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Abstract

Discovering symbolic differential equations from data uncovers fundamental dy-1

namical laws underlying complex systems. However, existing methods often2

struggle with the vast search space of equations and may produce equations that3

violate known physical laws. In this work, we address these problems by intro-4

ducing the concept of symmetry invariants in equation discovery. We leverage5

the fact that differential equations admitting a symmetry group can be expressed6

in terms of differential invariants of symmetry transformations. Thus, we pro-7

pose to use these invariants as atomic entities in equation discovery, ensuring8

the discovered equations satisfy the specified symmetry. Our approach integrates9

seamlessly with existing equation discovery methods such as sparse regression10

and genetic programming, improving their accuracy and efficiency. We validate11

the proposed method through applications to various physical systems, such as12

fluid and reaction-diffusion, demonstrating its ability to recover parsimonious and13

interpretable equations that respect the laws of physics.14

1 Introduction15

Differential equations describe relationships between functions representing physical quantities and16

their derivatives. They are crucial in modeling a wide range of phenomena, from fluid dynamics and17

electromagnetic fields to chemical reactions and biological processes, as they succinctly capture the18

underlying principles governing the behavior of complex systems. The discovery of governing equa-19

tions in symbolic forms from observational data bridges the gap between raw data and fundamental20

understanding of physical systems. Unlike black-box machine learning models, symbolic equations21

provide interpretable insights into the structure and dynamics of the systems of interest. In this paper,22

we aim to discover symbolic partial differential equations (PDEs) in the form23

F (x, u(n)) = 0, (1)

where x denotes the independent variables, u(n) consists of the dependent variable u and all of its24

up-to-nth order partial derivatives.25

While it has long been an exclusive task for human experts to identify governing equations, symbolic26

regression (SR) has emerged as an increasingly popular approach to automate the discovery.1 SR27

constructs expressions from a predefined set of atomic entities, such as variables, constants, and28

mathematical operators, and fits the expressions to data by numerical optimization. Common methods29

include sparse regression (Brunton et al., 2016; Champion et al., 2019), genetic programming30

(Cranmer et al., 2019, 2020; Cranmer, 2023), neural networks (Kamienny et al., 2022), etc.31

1While some literature uses symbolic regression specifically for GP-based methods, we use the term inter-
changeably with equation discovery to refer to all algorithms for learning symbolic equations.
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Figure 1: Our framework enforces symmetry in equation discovery by using symmetry invariants.
We highlight three discovery algorithms in their original form (bottom row) and when constrained to
only use symmetry invariants (top row). The colored circles visualize the predicted functions on a
circular domain and demonstrate that using symmetry invariants guarantees a symmetric output.

However, symbolic regression algorithms may fail due to the vastness of the search space or produce32

more complex, less interpretable equations that overfit the data. A widely adopted remedy to these33

challenges is to incorporate inductive biases derived from physical laws, such as symmetry and34

conserved quantities, into equation discovery algorithms. Implementing these physical constraints35

narrows the space for equations and expedites the search process, and it also rules out physically36

invalid or unnecessarily complex equations.37

Among the various physical constraints, symmetry plays a fundamental role in physical systems,38

governing their invariances under transformations such as rotations, translations, and scaling. Previous39

research has shown the benefit of incorporating symmetry in equation discovery, such as reducing the40

dimensionality of the search space and promoting parsimony in the discovered equation (Yang et al.,41

2024). However, the scopes of existing works exploiting symmetry are limited in terms of the types42

of equations they can handle, the compatible base algorithms, etc. For example, Udrescu & Tegmark43

(2020) deals with algebraic equations; Otto et al. (2023) deals with ODE systems; Yang et al. (2024)44

applies to sparse regression but not other SR algorithms.45

In this paper, we propose a general procedure based on symmetry invariants to enforce the inductive46

bias of symmetry with minimal restrictions in the types of equations and SR algorithms. Specifically,47

we leverage the fact that a differential equation can be written in terms of the invariants of symmetry48

transformations if it admits a certain symmetry group. Thus, instead of operating on the original49

variables, our method uses the symmetry invariants as the atomic entities in symbolic regression,50

as depicted in Figure 1. These invariants encapsulate the essential information while automatically51

satisfying the symmetry constraints. Consequently, the discovered equations are guaranteed to52

preserve the specified symmetry. In summary, our main contributions are listed as follows:53

• We propose a general framework to enforce symmetry in differential equation discovery54

based on the theory of differential invariants.55

• Our approach can be easily integrated with existing symbolic regression methods, such as56

sparse regression and genetic programming, and improves their accuracy and efficiency for57

differential equation discovery.58

• We show that our symmetry-based approach is robust in challenging setups in equation59

discovery, such as noisy data and imperfect symmetry.60

Notations. Throughout the paper, subscripts are usually reserved for partial derivatives, e.g. ut :=61

∂u/∂t, and uxx := ∂2u/∂x2. Superscripts are used for indexing vector components or list elements.62

We use Einstein notation, where repeated indices are summed over. Matrices, vectors and scalars are63

denoted by capital, bold and regular letters, respectively, e.g. W,w, w. These conventions may admit64

exceptions for clarity or context. See Table 2 for a full description of notations.65
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2 Background66

2.1 PDE Symmetry67

This section introduces the basic concepts about partial differential equations and their symmetry. For68

a more thorough understanding of Lie point symmetry of PDEs, we refer the readers to Olver (1993).69

Partial Differential Equations. We consider PDEs in the form F (x, u(n)) = 0, as given in (1).70

We restrict ourselves to a single equation and a single dependent variable, though generalization is71

possible. We use x ∈ X ⊂ Rp to denote all independent variables. For example, x = (t, x) for a72

system evolving in 1D space. Note that the bold x refers to the collection of all independent variables73

while the regular x denotes the spatial variable. Then, u = u(x) ∈ U ⊂ R is the dependent variable;74

u(n) = (u, ux, ...) denotes all up to nth-order partial derivatives of u; (x, u(n)) ∈ M (n) ⊂ X×U (n),75

where M (n) is the nth order jet space of the total space X × U . M (n) and u(n) are also known as76

the nth-order prolongation of X × U and u, respectively.77

Symmetry of a PDE. A point symmetry g is a local diffeomorphism on the total space E = X×U :78

g · (x, u) = (x̃(x, u), ũ(x, u)), (2)

where x̃ and ũ are functions of E. The action of g on the function u(x) is induced from (2)79

by applying it to the graph of u : X → U . Specifically, denote the domain of u as Ω ⊂ X80

and its graph as Γu = {(x, u(x)) : x ∈ Ω}. The group element g transforms the graph Γu as81

Γ̃u := g · Γu = {(x̃, ũ) = g · (x, u) : (x, u) ∈ Γu}.82

Since g transforms both independent and dependent variables, Γ̃u does not necessarily correspond to83

the graph of any single-valued function. Nevertheless, by suitably shrinking the domain ΩX , we can84

ensure that the transformations close to the identity transform Γu to the graph of another function.85

This function with the transformed graph Γ̃u is then defined to be the transformed function of the86

original solution u, i.e. g · u = ũ s.t. Γũ = Γ̃u. The symmetry of the PDE (1) is then defined:87

Definition 2.1. A symmetry group of F (x, u(n)) = 0 is a local group of transformations G acting88

on an open subset of the total space X × U such that, for any solution u to F = 0 and any g ∈ G,89

the function ũ = (g · u)(x) is also a solution of F = 0 wherever it is defined.90

Infinitesimal Generators. Often, the symmetry group of a PDE is a continuous Lie group. In91

practice, one needs to compute with infinitesimal generators of continuous symmetries, i.e., vector92

fields. In more detail, we will write vector fields v : E → TE on E = X × U as93

v = ξj(x, u)
∂

∂xj
+ ϕ(x, u)

∂

∂u
. (3)

Any such vector field generates a one-parameter group of symmetries of the total space {exp(ϵv) :94

