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Abstract
We consider learning in an adversarial Markov
Decision Process (MDP) where the loss func-
tions can change arbitrarily over K episodes and
the state space can be arbitrarily large. We as-
sume that the Q-function of any policy is linear
in some known features, that is, a linear function
approximation exists. The best existing regret
upper bound for this setting (Luo et al., 2021b)
is of order Õ(K2/3) (omitting all other depen-
dencies), given access to a simulator. This paper
provides two algorithms that improve the regret to
Õ(
√
K) in the same setting. Our first algorithm

makes use of a refined analysis of the Follow-the-
Regularized-Leader (FTRL) algorithm with the
log-barrier regularizer. This analysis allows the
loss estimators to be arbitrarily negative and might
be of independent interest. Our second algorithm
develops a magnitude-reduced loss estimator, fur-
ther removing the polynomial dependency on the
number of actions in the first algorithm and lead-
ing to the optimal regret bound (up to logarithmic
terms and dependency on the horizon). Moreover,
we also extend the first algorithm to simulator-
free linear MDPs, which achieves Õ(K8/9) re-
gret and greatly improves over the best existing
bound Õ(K14/15). This algorithm relies on a
better alternative to the Matrix Geometric Resam-
pling procedure by Neu & Olkhovskaya (2020),
which could again be of independent interest.

1. Introduction
Markov Decision Processes (MDPs) have been widely used
to model reinforcement learning problems, where an agent
needs to make decisions sequentially and to learn from the
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feedback received from the environment. In this paper, we
focus on adversarial MDPs where the loss functions can
vary with time and the state space can also be arbitrarily
large, capturing the fact that in real-world applications such
as robotics, the environment can be non-stationary and the
number of states can be prohibitively large.

To handle large state spaces, one of the most common meth-
ods in the literature is to assume a linear-function approxi-
mation (Yang & Wang, 2020; Jin et al., 2020b; Wei et al.,
2021; Zanette et al., 2021; Neu & Olkhovskaya, 2021; Luo
et al., 2021b), where the expected loss suffered by any pol-
icy from any state-action pair, commonly known as the
Q-function, is linear in a set of known features.

While such assumptions are commonly used in the literature,
the minimax optimal regret attainable by the agent in adver-
sarial environments is still poorly understood. 1 Specifically,
for adversarial linear-Q MDPs, the best existing bound is
of order K2/3 where K is the number of episodes (Luo
et al., 2021b).2 In that paper, the authors assume a transi-
tion simulator (i.e., the agent is allowed to draw a trajectory
starting from any state-action pair, sampled from the ac-
tual transition and a given policy, without any cost) and
achieve Õ(d2/3H2K2/3) regret where H is the length of
each episode and d is the dimension of the feature space.
On the other hand, the best lower bound for this setting
(induced from the special case of adversarial linear bandits)
is of order Ω(

√
K) (Dani et al., 2008). Therefore, a natural

question arises:

Is it possible to design an algorithm in adversarial linear-Q
MDPs that attains Õ(

√
K) regret bound?

In this work, we answer this question in the affirmative by
developing two algorithms that both attain Õ(

√
K) regret in

adversarial linear-Q MDPs when a simulator is granted, clos-
ing the gap with the lower bound. Both of our algorithms
follow the same framework of the policy optimization algo-

1To be more specific, we only consider bandit feedback in this
paper, where the agent can only observe her experienced losses.
For the easier full-information setting,

√
K-style near-optimal

regret has already been achieved (He et al., 2022) (cf. Table 1).
2Meanwhile, if a “good” exploratory policy π0 (formalized

in Footnote 4) is granted,
√
K-style bounds are also achievable,

though with some additional dependencies on the quality of π0

(Luo et al., 2021b; Neu & Olkhovskaya, 2021); see Table 1.
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Table 1. Overview of Our Results and Comparisons with the Most Related Works

Algorithm Settinga Transition Assumptionb Regret

DILATED BONUS
(Luo et al., 2021b)

Linear-Q MDP
(Definition 2.2)

Simulator
(Definition 2.3)

None Õ(d2/3H2K2/3)

Exploratory Policy Õ
(
poly(d,H)(K/λ0)

1/2
)

Algorithm 1 (This work)
None

Õ(A1/2d1/2H3K1/2)

Algorithm 2 (This work) Õ(d1/2H3K1/2)

POWERS (He et al., 2022) Linear Mixture MDP Unknown Full Information Õ(dHK1/2)
ONLINE Q-REPS

(Neu & Olkhovskaya, 2021)

Linear MDP
(Definition 2.4)

Known Exploratory Policy Õ
(
poly(d,H)(K/λ0)

1/2
)

c

DILATED BONUS
(Luo et al., 2021a;b) Unknown

None Õ(d2H4K14/15)

Exploratory Policy Õ
(
poly(d,H)

(
K/λ

2/3
0

)6/7)
Algorithm 6 (This work) None Õ(H20/9A1/9d2/3K8/9)

aLinear MDP is a special case of linear-Q MDP, while linear mixture MDP is generally incomparable to these two.
bThe definitions of “exploratory policy” and λ0 are stated in Footnote 4, while “full information” means the entire loss function is

revealed at the end of each episode (which is easier than our bandit-feedback setting).
cThis is a refined version of the original O(

√
K logK) bound presented in their Theorem 1, which contains no explicit dependency

on λ0 by assuming K = Ω(exp(λ−1
0 )). See Review hYYK at https://openreview.net/forum?id=gviX23L1bqw.

rithm with dilated exploration bonuses of (Luo et al., 2021b),
but with important modifications. Specifically, our first algo-
rithm applies Follow-the-Regularized-Leader (FTRL) with
the log-barrier regularizer (instead of the negative entropy
regularizer used by Luo et al. (2021b)) at each state, and
we develop a new analysis inspired by Zimmert & Latti-
more (2022) that allows the loss estimators to be arbitrarily
negative (in contrast, in the usual analyses of FTRL, the
loss estimator cannot be too negative). This new analysis is
the key to improving the regret to O(

√
K) and might be of

independent interest even for multi-armed bandits.

Although our first algorithm is simple in design and analy-
sis, the log-barrier regularizer causes an O(

√
A) factor in

the regret bound Õ(H3
√
AdK) where A is the number of

actions. As a rescue, we develop another algorithm that uses
the negative entropy regularizer with a magnitude-reduced
loss estimator. This algorithm attains an Õ(H3

√
dK) re-

gret bound, which is optimal in d and K up to logarithmic
factors and gets rid of the poly(A) dependency. We note
that our algorithm is of interest even for the special case of
adversarial linear bandits, as it removes the need of explicit
John’s exploration introduced by Bubeck et al. (2012).

At last, we also apply our method to simulator-free lin-
ear MDPs (formally defined in Definition 2.4), yielding an
efficient algorithm with Õ(K8/9) regret and greatly out-
performing the best existing bound Õ(K14/15) (Luo et al.,
2021a).3 Remarkably, in this application, we not only use

3(Luo et al., 2021a) is a refined version of (Luo et al., 2021b).

our refined analysis for FTRL with the log-barrier regular-
izer, but also develop a more sample-efficient alternative
to the Matrix Geometric Resampling (MGR) method intro-
duced by Neu & Olkhovskaya (2020) and later adopted by
Neu & Olkhovskaya (2021) and Luo et al. (2021a), which
could also be of independent interest.

1.1. Related Work

MDPs with Linear-Function Approximation. Linear func-
tion approximation has been a standard technique for han-
dling large state spaces in RL, but only recently have re-
searchers provided strong regret guarantees for these al-
gorithms under precise conditions. Yang & Wang (2020)
introduced a linear function approximation scheme called
embedded linear transition MDPs where the transition ker-
nels are bilinear, i.e., the probability of reaching state s′ in
the h-th step of an episode after taking action a at state s
is P(s′ | s, a) = ϕ(s, a)TMψ(s′) for some known fea-
ture mappings ϕ and ψ and an unknown M . Jin et al.
(2020b) loosen the assumption to linear MDPs (Defini-
tion 2.4), i.e., P(s′ | s, a) = ϕ(s, a)Tν(s′) where ν is
unknown. Zhou et al. (2021) study the linear mixture MDP
with P(s′ | s, a) = ψ(s′ | s, a)Tθ where θ is unknown.
This generalizes embedded linear transition MDPs but is
incomparable with linear MDPs. Another common model is
linear-Q MDPs (Abbasi-Yadkori et al., 2019) where the
Q-function with respect to any policy π can be written
as Qπ

h(s, a) = ϕT(s, a)θπh for some unknown θπh (Defini-
tion 2.2). Linear MDPs are special cases of linear-Q MDPs.

2
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Adversarial MDPs. MDPs with adversarial losses were
first studied in the tabular cases where the state space has a
small size S ≪∞. Zimin & Neu (2013) first assume known
transitions and achieve Õ(H

√
K) regret when full informa-

tion is available and Õ(
√
HSAK) regret when only bandit

feedback is available. Rosenberg & Mansour (2019) then
study the unknown-transition case and get Õ(HS

√
AK)

regret with full information. Finally, Jin et al. (2020a) tackle
the hardest case with unknown transitions and bandit feed-
back and achieve Õ(HS

√
AK) regret as well.

Results for adversarial MDPs with linear-function approxi-
mations are summarized in Table 1. Specifically, Cai et al.
(2020) study unknown-transition, full-information linear
mixture MDPs and get Õ(dH3/2

√
K) regret; this result is

further improved to Õ(dH
√
K) by He et al. (2022). Neu

& Olkhovskaya (2021) then study known-transition, bandit-
feedback linear MDPs. Provided with a “good” exploratory
policy,4 their algorithm achieves an Õ(poly(d,H)

√
K/λ0)

regret guarantee. Later, Luo et al. (2021b) study bandit-
feedback linear-Q MDPs with a simulator, providing an
Õ(d2/3H2K2/3) regret bound. A refined version (Luo
et al., 2021a) considers simulator-free bandit-feedback
linear MDPs, giving an Õ(d2H4K14/15) bound. Mean-
while, provided with a good exploratory policy (see Foot-
note 4), these bounds improve to Õ(poly(d,H)

√
K/λ0)

and Õ(poly(d,H)λ
−4/7
0 K6/7), respectively. As a final re-

mark, we point out that exploration in MDPs with huge state
spaces is challenging and assuming an exploratory policy is
unrealistic — as far as we know, there are no results ensur-
ing even the existence of such a “good” exploratory policy,
let alone finding it efficiently. We emphasize that our results
do not require such unrealistic exploratory assumptions.

Policy Optimization Algorithms. Policy optimization al-
gorithms for RL directly optimize the learner’s policy. They
are more resilient to model misspecification or even ad-
versarial manipulation. But due to their local search na-
ture, they suffer from the notorious distribution mismatch
issue. Recent theoretical works address this issue by ex-
ploration bonuses; see (Agarwal et al., 2020; Shani et al.,
2020; Zanette et al., 2021) for stochastic settings and (Luo
et al., 2021b) for adversarial settings. While the latter work
achieves near-optimal regret in tabular settings, there is a
huge room for improvement when considering function ap-
proximation. Our work builds on top of their framework (es-
pecially the dilated bonus idea) and significantly improves
their results in linear-function approximation settings.

Concurrent Works. Aside from this paper, there are sev-
eral concurrent submissions also studying linear-Q or lin-
ear MDPs with adversarial losses, bandit feedback, and

4Formally, a “good” exploratory policy π0 ensures that
λmin(Σ

π0
h ) ≥ λ0 for all h ∈ [H] and a positive constant λ0,

where Σπ0
h means the covariance of π0 in layer h (see Eq. (2)).

unknown transitions. Sherman et al. (2023) propose com-
putationally efficient algorithms for linear MDPs: without
simulators, their algorithm achieves Õ(K6/7) regret and
outperforms our Õ(K8/9); however, when simulators are
made available, their Õ(K2/3) result becomes worse than
our Õ(

√
K) bound for linear-Q MDPs (recall that linear

MDPs are special linear-Q MDPs), albeit being more com-
putationally efficient. Kong et al. (2023) propose an inef-
ficient algorithm for linear MDPs based on recent ideas of
Wagenmaker & Jamieson (2022) and get Õ(K4/5) regret.
Lancewicki et al. (2023) consider linear-Q MDPs with de-
layed feedback, which recovers the Õ(K2/3) bound by Luo
et al. (2021b) when there are no feedback delays.

2. Preliminaries
Notations. For N ∈ N, [N ] denotes the set {1, 2, . . . , N}.
For a (possibly infinite) set X , we denote the probability
simplex over X by△(X). For a random event E , denote its
indicator by 1[E ]. For two square matricesA,B of the same
size, ⟨A,B⟩ stands for Tr(ATB). For x ∈ R, define (x)−
as min{x, 0}. We use Õ to hide all logarithmic factors.

No-Regret Learning in MDPs. An (episodic) adversarial
MDP is specified by a tuple M = (S,A,P, ℓ) where S
is the state space (possibly infinite), A is the action space
(assumed to be finite with sizeA = |A|), P : S×A → △(S)
is the transition, and ℓ : [K] × S × A → [0, 1] is the loss
function chosen arbitrarily by an adversary. Following Luo
et al. (2021b), the state space is assumed to be layered, i.e.,
S = S1 ∪ S2 ∪ · · · ∪ SH where Sh ∩ Sh′ = ∅ for any
1 ≤ h < h′ ≤ H , and transition is only possible from one
layer to the next one, that is, P(s′ | s, a) ̸= 0 only when
s ∈ Sh and s′ ∈ Sh+1 for some h < H . We also assume
that there is an initial state s1 such that S1 = {s1}. Note
that as the regret does not contain any dependency on the
size of S , this assumption is made without loss of generality.

The game lasts for K episodes, each with length H . For
each episode k, the agent is initialized at state s1. For each
step h ∈ [H], she chooses an action ah ∈ A, suffers and
observes the loss ℓk(sh, ah), and transits to a new state sh+1

independently sampled from the transition P(· | sh, ah).

