Compared with SR-
TGAN-EN and SR-TGAN-DE, which integrates the attention-
based TRN only after the encoder or only in the intermediate



TABLE III
JNBM GAIN WITH INCREASING INPUT SEQUENCE LENGTH FOR SR-TGAN ON THE TEST SET.

SR-TGAN Seq length 1 Seq length 2 Seq length 3 Seq length 4 Seq length 5 Seq length 6

JNBM ↑ 1.40 ± 0.12 1.45 ± 0.13 1.48 ± 0.13 1.48 ± 0.13 1.49 ± 0.13 1.51 ± 0.13

TABLE IV
THE JNBM METRIC VALUES FROM DESMOKE-LAP AND OUR SR-TGAN

WERE EVALUATED ON THE CORRUPTED TEST SET FOR ROBUSTNESS
EVALUATION, WHICH CONSISTED OF 5 DIFFERENT CORRUPTION TYPES

AND 3 SEVERITY LEVELS.

Model Defocus Gauss Zoom Elastic Brightness Mean

DeSmoke-LAP 1.40 1.39 1.30 1.22 1.45 1.35
CycleGAN+3D CNN 1.47 1.43 1.35 1.29 1.62 1.43

CycleGAN+LSTM 1.36 1.40 1.32 1.18 1.49 1.35
SR-TGAN 1.42 1.4 1.33 1.24 1.49 1.38

Fig. 6. Corrupted images, alongside their corresponding model outputs, were
acquired to highlight the robustness of the system. Each distortion type has
the designated severity level of 3, medium degree.

decoding stage separately, our SR-TGAN, which inserts the
attention-based TRN in two locations, obtains the best results.
Results suggest that inserting the attention-based TRN after
the encoder only provides little help. However, inserting the
attention-based TRN at the decoding layer provides a signif-
icant difference, with JNBM being 1.510 and FADE value
being 0.347. This makes sense as the decoding layer is more
related to perceptual information, while the encoding layer
is more concerned with semantic information. We infer that
further modifications at the decoding layer can be potentially
helpful, while encoder layer modifications may not cause a dif-
ference or diminishing gains. (4) Compared to our SR-TGAN,
CycleGAN+3D CNN model yields a slightly better JNBM
value of 1.530 and FADE value of 0.342. CycleGAN+LSTM
model yields a worse JNBM of 1.48 and FADE of 0.383.
Our attention-based TRN can provide better gains than the
GAN+3D CNN model regarding FLOPs and Parameters while
potentially scaling better to wider receptive fields.

In addition to providing quantitative evidence of improved
smoke removal through the use of JNBM and FADE, we also
present the generated image from the approaches from a visual
standpoint, as shown in Fig. 5. These images exhibit enhanced
smoke removal and improved structural integrity in heavily
occluded areas. To avoid the limitations and particularities of
fixed partitioning of data sets and eliminate the adverse effects
caused by unbalanced data partitioning in a single partition,
our proposed SR-TGAN model is also compared with the cur-

rent state-of-the-art method, DeSmoke-LAP [8], by utilizing a
5-fold cross-validation procedure, as demonstrated in Table II.
Analyzing the mean value, it becomes evident that our method
exhibits superior performance compared to DeSmoke-LAP,
highlighting its effectiveness and superiority.

A. Robustness

To assess the robustness of a model quantitatively, we can
examine its ability to withstand intentional corruption and
perturbation of images [26]. This study introduced 5 types of
corruption: Defocus Blur, Gaussian Blur, Zoom Blur, Elastic,
and Brightness. These corruptions correspond to various types
of distortions caused by smoke, such as changes in brightness
or movement, namely zoom blur and elastic distortions. For
each corruption type, we generate images from 3 different
severity levels. These corrupted images are utilized to evaluate
the robustness of different models. A model can be considered
more robust if it maintains its performance as corruption
severity increases. The resulting evaluation is depicted in
Table IV. Observing the mean value of 5 different corruption
types with 3 severity levels, our SR-TGAN demonstrates
greater robustness compared to DeSmoke-LAP and Cycle-
GAN+LSTM. While it is not as robust as CycleGAN+3D
CNN, it significantly outperforms CycleGAN+3D CNN in
terms of inference speed, achieving a favorable balance be-
tween task performance and speed. Fig. 6 presents the model
output on corrupted images.

B. Ablation Study

Our SR-TGAN model architecture has the flexibility to
accommodate sequences of input images of any size. In the
Table III, the JNBM [29] and FADE [30] metrics are computed
on the same global test as used for Table I. However, the
inputs’ lengths vary from 1, essentially a normal i.i.d Cycle-
GAN at this point, to 6 for each run of the test dataset. The
performance of SR-TGAN on the test set shows a significant
rise in the JNBM score as the input sequence length increases.
This indicates that longer input sequences positively contribute
to the JNBM achieved by SR-TGAN. It can also be observed
there are indeed diminishing gains w.r.t increasing sequence
length. Thus, there can be a reasonable compromise on the
choice of sequence length to be used in real-time inference.

Investigating whether there are any noticeable benefits in
increasing the sequence length is important. This analysis is
heavily influenced by the nature of the dataset and the specific
objective being addressed. In the case of surgical videos at
a given frame rate, this examination can aid in identifying
an optimal balance between smoke removal performance and
computational resources expended.



VI. CONCLUSION

We propose SR-TGAN, a novel method for smoke elimi-
nation in surgical videos captured during robot-assisted pro-
cedures by utilizing temporal information from consecutive
video frames. Our SR-TGAN is based on a cycle-consistent
generative adversarial network (CycleGAN) and integrates the
attention-based temporal relation network. The model effec-
tively eradicates smoke by assimilating contextual information
from the preceding frames, especially in areas where the
image background is arduous to infer. Quantitative, such as
JNBM and FADE, and qualitative, particularly visual, analyses
were employed to compare our SR-TGAN model with the
state-of-the-art DeSmoke-LAP method [8], the 3D CNN-based
CycleGAN and LSTM-based CycleGAN models. Our SR-
TGAN model achieves an optimal balance between smoke
removal performance, by outperforming all but the heavy 3D
CNN model, and inference speed, by being faster than the 3D
CNN model and similar in speed to the rest.

Future research could incorporate complex attention mod-
ules and geometrically aligning constraints, such as Mutual
Information loss. The proposed attention-based temporal rela-
tion network, being model agnostic, can be used in different
layers with little to no modifications. It can also be replicated
in more powerful models like large diffusion models [32] to
achieve superior smoke removal performance. Another line of
work could involve investigating a balance between model size
alongside input sequence length and inference speed during
real-time surgical video live feed to obtain the most pragmatic
configuration. This approach would uphold structural integrity
and maintain accurate background information in real-time
automated processes.
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