ϵ ∈ R}. The symmetries arising from the exponentiation of a vector field moves a point in the total95

space along the directions given by the vector field. We will specify symmetries by vector fields in96

the following sections. For instance, v = x∂y − y∂x represents the rotation in (x, y)-plane; v = ∂t97

corresponds to time translation.98

Since we deal with PDEs, we need to consider the prolonged group actions and infinitesimal actions99

on the nth-order jet space, induced from (2) and (3). These are denoted g(n) and v(n), respectively. A100

more detailed discussion on prolongation of group actions is deferred to Appendix B.2. To introduce101

our method, it suffices to note that the prolongation of the vector field (3) can be described explicitly102

by ξj and ϕ and their derivatives via the prolongation formula (10).103

2.2 Symbolic Regression Algorithms104

Given the data {(xi, yi)} ⊂ X × Y , the objective of symbolic regression is to find a symbolic105

expression for the function y = f(x). Although this original formulation is for algebraic equations,106

it can be generalized to differential equations like (1). To discover a PDE from the dataset of its107

observed solutions on a grid Ω, i.e., {(x, u(x)) : x ∈ Ω}, we estimate the partial derivative terms108

and add them to the dataset: {(x, u(n)) : x ∈ Ω}. One of the variables in the variable set (x, u(n))109
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is used as the LHS of the equation, i.e., the role of the label y in symbolic regression, while other110

variables serve as features. The precise set of derivatives added to symbolic regression and the choice111

of the equation LHS requires prior knowledge or speculations about the underlying system.112

We briefly review two classes of symbolic regression algorithms: sparse regression (SINDy) and113

genetic programming (GP). A more detailed discussion of related works is found in Appendix A.114

Sparse regression (Brunton et al., 2016) is specifically designed for discovering differential equations.115

It assumes the LHS ℓ of the equation is a fixed term, e.g. ℓ = ut, and the RHS of the equation can be116

written as a linear combination of m predefined functions θj with trainable coefficients w ∈ Rm, i.e.,117

ℓ(x, u(n)) = wjθj(x, u(n)), θj : M (n) → R. (4)

The equation is found by solving for w that minimizes the objective ∥L−R∥22 + λ∥w∥0, where L118

and R are obtained by evaluating ℓ and wjθj on all data points and concatenating them into column119

vectors, and ∥w∥0 regularizes the number of nonzero terms. This formulation can be easily extended120

to q equations and dependent variables (q > 1): ℓi(x,u(n)) = W ijθj(x,u(n)), W ∈ Rq×m.121

One problem with sparse regression is that its assumptions about the form of the equation are122

restrictive. Many equations cannot be expressed in the form of (4), e.g. y = 1
x+a where a could be123

any constant. Also, the success of sparse regression relies on the proper choice of the predefined124

function library {θj}. If any term in the true equation were not included, sparse regression would fail125

to identify the correct equation.126

Genetic programming offers an alternative solution for equation discovery (Cranmer, 2023), which127

is capable of learning equations in more general forms. It represents each expression as a tree and128

instantiates a population of individual expressions. At each iteration, it randomly samples a subset of129

expressions and selects one of the expressions that best fits the data; the selected expression is then130

mutated by a random mutation, a crossover with another expression, or a constant optimization; the131

mutated expression replaces a weaker expression in the population that does not fit the data well.132

The algorithm repeats this process to search for different combinations of variables, constants, and133

operators and finally returns the “fittest” expression. Genetic programming can be less efficient than134

sparse regression when the equation can be expressed in the form (4) due to its larger search space.135

However, we will show that it is a promising alternative to discover PDEs of generic forms, and our136

approach further boosts its efficiency.137

3 Symbolic Regression with Symmetry Invariants138

Symmetry offers a natural inductive bias for the search space of symbolic regression in differential139

equations. It reduces the dimensionality of the space and encourages parsimony of the resulting140

equations. To enforce symmetry in PDE discovery, we aim to find the maximal set of equations141

admitting a given symmetry and search in that set with symbolic regression methods.142

3.1 Differential Invariants and Symmetry Conditions143

To achieve this, our general strategy is to replace the original variable set with a complete set144

of invariant functions of the given symmetry group. Since we consider PDEs containing partial145

derivatives, the invariant functions refer to the differential invariants defined as follows.146

Definition 3.1 (Def 2.51, Olver (1993)). Let G be a local group of transformations acting on X × U .147

Any g ∈ G gives a prolonged group action pr(n)g on the jet space M (n) ⊂ X × U (n). An nth148

order differential invariant of G is a smooth function η : M (n) → R, such that for all g ∈ G and all149

(x, u(n)) ∈ M (n), η(g(n) · (x, u(n))) = η(x, u(n)) whenever g(n) · (x, u(n)) is defined.150

In other words, differential invariants are functions of all variables and partial derivatives that remain151

invariant under prolonged group actions. Equivalently, if G is generated by a set of infinitesimal152

generators B = {va}, then a function η is a differential invariant of G iff v(n)
a (η) = 0 for all va ∈ B.153

The following theorem guarantees that any differential equation admitting a symmetry group can be154

expressed solely in terms of the group invariants.155

Theorem 3.2 (Prop 2.56, Olver (1993)). Let G be a local group of transformations acting on X ×U .156

Let {η1(x, u(n)), ..., ηk(x, u(n))} be a complete set of functionally independent nth-order differential157
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invariants of G. An nth-order differential equation (1) admits G as a symmetry group if and only if it158

is equivalent to an equation of the form159

F̃ (η1, ..., ηk) = 0. (5)

Consequently, symbolic regression with a complete set of invariants precisely searches within the160

space of all symmetric differential equations, while automatically excluding equations violating the161

specified symmetry.162

Our strategy of using differential invariants applies broadly to various equation discovery algorithms.163

For instance, in sparse regression, we can construct the function library using invariants rather than164

raw variables and derivatives. Similarly, in genetic programming, the variable set can be redefined165

to include only invariant functions. In each case, the key benefit is the same: the search space is166

restricted to symmetry-respecting equations by construction. The reduced complexity of the equation167

search also leads to increased accuracy and efficiency.168

Next, we describe how to construct a complete set of differential invariants (Section 3.2), and how to169

incorporate them into specific SR algorithms (Section 3.3).170

3.2 Constructing a Complete Set of Invariants171

Despite the simplicity of our strategy, we still need a concrete method for computing the invariants.172

In this subsection, we provide a general guideline to construct a complete set of differential invariants173

up to a required order given the group action.174

By definition of differential invariants, we look for functions η(x, u(n)) satisfying v(n)(η) = 0 given175

a prolonged vector field v(n). This is a first-order linear PDE that can be solved by the method of176

characteristics. However, in practice, if E = X×U ≃ Rp×R, there are
(
p+n−1

n

)
partial derivatives of177

the independent variable u of order exactly n. Therefore, as n grows, it quickly becomes impractical178

to solve directly for nth-order differential invariants. The computation of higher-order differential179

invariants, if necessary, is made tractable by the following result, where higher-order invariants are180

computed recursively from lower-order ones.181

Proposition 3.3. Let G be a local group of transformations acting on X × U ≃ Rp × R. Let182

η1, η2, · · · , ηp be any p differential invariants of G whose horizontal Jacobian J = [Diη
j ] is non-183

degenerate on an open subset Ω ⊂ M (n). If there are a maximal number of independent, strictly184

nth-order differential invariants ζ1, · · · , ζqn , qn =
(
p+n−1

n

)
, then the following set contains a185

complete set of independent, strictly (n+ 1)th-order differential invariants defined on Ω:186

det(Diη̃
j
(k,k′))

det(Diηj)
, ∀k ∈ [p], k′ ∈ [qn], (6)

where i, j ∈ [p] are matrix indices, Di denotes the total derivative w.r.t i-th independent variable187

and η̃j(k,k′) = [η1, ..., ηk−1, ζk
′
, ηk+1, ..., ηp].188

In practice, we first solve for pr v(η) = 0 to obtain a sufficient number of lower-order invariants189

as required in Proposition 3.3, starting from which we can construct complete sets of invariants of190

arbitrary orders. Direct results from applying (6) can be complicated, especially for higher-order191

invariants. Thus, we often combine them to get simpler invariants, which we later use as the variable192

set in equation discovery. In Appendix B.4, we provide two examples of different symmetry groups193

and their differential invariants. Those results will also be used in our experiments.194

3.3 Implementation in SR Algorithms195

Our symmetry principle characterizes a subspace of all equations with a given symmetry. Gener-196

ally, this subspace partially overlaps with the hypothesis spaces of symbolic regression algorithms,197

conceptually visualized in Figure 2. As in Theorem 3.2, PDEs with symmetry can be expressed as198

implicit functions of all differential invariants. However, symbolic regression methods typically learn199

explicit functions mapping features to labels. Some algorithms, such as SINDy, impose even stronger200

constraints on equation forms. Therefore, adaptation is needed to implement our strategy of using201

differential invariants in specific symbolic regression algorithms, as detailed below.202

5



All equations: F(x, u(n)) = 0
SR: zj = F(z−j)

SINDy:
zj = WΘ(z−j) Equations w/ 

symmetry:

F(η1, η2, . . . ) = 0

Symmetry  SINDy∩ Symmetry  SR∩
Figure 2: Venn diagram of hypothesis spaces from
base SR methods and our symmetry principle.