A policy π of the agent is a mapping from S to△(A). Let Π
be the set of all policies. For each episode k ∈ [K], let πk ∈
Π be the policy deployed by the agent. Its expected loss is
then indicated by V πk

k (s1), where the state-value function
(or V-function in short) V π

k (s1) is defined as follows for any
episode k and policy π:

V π
k (s1) ≜E

[
H∑

h=1

ℓk(sh, ah)

∣∣∣∣∣(sh, ah) ∼ π,∀h ∈ [H]

]
,

with (sh, ah) ∼ π,∀h ∈ [H] denoting a trajectory sampled
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from π. The agent aims to minimize the cumulative total
loss collected in all episodes, or equivalently, the regret:

Definition 2.1 (Regret). The regret of the agent is

RK ≜ E

[
K∑

k=1

V π1

k (s1)

]
−

K∑
k=1

V π∗

k (s1),

where the expectation is taken over the randomness of both
the agent and the transition, and π∗ is the optimal policy in
hindsight (i.e., π∗ ∈ argminπ∈Π

∑K
k=1 V

π
k (s1)).

2.1. Linear-Q MDP and Linear MDP

A concept closely related to the V-function is the action-
value function (a.k.a. Q-function), which denotes the ex-
pected loss suffered by a policy π starting from a given state-
action pair (s, a). Formally, we define for all (s, a) ∈ S×A:

Qπ
k (s, a) = ℓk(s, a) + 1[s /∈ SH ] E

s′∼P(·|s,a)
a′∼π(·|s′)

[Qπ
k (s

′, a′)] . (1)

We can then define linear-Q MDPs as follows.

Definition 2.2 ((Luo et al., 2021b, Assumption 1)). In a
linear-Q MDP, each state-action pair (s, a) is associated
with a known feature ϕ(s, a) ∈ Rd with ∥ϕ(s, a)∥2 ≤ 1.
Moreover, for any policy π ∈ Π, episode k ∈ [K], and layer
h ∈ [H], there exists a (hidden) vector θπk,h ∈ Rd such that

Qπ
k (sh, ah) = ϕ(sh, ah)

Tθπk,h, ∀sh ∈ Sh, ah ∈ A.

We assume that ∥θπk,h∥2 ≤
√
dH for all k, h, π.

Definition 2.2 does not specify any specific structure on
the transition, making learning extremely difficult. Conse-
quently, prior works all assume the availability of a simula-
tor that allows us to sample from the hidden transition:

Definition 2.3 (Simulator). A simulator accepts a state-
action pair (s, a) ∈ S ×A and generates a next-state output
sampled from the true transition, i.e., s′ ∼ P(· | s, a).

When a simulator is unavailable, we consider a special case
called linear MDPs which further impose a linear structure
on the transition, enabling the agent to learn:

Definition 2.4 ((Luo et al., 2021b, Assumption 3)). A lin-
ear MDP is a linear-Q MDP that additionally satisfies the
following property: for any h ∈ [H], the transition from
layer h to layer h+ 1 can be written as follows:

P(sh+1 | sh, ah) = ⟨ϕ(sh, ah), ν(sh+1)⟩,
∀sh+1 ∈ Sh+1, sh ∈ Sh, ah ∈ A.

Here, the mapping ν : S → Rd is also unrevealed to the
agent. We also assume that ∥ν(s)∥2 ≤

√
d for all s ∈ S.

In MDPs with linear function approximation, another impor-
tant quantity associated with each policy π is its covariance
matrix at each layer h ∈ [H], defined as follows:

Σπ
h = E

(sh,ah)∼π
[ϕ(sh, ah)ϕ(sh, ah)

T], ∀h ∈ [H]. (2)

2.2. Dilated Bonuses for Policy Optimization

We now briefly introduce the policy optimization method
and the key dilated bonus idea of Luo et al. (2021b), upon
which our algorithms are built. The foundation of policy
optimization is the performance difference lemma (Kakade
& Langford, 2002), which asserts that the regret of the agent
can be viewed as the weighted average of the regret of some
local bandit problem over each state. Formally, we have

RK =
H∑

h=1

E
sh∼π∗

[
K∑

k=1

∑
a

(πk(a|sh)− π∗(a|sh))Qπk

k (sh, a)

]
,

where the part inside the expectation is exactly the regret
of a multi-armed bandit (MAB) problem at state sh with
“loss” Qπk

k (sh, a) (instead of ℓk(sh, a)) for action a. Policy
optimization algorithms then naturally run a bandit algo-
rithm at each state with an appropriate Q-function estimator
to learn the best policy directly. For example, in linear-Q
MDPs, since the “loss” Qπk

k (sh, a) is linear in some feature,
it suggests running an adversarial linear bandit algorithm
such as EXP2 (Bubeck et al., 2012) at each state.

However, as discussed in detail by Luo et al. (2021b),
the bias/variance of the Q-function estimator often leads
to a regret term of the form

∑
k,h E(sh,ah)∼π∗ [bk(sh, ah)]

for some non-negative functions b1, . . . , bK : S × A →
R≥0, where bk(s, a) is often prohibitively large if (s, a) is
rarely visited by the agent. Hence, the expectation over
(sh, ah) ∼ π∗ could be potentially large as well, while
the expectation over (sh, ah) ∼ πk is relatively small.
This is the well-known distribution mismatch issue: for
example, when applying a linear bandit algorithm at each
state, bk(sh, ah) is roughly β∥ϕ(sh, ah)∥2(Σπk

h )−1 for some

β > 0. Thus, E(sh,ah)∼πk
[bk(sh, ah)] = β

〈
(Σπk

h )−1,

E(sh,ah)∼πk
[ϕ(sh, ah)ϕ(sh, ah)

T]
〉

= βd; on the other
hand, its counterpart with (sh, ah) drawn from π∗ (i.e.,
E(sh,ah)∼π∗ [bk(sh, ah)]) could be arbitrarily large.

To address this distribution mismatch issue and “convert”
the measure from πk to π∗, Luo et al. (2021b) consider
treating these functions as exploration bonuses and further
propose the so-called “dilated bonus” functions Bk(s, a):

Bk(s, a) = bk(s, a) + (3)

1[s /∈ SH ]
(
1 + 1

H

)
E

s′∼P(·|s,a)
a′∼πk(·|s′)

[Bk(s
′, a′)] .

Compared to Eq. (1),Bk can be viewed the Q-function of bk,
except that it assigns slightly more weight to deeper layers
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via the extra weighting 1 + 1
H to encourage more explo-

ration to those layers. Their algorithms then try to minimize
the regret with respect to the “optimistic” loss Qπk

k − Bk,
instead of just Qπk

k , at each state. Their analysis relies on
the following key lemma, which shows that if the regret w.r.t.
Qπk

k −Bk at each state is in some particular form, then the
distribution mismatch issue can be resolved: that is, the fi-
nal regretRK is in terms of

∑
k,h E(sh,ah)∼πk

[bk(sh, ah)]
instead of

∑
k,h E(sh,ah)∼π∗ [bk(sh, ah)].

Lemma 2.5 (Lemma 3.1 by Luo et al. (2021a)). If {bk}Kk=1

are non-negative, Bk(s, a) is defined as in Eq. (3), and the
following holds for any state s:

E

[
K∑

k=1

∑
a

(πk(a|s)− π∗(a|s)) (Qπk

k (s, a)−Bk(s, a))

]

≤ X(s) + E

[
K∑

k=1

∑
a∈A

(
π∗(a|s)bk(s, a) +

1

H
πk(a|s)Bk(s, a)

)]
,

where X(s) is an arbitrary function, then

RK ≤
H∑

h=1

E
sh∼π∗

[X(sh)] + 3

K∑
k=1

H∑
h=1

E
(sh,ah)∼πk

[bk(sh, ah)].

Luo et al. (2021b) show that the per-state regret bound in
the condition of Lemma 2.5 indeed holds when deploying
Follow-the-Regularized-Leader (FTRL) with the negative
entropy regularizer at each state. However, for technical
issues (which we will discuss and resolve in Sections 3
and 4), they only achieve Õ(K2/3) regret in linear-Q MDPs.

3. Õ(
√
K) Regret for Linear-Q MDPs via

Refined Log-Barrier Analysis
As mentioned, our first algorithm replaces the negative
entropy regularizer in FTRL used by Luo et al. (2021b)
with another regularizer called the log-barrier. Specifically,
FTRL applied to the action spaceAmaintains a sequence of
distributions x1, x2, . . . , xT ∈ △([A]) via the FTRL update

xt = argmin
x∈△([A])

{
η

〈
x,
∑
τ<t

cτ

〉
+Ψ(x)

}
,

where c1, . . . , cT ∈ RA is the loss sequence, Ψ : △([A])→
R is the regularizer, and η > 0 is the learning rate. The
classical MAB algorithm EXP3 (Auer et al., 2002) and its
linear-bandit variant EXP2 (Bubeck et al., 2012) both use
the negative entropy regularizer Ψ(x) =

∑A
i=1 pi ln pi.

Starting from (Foster et al., 2016), a sequence of works
discover many nice properties of a different regularizer
called log-barrier, defined as Ψ(p) =

∑A
i=1 ln

1
pi

. Here, we
present yet another new and useful property of log-barrier,

summarized in the following lemma.5 Our proof is inspired
by the analysis of the log-determinant regularizer by Zim-
mert & Lattimore (2022) and is deferred to Appendix B.1.
Lemma 3.1. Let x1, . . . , xT ∈ △([A]) be defined as

xt = argmin
x∈△([A])

{
η

〈
x,
∑
τ<t

cτ

〉
+Ψ(x)

}
, ∀t = 1, . . . , T,

where ct ∈ RA is an arbitrary loss vector corresponding
to the t-th iteration and Ψ(p) =

∑A
i=1 ln

1
pi

is the log-
barrier regularizer. Then the regret against any distribution
y ∈ △([A]) with respect to {ct}Tt=1 is bounded as:

T∑
t=1

⟨xt − y, ct⟩ ≤
Ψ(y)−Ψ(x1)

η
+ η

T∑
t=1

A∑
i=1

xt,ic
2
t,i.

Readers familiar with the EXP2/EXP3 analysis would im-
mediately recognize this regret bound since it is also the
same bound that FTRL with negative entropy (also known
as Hedge) enjoys. However, the key distinction is that for
log-barrier, this holds without any requirement on the mag-
nitude of ct,i, while for negative entropy, one must require
ηct,i ≥ −1 for all t ∈ [T ] and i ∈ [A] (i.e., losses cannot
be too negative; see Lemma C.1 in the appendix for more
details). This turns out to be critical for improving the regret
when applying it to linear-Q MDPs, as discussed later.
Remark 3.2. Our Lemma 3.1 also answers the open question
raised by Zheng et al. (2019) (see their remark after Lemma
14): it is indeed possible for FTRL with log-barrier to attain
a
∑

i xt,ic
2
t,i-style bound without any restrictions on the

losses. As log-barrier regularizers are widely used in the
literature for its better data-adaptivity (Wei & Luo, 2018; Ito,
2021), we expect this result to be of independent interest.

Linear-Q Algorithm. Our final algorithm for linear-Q
MDPs is shown in Algorithm 1, which is nearly the same as
(Luo et al., 2021b, Algorithm 2) except for the part marked
in blue where we use the log-barrier regularizer, as men-
tioned. Specifically, based on the discussions in Section 2.2,
the loss fed to FTRL is Q̂k −Bk. Here, Q̂k (defined in Eq.
(5)) is a standard estimator for Qπk

k involving an estimate
Σ̂†

k,h for the inverse of Σπk

h , which is constructed via the Ma-
trix Geometric Resampling procedure (Neu & Olkhovskaya,
2020) with the help of the simulator. Meanwhile, Bk is the
dilated bonus following the idea of Eq. (3) with bk(s, a)
defined as follows for all s ∈ Sh and a ∈ A:

bk(s, a) = β

(
∥ϕ(s, a)∥2

Σ̂†
k,h

+ E
ã∼πk(·|s)

[
∥ϕ(s, ã)∥2

Σ̂†
k,h

])
.

5When revising this manuscript, we found that a key property
we use when proving this lemma (see our Eq. (11)) was also in-
dependently developed by Putta & Agrawal (2022, Corollary 7)
under the name “new local-norm lower-bounds for Bregman diver-
gences”. They used this property to handle scale-free adversarial
Multi-Armed Bandits (MABs) where the losses are not always
constantly bounded but can be arbitrarily positive or negative.
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Algorithm 1 Improved Linear-Q Algorithm
(Using Log-Barrier Regularizers)
Input: Learning rate η, bonus parameter β, MGR parame-

ters γ and ϵ, FTRL regularizer Ψ(p) =
∑|A|

i=1 ln
1
pi

.
1: for k = 1, 2, . . . ,K do
2: Let πk ∈ Π be defined as follows for all s ∈ S:

πk(s) = argmin
p∈△(A)

{
Ψ(p)+

η
∑
k′<k

⟨p(·), Q̂k′(s, ·)−Bk′(s, ·)⟩
}
,

(4)

where Bk(s, a) is calculated in Algorithm 4.
3: Execute πk, observing the trajectory (sk,h, ak,h) and

losses ℓk(sk,h, ak,h) for all h ∈ [H].
4: Construct covariance matrix inverse estimate Σ̂†

k,h

using Matrix Geometric Resampling (Algorithm 3 in
the appendix) s.t. ∥Σ̂†

k,h∥2 ≤
1
γ ,∥∥∥E[Σ̂†

k,h]− (γI +Σπk

h )−1
∥∥∥
2
≤ ϵ,

and the following holds w.p. 1−K−3:∥∥∥(Σ̂†
k,h)

1/2Σπk

h (Σ̂†
k,h)

1/2
∥∥∥
2
≤ 2.

5: Let Lk,h =
∑

h′≥h ℓk(sk,h′ , ak,h′). Estimate the
Q-function Qπk

k (s, a) as follows (for s ∈ Sh):

Q̂k(s, a) = ϕ(s, a)TΣ̂†
k,hϕ(sk,h, ak,h)Lk,h. (5)

6: end for

The calculation of Bk again requires the simulator – see
Algorithm 4 for the calculation procedure and (Luo et al.,
2021b) for more detailed discussions.

With the help of the property of the log-barrier regularizer
stated in Lemma 3.1, we are able to show that our algorithm
achieves Õ(

√
K) regret, formally stated as follows.

Theorem 3.3. Algorithm 1 when applied to a linear-Q MDP
(Definition 2.2) with a simulator ensures the following when
12ηβH2 ≤ γ, 8ηH2 ≤ β, and ϵ ≤ (H2K)−1:

RK = Õ
(
βdHK +

γ

β
dH3K +

AH

η
+

β

γ
AH2 +A

√
dH2 +

ηH3

γ2K2

)
.

Picking η =
√

A
dH4K , β = 8

√
A
dK , γ = 96A

dK , and ϵ =

1
H2K , we conclude thatRK = Õ(H3

√
AdK).

We defer the full proof to Appendix B and provide a sketch

below highlighting why removing any constraints on the
losses fed to FTRL is critical to improving the regret.

Proof Sketch. To bound RK by the dilated bonus lemma
(Lemma 2.5), we focus on a single (k, s)-pair and bound∑

a(πk(a | s)− π∗(a | s))(Qπk

k (s, a)−Bk(s, a)). (6)

As the FTRL lemma only applies to the losses fed into Eq.
(4) (namely Q̂k(s, a) − Bk(s, a)), we add and substract
Q̂k(s, a) in Eq. (6). Hence, after summing over k ∈ [K]
and s ∼ π∗, we need to consider the following three terms
to figure out the term X(s) in Lemma 2.5:

• BIAS-1 =
∑
k,h

E
sh∼π∗

[
E

ah∼πk

[
Q

πk
k (sh, ah) − Q̂k(sh, ah)

]]
,

measuring the under-estimation of Q̂k w.r.t. πk.

• BIAS-2 =
∑
k,h

E
sh∼π∗

[
E

ah∼π∗

[
Q̂k(sh, ah) − Q

πk
k (sh, ah)

]]
,

measuring the over-estimation of Q̂k w.r.t. π∗.

• REG-TERM =
∑
k,h

E
sh∼π∗

[∑
a

(πk(a|s)−π∗(a|s))(Q̂k(s, a)−

Bk(s, a))

]
, which can be tackled by Lemma 3.1.

As BIAS-1 and BIAS-2 are independent of the regular-
izer, they are handled similarly to the original analysis and
both contribute Õ( γβdH

3K) to
∑

h Esh∼π∗ [X(sh)] (see
Lemma B.1 in the appendix). To handle REG-TERM, we
apply Lemma 3.1. As in standard log-barrier analyses, since
Ψ(π∗(· | s))−Ψ(π1(· | s)) is potentially infinity, we intro-
duce a smooth version π̃∗ defined via

π̃∗(a | s) = (1−AK−1)π∗(a | s) +K−1.

Applying Lemma 3.1 to a given state s ∈ S, we derive

Ψ(π̃∗(· | s))−Ψ(π1(· | s)) ≤ A logK.

Hence, fixing the state s, we can write

K∑
k=1

∑
a∈A

(πk(a | s)− π∗(a | s))(Q̂k(s, a)−Bk(s, a))

≤
K∑

k=1

∑
a∈A

(π̃∗(a | s)− π∗(a | s))(Q̂k(s, a)−Bk(s, a))+

A logK

η
+ η

K∑
k=1

∑
a∈A

πk(a | s)2(Q̂k(s, a)−Bk(s, a))
2.

After summing over h and taking expectation over s, we
show that the first term is of order Õ(AH2(

√
d + β/γ)),

while the last term’s contribution to
∑

h Esh∼π∗ [X(sh)]

is of order Õ( ηH3

γ2K2 ) by the same analysis of (Luo et al.,
2021b). Finally, we combine everything, apply Lemma 2.5,

6
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and show that the term
∑

k,h E(sh,ah)∼πk
[bk(sh, ah)] in this

case is Õ(βdHK), finishing the proof for the first bound.

While this bound looks almost identical to that of (Luo et al.,
2021b), their analysis requires 2Hη ≤ γ because of the use
of the negative-entropy regularizer. This prevents them from
picking a very small γ and eventually leads to sub-optimal
Õ(K2/3) regret. On the other hand, our log-barrier analysis
allows us to drop this requirement and pick a γ as small
as K−1, though bearing some extra factors polynomial in
A (the number of actions). Indeed, optimizing the bound
over the parameters (see the second claim), we achieve
RK = Õ(H3

√
AdK) which is of order

√
K.

4. Removing Polynomial Dependency on A via
a New Magnitude-Reduced Estimator

One drawback of using log-barrier is that the term Ψ(y)−
Ψ(x1) from Lemma 3.1 leads to poly(A) dependency (while
for negative entropy, this is only logA). To get around this
issue, we go back to using negative entropy. Recall that the
issue of this regularizer is that to ensure the same bound as
Lemma 3.1, we require ηct,i ≥ −1, which translates to the
requirement η(Q̂k(s, a)−Bk(s, a)) ≥ −1 in the context of
linear-Q MDPs. The challenging part here is that Q̂k(s, a),
as defined in Eq. (5), could be as negative as −H/γ, which
then restricts η to be of order O(γ/H), as mentioned.

To resolve this, we propose a new Q-function estimator
that has a smaller magnitude in the negative direction. Our
high-level idea is the following: for a possibly negative ran-
dom variable Z, define another magnitude-reduced random
variable as (recall the notation that (Z)− = min{Z, 0}):

Ẑ = Z − (Z)− + E[(Z)−].

The magnitude-reduced Ẑ then has the same expectation as
Z. They also share the same order of second moments:

E[Ẑ2] ≤ 2E[Z2] + 2(E[(Z)−])2 = O(E[Z2]).

More importantly, we have Ẑ ≥ E[(Z)−] and thus the
smallest possible value of Ẑ is E[(Z)−]: no less than (and
often much larger than) the smallest possible value of Z.
Thus, it becomes much easier to ensure ηct,i ≥ −1.

Applying this idea to our context, we propose a new Q-
function estimator as in Eq. (9), where mk(s, a) exactly
takes the role of E[(Z)−], except that we have no access to
the real expectation but have to approximate it with samples;
see Line 7 of Algorithm 2 for more details.

To make sure that these samples are “consistent” with those
used in constructing Σ̂†

k,h, we perform a check in Line 6 and
repeat the sampling until the check passes. Since both Eq.
(8) and ∥Σ̃k,h − Σk,h∥2 ≤ γ hold with probability at least

Algorithm 2 Improved Linear-Q Algorithm
(Using Magnitude-Reduced Loss Estimators)
Input: Learning rate η, bonus parameter β, MGR parame-

ters γ and ϵ, covariance estimation parameter M .
1: for k = 1, 2, . . . ,K do
2: Let πk ∈ Π be defined as follows for all s ∈ S:

πk(a | s) ∝ exp

(
− η

∑
k′<k

(Q̂k′(s, a)−Bk′(s, a))

)
,

where Bk(s, a) is calculated in Algorithm 4.
3: Execute πk, observing the trajectory (sk,h, ak,h) and

losses ℓk(sk,h, ak,h) for all h ∈ [H].
4: Construct Σ̂†

k,h using Matrix Geometric Resampling

(Algorithm 3 in the appendix) s.t. ∥Σ̂†
k,h∥2 ≤

1
γ ,∥∥∥E[Σ̂†

k,h]− (γI +Σπk

h )−1
∥∥∥
2
≤ ϵ, (7)

and the following holds w.p. 1−K−3:∥∥∥(Σ̂†
k,h)

1/2Σπk

h (Σ̂†
k,h)

1/2
∥∥∥
2
≤ 2. (8)

5: Simulate πk for M times, giving {(sm,h, am,h)}m,h.
Estimate the covariance matrix Σπk

h as

Σ̃k,h =
1

M

M∑
m=1

ϕ(sm,h, am,h)ϕ(sm,h, am,h)
T.

6: If ∥(Σ̂†
k,h)

1/2Σ̃k,h(Σ̂
†
k,h)

1/2∥2 ≥ 3, goto Line 4.
7: For each s ∈ Sh and a ∈ A, define mk(s, a) as

mk(s, a) =
1

M

M∑
m=1

(
ϕ(s, a)TΣ̂†

k,hϕ(sm,h, am,h)
)
−
.

8: Let Lk,h =
∑

h′≥h ℓk(sk,h′ , ak,h′). Estimate the
Q-function Qπk

k (s, a) as follows (for s ∈ Sh):

Q̂k(s, a) = ϕ(s, a)TΣ̂†
k,hϕ(sk,h, ak,h)Lk,h

−H
(
ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h)
)
−

+Hmk(s, a).

(9)

9: end for

1−K−3, the expected number of trials is only 1+o(1). Our
algorithm is shown in Algorithm 2, where the parts different
from (Luo et al., 2021b) are again highlighted in blue.

Our analysis shows that the new Q-function estimator indeed
has a significantly smaller magnitude: it can only be as
negative as −H/√γ (as opposed to the previous −H/γ

7
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bound). This only restricts η to be of order O(√γ/H),
enabling us to pick γ ≈ 1/K as in Theorem 3.3 and achieve
Õ(
√
K) regret again, as formalized in the next theorem.

Note that our final regret bound not only has no poly(A)
dependency, but is also optimal in both d and K as one
cannot do better even in the special case of linear bandits.

Theorem 4.1. When applied to a linear-Q MDP (Defini-
tion 2.2) with a simulator, Algorithm 2 ensures the follow-
ing when ηβγ−1 ≤ 1

12H2 , η2γ−1 ≤ 1
12H2 , 8ηH2 ≤ β,

ϵ ≤ (H2K)−1, and M = 32γ−2 logK:

RK = Õ
(
βdHK +

γ

β
dH3K +

H

η
+

ηdH3K +
η

γ2K2
H3

)
.

Picking η = 1√
dH4K

, β = 8√
dK

, γ = 96
dK , and ϵ = 1

H2K ,

we conclude thatRK = Õ(H3
√
dK).

Proof Sketch. Due to space limitations, we only sketch why
Q̂k(s, a) is now at least −O(H/√γ): since Lk,h ∈ [0, H],
we have Q̂k(s, a) ≥ Hmk(s, a). By Jensen’s inequality,
we can bound mk(s, a)

2 for all (s, a) as:

mk(s, a)
2 ≤ 1

M

M∑
m=1

(
ϕ(s, a)TΣ̂†

k,hϕ(sm,h, am,h)
)2

= ϕ(s, a)TΣ̂†
k,hΣ̃

πk

h Σ̂†
k,hϕ(s, a)

≤ 3
∥∥ϕ(s, a)∥∥2

Σ̂†
k,h

≤ 3

γ
,

where the second inequality is by Line 6. Therefore, we have
Q̂k(s, a) ≥ −

√
3H√
γ , a reduced magnitude compared to that

of a standard estimator (which is defined in Eq. (5)).

5. Generalizing to Linear MDPs
When a simulator is unavailable, we consider a special case
of linear-Q MDPs: linear MDPs (Definition 2.4), where the
transition is also linear in the features. As Luo et al. (2021a)
show, this makes the dilated bonuses linear as well, and thus
we can efficiently estimate them without using a simula-
tor. Due to various technical obstacles, they only achieve
Õ(K14/15) regret. We improve it to Õ(K8/9) via two key
modifications to their algorithm. As the algorithm is fairly
lengthy due to the lack of simulators and the estimation of
the dilated bonus function, we defer it (Algorithm 6) to the
appendix. We refer the reader to (Luo et al., 2021a) for a
detail description of their algorithm, and only focus on our
two modifications (highlighted in blue) described below.

The first obvious modification is to apply one of the tech-
niques introduced in the last two sections. However, since

the magnitude-reduced estimator we developed in Algo-
rithm 2 requires extra samples (see Line 5), which, without
a simulator, can only be done via real episodes and in turn
introduces more regret, we go with the log-barrier approach
instead, even though it leads to extra poly(A) factors.

But it turns out that this only leads to a mild improvement in
the regret, since the constraint on η is not the bottleneck of
their analysis. Instead, one important bottleneck comes from
using the Matrix Geometric Resampling (MGR) procedure
(Neu & Olkhovskaya, 2020) to estimate the covariance ma-
trix inverse, which again, without a simulator, can only be
done via running the same policy for multiple real episodes
(called an epoch) to collect samples. It is thus critical to
make this step as sample efficient as possible.

To resolve this issue, our key observation is that MGR
uses too many samples to produce an estimate that is in
a sense more accurate than required: specifically, it needs
O(ϵ−2γ−3) samples to ensure a bound like Eq. (7). In-
stead, we find that a weaker multiplicative approximation
guarantee is enough, which only requires O(γ−2) samples.
Moreover, this is achieved by simply taking the (regularized)
inverse of the empirical average of O(γ−2) samples.

More concretely, for a policy π̃j (which mixes πj with
some exploration policy; see Algorithm 6 for more details)
in epoch j of the algorithm, we collect roughly O(γ−2)
samples using this policy and construct an empirical average
covariance matrix Σ̃j,h for layer h. Then we let Σ̂†

j,h =

(γI + Σ̃j,h)
−1 be the estimation for (γI + Σ

π̃j

h )−1 (see
Line 17 of Algorithm 6). We then prove the following:

Lemma 5.1. If the epoch length W in Algorithm 6 is set to
(4d log d

δ )γ
−2, then

(1−√γ)(γI+Σ
π̃j

h ) ⪯ (γI+Σ̃j,h) ⪯ (1+
√
γ)(γI+Σ

π̃j

h )

holds with probability at least 1− 2δ.

The proof relies on a new matrix concentration bound
(Lemma A.4 in the appendix), which can be of indepen-
dent interest. A direct corollary of this lemma is:

Corollary 5.2. If W = (4d log d
δ )γ

−2 and γ ≤ 1
4 , then

with probability 1− 2δ, we have the following:

(1− 2
√
γ)I ⪯ (Σ̂†

j,h)
1/2(γI +Σ

π̃j

h )(Σ̂†
j,h)

1/2 ⪯ (1 + 2
√
γ)I.

Proof. Simply left and right multiply (Σ̂†
j,h)

1/2 = (γI +

Σ̃j,h)
−1/2 in the bound of Lemma 5.1 and use the fact

[ 1
1+

√
γ ,

1
1−√

γ ] ⊆ [1− 2
√
γ, 1 + 2

√
γ] when γ ≤ 1

4 .