General explicit SR We start with general SR203

methods that learn an explicit function y = f(x)204

without additional assumptions about the form of205

f , e.g., genetic programming and symbolic trans-206

former. When learning the equation in terms of207

differential invariants, we do not know which208

one of them should be used as the LHS of the209

equation, i.e., the label y in symbolic regression.210

Thus, we fit an equation for each invariant as211

LHS and choose the equation with the lowest212

data error, as described in Algorithm 1. We use213

the relative error to select the best equation be-214

cause the scales of LHS terms differ.215

Algorithm 1 General explicit SR for differential equations with symmetry invariants

Require: PDE order n, dataset {zi = (xi, (u(n))i) ∈ M (n)}ND
i=1, base SR algorithm S : (X,y) 7→

y = f(x), infinitesimal generators of the symmetry group B = {va}.
Ensure: A PDE admitting the given symmetry group.

Compute the symmetry invariants of B up to nth-order: η1, · · · , ηK . {Proposition 3.3}
Evaluate the invariant functions on the dataset: ηk,i = ηk(zi), for k ∈ [K], i ∈ [ND].
Initialize a list of candidate equations and their risks: E = [].
for k in 1 : K do

Use the kth invariant as label and the rest as features: y = ηk,:, X = η−k,:.
Run S(X,y) and get a candidate equation ηk = fk(η−k).
Evaluate Lk = ∥y − fk(X)∥1/∥y∥1 and set E[k] = (fk,Lk).

end for
Choose the equation in E with the lowest error: k = argminj E[j][2].
return ηk = fk(η−k). {Optionally, expand all ηj in terms of original variables z.}

Sparse regression SINDy assumes a linear equation form (4). Generally, its function library differs216

from the set of differential invariants. Also, SINDy fixes a LHS term, while we do not single out an217

invariant as the LHS of the equation when constructing the set of invariants.218

Assume we are provided the SINDy configuration, i.e., the LHS term ℓ and the function library {θj}.219

To implement sparse regression with symmetry invariants, we assign an invariant ηk that symbolically220

depends on ℓ, i.e., ∂ηk/∂ℓ ̸= 0, as the LHS for the equation in terms of symmetry invariants. For221

example, if ℓ = utt and the set of invariants is given by (32), we use η(0,2) = uttu
(b−2)/(a−b)
x as the222

LHS since it is the only invariant that involves utt. The remaining invariants are included on the RHS,223

where they serve as inputs of the original SINDy library functions. In other words, the equation form224

is ηk = w̃jθj(η−k). Similar to Algorithm 1, we can expand all η variables to obtain the equation in225

original jet variables.226

The above approach optimizes an unconstrained coefficient vector w̃ for functions of symmetry227

invariants. Alternatively, we can use the original SINDy equation form (4) and implement the228

symmetry constraint as a constraint on the coefficient w, as demonstrated in the following theorem.229

Here, we generalize the setup to multiple dependent variables and equations.230

Proposition 3.4. Let ℓ(x,u(n)) = Wθ(x,u(n)) be a system of q differential equations admitting231

a symmetry group G, where x ∈ Rp, u ∈ Rq, θ ∈ Rm. Assume that there exist some nth-order232

invariants of G, η1:q0 and η1:K , s.t. (1) the system of differential equations can be expressed as233

η0 = W ′θ′(η), where η0 = [η1:q0 ] and η = [η1:K ], and (2) ηi0 = T ijkθkℓj and (θ′)i = Sijθj , for234

some library functions θ′(η) and some constant tensors W ′, T and S. Then, the space of all possible235

W is a linear subspace of Rq×m.236

Intuitively, the conditions in Proposition 3.4 state that the equations can be expressed as a linear237

combination of invariant terms, similar to the form in (4) w.r.t original jet variables. Also, every238

invariant term in η0 and θ′(η) is already encoded in the original library θ. In practice, we need to239

choose a suitable set of invariants according to the SINDy configuration to meet these conditions.240

For example, when θ contains all monomials on M (n) up to some degree, we can choose a set of241
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invariants where each invariant is a polynomial on M (n). The proof of Proposition 3.4 is deferred to242

Appendix B, where we explicitly identify the linear subspace for W entailed by the proposition.243

Proposition 3.4 allows us to keep track of the original SINDy parameters W during optimization.244

This enables straightforward integration of symmetry constraints to variants of SINDy, e.g. Weak245

SINDy (Messenger & Bortz, 2021a,b) for noisy data. For example, if the constrained subspace has a246

basis Q ∈ Rr×q×m, where r is the subspace dimension, we write W jk = Qijkβi. While we directly247

optimize β, we can still easily compute the objective of Weak SINDy which explicitly depends on248

W . In comparison, if we use the raw invariant terms for regression, e.g. the equations take the form249

η0 = W ′θ′(η), it is challenging to formulate the objective of Weak SINDy w.r.t W ′.250

More implementation details related to Section 3.3 can be found in Appendix C.251

3.4 Constraint Relaxation for Systems with Imperfect Symmetry252

Our approach discovers PDEs assuming perfect symmetry. However, it is common in reality that a253

system exhibits imperfect symmetry due to external forces, boundary conditions, etc. (Wang et al.,254

2022). In these cases, the previously mentioned method would fail to identify any symmetry-breaking255

factors. To address this, we propose to relax the symmetry constraints by allowing symmetry-breaking256

terms to appear in the equation, but at a higher cost.257

We implement this idea in sparse regression, where the equation has a linear structure ℓ = Wθ.258

We adopt the technique from Residual Pathway Prior (RPP) (Finzi et al., 2021), which is originally259

developed for equivariant linear layers in neural nets. Specifically, let Q be the basis of the parameter260

subspace that preserves symmetry and P be the orthogonal complement of Q. Instead of parameteriz-261

ing W in this subspace, we define W = A+B where Ajk = Qijkβi and Bjk = P ijkγi and place262

a stronger regularization on γ than on β. While the model still favors equations in the symmetry263

subspace spanned by Q, symmetry-breaking components in P can appear if it fits the data well.264

4 Experiments265

4.1 Datasets and Their Symmetries266

We consider the following PDE systems, which cover different challenges in PDE discovery, such267

as high-order derivatives, generic equation form, multiple dependent variables and equations, noisy268

dataset, and imperfect symmetry. The datasets are generated by simulating the ground truth equation269

from specified initial conditions, with detailed procedures described in Appendix E.1.270

Water Wave. Consider the Boussinesq equation describing the unidirectional propagation of a271

solitary wave in shallow water (Newell, 1985):272

utt + uuxx + u2
x + uxxxx = 0 (7)

This equation has a scaling symmetry v1 = 2t∂t + x∂x − 2u∂u and the translation symmetries273

in space and time. As shown in Appendix B.4, the differential invariants are given by η(α,β) =274

ux(α)t(β)u
−(2+α+2β)/3
x where α and β are the orders of partial derivatives in x and t, respectively. To275

discover the 4th-order equation, we compute all η(α,β) for 0 ≤ α+ β ≤ 4, except for η(1,0) = 1.276

Darcy Flow. The following PDE describes the steady state of a 2D Darcy flow (Takamoto et al.,277

2022) with spatially varying viscosity a(x, y) = e−4(x2+y2) and a constant force term f(x) = 1:278

−∇(e−4(x2+y2)∇u) = 1 (8)
This equation admits an SO(2) rotation symmetry v = y∂x − x∂y. A detailed calculation of279

the differential invariants of this group can be found in Example B.5. In our experiment, we use280

the following complete set of 2nd-order invariants: { 1
2 (x

2 + y2), u, xuy − yux, xux + yuy, uxx +281

uyy, u
2
xx + 2u2

xy + u2
yy, x

2uxx + y2uyy + 2xyuxy}.282

Reaction-Diffusion. We consider the following system of PDEs from Champion et al. (2019):283

ut = d1∇2u+ (1− u2 − v2)u+ (u2 + v2)v

vt = d2∇2v − (u2 + v2)u+ (1− u2 − v2)v (9)
In the default setup, we use d1 = d2 = 0.1. The system then exhibits rotational symmetry in the284

phase space: v = u∂v − v∂u. The ordinary invariants are {t, x, y, u2 + v2}. The higher-order285

invariants are {u · uµ,u
⊥ · uµ}, where u = (u, v)T and µ is any multi-index of t, x and y.286
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We also consider the following cases where the rotation symmetry is broken due to different factors:287