Together with a new analysis to bound bias terms in the
regret, such approximations turn out to be enough: the bias
terms enjoy almost the same bound (up to constants) as we

8
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had in previous sections. Hence, we finally get the following
theorem; see Appendix D for a full proof.

Theorem 5.3 (Informal version of Theorem D.1). When
applied to linear MDPs, Algorithm 6 with proper tuning
ensuresRK = Õ(K8/9) (omitting all other dependencies).

Proof Sketch. Ignoring less important parts, at a high level
we still decompose the regret into several bias terms and a
REG-TERM. In this sketch, we only provide key ideas in
bounding the bias terms using Corollary 5.2. Specifically,
we illustrate how to bound E[BIAS-1], defined as follows:

BIAS-1 ≜W
∑
j,h

E
sh∼π∗

[
E

ah∼πj

[
Q

πj

j (sh, ah)− Q̂j(sh, ah)

]]
,

where Q
πj

j (s, a) = ϕ(s, a)Tθ
πj

j,h is the average Q-functions
in epoch j induced by policy πj , and Q̂j(s, a) is its estima-
tor. By direct calculation, one may check that

E
[
Q

πj

j (s, a)− Q̂j(s, a)
]

= ϕ(s, a)T(I − Σ̂†
j,hΣ

π̃j

h )θ
πj

j,h,

= ϕ(s, a)TΣ̂†
j,h(γI + Σ̃j,h − Σ

π̃j

h )θ
πj

j,h

≤ ∥ϕ(s, a)∥Σ̂†
j,h
×
∥∥∥(γI + Σ̃j,h − Σ

π̃j

h )θ
πj

j,h

∥∥∥
Σ̂†

j,h

≤ ∥ϕ(s, a)∥Σ̂†
j,h
×
(∥∥∥γθπj

j,h(s, a)
∥∥∥
Σ̂†

j,h

+∥∥∥(Σ̃j,h − Σ
π̃j

h )θ
πj

j,h

∥∥∥
Σ̂†

j,h

)
≤ β

4
∥ϕ(s, a)∥2Σ̂†

j,h
+

2

β

∥∥∥γθπj

j,h(s, a)
∥∥∥2
Σ̂†

j,h

+

2

β

∥∥∥(Σ̃j,h − Σ
π̃j

h )θ
πj

j,h

∥∥∥2
Σ̂†

j,h

,

where we apply Cauchy-Schwarz inequality, triangle in-
equality, and AM-GM inequality (twice).

The first term contributes toO(βdHK) after summing over
k and h and applying Lemma 2.5, while the second term
is bounded by O( γβdH

2) for any j because of the fact that

∥Σ̂†
j,h∥2 ≤ γ−1. By definition of θ, the last term becomes

2

β

∥∥∥(Σ̃j,h − Σ
π̃j

h )Σ̂†
j,h(Σ̃j,h − Σ

π̃j

h )
∥∥∥
2
dH2.

By some algebraic manipulations, we write

(Σ̃j,h − Σ
π̃j

h )Σ̂†
j,h(Σ̃j,h − Σ

π̃j

h )

= (Σ̂†
j,h)

−1/2
(
I − (Σ̂†

j,h)
1/2(γI +Σ

π̃j

h )(Σ̂†
j,h)

1/2
)2
(Σ̂†

j,h)
−1/2.

Thanks to Corollary 5.2, we know that

−2√γI ⪯ I − (Σ̂†
j,h)

1/2(γI +Σ
π̃j

h )(Σ̂†
j,h)

1/2 ⪯ 2
√
γI.

Hence, the last term is also of orderO( γβdH
2) – same as the

second term. All other bias terms are bounded analogously.

It only remains to bound the REG-TERM, whose calculation
is the same as we did in the proof of Theorem 3.3. Property
tuning all the parameters then gives Õ(K8/9) regret.

6. Conclusion
In this paper, we study policy optimization algorithms in
adversarial MDPs with linear function approximation.

Building on top of the dilated bonus approach introduced
by Luo et al. (2021b), we derive two algorithms which both
achieve the first Õ(

√
K)-style regret bounds in linear-Q

adversarial MDPs when a simulator is accessible. Techni-
cally speaking, the first algorithm uses a refined analysis for
FTRL with the log-barrier regularizer, while the second one
relies on a new magnitude-reduced loss estimator.

We further generalize the first approach to simulator-free lin-
ear MDPs and get Õ(K8/9) regret, greatly improving over
the best-known Õ(T 14/15) bound (Luo et al., 2021a). This
generalization also contains an alternative to the Matrix Ge-
ometric Resampling procedure (Neu & Olkhovskaya, 2020)
using a new matrix concentration bound (Lemma A.4).

We expect all these techniques to be of independent interest
and potentially useful for other problems. In light of various
concurrent works on linear MDPs (Sherman et al., 2023;
Kong et al., 2023; Lancewicki et al., 2023), further improv-
ing the result for linear MDPs is a key future direction —
either in terms of K or A.
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A. Auxiliary Lemmas and Omitted Algorithms
A.1. Matrix Geometric Resampling Procedure

Matrix Geometric Resampling algorithm, introduced by Neu & Olkhovskaya (2020) and improved by Luo et al. (2021b),
generates a close estimation of (γI +Σπ

h)
−1 for given π ∈ Π and h ∈ [H]. Formally, we present it in Algorithm 3 and state

its performance guarantees in Lemma A.1.

Algorithm 3 Matrix Geometric Resampling Algorithm
Input: Policy π, regularization parameter γ, desired precision ϵ.
Output: A set of matrices {Σ̂†

h}Hh=1.
1: Set M ≥ 24 ln(dHT )

ϵ2γ2 and N ≥ 2
γ ln 1

ϵγ . Set c = 1
2 .

2: Draw MN trajectories of π using the simulator; denote them by {(sm,n,h, am,n,h)}m∈[M ],n∈[N ],h∈[H].
3: for m = 1, 2, . . . ,M do
4: for n = 1, 2, . . . , N do
5: Set Yn,h = γI + ϕ(sm,n,h, am,n,h)ϕ(sm,n,h, am,n,h)

T and Zn,h =
∏n

n′=1(I − cYn′,h) for all h ∈ [H].
6: end for
7: Calculate Σ̂†

m,h = cI + c
∑N

n=1 Zn,h for all h ∈ [H].
8: end for
9: Set Σ̂†

h = 1
M

∑M
m=1 Σ̂

†
m,h for all h ∈ [H].

Lemma A.1 (Lemma D.1 of Luo et al. (2021b)). With the configurations of M and N stated in Algorithm 3, for any policy
π, we have ∥Σ̂†

h∥2 ≤ γ−1, ∥E[Σ̂†
h]− (γI +Σπ

h)
−1∥2 ≤ ϵ. Moreover, there exists a good event that happens with probability

1− 1
K3 , under which the following two properties hold:

∥E[Σ̂†
h]− (γI +Σπ

h)
−1∥2 ≤ 2ϵ, ∥Σ̂†

hΣ
π
h∥2 ≤ 1 + 2ϵ.

A.2. Dilated Bonus Calculation in Linear-Q MDP Algorithms

The following algorithm (which is Algorithm 3 of Luo et al. (2021b)) indicates how we calculate the dilated bonus function
Bk(s, a) with the help of the simulator in Algorithms 1 and 2. In both algorithms, we define the bonus as

bk(s, a) = β

(
∥ϕ(s, a)∥2

Σ̂†
j,h

+ E
ã∼πk(·|s)

[
∥ϕ(s, ã)∥2

Σ̂†
j,h

])
.

Algorithm 4 Dilated Bonus Calculation in Linear-Q Algorithms
Input: Episode k ∈ [K], state s ∈ S, action a ∈ A.
Output: The dilated bonus function Bk(s, a).

1: if BONUS(k, s, a) is called before then return the value calculated at that time.
2: Let h be the layer that s lies in, i.e., s ∈ Sh. if h = H + 1 then return 0.
3: Call the simulator for a next state s′ ∼ P(· | s, a). Calculate πk(· | s) and πk(· | s′) according to the algorithm.

4: return β
(
∥ϕ(s, a)∥2

Σ̂†
k,h

+ Eã∼πk(·|s)
[
∥ϕ(s, ã)∥2

Σ̂†
k,h

])
+ (1 + 1

H )Bk(s
′, a′) where a′ is a sample from πk(· | s′).

Note that, during the calculation of πk and Bk(s
′, a′), we are essentially recursively calling this algorithm.

A.3. POLICYCOVER Algorithm in Linear MDP Algorithms

The following algorithm is Algorithm 6 of Luo et al. (2021a) (which itself builds upon Algorithm 1 of Wang et al. (2020);
we refer the readers to the original paper for more details). This algorithm generates a mixture of policies, which we call
the policy cover πcov, together with an estimate of the (regularized) inverse of its covariance matrix, namely {Σ̂cov

h }Hh=1. It
ensures the following property:

13
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Lemma A.2 (Lemma D.4 by Luo et al. (2021a)). With probability 1− δ, we have the following for all policies π and any
h ∈ [H]:

Pr
sh∼π

[sh ̸∈ K] = Õ
(
dH

α

)
,

where K is set of known states defined as follows:

K =
{
s ∈ S

∣∣∣∀a ∈ A, ∥ϕ(s, a)∥2
(Σ̂cov

h )−1 ≤ α
}
,

where h is the layer that s lies in.

Algorithm 5 POLICYCOVER for Linear MDPs
Input: Configurations M0, N0, α, failure probability δ.

1: Set Γ1,h ← I for all h ∈ [H]. Set β̃ = 60dH
√

ln K
δ .

2: for m = 1, 2, . . . ,M0 do
3: Set V̂m(xh+1)← 0.
4: for h = H,H − 1, . . . , 1 do
5: For all (s, a) ∈ Sh ×A, let

Q̂m(s, a) = min{rm(s, a) + β̃∥ϕ(s, a)∥Γ−1
m,h

+ ϕ(s, a)Tθ̂m,h, H},

V̂m(s) = max
a∈A

Q̂m(s, a),

πm(a | s) = 1[a = argmax
a′∈A

Q̂m(s, a′)],

where

rm(s, a) = ramp 1
K
(∥ϕ(s, a)∥Γ−1

m,h
− α

M0
),

θ̂m,h = Γ−1
m,h(

1

N0

m−1∑
m′=1

N0∑
n′=1

ϕ(sm′,n′,h, am′,n′,h)V̂m(sm′,n′,h+1)).

Here, rampz(y) is 0 if y ≤ −z, 1 if y ≥ 0, and y
z + 1 otherwise.

6: end for
7: for n = 1, 2, . . . , N0 do
8: Execute πm and get trajectory {(sm,n,h, am,n,h)}Hh=1.
9: end for

10: Compute Γm+1,h as

Γm+1,h ← Γm,h +
1

N0

N0∑
n=1

ϕ(sm,n,h, am,n,h)ϕ(sm,n,h, am,n,h)
T.

11: return πcov defined as the uniform mixture of π1, π2, . . . , πM0
and Σ̂cov

h defined as 1
M0

ΓM0+1,h (for all h).
12: end for

A.4. Stochastic Matrix Concentration

We first state the well-known Matrix Azuma inequality.

Lemma A.3 (Matrix Azuma; see (Tropp, 2012, Theorem 7.1)). Let {Xk}nk=1 be a adapted sequence of d× d self-adjoint
matrices. Let {Ak}nk=1 be a fixed sequence of self-adjoint matrices such that

Ek[Xk] = 0, X2
k ⪯ A2

k almost surely.
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Let σ2 = ∥ 1n
∑n

k=1A
2
k∥2. Then for all ϵ > 0:

Pr

{∥∥∥∥∥ 1n
n∑

k=1

Xk

∥∥∥∥∥
2

≥ ϵ

}
≤ d exp

(
−nϵ

2

8σ2

)
.

Then, we state the following lemma, which we use to replace the MGR procedure in Linear MDPs.

Lemma A.4. Let H1, H2, . . . ,Hn be i.i.d. PSD matrices s.t. E[Hi] = H , Hi ⪯ I a.s., and H ⪰ 1
dn log d

δ I , then with
probability 1− 2δ,

−
√
d

n
log

d

δ
H1/2 ⪯ 1

n

n∑
i=1

Hi −H ⪯
√
d

n
log

d

δ
H1/2.

Proof. Let G =
√

1
dn log d

δH
−1/2. We first show that

−
2 log d

δ

n
G−1 ⪯ 1

n

n∑
i=1

Hi −H

holds with probability 1− δ. We have

Pr

{
−
2 log(dδ )

n
G−1 ̸⪯ 1

n

n∑
i=1

Hi −H

}
= Pr

{
n∑

i=1

G1/2 (H −Hi)G
1/2 − log(

d

δ
)I ̸⪯ log(

d

δ
)I

}
.

Since log is operator monotone, we have for PSD matrices A,B: exp(A) ⪯ exp(B) ⇒ log(exp(A)) ⪯ log(exp(B))
(note that the reverse does not generally hold). We have Pr{exp(A) ⪯ exp(B)} ≤ Pr{A ⪯ B} and hence Pr{A ̸⪯ B} ≤
Pr{exp(A) ̸⪯ exp(B)}. Hence

Pr

{
n∑

i=1

G1/2 (H −Hi)G
1/2 − log(

d

δ
)I ̸⪯ log(

d

δ
)I

}

≤ Pr

{
exp

(
n∑

i=1

G1/2 (H −Hi)G
1/2 − log(

d

δ
)I

)
̸⪯ d

δ
I

}

≤ Pr

{
Tr

(
exp

(
n∑

i=1

G1/2 (H −Hi)G
1/2 − log(

d

δ
)I

))
>
d

δ

}

≤
E
[
Tr
(
exp

(∑n
i=1G

1/2 (H −Hi)G
1/2 − log(dδ )I

))]
d

δ (Markov’s inequality)

Using the Golden-Thompson inequality, we have

E

[
Tr

(
exp

(
n∑

i=1

G1/2 (H −Hi)G
1/2 − log(

d

δ
)I

))]

≤ E

[
Tr

(
exp

(
n−1∑
i=1

G1/2 (H −Hi)G
1/2 −

log(dδ )

n
I

)
exp(G1/2 (H −Hn)G

1/2 −
log(dδ )

n
I)

)]

= Tr

(
E

[
exp

(
n−1∑
i=1

G1/2 (H −Hi)G
1/2 −

log(dδ )

n
I

)]
E
[
exp(G1/2 (H −Hn)G

1/2
]
exp

(
−
log(dδ )

n
I)

))

We have due to G1/2(H −Hn)G
1/2 ⪯ I:

E
[
exp(G1/2 (H −Hn)G

1/2)
]
⪯ E[I + (G1/2 (H −Hn)G

1/2) + (G1/2 (H −Hn)G
1/2)2] ⪯ I + E

[
(G1/2HnG

1/2)2
]
.
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By the Araki–Lieb–Thirring inequality, we have Tr((ABA)2) ≤ Tr(A2B2A2), hence

Tr
(
E[(G1/2HnG

1/2)2]
)
≤ E[Tr(GH2

nG)] ≤ E[Tr(GHnG)] (Hn ⪯ I)

= Tr(GHG) ≤
log(dδ )

n
.

Combining this with the previous result yields

E
[
exp(G1/2 (H −Hn)G

1/2)
]
exp

(
−
log(dδ )

n
I)

)
⪯

(
1 +

log(dδ )

n

)
I exp

(
−
log(dδ )

n
I

)
⪯ I .

Applying this recursively yields

E

[
Tr

(
exp

(
n∑

i=1

G1/2 (H −Hi)G
1/2 − log(

d

δ
)I

))]
≤ Tr (I) = d ,

which concludes the proof of the claim. By symmetry and union bound, we have the following with probability 1− 2δ:

−
2 log d

δ

n
G−1 ⪯ 1

n

n∑
i=1

Hi −H ⪯
2 log d

δ

n
G−1.

This then directly simplifies to our conclusion given H ⪰ 1
dn log d

δ I .
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B. Omitted Proofs in Section 3 (Linear-Q Algorithm Using Log-Barrier Regularizers)
B.1. Property of FTRL with Log-Barrier Regularizers

Proof of Lemma 3.1. We first introduce the notation of Bregman divergences DΨ(y, x) = Ψ(y)−Ψ(x)− ⟨∇Ψ(x), y− x⟩,
which is heavily used in FTRL analyses. By standard FTRL analysis (see, e.g., Theorem 28.5 by Lattimore & Szepesvári
(2020)), we know

T∑
t=1

⟨xt − y, ct⟩ ≤
Ψ(y)−Ψ(x1)

η
+

T∑
t=1

(
⟨xt − xt+1, ct⟩ − η−1DΨ(xt+1, xt)

)
. (10)

Consider DΨ(xt+1, xt). By definition of DΨ and our choice that Ψ(p) =
∑A

i=1 ln
1
pi

, we have

DΨ(xt+1, xt) = Ψ(xt+1)−Ψ(xt)− ⟨∇Ψ(xt), xt+1 − xt⟩

=

A∑
i=1

(
ln

xt
xt+1

+
xt+1 − xt

xt

)
.

Observe that the following holds for all x ∈ (0, 1) and x+∆ ∈ (0, 1):

ln
x

x+∆
+

∆

x
=

∫ ∆

0

α

x(x+ α)
dα ≥

∫ ∆

0

α

x
dα =

∆2

2x
,

For all i, we apply the inequality about with x = xt,i and ∆ = xt+1,i − xt,i (as xt and xt+1 both belong to the simplex, the
conditions x ∈ (0, 1) and (x+∆) ∈ (0, 1) indeed hold). We then get the following lower bound on DΨ(xt+1, xt):

DΨ(xt+1, xt) ≥
A∑
i=1

(xt+1 − xt)2

2xt
. (11)

We further have

⟨xt − xt+1, ct⟩ − η−1DΨ(xt+1, xt) ≤
A∑
i=1

(
(xt,i − xt+1,i)ct,i −

(xt+1 − xt)2

2xt

)
≤

A∑
i=1

1

2
xt,iηc

2
t,i,

where the last step uses AM-GM inequality −a2 + 2ab ≤ b2. Plugging this back to Eq. (10) gives our conclusion.

B.2. Proof of Main Theorem

Proof of Theorem 3.3. As sketched in the main text, we consider the following expression in order to apply the dilated
bonus lemma (Lemma 2.5):

K∑
k=1

H∑
h=1

E
sh∼π∗

[ ∑
ah∈A

(πk(ah | sh)− π∗(ah | sh))(Qπk

k (sh, ah)−Bk(sh, ah))

]

=

K∑
k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)

[
Qπk

k (sh, ah)− Q̂k(sh, ah)
]]

︸ ︷︷ ︸
BIAS-1

+

K∑
k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)

[
Q̂k(sh, ah)−Qπk

k (sh, ah)
]]

︸ ︷︷ ︸
BIAS-2

+

K∑
k=1

H∑
h=1

E
sh∼π∗

[〈
πk(· | sh)− π∗(· | sh), Q̂k(sh, ·)−Bk(sh, ·)

〉]
︸ ︷︷ ︸

REG-TERM

. (12)
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According to Lemma B.1, we know that

E[BIAS-1] + E[BIAS-2] ≤ β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+O

(
γ

β
dH3K + ϵ(H + β)HK

)
.

Moreover, by Lemma B.2, we can see that

E[REG-TERM] ≤ Hη−1A lnK +O
(
AH2

(
ϵ+
√
d+

β

γ

))
+

2ηH2
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)

[
∥ϕ(sh, ah)∥Σ̂†

k,h

]]
+O

(
ηH3

γ2K2

)
+

1

H

K∑
k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[Bk(sh, ah)]

]
.

Plugging back into Eq. (12), we know that

K∑
k=1

H∑
h=1

E
sh∼π∗

[ ∑
ah∈A

(πk(ah | sh)− π∗(ah | sh))(Qπk

k (sh, ah)−Bk(sh, ah))

]

≤ β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

2ηH2
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

k,h

]]
+

1

H

K∑
k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[Bk(sh, ah)]

]
+

Õ
(
γ

β
dH3K + ϵ(H + β)HK +

H

η
A+AH2

(
ϵ+
√
d+

β

γ

)
+

ηH3

γ2K2

)
.

Using (6ηH2 + β
4 ) ≤ β, we apply Lemma 2.5 with bk(s, a) = ∥ϕ(s, a)∥2Σ̂†

k,h

+ Ea′∼πk(·|s)[∥ϕ(s, a′)∥2Σ̂†
k,h

], giving

RK ≤ β E

[
K∑

k=1

H∑
h=1

E
sh∼πk

[
E

ah∼πk(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

Õ
(
γ

β
dH3K + ϵ(H + β)HK +

H

η
A+AH2

(
ϵ+
√
d+

β

γ

)
+

ηH3

γ2K2

)
.

Fixing an episode k ∈ [K] and h ∈ [H], we have

E
sh∼πk

[∑
a

πk(a | s)∥ϕ(s, a)∥2Σ̂†
k,h

]

≤ E
sh∼πk

[∑
a

πk(a | s)∥ϕ(s, a)∥2(γI+Σ
πk
h )−1

]
+O(ϵ)
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≤ E
sh∼πk

[∑
a

πk(a | s)∥ϕ(s, a)∥2(Σπk
h )−1

]
+O(ϵ)

=

〈
(Σπk

h )−1, E
(sh,ah)∼πk

[ϕ(sh, ah)ϕ(sh, ah)
T]

〉
= d. (13)

Therefore, we can conclude the following if 12ηβH2 ≤ γ and 8ηH2 ≤ β:

RK = Õ
(
βdHK +

γ

β
dH3K + ϵ(H + β)HK +

H

η
A+AH2

(
ϵ+
√
d+

β

γ

)
+

ηH3

γ2K2

)
.

It remains to tune the parameters. We first pick ϵ = 1
H2K , which makes all terms related to ϵ constantly-bounded. Setting

η ≈ K−1/2 and γ ≈ K−1, the last term is also o(1). Hence, removing all constantly-bounded terms give

RK = Õ
(
AH

1

η
+ βdHK +

γ

β
dH3K +AH2 β

γ

)
.

We then getRK = Õ(
√
AdH6K) = Õ(A1/2d1/2H3K1/2) by picking:

η =

√
A

dH4K
,β = 8

√
A

dK
, γ = 96

A

dK
.

It’s straightforward to verify that they satisfy 12ηβH2 ≤ γ and 8ηH2 ≤ β.

B.3. Bounding BIAS-1 and BIAS-2

Lemma B.1. In Algorithm 1, we have

E[BIAS-1] + E[BIAS-2] ≤ β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+O

(
γ

β
dH3K + ϵ(H + β)HK

)
.

Proof. As BIAS-1 has nothing to do with the choice of the regularizer, it can be bounded the same as the original algorithm
(Luo et al., 2021b, Lemma D.2), which we also include below for completeness: fixing a specific (k, s, a) and suppose that
s ∈ Sh. Then we have the following, where every expectation is taken to the randomness in the k-th episode:

E
[
Qπk

k (s, a)− Q̂k(s, a)
]
= ϕ(s, a)Tθπk

k,h − ϕ(s, a)
T E
[
Σ̂†

k,hϕ(sk,h, ak,h)Lk

]
= ϕ(s, a)Tθπk

k,h − ϕ(s, a)
T E
[
Σ̂†

k,h

]
E
[
ϕ(sk,h, ak,h)ϕ(sk,h, ak,h)

Tθπk

k,h

]
(a)

≤ ϕ(s, a)T
(
I − (γI +Σπk

h )−1Σπk

h

)
θπk

k,h + ϵH

= γϕ(s, a)T(γI +Σπk

h )−1θπk

k,h + ϵH

(b)

≤ γ∥ϕ(s, a)∥(γI+Σ
πk
h )−1∥θπk

k,h∥(γI+Σ
πk
h )−1 + ϵH

(c)

≤ β

4
∥ϕ(s, a)∥2

(γI+Σ
πk
h )−1 +

γ2

β
∥θπk

k,h∥
2
(γI+Σ

πk
h )−1 + ϵH

(d)

≤ β

4
E
[
∥ϕ(s, a)∥2

Σ̂†
k,h

]
+
γ

β
dH2 + ϵH + ϵ

β

4
.
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where (a) used Eq. (7) (which follows from Lemma A.1) and the assumption that ∥ϕ(s, a)∥ ≤ 1 and Lk ≤ H , (b)
used Cauchy-Schwartz inequality, (c) used AM-GM inequality, and (d) used the assumption that ∥θπk

k,h∥ ≤
√
dH (see

Definition 2.2) and again Eq. (7). Hence, we have

E[BIAS-1] ≤ β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+O

(
γ

β
dH3K + ϵ(H + β)HK

)
.

Similarly, we have

E[BIAS-2] ≤ β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+O

(
γ

β
dH3K + ϵ(H + β)HK

)
.

Combining these two parts together gives our conclusion.

B.4. Bounding REG-TERM

Lemma B.2. Under the assumption that 12ηβH2 ≤ γ, we have the following in Algorithm 1:

E[REG-TERM] ≤ Hη−1A lnK +O
(
AH2

(
ϵ+
√
d+

β

γ

))
+

2ηH2
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

k,h

]]
+O

(
ηH3

γ2K2

)
+

1

H

K∑
k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[Bk(sh, ah)]

]
.

Proof. Using Lemma 3.1, we get the following for all k ∈ [K], s ∈ Sh (where h ∈ [H]), and π̃∗ ∈ Π:

K∑
k=1

∑
a∈A

(πk(a | s)− π∗(a | s))(Q̂k(s, a)−Bk(s, a))

≤ Ψ(π̃∗(· | s))−Ψ(π1(· | s))
η

+

K∑
k=1

∑
a∈A

(π̃∗(a | s)− π∗(a | s))(Q̂k(s, a)−Bk(s, a))+

η

K∑
k=1

∑
a∈A

πk(a | s)(Q̂k(s, a)−Bk(s, a))
2.

By picking π̃∗(a | s) = (1−AK−1)π∗(a | s) +K−1, the first term is bounded by

Ψ(π̃∗(· | s))−Ψ(π1(· | s))
η

=
1

η

∑
a∈A

ln
π1(a | s)
π̃∗(a | s)

≤ 1

η

∑
a∈A

ln
π1(a | s)
K−1

≤ η−1A lnK.

Meanwhile, the second term is bounded by

K∑
k=1

∑
a∈A

(π̃∗(a | s)− π∗(a | s))(Q̂k(s, a)−Bk(s, a))

=

K∑
k=1

∑
a∈A

(−AK−1π∗(a | s) +K−1)(Q̂k(s, a)−Bk(s, a)).
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Firstly, we have the following as ∥Σ̂†
k,h∥2 ≤ γ−1:

Bk(s, a) ≤ H
(
1 +

1

H

)H

× 2β sup
s,a,h
∥ϕ(s, a)∥2

Σ̂†
k,h

≤ 6βHγ−1. (14)

Moreover, according to the calculation in Lemma B.1, we know that

E[Q̂k(s, a)−Qπk

k (s, a)] ≤ γϕ(s, a)T(γI +Σπk

h )−1θπk

k,h + ϵH ≤ O((ϵ+
√
d)H),

while, at the same time, Qπk

k (s, a) ∈ [0, H].

Hence, after taking expectations on both sides, we know that

E

[
K∑

k=1

∑
a∈A

(π̃∗(a | s)− π∗(a | s))(Q̂k(s, a)−Bk(s, a))

]

≤
K∑

k=1

∑
a∈A

(|−AK−1π∗(a | s)|+ |K−1|)|E[Q̂k(s, a)−Bk(s, a)]|

≤ K × 2AK−1 ×O
(
(ϵ+

√
d)H +H +

β

γ
H

)
= O

(
AH

(
ϵ+
√
d+

β

γ

))
.

Then consider the last term, which is directly bounded by

η

K∑
k=1

∑
a∈A

πk(a | s)2(Q̂k(s, a)−Bk(s, a))
2

≤ 2η

K∑
k=1

∑
a∈A

πk(a | s)Q̂k(s, a)
2 + 2η

K∑
k=1

∑
a∈A

πk(a | s)Bk(s, a)
2.