• Unequal diffusivities We use different diffusion coefficients for the two components: d1 =288

0.1, d2 = 0.1 + ϵ. This can happen, for example, when two chemical species described by the289

equation diffuse at different rates due to molecular size, charge, or solvent interactions.290

• External forcing The ground truth equation (9)is modified by adding −ϵv to the RHS of ut291

and −ϵu to the RHS of vt. This can reflect a weak parametric forcing on the system.292

4.2 Methods and Evaluation Criteria293

We consider three classes of algorithms for equation discovery: sparse regression (PySINDy, de Silva294

et al. (2020); Kaptanoglu et al. (2022)), genetic programming (PySR, Cranmer (2023)), and a295

pretrained symbolic transformer (E2E, Kamienny et al. (2022)). For each class, we compare the296

original algorithm using the regular jet space variables (i.e., (x, u(n)) ) and our method using297

symmetry invariants. Our method will be referenced as SI (Symmetry Invariants) in the results.298

To evaluate an equation discovery algorithm, we run it 100 times with randomly sampled data subsets299

and randomly initialized models if applicable. We record its success probability (SP) of discovering300

the correct equation. Specifically, we expand the ground truth equation into
∑

i c
if i(z) = 0, where301

ci are nonzero coefficients, z denotes the variables involved in the algorithm, i.e., original jet variables302

(x, u(n)) for baselines and symmetry invariants for our method, and f i are functions of z. Also,303

the discovered equation is expanded as
∑

i ĉ
if̂ i(z) = 0, where ĉi ̸= 0. The discovered equation is304

considered correct if all the terms with nonzero coefficients match the ground truth, i.e., {f i} = {f̂ i}.305

We also report the prediction error (PE), which measures how well the discovered equation fits the306

data. For evolution equations, we simulate each discovered equation from an initial condition and307

measure its difference from the ground truth solution at a specific timestep in terms of root mean308

square error (RMSE). Otherwise, we just report the RMSE of the discovered equation evaluated on309

all test data points.310

4.3 Results on Clean Data with Perfect Symmetry311

Table 1: Equation discovery results on clean data. C, standing for complexity, refers to the effective
parameter space dimension in sparse regression and the number of variables in GP/Transformer. SP
and PE stands for success probability and prediction error, as explained in Section 4.2. The entries
"-" suggest that the method does not apply to the specific PDE system, or the result is not meaningful.

Method Boussinesq (7) Darcy flow (8) Reaction-diffusion (9)
C ↓ SP ↑ PE ↓ C ↓ SP ↑ PE ↓ C ↓ SP ↑ PE ↓

Sparse
Regression

PySINDy 15 0.00 0.373 - - - 38 0.53 0.021
SI 13 1.00 0.098 - - - 28 0.54 0.008

Genetic
Programming

PySR 17 0.90 0.098 8 0.00 0.187 17 0.00 -
SI 14 1.00 0.098 7 0.79 0.051 16 0.81 0.023

Transformer E2E 10 0.53 0.132 8 0.00 - 17 0.00 -
SI 7 0.85 0.104 7 0.00 - 16 0.00 -

Table 1 summarizes the performance of all methods on the three PDE systems. For prediction errors312

(PE), we report the median, instead of the average, of 100 runs for each algorithm, because some313

incorrectly discovered equations yield tremendous prediction errors. Comparisons are made within314

each class of methods. Generally, using symmetry invariants reduces the complexity of equation315

discovery and improves the chance of finding the correct equations compared to the baselines.316

Specifically, in sparse regression, our method using symmetry invariants is only slightly better than317

PySINDy in the reaction-diffusion system, but constantly succeeds in the Boussinesq equation where318

PySINDy fails. The failure of PySINDy is because the u2
x term in (7) is not supported by its function319

library, showing that SINDy’s success relies heavily on the choice of function library. On the other320

hand, by enforcing the equation to be expressed in invariants, our method automatically identifies the321

proper function library. Appendix D.1 provides results for other variants of sparse regression.322

For GP-based methods, Table 1 displays the results with a fixed number of GP iterations for each323

dataset. We also include results with different numbers of iterations in Appendix D.2. Generally, GP324

with invariants can identify the correct equation with fewer iterations and is considered more efficient.325
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4.4 Results on Noisy Data and Imperfect Symmetry326
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Figure 3: Success probabilities of sparse regression methods on the reaction-diffusion system with
noisy data (left), unequal diffusivities (center) and external forcing (right). Under noisy data, our
method (SI) consistently outperforms SINDy under the same number of test functions. For systems
with imperfect symmetry, strictly enforcing symmetry (SI) can hurt performance, but a relaxed
symmetry constraint (SI-relaxed) is still better than no inductive bias (SINDy).

327

We test the robustness of our method under two challenging scenarios: (1) noise in observed data,328

and (2) PDE with imperfect symmetry.329

In the first experiment, we add different levels of white noise to the simulated solution of the reaction-330

diffusion system. Since the derivatives estimated by finite difference is inaccurate with the noisy331

solution, we use the weak formulation of SINDy (Messenger & Bortz, 2021a), which does not require332

derivative estimation. The success probabilities of our method (SI) and SINDy are shown in Figure 3333

(left), where K is the number of test functions in weak SINDy. With the same K, our method334

consistently achieves higher success probability at different noise levels. Notably, when the noise335

level is high, our symmetry-constrained model performs better with fewer test functions (K = 100).336

In the second experiment, we simulate the two variants of (9) (unequal diffusivities and external337

forcing) with different values for the symmetry-breaking parameter ϵ and add 2% noise to the338

numerical solutions. We compare three models: (1) our model with strictly enforced symmetry (SI),339

(2) our model with relaxed symmetry (SI-relaxed), and (3) weak SINDy as the baseline. The results340

for the two systems with symmetry breaking are shown in Figure 3 (center & right). As expected,341

SI has a much lower success probability when the symmetry-breaking factor becomes significant.342

Meanwhile, SI-relaxed remains highly competitive. It also has a clear advantage over baseline SINDy,343

showing that even if the inductive bias of symmetry is slightly inaccurate, our model with relaxed344

constraints is still better than a model without any knowledge of symmetry.345

More comprehensive results, e.g., samples of discovered equations, are provided in Appendix D.346

5 Discussion347

In this paper, we propose to enforce symmetry in general methods for discovering symbolic differential348

equations by using the differential invariants of the symmetry group as the variable set in symbolic349

regression algorithms. We implement this general strategy in different classes of algorithms and350

observe improved accuracy, efficiency and robustness of equation discovery, especially in challenging351

scenarios such as noisy data and imperfect symmetry.352

It should be noted that our method assumes the symmetry group is already given. This assumption353

aligns with common practice–physicists often begin by hypothesizing the symmetries of a system and354

seek governing equations allowed by those symmetries. However, our current framework cannot be355

applied if symmetry is unknown, and will produce incorrect results with misspecified symmetry. This356

can be potentially addressed by incorporating automated symmetry discovery methods for differential357

equations (Yang et al., 2024; Ko et al., 2024), which we leave for future work.358

Another caveat of our method is the calculation of differential invariants. While solving for v(n)(η) =359

0 and applying the formula (6) is easy with any symbolic computation package, the resulting360

differential invariants may be complicated and require ad-hoc adjustment for better interpretability361

and compatibility with specific algorithm implementations (e.g., conditions in Proposition 3.4).362

Fortunately, this only requires a one-time effort. Once we have derived the invariants for a symmetry363

group, the results can be reused for any equation admitting the same symmetry.364
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A Related Works486

Symbolic Regression. Given the dataset {(xi, yi)} ⊂ X × Y , symbolic regression (SR) aims to487

model the function y = f(x) by a symbolic equation. A popular method for symbolic regression488

is genetic programming (GP) (Schmidt & Lipson, 2009; Gaucel et al., 2014), which leverages489

evolutionary algorithms to explore the space of possible equations and has demonstrated success in490

uncovering governing laws in various scientific domains such as material science (Wang et al., 2019),491

climate modeling (Grundner et al., 2023), cosmology (Cranmer et al., 2020), etc. Various software492

have been developed for GP-based symbolic regression, e.g. Eureqa (Dubčáková, 2011) and PySR493

(Cranmer, 2023).494

Another class of methods is sparse regression (Brunton et al., 2016), which assumes the function to495

be discovered can be written as a linear combination of predefined candidate functions and solves496

for the coefficient matrix. It has also been extended to discover more general equations, such as497

equations in latent variables (Champion et al., 2019) and PDEs (Rudy et al., 2017).498

Neural networks have also shown their potential in symbolic regression. Martius & Lampert (2016);499