The first term can be calculated as follows, following the original proof (Luo et al., 2021b, Lemma D.3):

E[Q̂k(s, a)
2] ≤ H2 E[ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h)ϕ(sk,h, ak,h)
TΣ̂†

k,hϕ(s, a)]

= H2 E[ϕ(s, a)TΣ̂†
k,hΣ

πk

h Σ̂†
k,hϕ(s, a)]

(a)

≤ 2H2 E[ϕ(s, a)TΣ̂†
k,hϕ(s, a)] +O

(
H2

γ2K3

)
= 2H2 E

[
∥ϕ(s, a)∥2

Σ̂†
k,h

]
+O

(
H2

γ2K3

)
,

where (a) used Eq. (8), which happens with probability 1−K−3 for each k (when it does not hold, we simply use the bound
∥Σ̂†

k,h∥2 ≤ γ−1). Then we can conclude the following by adding back the summation over h ∈ [H] and sh ∼ π∗:

E[REG-TERM] ≤ Hη−1A lnK +O
(
AH2

(
ϵ+
√
d+

β

γ

))
+

2ηH2
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

k,h

]]
+O

(
ηH3

γ2K2

)
+

1

H

K∑
k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[Bk(sh, ah)]

]
,

where the last term comes from the magnitude of Bk (Eq. (14)) and the assumption that 12ηβH2 ≤ γ.

21



Refined Regret for Adversarial MDPs with Linear Function Approximation

C. Omitted Proofs in Section 4 (Linear-Q Algorithm Using Magnitude-Reduced Estimators)
C.1. Property of FTRL with Negative-Entropy Regularizers (a.k.a. Hedge)

The following result is a classic result for the Hedge algorithm. For the sake of completeness, we also include a proof here.

Lemma C.1. Let x0, x1, x2, . . . , xT ∈ RA be defined as

xt+1,i = (xt,i exp(−ηct,i))

/(
A∑

i′=1

xt,i′ exp(−ηct,i′)

)
, ∀0 ≤ t < T,

where ct ∈ RA is the loss corresponding to the t-th iteration. Suppose that ηct,i ≥ −1 for all t ∈ [T ] and i ∈ [A]. Then

T∑
t=1

⟨xt − y, ct⟩ ≤
logA

η
+ η

T∑
t=1

A∑
i=1

xt,ic
2
t,i

holds for any distribution y ∈ △([A]) when x0 = ( 1
A ,

1
A , . . . ,

1
A ).

Proof. By linearity, it suffices to prove the inequality for all one-hot y’s. Without loss of generality, let y = 1i∗ where
i∗ ∈ [A]. Define Ct,i =

∑t
t′=1 ct′,i as the prefix sum of ct,i. Let

Φt =
1

η
ln

(
A∑
i=1

exp (−ηCt,i)

)
,

then by definition of xt, we have

Φt − Φt−1 =
1

η
ln

( ∑A
i=1 exp(−ηCt,i)∑A

i=1 exp(−ηCt−1,i)

)
=

1

η
ln

(
A∑
i=1

xt,i exp(−ηct,i)

)
(a)

≤ 1

η
ln

(
A∑
i=1

xt,i(1− ηct,i + η2c2t,i)

)
=

1

η
ln

(
1− η⟨xt, ct⟩+ η2

A∑
i=1

xt,ic
2
t,i

)
(b)

≤ −⟨xt, ct⟩+ η

A∑
i=1

xt,ic
2
t,i,

where (a) used exp(−x) ≤ 1 − x + x2 for all x ≥ −1 and (b) used ln(1 + x) ≤ x (again for all x ≥ −1). Therefore,
summing over t = 1, 2, . . . , T gives

T∑
t=1

⟨xt, ct⟩ ≤ Φ0 − ΦT + η

T∑
t=1

A∑
i=1

xt,ic
2
t,i

≤ lnN

η
− 1

η
ln (exp(−ηCT,i∗)) + η

T∑
t=1

N∑
i=1

pt(i)ℓ
2
t (i)

≤ lnA

η
+ LT (i

∗) + η

T∑
t=1

A∑
i=1

xt,ic
2
t,i.

Moving Ct,i∗ to the LHS then shows the inequality for y = 1i∗ . The result then extends to all y ∈ △([A]) by linearity.

C.2. Proof of Main Theorem

Proof of Theorem 4.1. We first consider Line 6 in the algorithm. As sketched in the main text, we shall expect such an
operation to be repeated for 1 + o(1) times because Eq. (8) and ∥Σ̃k,h − Σπk

h ∥2 ≤ γ both happens with probability
1−K−3 — the first claim follows from Lemma A.1 and the second one comes from Lemma A.3 (where we set Xm =
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ϕ(sm,h, am,h)ϕ(sm,h, am,h)
T −Σπk

h and Am,h = I ⪰ Xm,h). With these two conditions and the fact that ∥Σ̂†
k,h∥2 ≤ γ−1,

the desired condition trivially holds. Therefore, such an operation brings neither extra regret nor extra computational
complexity, and we focus on the regret analysis from now on.

We define BIAS-1, BIAS-2, and REG-TERM exactly the same as Theorem 3.3 (i.e., Eq. (12)). The BIAS-1 and BIAS-2
terms are bounded by Lemma C.2, as follows:

E[BIAS-1] + E[BIAS-2] ≤ β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+O

(
γ

β
dH3K + ϵ(H + β)HK

)
.

Assuming 12η2H2 ≤ γ and 12ηβH2 ≤ γ, REG-TERM is bounded by Lemma C.3 as

E[REG-TERM] ≤ Hη−1 lnA+ 6ηH2
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

k,h

]]

+
1

H

K∑
k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[Bk(sh, ah)]

]
.

Plugging into the regret decomposition, we get

K∑
k=1

H∑
h=1

E
sh∼π∗

[ ∑
ah∈A

(πk(ah | sh)− π∗(ah | sh))(Qπk

k (sh, ah)−Bk(sh, ah))

]

≤ β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

6ηH2 E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

k,h

]]]
+

1

H
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[Bk(sh, ah)]

]]
+ Õ

(
H

η
+
γ

β
dH3K + ϵ(H + β)HK

)
.

Using the condition that (6ηH2 + β
4 ) ≤ β, we can apply Lemma 2.5 to conclude that

RK = Õ

(
E

[
β

H∑
h=1

E
sh∼πk

[
K∑

k=1

∑
a

πk(a | s)∥ϕ(s, a)∥2Σ̂†
k,h

]]
+
H

η
+
γ

β
dH3K + ϵ(H + β)HK

)
.

By Eq. (13), we can conclude the following when assuming 8ηH2 ≤ β:

RK = Õ
(
H

η
+
γ

β
dH3K + ϵ(H + β)HK + βdHK

)
.

Plugging in the configurations that (again, one can see that this configuration satisfies all the conditions)

η =
1√

dKH2
, β =

8√
dK

, γ =
96

dK
, ϵ =

1

H2K
,

we then conclude thatRK = Õ(
√
dH6K).
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C.3. Bounding BIAS-1 and BIAS-2

Lemma C.2. In Algorithm 2, we have

E[BIAS-1] + E[BIAS-2] ≤ β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+O

(
γ

β
dH3K + ϵ(H + β)HK

)
.

Proof. Fixing a specific (k, s, a) and assume s ∈ Sh. Then we have (again, all expectations are taken w.r.t. randomness in
the k-th episode)

E
[
Q̂k(s, a)

]
= E

[
ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h)Lk,h

]
−H E

[(
ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h)
)
−

]
+

H E

[
1

M

M∑
m=1

(
ϕ(s, a)TΣ̂†

k,hϕ(sm,h, am,h)
)
−

]
= E

[
ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h)Lk,h

]
,

where the last equality is because (sk,h, ak,h) and (sm,h, am,h) are both sampled from πk. The rest of the proof is then
identical to Lemma B.1.

C.4. Bounding REG-TERM

Lemma C.3. Suppose that 12H2η2 ≤ γ, 12ηβH2 ≤ γ, 8ηH2 ≤ γ, and M = 32γ−2 logK. Then in Algorithm 2, we have

E[REG-TERM] ≤ Hη−1 lnA+ 6ηH2 E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

k,h

]]]

+
1

H
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[Bk(sh, ah)]

]]
.

Proof. To apply the Hedge lemma (Lemma C.1), we need to ensure that

η(Q̂k(s, a)−Bk(s, a)) ≥ −1, ∀(s, a) ∈ S ×A, k ∈ [K].

Fix an (s, a, k) tuple and assume that s ∈ Sh. We have

Q̂k(s, a)−Hmk(s, a) = ϕ(s, a)TΣ̂†
k,hϕ(sk,h, ak,h)Lk,h −H(ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h))−

=

{
ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h)Lk,h, ϕ(s, a)TΣ̂†
k,hϕ(sk,h, ak,h) ≥ 0

−ϕ(s, a)TΣ̂†
k,hϕ(sk,h, ak,h)(H − Lk,h), ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h) < 0

≥ 0,

as Lk,h ∈ [0, H]. Hence, Q̂k(s, a) ≥ Hmk(s, a) always holds. We consider Q̂k(s, a) ≥ Hmk(s, a) and Bk(s, a)
separately.

We first claim that ηHmk(s, a) ≥ − 1
2 , which ensures ηQ̂k(s, a) ≥ − 1

2 . To see this, we only need to show
η2H2mk(s, a)

2 ≤ 1
4 . By definition, mk(s, a)

2 can be written as the following:

mk(s, a)
2 =

(
1

M

M∑
m=1

(
ϕ(s, a)TΣ̂†

k,hϕ(sm,h, am,h)
)
−

)2
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(a)

≤ 1

M

M∑
m=1

(
ϕ(s, a)TΣ̂†

k,hϕ(sm,h, am,h)
)2
−

= ϕ(s, a)TΣ̂†
k,h

(
1

M

M∑
m=1

ϕ(sm,h, am,h)ϕ(sm,h, am,h)
T

)
Σ̂†

k,hϕ(s, a)

= ϕ(s, a)TΣ̂†
k,hΣ̃k,hΣ̂

†
k,hϕ(s, a)

(b)

≤ 3ϕ(s, a)TΣ̂†
k,hϕ(s, a) ≤ 3γ−1.

where (a) used Jensen inequality, (b) used Line 6 of Algorithm 2, and the last step uses the fact that ∥Σ̂†
k,h∥2 ≤ γ−1. Hence,

it only remains to ensure that 12H2η2γ−1 ≤ 1, which is guaranteed by the assumption.

Meanwhile, we claim that ηBk(s, a) ≤ 1
2 . By definition of Bk(s, a) and the fact that ∥Σ̂†

k,h∥2 ≤ γ−1, we have

ηBk(s, a) ≤ ηH
(
1 +

1

H

)H

× 2β sup
s,a,h
∥ϕ(s, a)∥2

Σ̂†
k,h

≤ 6ηβHγ−1, (15)

which is bounded by 1
2H according to the condition that 12ηβH2 ≤ γ.

Therefore, fixing h ∈ [H] and s ∈ Sh, we can apply the Hedge lemma (Lemma C.1):

E

[
K∑

k=1

∑
a

(πk(a | s)− π∗(a | s))(Q̂k(s, a)−Bk(s, a))

]

≤ lnA

η
+ 2η E

[
K∑

k=1

∑
a

πk(a | s)Q̂k(s, a)
2

]
+ 2η E

[
K∑

k=1

∑
a

πk(a | s)Bk(s, a)
2

]
.

For the second term, we can write

Q̂k(s, a)
2 = (ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h)Lk,h −H(ϕ(s, a)TΣ̂†
k,hϕ(sk,h, ak,h))− +Hmk(s, a))

2

≤ 2H2(ϕ(s, a)TΣ̂†
k,hϕ(sk,h, ak,h))

2 + 2H2(ϕ(s, a)TΣ̂†
k,hϕ(sk,h, ak,h))

2
− + 2H2m2

k(s, a).

After taking expectations on both sides, we have

E[Q̂2
k(s, a)] ≤ 2H2 E[(ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h))
2] + 2H2 E[(ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h))
2
−]+

2H2 E

[
1

M

M∑
m=1

(ϕ(s, a)TΣ̂†
k,hϕ(sm,h, am,h))−

]2
≤ 6H2 E[(ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h))
2],

where we used (X)2− ≤ X2, Jensen’s inequality, and the fact that (sk,h, ak,h) and (sm,h, am,h) are both sampled from πk.
Meanwhile, we can also calculate that

E[(ϕ(s, a)TΣ̂†
k,hϕ(sk,h, ak,h))

2]

= E
[
ϕ(s, a)TΣ̂†

k,hϕ(sk,h, ak,h)ϕ(sk,h, ak,h)
TΣ̂†

k,hϕ(s, a)
]

= E
[
ϕ(s, a)TΣ̂†

k,hΣ
πk

k Σ̂†
k,hϕ(s, a)

]
≤ E

[
∥ϕ(s, a)∥2

Σ̂†
k,h

]
,

where the last inequality again uses Line 6 of Algorithm 2. Hence, after summing up over the expectations when sh ∼ π∗

for all h ∈ [H], we can conclude that

E[REG-TERM] ≤ Hη−1 lnA+ 6ηH2
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

k,h

]]
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+
1

H

K∑
k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[Bk(sh, ah)]

]
,

where the last term comes from Eq. (15) and the condition that 12ηβH2 ≤ γ.
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Algorithm 6 Improved Linear MDP Algorithm
Input: Learning rate η, POLICYCOVER parameters α and T0, bonus parameter β, covariance estimation parameter

γ ∈ (0, 14 ), epoch length W , FTRL regularizer Ψ(p) =
∑A

i=1 ln
1
pi

, exploration probability δe
1: Let πcov and Σ̂cov

h be the outputs of the POLICYCOVER algorithm (see Algorithm 5).
2: Let K = {s ∈ S | ∥ϕ(s, a)∥2

(Σ̂cov
h )−1

≤ α,∀a ∈ A} be all the “known” states (defined in Lemma A.2).