Sahoo et al. (2018) represents a few earliest attempts, where they replace the activation functions500

in fully connected networks with math operators and functions, so the network itself translates to501

a symbolic formula. Other works represent mathematical expressions as sequences of tokens and502

train neural networks to predict the sequence given a dataset of input-output pairs. For example,503

Petersen et al. (2019) trains an RNN with policy gradients to minimize the regression error. Biggio504

et al. (2021), Kamienny et al. (2022) and Holt et al. (2023) pre-train an encoder-decoder network505

over a large amount of procedurally generated equations and query the pretrained model on a new506

dataset of input-output pairs at test time.507

The aforementioned symbolic regression methods can be improved by incorporating specific domain508

knowledge. For example, AI Feynman (Udrescu & Tegmark, 2020; Udrescu et al., 2020) uses509

properties like separability and compositionality to simplify the data. Cranmer et al. (2020) specifies510

the overall skeleton of the equation and fits each part with genetic programming independently. The511

goal of this paper falls into this category – to use the knowledge of symmetry to reduce the search512

space of symbolic regression and improve its accuracy and efficiency.513

Recently, Large Language Models (LLMs) have emerged as an alternative for SR, using pre-trained514

scientific priors to propose sequential hypothesis (Merler et al., 2024) or to guide genetic program-515

ming (Shojaee et al., 2024), balancing the efficiency of domain knowledge with the robustness of516

evolutionary search. However, current LLM-based methods often rely on memorizing known equa-517

tions rather than facilitating genuine discovery, and their guidance lacks interpretability, specifically,518

the reasoning behind their suggestions, evidenced by a recent benchmark specially designed for519

LLM-SR (Shojaee et al., 2025). A recent effort sought to improve interpretability by binding symbolic520

evolution with natural language explanations (Grayeli et al., 2024). However, this method relies on521

frontier LLMs to conduct the evolution of the natural language components, rendering the process522

itself opaque. These limitations highlight the need for approaches that enhance the controllability and523

explainability of the prior knowledge injected, ensuring more transparent and trustworthy discovery.524

Discovering Differential Equations. While it remains in the scope of symbolic regression, the525

discovery of differential equations poses additional challenges because the derivatives are not directly526

observed from data. Building upon the aforementioned SINDy sparse regression (Brunton et al.,527

2016), Messenger & Bortz (2021a,b) formulates an alternative optimization problem based on the528

variational form of differential equations and bypasses the need for derivative estimation. A similar529

variational approach is also applied to genetic programming (Qian et al., 2022). Various other530

improvements have been made, including refined training procedure (Rao et al., 2022), relaxed531

assumptions about the form of the equation (Kaheman et al., 2020), and the incorporation of physical532

priors (Xie et al., 2022; Bakarji et al., 2022; Lee et al., 2022).533

PDE Symmetry in Machine Learning. Symmetry is an important inductive bias in machine534

learning. In the context of learning differential equation systems, many works encourage symmetry535

in their models through data augmentation (Brandstetter et al., 2022), regularization terms (Akhound-536

Sadegh et al., 2023; Zhang et al., 2023; Dalton et al., 2024), and self-supervised learning (Mialon et al.,537

2023). Strictly enforcing symmetry is also possible, but is often restricted to specific symmetries and538

systems (Wang et al., 2021). For more general symmetries and physical systems, enforcing symmetry539
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often requires additional assumptions on the form of equations, such as the linear combination form540

in sparse regression (Otto et al., 2023; Yang et al., 2024). To the best of our knowledge, our work is541

the first attempt to strictly enforce general symmetries of differential equations for general symbolic542

regression methods.543
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B Math544

B.1 Notations545

Table 2: Descriptions of symbols used throughout the paper. The three blocks include (1) basic
notations for PDEs, (2) notations for Lie symmetry of PDEs, and (3) notations for symbolic regression
algorithms and miscellaneous.

Symbols Descriptions
p Number of independent variables of a PDE.
q Number of dependent variables of a PDE.
X Space of independent variables of a PDE: X ⊂ Rp. Also used to denote the feature

space of SR algorithms.
U Space of dependent variables of a PDE: U ⊂ Rq. Assumed to be 1-dimensional

unless otherwise stated.
E Total space of all variables of a PDE: E = X × U .
Uk Space of strictly kth-order partial derivatives of variables in U w.r.t variables in X .
U (n) Space of all partial derivatives up to nth order (including the original variables in U ):

U (n) = U × U1 × · · · × Un.
M (n) nth-order jet space: M (n) ⊂ X × U (n).
TM The tangent bundle of a manifold M.
x Independent variables of a PDE: x ∈ Rp.
t Time variable.

x, y Spatial variables in PDE contexts. Also used to denote the features and labels of SR
algorithms, where x can denote multi-dimensional features.

u,u Dependent variable(s) of a PDE: u ∈ R and u ∈ Rq .
u(n),u(n) The collection of all up to n-th order partial derivatives of u or u.

df The (ordinary) differential of a function. For a differential function f : M (n) → R,
df =

∑
j

∂f
∂xj dx

j +
∑

α
∂f
∂uα

duα.
Dif The total derivative of a differential function f : M (n) → R w.r.t the ith independent

variable. For example, if p = q = 1, D1f = ∂f
∂x +

∑∞
k=0 uk+1

∂f
∂uk

, where uk :=

∂ku/∂xk.
Df The total differential of a differential function f : M (n) → R, i.e. Df = Dif dxi.
g A group element with an action on E (2).
v A vector field on the total space E (3), representing an infinitesimal transformation.

A list of multiple vector fields are indexed by subscripts.
pr(n)g nth-order prolongation of g acting on M (n).
pr(n)v nth-order prolongation of v acting on M (n).

g(n),v(n) Equivalent to pr(n)g and pr(n)v, respectively.
pr v The (infinite) prolongation of v. For an nth-order differential function f(x,u(n)),

pr v(f) = pr(n)v(f).
η, ζ, ϑ Differential invariants of a symmetry group. η is used by default. The other letters

are used to distinguish between invariants of different orders.
ℓ, ℓ The LHS of SINDy equation (4). Often assumed to be time derivatives.
θ A column vector containing all SINDy library functions: θ = [θ1, · · · , θm]

w,W The SINDy parameters. For only one equation, w = [w1, · · · , wm] is a row vector.
For multiple equations, W = [wij ] is a q ×m matrix.

X,y Concatenated matrix/vector of features/labels of all datapoints for symbolic regres-
sion.

[N ] List of positive integers up to N , i.e. [1, 2, · · · , N ] for any N ∈ Z+.
1 : N Equivalent to [N ].

LHS, RHS Left- and Right-hand side of an equation.

B.2 Extended Background on PDE Symmetry546

References for the below material include Olver (1993), Olver (1995).547
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Prolonged group actions Let E = X×U ≃ Rp×Rq be endowed with the action of a group G via548

point transformations. Then group elements g ∈ G act locally on functions u = f(x), therefore also549

on derivatives of these functions. This in turn induces, at least pointwise, “prolonged" transformations550

on jet spaces: (x̃, ũ(n)) = pr(n)g · (x,u(n)).551

Let J = (j1, . . . , jn), 1 ≤ jν ≤ p be an n-tuple of indices of independent variables and 1 ≤ α ≤ q.552

We will use the shorthand553

uα
J :=

∂Juα

∂xJ
:=

∂|J|uα

∂xj1 · · · ∂xjn

and554

DJ := Dj1 · · ·Djn .

It is not practical to work explicitly with prolonged group transformations. Therefore one linearizes555

and considers the prolonged action of the infinitesimal generators of G. Explicitly, given a vector556

field557

v =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

φα(x,u)
∂

∂uα
,

its characteristic is a q-tuple Q = (Q1, . . . , Qq) of functions with558

Qα(x,u(1)) = φα(x,u)−
p∑

i=1

ξi(x,u)
∂uα

∂xi
.

Now the prolongation of v to order n is defined by559

pr(n)v =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

∑
#J=n

φα
J (x,u

(n))
∂

∂uα
J

. (10)

Here J ranges over all n-tuples J = (j1, . . . , jn), 1 ≤ jν ≤ p and the φα
J are given by560

φα
J = DJQ

α +

p∑
i=1

ξiuα
J,i.

We remark that the prolongation of v has been described explicitly in terms of the coefficients of v561

and their derivatives.562

B.3 Proof of Proposition 3.3563

Olver (1995) provides the following general theorem to construct higher-order differential invariants564

from a contact-invariant coframe. We refer the readers to Chapter 5 of Olver (1995) for definitions of565

relevant concepts, e.g., contact forms and contact-invariant forms and coframes.566

Theorem B.1 (Thm. 5.48, (Olver, 1995)). Let G be a transformation group acting on a space with p567

independent variables and q dependent variables. Suppose ω1, ..., ωp is a contact-invariant coframe568

for G, and let Dj be the associated invariant differential operators defined via Df = Djf dxj =569

Djf ωj . If there are a maximal number of independent, strictly nth-order differential invariants570

ζ1, · · · , ζqn , qn =
(
p+n−1

n

)
, then the set of differentiated invariants Diζ

ν , i ∈ [p], ν ∈ [qn], contains571

a complete set of independent, strictly (n+ 1)th-order differential invariants.572

Specifically, the condition that there exist a maximal number of differential invariants of order exactly573

n is guaranteed if n is at least dimG.574

Our proposition is a derived result from the above theorem, which provides a concrete way of575

computation from lower-order invariants to higher-order ones:576

Proposition B.2. Let G be a local group acting on X × U ≃ Rp × R. Let η1, η2, · · · , ηp be any577

p differential invariants of G whose horizontal Jacobian J = [Diη
j ] is non-degenerate on an open578

subset Ω ⊂ M (n). If there are a maximal number of independent, strictly nth-order differential579

16



invariants ζ1, · · · , ζqn , qn =
(
p+n−1

n

)
, then the following set contains a complete set of independent,580

strictly (n+ 1)th-order differential invariants defined on Ω:581

det(Diη̃
j
(k,k′))

det(Diηj)
, ∀k ∈ [p], k′ ∈ [qn], (11)

where i, j ∈ [p] are matrix indices, Di denotes the total derivative w.r.t i-th independent variable582

and η̃j(k,k′) = [η1, ..., ηk−1, ζk
′
, ηk+1, ..., ηp].583

Proof. We show that the total differentials of the differential invariants η1, ..., ηp can be used to584

construct a contact-invariant coframe of G and then derive the associated invariant differential585

operators to complete the proof.586

First, note that for any differential invariant η of G, its total differential ω = Dη = Djη dxj can be587

written as588

ω = ωo + θ, (12)

where ωo := dη =
∑

i∈[p]
∂F
∂xi dx

i +
∑

|α|≤n
∂F
∂uα

duα is the ordinary differential of η : M (n) → R589

and θ is a contact form.590

Since η is a differential invariant, its differential ωo = dη is an invariant one-form on M (n), i.e.591

(g(n))∗ωo = ωo.592

Also, a prolonged group action maps contact forms to contact forms. To see this, note that a prolonged593

group action g(n) maps the prolonged graph of any function to the prolonged graph of a transformed594

function. Then, for any contact form θ, (g(n))∗θ is annihilated by all prolonged functions f (n), thus595

a contact form by definition:596

(f (n))∗((g(n))∗θ) = (g(n) ◦ f (n))∗θ

= ((g · f)(n))∗θ
= 0. (13)

Then, from (12), we have597

(g(n+1))∗ω = (g(n))∗ωo + (g(n+1))∗θ

= ωo + θ′

= ω + (θ′ − θ) (14)

where θ′ is some contact form and so is θ′ − θ. Thus, ω is contact-invariant. For the p differential598

invariants η1, · · · , ηp, we have p contact-invariant one-forms ω1, · · · , ωp, respectively.599

Next, we prove that ω1, · · · , ωp are linearly independent and form a coframe. Assume there exists600

smooth coefficients cj such that
∑

j c
jωj = 0. Then, regrouping the coefficients of the horizontal601

forms dxi, we have602

0 =
∑
i,j

cjDiη
jdxi =

∑
i

∑
j

cjDiη
j

 dxi. (15)

Because the dxi are linearly independent, each coefficient of dxi must vanish, i.e. J j
i cj = 0.603

Since the Jacobian J = [Diη
j ] is non-degenerate, the only solution is cj = 0 (on the open subset604

Ω ∈ M (n)). Thus, ω1, · · · , ωp form a contact-invariant coframe. According to Theorem B.1, the605

associated invariant differential operators of the coframe take a complete set of same-order invariants606

to a complete set of one-order-higher invariants.607

The remaining step is to obtain the invariant differential operators explicitly in terms of ηj . Recall608

the formula in Theorem B.1 that defines the invariant differential operators:609

Dif dxi = Djf ωj . (16)

17



Expanding ωj = Dηj = Diη
j dxi, we have the following linear system of invariant differential610

operators Dj :611 
D1

D2

...
Dp

 =


D1η

1 D1η
2 · · · D1η

p

D2η
1 D2η

2 · · · D2η
p

...
...

...
Dpη

1 Dpη
2 · · · Dpη

p



D1

D2

...
Dp

 . (17)

Since J = [Diη
j ] is non-degenerate, Cramer’s rule yields612

Dkζ =
det(Diη

1 | · · · | Diη
k−1 | Diζ | Diη

k+1 | · · · | Diη
p)

det(Diηj)
. (18)

613

Remark B.3. We require that the differential invariants η1, · · · , ηp has a nondegenerate horizontal614

Jacobian [Diη
j ], which is a stronger condition than functional independence. Since the differential615

invariants are functions on the jet space, it is possible that a set of such functions is functionally616

independent, i.e., has a nondegenerate full Jacobian [∂iη
j ], where i ∈ [qn] indexes the jet space617

variables (x, u(n)), but has a lower-rank horizontal Jacobian. For example, consider η1 = ux and618

η2 = uy . In the full Jacobian, ∂ηj/∂ux and ∂ηj/∂uy form the identity, so it has full rank. However,619

its horizontal Jacobian containing total derivatives is given by
[
uxx uxy

uxy uyy

]
, which is not invertible620

on the subset of the jet space where uxxuyy − u2
xy = 0.621

In practice, this non-degeneracy condition can be easily checked once we have the symbolic expres-622

sions of the p differential invariants.623

Remark B.4. When p = 1, Proposition B.2 is equivalent to the following (Prop. 2.53, Olver (1993)):624

If y = η(x, u(n)) and w = ζ(x, u(n)) are n-th order differential invariants of G, then dw
dy ≡ Dxζ

Dxη
625

is an (n + 1)-th order differential invariant of G. Specifically, if y = η(x, u) and w = ζ(x, u, ux)626

form a complete set of functionally independent differential invariants of pr(1)G, the complete set of627

functionally independent differential invariants for pr(n)G is then given by628

y, w, dw/dy, ..., dn−1w/dyn−1. (19)

B.4 Examples of Computing Differential Invariants629

Example B.5. Consider the group SO(2) acting on X × U ≃ R2 × R by standard rotation in the630

2D space of independent variable and trivial action on U , i.e. its infinitesimal generator given by631

v = y∂x − x∂y .632

First, we solve for a complete set of the ordinary and first-order invariants. The two ordinary invariants633

are given by η1(x, y, u) =
1
2 (x

2 + y2) and η2(x, y, u) = u. (6) dictates how we construct higher-634

order invariants using these two functionally independent invariants and another arbitrary invariant.635

For notational convenience, we convert (6) to operators defined according to η2 and η1, respectively:636

O1 =
xDy − yDx

xuy − yux
(20)

O2 =
uyDx − uxDy

xuy − yux
(21)

Then, we need to find another new differential invariant, because applying these operators on η1 and637

η2 leads to trivial results. Since η1 and η2 generate all ordinary (zeroth-order) invariants, we must638

look for the first-order invariants. To do this, note the prolonged vector field is given by639

pr(1)v = v + uy∂ux − ux∂uy (22)

Solving for pr(1)v gives two first-order invariants, ζ1 = xuy − yux and ζ2 = xux + yuy . Note that640

the differential invariant ζ1 is exactly the common denominator in O1 and O2, so we can simplify O1641
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and O2 by using only their numerators, i.e.642

O1 = xDy − yDx (23)
O2 = uyDx − uxDy (24)

Note that O2 has first-order coefficients, which may complicate things in the subsequent calculation.643

Denoting the space of all continuous functions of the existing four invariants as I = C(η1, η2, ζ1, ζ2),644

we can choose any new operator within the I-module spanned by O1 and O2 that makes things easier.645

Specifically, we use the following operator646

Õ2 =
ζ2
ζ1

O1 +
2η1
ζ1

O2

= xDx + yDy (25)

Then, we apply these operators to the first-order invariants, which raise the order by one and give us647

the second-order invariants. For example, applying O1 to ζ1, we have648

O1ζ1 = xDyζ1 − yDxζ1
= x(xuyy − ux − yuxy)− y(uy + xuxy − yuxx)