3: for j = 1, 2, . . . , J = (T − T0)/W do
4: Calculate πj ∈ Π as follows for all s ∈ Sh:

πj(s) = argmin
p∈△(A)

{
Ψ(p) + η

∑
τ<j

∑
a∈A

p(a)
(
Q̂τ (s, a)− B̂τ (s, a)

)}
,

where Q̂τ (s, a) = ϕ(s, a)Tθ̂τ,h, B̂τ (s, a) = bτ (s, a) + ϕ(s, a)TΛ̂τ,h, and the bonus function is defined as

bτ (s, a) = 1[s ∈ K]× β
(
∥ϕ(s, a)∥2

Σ̂†
τ,h

+ E
a′∼πτ (·|s)

[
∥ϕ(s, a′)∥2

Σ̂†
τ,h

])
.

5: Randomly partition the episodes in the current epoch, i.e., {K0 + (j − 1)W + 1, . . . ,K0 + jW}, into two halves Tj
and T ′

j , such that where |Tj | = |T ′
j | = W

2 .
6: for k = K0 + (j − 1)W + 1, . . . ,K0 + jW do
7: Let Yk be a sample from a Bernoulli distribution Ber(δe).
8: if Yk = 0 then
9: Execute πj for this episode and observe {(sk,h, ak,h)}Hh=1 (together with ℓk(sk,h, ak,h)).

10: else if Yk = 1 and k ∈ Tj then
11: Execute πcov and observe {(sk,h, ak,h)}Hh=1 together with ℓk(sk,h, ak,h).
12: else
13: Let hk be uniformly sampled from [H]. Execute πcov for steps 1, 2, . . . , h− 1 and πj for the remaining ones.

Again, observe the trajectory {(sk,h, ak,h)}Hh=1 and the losses ℓk(sk,h, ak,h).
14: end if
15: end for
16: Define π̃j as the mixture of (1− δe) times πj and δe times πcov (i.e., expected policy played in epoch j).
17: Estimate the covariance matrix Σ

π̃j

h as follows, and estimate (γI +Σ
π̃j

h )−1 by Σ̂†
j,h = (γI + Σ̃j,h)

−1.

Σ̃j,h =
1

|Tj |
∑
k∈Tj

ϕ(sk,h, ak,h)ϕ(sk,h, ak,h)
T,

18: Estimate the average Q-function kernel θ
πj

j,h ≜ 1
|T ′

j |
∑

k∈T ′
j
θ
πj

k,h as follows:

θ̂j,h = Σ̂†
j,h

 1

|T ′
j |
∑
k∈T ′

j

((1− Yk) + YkH1[h = hk])ϕ(sk,h, ak,h)Lk,h

 ,

where Lk,h =
∑H

h′=h ℓk(sk,h′ , ak,h′).
19: Estimate the average dilated bonus kernel Λ

πj

j,h ≜ 1
|T ′

j |
∑

k∈T ′
j
Λ
πj

k,h as follows:

Λ̂j,h = Σ̂†
j,h

 1

|T ′
j |
∑
k∈T ′

j

((1− Yk) + YkH1[h = hk])ϕ(sk,h, ak,h)Dk,h

 ,

where Dk,h =
∑H

h′=h+1(1 +
1
H )i−hbj(sk,h, ak,h).

20: end for
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D. Omitted Proofs in Section 5 (Linear MDP Algorithm)
D.1. Pseudocode of the Improved Linear MDP Algorithm

This section briefly discusses the linear MDP algorithm (presented in Algorithm 6). Apart from the new covariance
estimation technique introduced in the main text, it is also different from Algorithm 1 in some other aspects due to the
distinct nature of linear-Q MDPs and (simulator-free) linear MDPs, listed as follows:

Firstly, as there are no simulators, we cannot calculate the dilated bonus function recursively like Algorithm 4. Fortunately,
in linear MDPs, as observed by Luo et al. (2021a), for any k associated with some policy πk and bonus function bk, we can
write Bk(s, a) defined in Eq. (3) as Bk(s, a) = bk(s, a) + ϕ(s, a)TΛπk

k,h, where (ν is defined in Definition 2.4)

Λπ
k,h ≜

(
1 +

1

H

)∫
sh+1

E
ah+1∼π(·|sh+1)

[Bk(sh+1, ah+1)] ν(sh+1)dsh+1.

Hence, Bk(s, a) is also linear in ϕ(s, a). This allows us to estimate the Bk just like Qπk

k , as we see in Line 19.

Notice that, as there are no more simulators, we cannot directly “assume” a good covariance estimation like in Algorithm 1
(which ensures Eqs. (7) and (8)). Instead, we should divide the time horizon into several epochs and execute (nearly) the
same policy during each epoch to ensure a good estimation. See Algorithm 6 for more details.

D.2. Alternative to the Matrix Geometric Resampling Procedure

Proof of Lemma 5.1. By definition, we know the following holds for all k ∈ Tj :

E[ϕ(sk,h, ak,h)ϕ(sk,h, ak,h)T] = Σ
π̃j

h , ϕ(sk,h, ak,h)ϕ(sk,h, ak,h)
T ⪯ I

Moreover, each (sk,h, ak,h) is i.i.d. Thus, we can apply Lemma A.4 with

Hi =
1

2

(
γI + ϕ(ski,h, aki,h)ϕ(ski,h, aki,h)

T
)
, H =

1

2

(
γI +Σ

π̃j

h

)
, i = 1, 2, . . . , |Tj |,

where ki stands for the i-th element in Tj . We then have the following according to Lemma A.4:

−

√
d

|Tj |
log

d

δ
H1/2 ⪯ 1

|Tj |

|Tj |∑
i=1

Hi −H ⪯

√
d

|Tj |
log

d

δ
H1/2, if γ ≥ 2

d

|Tj |
log

d

δ
. (16)

Let the empirical average of all Hi’s be Ĥ , i.e.,

Ĥ =
1

|Tj |

|Tj |∑
i=1

Hi =
1

2
(γI + Σ̃j,h).

Then we can arrive at the following under the same condition as Eq. (16):

I −

√
d

|Tj |
log

d

δ
H−1/2 ⪯ ĤH−1 ⪯ I +

√
d

|Tj |
log

d

δ
H−1/2.

Moreover, by the definition of H , we know H−1/2 ⪯
√
2(γI)−1/2. Setting W = 4d log d

δ γ
−2 (which ensures γ ≥

2 d
|Tj | log

d
δ as |Tj | = W

2 ), the LHS and RHS become (1−√γ)I and (1 +
√
γ)I , respectively. Hence,

(1−√γ) 12 (γI +Σ
π̃j

h ) ⪯ 1
2 (γI + Σ̃j,h) ⪯ (1 +

√
γ) 12 (γI +Σ

π̃j

h ),

which gives our conclusion after multiplying 2 on both sides.
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D.3. Proof of Main Theorem

We first state the formal version of Theorem 5.3:

Theorem D.1. Suppose that α = δe
6β , M0 ≥ α2dH2, N0 ≥ 100

M3
0

α2 log K
δ , W = 4d log d

δ γ
−2, γ ≥ 36β2

δ2e
, and 100ηH4 ≤

β. Further pick δ = K−3. Then Algorithm 6 applied to linear MDPs (Definition 2.4) ensures

RK = Õ
(
δ6e
β6
d4H8 + δeK + βdHK +

γ

β
dH3K +

H

η
Adγ−2 +Ad3/2H2γ−2 +

H3

γ2
K

)
.

With some proper tuning, we can ensureRK = Õ((H20Ad6)1/9K8/9).

Proof of Theorem 5.3. The regret decomposition is the same as Theorem 6.1 by Luo et al. (2021a), which we include below.
As sketched in the main text, we decompose the episodes into three parts: those executing POLICYCOVER, those using
exploratory policies (i.e., the Ber(δe) gives 1), and the ones executing πj .

For the first part, it’s trivially bounded by O(K0H). For the second part, as we explore with probability δe for each episode,
the total regret gets bounded by O(δeKH). For the last part, it suffices to bound the following to apply Lemma 2.5 (where
we still consider those exploratory episodes as they only bring extra regret), where J = K−K0

W denotes the number of
epochs for simplicity and Q

π

j (s, a) = ϕ(s, a)Tθ
π

j,h denotes the average Q-function in T ′
j (h is such that s ∈ Sh):

J∑
j=1

H∑
h=1

E
sh∼π∗

[
W
∑
ah∈A

(πj(ah | sh)− π∗(ah | sh))(Q
πj

j (sh, ah)−Bj(sh, ah))

]
.

As Bk(s, a) is only bounded for the known states (by definition of K), we first consider the unknown states:

J∑
j=1

H∑
h=1

E
sh∼π∗

[
W1[x ̸∈ K]

∑
ah∈A

(πj(ah | sh)− π∗(ah | sh))(Q
πj

j (s, a)−Bj(sh, ah))

]

≤ J
E∑

h=1

E
sh∼π∗

[W1[sh ̸∈ K]3H] = Õ
(
HK

dH3

α

)
according to Lemma A.2. For the remaining, we decompose (πj(ah | sh)− π∗(ah | sh))(Q

πj

j (sh, ah)−Bj(sh, ah)) into
the biases of Q̂j(sh, ah) and B̂j(s, ah) plus the FTRL regret (πj(ah | sh)− π∗(ah | sh))(Q̂j(sh, ah)− B̂j(sh, ah)), i.e.,

J∑
j=1

H∑
h=1

E
sh∼π∗

[
W1[sh ∈ K]

∑
ah∈A

(πj(ah | sh)− π∗(ah | sh))(Q
πj

j (sh, ah)−Bj(sh, ah))

]

=W

J∑
j=1

H∑
h=1

E
sh∼π∗

[
1[sh ∈ K] E

ah∼πj(·|sh)

[
Q

πj

j (sh, ah)− Q̂j(sh, ah))
]]

︸ ︷︷ ︸
BIAS-1

+

W

J∑
j=1

H∑
h=1

E
sh∼π∗

[
1[sh ∈ K] E

ah∼π∗(·|sh)

[
Q̂j(sh, ah))−Q

πj

j (sh, ah)
]]

︸ ︷︷ ︸
BIAS-2

+

W

J∑
j=1

H∑
h=1

E
sh∼π∗

[
1[sh ∈ K] E

ah∼πj(·|sh)

[
B̂j(sh, ah)−Bj(sh, ah)

]]
︸ ︷︷ ︸

BIAS-3

+

W

J∑
j=1

H∑
h=1

E
sh∼π∗

[
1[sh ∈ K] E

ah∼π∗(·|sh)

[
Bj(sh, ah)− B̂j(sh, ah)

]]
︸ ︷︷ ︸

BIAS-4

+
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W

J∑
j=1

H∑
h=1

E
sh∼π∗

[
1[sh ∈ K]

∑
ah∈A

(πj(ah | sh)− π∗(ah | sh))(Q̂j(sh, ah)− B̂j(sh, ah))

]
︸ ︷︷ ︸

REG-TERM

.

All the bias terms can be bounded similarly, as we will show in Lemmas D.2 and D.3, we can bound them as

E[BIAS-1] + E[BIAS-2] + E[BIAS-3] + E[BIAS-4]

≤ β

2
E

 J∑
j=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πj(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

j,h

]

]+

β

2
E

 J∑
j=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

j,h

]

]+O
(
γ

β
dH3J

)
.

Different from Lemmas B.1 and C.2, in that proof, we need to handle the estimation error β−1∥(Σ̂j,h −Σ
πj

h )θ
πj

j,h(s, a)∥2Σ̂†
j,h

by the multiplicative bound Corollary 5.2 instead of the additive one (e.g., Eq. (7)). See Eq. (17) for more details.

For the REG-TERM, we again apply the new FTRL lemma Lemma 3.1, giving the following expression:

E[REG-TERM] ≤ Õ
(
H

η
A+A

√
dH2 +

H3

γ2
δJ

)

+ 2ηH3
H∑

h=1

E
sh∼π∗

 J∑
j=1

E
ah∼πj(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

j,h

]
+

H∑
h=1

E
sh∼π∗

 J∑
j=1

E
ah∼πj(·|sh)

[bj(s, a)]

 ,
whose formal proof is in Lemma D.4. In that proof, we need to bound the magnitudes of the bonuses to write B̂j(sh, ah)

2 ≲
1
H B̂j(sh, ah). This is done by applying Lemma D.5 later in this section.

By summing up all terms and multiplying W , we can apply Lemma 2.5 by again using 100ηH4 ≤ β. Hence, we get the
following by using Eq. (13):

RK ≤ O(K0) +O(δeK) + Õ
(
βdHK +

γ

β
dH3K +

H

η
AW +A

√
dH2W +

H3

γ2
δK

)
,

where we conditioned on some good event with probability 1−O(K−2 +Kδ). Picking δ = K−3, the total regret when
the good event does not happen is of order O(K−2HK) = o(1).

Moreover, by the conditions α = δe
6β , M0 ≥ α2dH2, and N0 ≥ 100

M3
0

α2 log K
δ , we know that K0 =M0N0 = Õ( δ

6
e

β6 d
4H8).

Meanwhile, by W = 4d log d
δ γ

−2, we know that W = Õ(dγ−2). Thus, we have

RK = Õ
(
δ6e
β6
d4H8 + δeK + βdHK +

γ

β
dH3K +

H

η
Adγ−2 +Ad3/2H2γ−2

)
.

The only conditions are then γ ≥ 36β2

δe
, 100ηH4 ≤ β, which allows us to set

δe = C(H20Ad6)1/9K−1/9, β =
C2

36
(H13A2d3K−2)1/9K−2/9, γ =

C3

36
(H2A1)1/3K−1/3, η =

C2

3600
(H−23A2d3K−2)1/9K−2/9,

where C is a constant. This ensuresRK = Õ((H20Ad6)1/9K8/9) (note that only the 2nd, 4th, and 5th term have a K8/9

dependency, which means all other terms can be ignored when stating the bound).
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D.4. Bounding the Bias Terms

Lemma D.2. When W = 4d log d
δ γ

−2 and γ < 1
4 , the BIAS-1 and BIAS-2 terms in Algorithm 6 is bounded by

E[BIAS-1] + E[BIAS-2] ≤ β

4
E

 J∑
j=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πj(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

j,h

]

]+

β

4
E

 J∑
j=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

j,h

]

]+O
(
γ

β
dH3K

)
.