= x2uyy + y2uxx − xux − yuy − 2xyuxy (26)

Note that ζ2 = xux + yuy is a first-order invariant, so we can further remove it from the formula and649

get a simplified second-order invariant650

ϑ1 = x2uyy + y2uxx − 2xyuxy (27)

Similarly, we compute O1ζ2, Õ2ζ1 and Õ2ζ2 and obtain the following, respectively:651

ϑ2 = ϑ3 = ζ1 + xy(uyy − uxx) + (x2 − y2)uxy

≡ xy(uyy − uxx) + (x2 − y2)uxy (28)

ϑ4 = ζ2 + x2uxx + y2uyy + 2xyuxy

≡ x2uxx + y2uyy + 2xyuxy (29)

The above 8 invariants should form a complete set of second-order differential invariants of v =652

x∂y − y∂x. To verify, note that the Laplacian ∆u = uxx + uyy, which is a well-known rotational653

invariant, can be written in terms of these differential functions:654

∆u = uxx + uyy =
(x2 + y2)(uxx + uyy)

x2 + y2

=
ϑ1 + ϑ4

2η1
(30)

Another second-order rotational invariant, the trace of the squared Hessian matrix, u2
xx +2u2

xy +u2
yy ,655

is recovered by656

u2
xx + 2u2

xy + u2
yy =

ϑ2
1 + 2ϑ2

2 + ϑ2
4

4η21
(31)

On the other hand, these 8 invariants are apparently not functionally independent - note that ϑ2 =657

O1ζ2 and ϑ3 = Õ2ζ1 are the same. While this may be some coincidence, eventually it is not surprising658

because we would expect to see 3 functionally independent strictly second-order differential invariants659

instead of 4, since (uxx, uyy, uxy) ∈ U2 is only 3-dimensional.660

Example B.6 (Scaling and translation). Consider the vector field v1 = t∂t+ax∂x+bu∂u. It generates661

the scaling symmetry t 7→ λt, x 7→ λax, u 7→ λbu. The ordinary invariants of this symmetry are662

tbu−1 and xau−1. The higher-order invariants are given by η(α,β) = xαtβux(α)t(β)u−1, where α and663

β denote the orders of partial derivatives w.r.t t and x, e.g. ux(2)t(1) := uxxt.664

Besides the scaling symmetry, we can consider other common symmetries simultaneously, e.g.665

translation symmetries in both space and time, v2 = ∂x and v3 = ∂t. These symmetries, along with666

the scaling symmetry v1, span a three-dimensional symmetry group. There are no ordinary invariants667

due to the translation symmetries. A convenient maximal set of functionally independent differential668

invariants is given by669

η(α,β) = ux(α)t(β)u
b−aα−β

a−b
x , α ≥ 0, β ≥ 0. (32)
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B.5 Proof of Proposition 3.4670

Proposition 3.4, restated below, aligns our symmetry constraint into the SINDy framework and results671

in a set of constraints on the SINDy parameters.672

Proposition B.7. Let ℓ(x,u(n)) = Wθ(x,u(n)) be a system of q differential equations admitting673

a symmetry group G, where x ∈ Rp, u ∈ Rq, θ ∈ Rm. Assume that there exist some nth-order674

invariants of G, η1:q0 and η1:K , s.t. (1) the system of differential equations can be expressed as675

η0 = W ′θ′(η), where η0 = [η1:q0 ] and η = [η1:K ], and (2) ηi0 = T ijkθkℓj and (θ′)i = Sijθj , for676

some library functions θ′(η) and some constant tensors W ′, T and S. Then, the space of all possible677

W is a linear subspace of Rq×m.678

Proof. (Note: In this proof, we do not distinguish between superscripts and subscripts. All are used679

for tensor indices, not partial derivatives.)680

For simplicity, we omit the dependency of functions and write681

ℓi = W ijθj . (33)

Combining the conditions about the differential invariants, we know that the equation can be equiva-682

lently expressed as683

T ijkθkℓj = (W ′)ijSjkθk (34)

for some W ′ ∈ Rq×m′
, where m′ is the number of invariant functions in θ′.684

Substituting (33) into (34) and rearranging the indices, the principle of symmetry invariants then685

translates to the following constraint on W : there exists some W ′ ∈ Rq×m′
s.t.686

T rk
i θkW

l
r θl = (W ′) k

i S j
k θj ,∀x,u(n). (35)

To solve for W , we first eliminate the dependency on the variables x and u(n) from the equation.687

We adopt a procedure similar to Yang et al. (2024). Denote z = (x,u(n)). Define a functional688

Mθ as mapping a function to its coordinate in the function space spanned by θ, i.e. Mθ : (z 7→689

cjθj(z)) 7→ (c1, c2, · · · , cm). Before we proceed, note that the LHS of (35) contains the products of690

functions θk(z)θl(z), which may or may not be included in the original function library θ. Therefore,691

we denote θ̃(z) = [θ(z) || {θkθl /∈ θ}] as the collection of all library functions θk and all their692

products θkθl. The invariant functions θ′(η) can also be rewritten in terms of the prolonged library:693

θ′(η) = S̃θ̃, where S̃1:m = S.694

Then, applying Mθ̃ to (35), we have695

Mθ̃(T
rk

i θkW
l

r θl) = (W ′) k
i S̃ j

k . (36)

Further expanding the LHS, we have696

T rk
i W l

r Γ j
kl = (W ′) k

i S̃ j
k , (37)

where Γ satisfies θkθl = Γ j
kl θ̃j . In other words, the rows of the LHS fall in the row space of S̃. Let697

S̃⊥ be the basis matrix for the null space of S̃, i.e. S̃S̃⊥ = 0, we have698

T rk
i W l

r Γ j
kl (S̃

⊥)js = 0, (38)

suggesting that W must lie in a linear subspace of Rq×m.699

700

Remark B.8. In practice, to solve for (38), we first rearrange (38) into Mvec(W ) = 0, where M701

has shape (S̃.shape[2]× q, q ×m). Then, we perform SVD on M and apply a threshold of 10−6 to702

the singular values. The right singular vectors corresponding to the singular values smaller than the703

threshold then form a basis of the linear subspace vec(W ) lies in.704
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C Implementation Details705

This section discusses some detailed considerations in implementing the sparse regression-based706

methods described in Section 3.3 and 3.4. Contents include:707

• Appendix C.1: An algorithmic description of direct sparse regression with symmetry708

invariants.709

• Appendix C.2: Converting the symmetry invariant condition as linear constraints on the710

sparse regression parameters.711

• Appendix C.3: Using differential invariants in weak SINDy via the linear constraints, as712

well as other considerations.713

C.1 Direct Sparse Regression With Symmetry Invariants714

The first approach to enforcing symmetry in sparse regression, as discussed in Section 3.3, is to715

directly use the symmetry invariants as the variables and their functions specified by a function library716

as the RHS features. Similar to Algorithm 1 for general symbolic regression methods, we provide a717

detailed algorithm for sparse regression below. Following the setup from SINDy, we aim to discover718

a system of q differential equations for q dependent variables.719

Algorithm 2 Sparse regression with symmetry invariants

Require: PDE order n, dataset {zi = (xi, (u(n))i) ∈ M (n)}ND
i=1, SINDy LHS ℓ, SINDy function

library {θj}, infinitesimal generators of the symmetry group B = {va}.
Ensure: A PDE system admitting the given symmetry group.