Proof. By direct calculation like Lemma B.1, we get the following for any j ∈ [J ], h ∈ [H], s ∈ Sh and a ∈ A (recall that
Σ̂†

j,h only depends on the episodes in Tj ; again, all expectations are only taken to the randomness in epoch j)

E
[
Q

πj

j (s, a)− Q̂j(s, a)
]

= ϕ(s, a)Tθ
πj

j,h − ϕ(s, a)T E

Σ̂†
j,h

 1

|T ′
j |
∑
k∈T ′

j

((1− Yk) + YkH1[h = hk])ϕ(sk,h, ak,h)Lk,h


= ϕ(s, a)Tθ

πj

j,h − ϕ(s, a)T E
[
Σ̂†

j,h

]
E

 1

|T ′
j |
∑
k∈T ′

j

((1− Yk) + YkH1[h = hk])ϕ(sk,h, ak,h)ϕ(sk,h, ak,h)
Tθ

πj

k,h


= ϕ(s, a)Tθ

πj

j,h − ϕ(s, a)T E
[
Σ̂†

j,h

]
Σ

π̃j

h θ
πj

j,h

= ϕ(s, a)T(I − E[Σ̂†
j,h]Σ

π̃j

h )θ
πj

j,h.

By using Cauchy-Schwartz inequality, triangle inequality, and the AM-GM inequality, we get the following:

ϕ(s, a)T(I − Σ̂†
j,hΣ

π̃j

h )θ
πj

j,h = ϕ(s, a)TΣ̂†
j,h(γI + Σ̃j,h − Σ

π̃j

h )θ
πj

j,h

≤ ∥ϕ(s, a)∥Σ̂†
j,h

(∥∥∥(γI)θπj

j,h

∥∥∥
Σ̂†

j,h

+
∥∥∥(Σ̃j,h − Σ

π̃j

h )θ
πj

j,h

∥∥∥
Σ̂†

j,h

)
≤ β

4
∥ϕ(s, a)∥2Σ̂†

j,h
+

2

β

∥∥∥γθπj

j,h(s, a)
∥∥∥2
Σ̂†

j,h

+
2

β

∥∥∥(Σ̃j,h − Σ
π̃j

h )θ
πj

j,h

∥∥∥2
Σ̂†

j,h

.

The first term is the usual bonus term in Lemma 2.5, while the second term easily translates to the following using the
assumption that ∥θπj

k,h∥ ≤
√
dH for all k ∈ T ′

j :

2

β

∥∥∥γθπj

j,h

∥∥∥2
Σ̂†

j,h

≤ 2γ2

β

∥∥∥(γI + Σ̃j,h)
−1
∥∥∥
2
dH2 ≤ 2

γ

β
dH2,

while the last term translates to the following by algebraic manipulations:

2

β

∥∥∥(Σ̃j,h − Σ
π̃j

h )θ
πj

j,h

∥∥∥2
Σ̂†

j,h

=
2

β

∥∥∥(Σ̃j,h − Σ
π̃j

h )Σ̂†
j,h(Σ̃j,h − Σ

π̃j

h )
∥∥∥
2
dH2

=
2

β

∥∥∥∥(Σ̂†
j,h)

−1/2
(
I − (Σ̂†

j,h)
1/2(γI +Σ

π̃j

h )(Σ̂†
j,h)

1/2
)2

(Σ̂†
j,h)

−1/2

∥∥∥∥
2

dH2, (17)

where one may expand and check the last step indeed holds.

Using Corollary 5.2, the squared-matrix in the middle has its operator norm bounded by 4γ with high probability (if the good
event does not hold, then one can directly bound the last term by matrix Azuma and the operator norm of Σ̂†

k,h, giving γ−3;
as this only happens with probability K−3, this part contributes o(K−2) to the total regret and we thus omit it). Meanwhile,
the first and last term both has their operator norms bounded by

√
2. Thus,

2

β

∥∥∥(Σ̃j,h − Σ
πj

h )θ
πj

j,h

∥∥∥2
Σ̂†

j,h

dH2 ≤ 16
γ

β
dH2.
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In other words, the last term gets absorbed by the second term up to constants. Hence, the conclusion follows by the same
argument as Lemma B.1.

Lemma D.3. When W = 4d log d
δ γ

−2 and γ < 1
4 , the BIAS-3 and BIAS-4 terms in Algorithm 6 is bounded by the

following when the good event in Lemma D.5 holds:

E[BIAS-3] + E[BIAS-4] ≤ β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼πk(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+

β

4
E

[
K∑

k=1

H∑
h=1

E
sh∼π∗

[
E

ah∼π∗(·|sh)
[∥ϕ(sh, ah)∥2Σ̂†

k,h

]

]]
+O

(
γ

β
dH3K

)
.

Proof. The proof is identical to Lemma D.2 except for Lk,h is replaced by Dk,h and θ
πj

j,h is replaced by Λ
πj

j,h. As we also
have bj(s, a) ∈ [0, 1] by Lemma D.5, the same bound holds.

D.5. Bounding REG-TERM

Lemma D.4. Assuming 100HηH4 ≤ β and the good events in Lemma D.5 hold. Then the REG-TERM has its expectation
bounded by

E[REG-TERM] ≤ Õ
(
H

η
A+A

√
dH2 +

H3

γ2
δJ

)

+ 2ηH3
H∑

h=1

E
sh∼π∗

 J∑
j=1

E
ah∼πj(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

j,h

]
+

H∑
h=1

E
sh∼π∗

 J∑
j=1

E
ah∼πj(·|sh)

[bj(s, a)]

 .
Proof. The proof generally follows from Lemma B.2, except for some tiny differences due to epoching.

Using Lemma 3.1, we get the following for all j ∈ [J ], s ∈ Sh ∩ K (where h ∈ [H]), and π̃∗ ∈ Π:

J∑
j=1

∑
a∈A

(πj(a | s)− π∗(a | s))(Q̂j(s, a)− B̂j(s, a))

≤ Ψ(π̃∗(· | s))−Ψ(π1(· | s))
η

+

J∑
j=1

∑
a∈A

(π̃∗(a | s)− π∗(a | s))(Q̂j(s, a)− B̂j(s, a))+

η

J∑
j=1

∑
a∈A

πj(a | s)(Q̂j(s, a)− B̂j(s, a))
2.

By picking π̃∗(a | s) = (1−AJ−1)π∗(a | s) + J−1 as Lemma B.2, the first term is bounded by η−1A ln J . Meanwhile,
the second term is bounded by

J∑
j=1

∑
a∈A

(π̃∗(a | s)− π∗(a | s))(Q̂j(s, a)− B̂j(s, a))

=

J∑
j=1

∑
a∈A

(−AJ−1π∗(a | s) + J−1)(Q̂j(s, a)− B̂j(s, a)).
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Like what we did in Lemma B.2, we consider the expected difference between Q̂j and Q
πj

j :

E[Q̂j(s, a)−Q
πj

j (s, a)] = ϕ(s, a)T(I − E[Σ̂†
j,hΣ

π̃j

h ])θ
πj

j,h ≤ 2
√
dH,

where the first inequality is due to Lemma D.2 and the second one uses Lemma 5.1. Moreover, according to Lemma D.5,
the same bound also holds for E[B̂j(s, a)−B

πj

j (s, a)].

Hence, after taking expectations on both sides, we know that

E

 J∑
j=1

∑
a∈A

(π̃∗(a | s)− π∗(a | s))(Q̂j(s, a)− B̂j(s, a))


≤

J∑
j=1

∑
a∈A

(|−AJ−1π∗(a | s)|+ |J−1|)|E[Q̂j(s, a)− B̂j(s, a)]|

≤ J × 2AJ−1 × 4
√
dH = O

(
A
√
dH
)
.

Then consider the last term. We still write (Q̂j(s, a)− B̂j(s, a))
2 ≤ 2Q̂j(s, a)

2 + 2B̂j(s, a)
2, which can be calculated as

follows:

E[Q̂j(s, a)
2] ≤ H2 E

 1

|T ′
j |
∑
k∈T ′

j

ϕ(s, a)TΣ̂†
j,h

(
((1− Yk) + YkH1[h = hk])

2ϕ(sk,h, ak,h)ϕ(sk,h, ak,h)
T
)
Σ̂†

j,hϕ(s, a)


= H2 E

[
ϕ(s, a)TΣ̂†

j,h

(
(1− δe)Σ

πj

h +HδeΣ
cov
h

)
Σ̂†

j,hϕ(s, a)
]

≤ H3 E
[
ϕ(s, a)TΣ̂†

j,hΣ
π̃j

h Σ̂†
j,hϕ(s, a)

]
.

Then we use Corollary 5.2. If the good event does not happen, then this term is bounded by O(H3γ−2δ). Otherwise, it can

be written as 2H3 E
[
∥ϕ(s, a)∥2

Σ̂†
j,h

]
. Then we consider the estimated dilated bonus term:

E[B̂j(s, a)
2] ≤ 2E[bj(s, a)2] + 2E[(ϕ(s, a)TΛ̂j,h)

2].

According to Lemma D.5 (whose failure only contributes in total o(1) regret as we pick δ = K−3), we know bj(s, a) ≤ 1,
which means Dk,h ≤ 3H . Thus, the second term is also bounded by O(H3 E[∥ϕ(s, a)∥2

Σ̂†
j,h

] +H3γ−2δ). Moreover, as

bj(s, a) ≤ 1, the first term is bounded by E[bj(s, a)]. Thus, by definition of bj(s, a), we get

E[B̂j(s, a)
2] ≤ O

(
H3

β

)
bj(s, a) +O(H3γ−2δ)).

Putting everything together gives

E[REG-TERM] ≤ Õ
(
H

η
A+A

√
dH2 +

H3

γ2
δJ

)

+ 2ηH3
H∑

h=1

E
sh∼π∗

 J∑
j=1

E
ah∼πj(·|sh)

[
∥ϕ(sh, ah)∥2Σ̂†

j,h

]
+

100ηH3

β

H∑
h=1

E
sh∼π∗

 J∑
j=1

E
ah∼πj(·|sh)

[bj(s, a)]

 .
This then translates to our conclusion using the condition that 100H4η ≤ β.

33



Refined Regret for Adversarial MDPs with Linear Function Approximation

D.6. Bounding the Magnitudes of Bonuses

Lemma D.5. Let α = δe
6β , M0 ≥ α2dH2, N0 ≥ 100

M3
0

α2 log K
δ , and γ ≥ 36β2

δe
. Then with probability 1− (K−2 +Kδ),

bj(s, a) = 1[(s, a) ∈ K]× β(∥ϕ(s, a)∥2
Σ̂†

j,h

+Ea′∼πj(·|s)[∥ϕ(s, a′)∥Σ̂†
j,h

]) ≤ 1 for all j ∈ [J ], h ∈ [H], s ∈ Sh and a ∈ A.

The proof is similar to, but different from Lemma F.1 of Luo et al. (2021a). Here, we use the alternative for the MGR
procedure. We also refine the analysis on M−1

0 +Σcov
h ≈ Σ̂cov

h for a smaller N0, which is critical for our new regret bound.

Proof. It suffices to show that β∥ϕ(s, a′)∥2
Σ̂†

k,h

≤ 1
2 for any s ∈ K and a′ ∈ A. Firstly, we have the following with high

probability because Σ̂†
j,h is a multiplicative approximation (i.e., Corollary 5.2):

β∥ϕ(s, a′)∥Σ̂†
j,h
≤ 2β∥ϕ(s, a′)∥2

(γI+Σ
π̃j
h )−1

≤ 2
β

δe
∥ϕ(s, a′)∥2( γ

δe
I+Σcov

h )−1 ≤ 2
β

δe
∥ϕ(s, a′)∥2

(M−1
0 I+Σcov

h )−1 ,

where Σcov
h is the short-hand notation of Σπcov

h and the last step uses the fact that γ
δe
M0 ≥ γ

δe

δ2e
36β2 ≥ 1. Moreover, we argue

that M−1
0 +Σcov

h ≈ Σ̂cov
h . By definition of Σ̂cov

h (see Algorithm 5):

Σ̂cov
h =

1

M0
I +

1

M0N0

M0∑
m=1

N0∑
n=1

ϕ(sm,n,h, am,n,h)ϕ(sm,n,h, am,n,h)
T,

we can apply the Matrix Azuma inequality (Lemma A.3) to ensure that (where we simply pick XmN0+n =
ϕ(sm,n,h, am,n,h)ϕ(sm,n,a, am,n,h)

T − Σπm

h and AmN0+n = I ⪰ XmN0+n; there are in total M0N0 matrices):∥∥∥∥Σ̂cov
h −

1

M0
I − Σcov

h

∥∥∥∥
2

≤
√

8

M0N0
log

d

δ
.

The rest follows the proof of the original lemma (Luo et al., 2021a, Lemma F.1). By following the proof of Theorem 2.1 of
Meng & Zheng (2010), we can conclude that∥∥∥∥∥(Σ̂cov

h

)−1

−
(

1

M0
I − Σcov

h

)−1
∥∥∥∥∥
2

≤M2
0

∥∥∥∥Σ̂cov
h −

1

M0
I − Σcov

h

∥∥∥∥
2

≤M2
0

√
8

M0N0
log

d

δ
=

√
8M3

0

N0
log

d

δ
.

Therefore, we only need M0 = O(N3
0 ) to make it bounded by α

2 . Consequently, as ∥ϕ(s, a′)∥2 ≤ 1,

β∥ϕ(s, a′)∥Σ̂†
j,h
≤ 2

β

δe
∥ϕ(s, a′)∥(M−1

0 I+Σcov
h )−1

≤ 2
β

δe

(
∥ϕ(s, a′)∥2

(Σ̂cov
h )−1 +

∥∥∥∥∥(Σ̂cov
h

)−1

−
(

1

M0
I − Σcov

h

)−1
∥∥∥∥∥
2

)

≤ 2
β

δe

(
α+

α

2

)
≤ 1

2
,

by the condition that s ∈ K and our choice of α.
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