Compute the symmetry invariants of B up to nth-order: η1, · · · , ηK . {Proposition 3.3}
Choose an invariant function ηki s.t. ∂ηki/∂ℓi ̸= 0 for SINDy LHS component ℓi.
Let η0 = [ηk1 , ..., ηkq ]T and η denote the column vector containing the remaining K−q invariants.
Instantiate the sparse regression model as η0 = Wθ(η).
Optimize W with the SINDy objective:

∑
i ∥η0(z

i)−Wθ(η(zi))∥2 + λ∥W∥0.
return η0 = Wθ(η). {Optionally, expand all ηj in terms of original variables z.}

The configuration from the original SINDy model, i.e., the LHS ℓ and the function library {θj},720

are used to construct a new equation model in terms of the invariants. It should be noted that the721

functions in the SINDy function library does not specify their input variables. For example, in the722

PySINDy (Kaptanoglu et al., 2022) implementation, a function θ is provided in a lambda format723

lambda x, y: x * y. Thus, θ can be applied to both the original variables, e.g. θ(z1, z2) = z1z2,724

and the invariant functions, e.g. θ(η1, η2) = η1η2.725

C.2 Symmetry Invariant Condition as Linear Constraints726

Instead of directly using the invariant functions η as the features and labels for regression, we can727

derive a set of linear constraints from the fact that the equation can be rewritten in terms of invariant728

functions. As shown in Appendix B.5, a basis Q of the constrained parameter space can be obtained729

from the right singular vectors of a constraint matrix M . We rearrange Q to a tensor of shape730

(r, q,m), where r is the dimension of the constrained parameter space, and (q,m) is the original731

shape of the parameter matrix W . Then, we can parameterize W by W jk = Qijkβi, where β is the732

learnable parameter, and discover the equation using the original SINDy objective as described in733

Section 2.2.734

In practice, we observe that the basis Q obtained from SVD is not sparse. Indeed, SVD does not735

inherently encourage sparsity in the singular vectors. The lack of sparsity can pose a problem when736

we perform sequential thresholding in sparse regression. Specifically, in SINDy, the entries in W737

that are close to zero are filtered out at the end of each iteration, which serves as a proxy to the L0738

regularization. Since we fix Q and only optimize β, a straightforward modification to the sequential739

thresholding procedure is to threshold the entries in β instead of those in W . However, if Q is dense,740

even a sparse vector β can lead to a dense W , which contradicts the purpose of sparse regression.741
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Figure 4: Basis for the SINDy parameter subspace that preserves SO(2) symmetry v = −v∂u + u∂v .
The SINDy parameter W has dimension 2× 19. The two rows correspond to the two equations with
ut and vt as the LHSs. The RHS contains 19 features, including all monomials of u, v up to degree 3
and their spatial derivatives up to order 2. The set of symmetry invariants used to compute the basis
is given by {t, x, y, u2 + v2}

⋃
{u · uµ}

⋃
{u⊥ · uµ}, where u = (u, v)T and µ is a multiindex of

t, x, y with order no more than 2. The top 7× 2 grid displays the original basis solved from SVD,
and the bottom 7× 2 grid displays the sparsified basis.

Therefore, after performing SVD, we apply a Sparse PCA to Q to obtain a sparsified basis, also of742

shape (r, q,m):743

spca = SparsePCA(n_components=r)744

spca.fit(Q.reshape(r, q*m))745

Q_sparse = spca.components.reshape(r,q,m)746

Figure 4 shows an example of the original basis solved from SVD (top 7× 2 grid) and the sparsified747

basis using sparse PCA (bottom 7× 2 grid). This is used in our experiment on the reaction-diffusion748

system (9).749

C.3 Using Differential Invariants in Weak SINDy750

In this subsection, we discuss the formulation of weak SINDy and how to implement our strategy751

of using differential invariants within the weak SINDy framework. To maintain a similar notation752

to the original works on weak SINDy (Messenger & Bortz, 2021a,b), we use Dαs
to denote partial753
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derivative operators, where αs = (s1, s2, ..., sp) is a multi-index, instead of using subscripts for754

partial derivatives. Thus, we no longer strictly differentiate subscripts and superscripts–both can be755

used for indexing lists, vectors, etc.756

Given a differential equation in the form757

Dα0
u =

∑
s,j

WsjDαs
fj(u), (39)

we can perform integration by parts (i.e., divergence theorem) to move the derivatives from u to some758

analytic test function and thus bypass the need to estimate derivatives numerically. First, we multiply759

both sides of (39) by a test function ϕ with compact support B ⊂ X and integrate over the spacetime760

domain:761 ∫
X

Dα0u(x)ϕ(x)dx =
∑
s,j

Wsj

∫
X

Dαsfj(u(x))ϕ(x)dx (40)

WLOG, assume that s1 ̸= 0, and denote αs′ = (s1 − 1, s2, ..., sp). Then, each term in the RHS can762

be integrated by parts as763 ∫
X

Dαsfj(u(x))ϕ(x)dx =

∫
B
Dαsfj(u(x))ϕ(x)dx

= −
∫
B
Dαs′ fj(u(x))D1ϕ(x)dx+

∫
∂B

ν1Dαs′ fj(u(x))ϕ(x)dx

= −
∫
B
Dαs′ fj(u(x))D1ϕ(x)dx, (41)

where D1 denotes the partial derivative operator w.r.t the first independent variable, and ν1 is the first764

component of the unit outward normal vector.765

Repeating this process until all the derivative operations move from fj(u) to the test function ϕ, we766

have767 ∫
X

Dαs
fj(u(x))ϕ(x)dx = (−1)|αs|

∫
X

fj(u(x))Dαs
ϕ(x)dx (42)

Similarly for the LHS:768 ∫
X

Dα0u(x)ϕ(x)dx = (−1)|α0|
∫
X

u(x)Dα0ϕ(x)dx (43)

The final optimization problem is to solve for b = Gw, where w is the vectorized coefficient matrix769

W , and each row in b and G is given by computing the integrals in (42) and (43) against a single test770

function. The number of rows equals the number of different test functions used.771

Direct integration of symmetry via linear constraints As we have discussed in Appendix C.2,772

we can enforce symmetry by converting it to a set of linear constraints on the parameter W . With this773

approach, we can directly incorporate symmetry in weak SINDy. Specifically, we just parameterize774

W as in terms of a precomputed basis Q and a trainable vector β and directly substitute this775

parameterization of W into the optimization problem of weak SINDy. We adopt this strategy in our776

experiments concerning weak SINDy.777

Expressing the equations with differential invariants The above approach is only possible when778

the conditions in Proposition 3.4 about the selected set of symmetry invariants hold. We should779

note that it is not always possible to find a set of invariants so that the symmetry condition can be780

converted to linear constraints on the parameter W via the procedure in the proof of Proposition 3.4.781

One may ask the following question: can we simply express the equations in terms of differential782

invariants and apply weak SINDy, similar to Algorithm 2 for the original SINDy formulation? Here,783

we do not provide a definite conclusion for this question, but only discuss several cases where directly784

using differential invariants in equations might succeed or fail in weak SINDy.785

To adapt to the weak SINDy formulation (39), it is more helpful to consider the symmetry invariants786

as generated by some fundamental invariants and some invariant differential operators, instead of787
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specifying a complete set of differential invariants for every order. Concretely, there exists a set788

of invariant differential operators {Oj} and a set of fundamental differential invariants I = {ηk}789

s.t. every differential invariant can be written as Oj1 ...Ojnηk. For the SO(2) symmetry group in790

Example B.5, one possible choice is791

η1 =
1

2
(x2 + y2), η2 = u, O1 = xDy − yDx, O2 = xDx + yDy. (44)

We can compose these generating invariant operators to obtain a full library of eligible differential792

operators up to some order, denoted D = {Dj}. The exact compositions can vary and we can793

choose the most convenient one for subsequent calculations. For the above SO(2) example, for up to794

second-order differential operators, we can choose {O1,O2,O2
1,O2

2,
2
η1
(O2

1 +O2
2)}. Note the last795

operator is exactly the Laplacian.796

Then, the complete set of eligible terms (respecting the symmetry) in the equation is {Djηk : Dj ∈797

D, ηk ∈ I}. If we assume, as in SINDy, that the governing equation can be written in linear798

combination of these symmetry invariants, then we can assign a weight for each Djηk and form a799

coefficient matrix W = [Wjk]. That is,800

Dj0ηk0 =
∑

(j,k)̸=(j0,k0)

WjkDjηk. (45)

Then, multiplying each side by a test function ϕ(x), we have801 ∫
X

Dj0ηk0
ϕ(x)dx =

∑
(j,k)̸=(j0,k0)

Wjk

∫
X

Djηkϕ(x)dx. (46)

The question then boils down to whether we can apply the technique of integration by parts similarly802

to this set of differential operators and differential functions, since the original algorithm only deals803

with partial derivative operators Dαs and ordinary functions fj(u).804

To check this, let us explicitly write out the dependency of these operators and fundamental invariants.805

Case 1 A relatively simple case is when all invariant operators take the form Dj =
∑

s as(x)Dαs
806

and ηk = ηk(x, u(x)). Each term in the RHS of (46) can be expanded as807 ∫
X

Djηkϕ(x)dx =
∑
s

∫
X

as(x)Dαs
ηk(x, u(x))ϕ(x)dx

=
∑
s

(−1)|αs|
∫
X

ηk(x, u(x))Dαs
[as(x)ϕ(x)]dx (47)

Evaluating (47) does not require estimating partial derivatives of u. Therefore, weak SINDy can be808

applied to this case quite straightforwardly.809

Case 2 However, it is not always possible to have all Dj as classical linear differential operators and810

all ηk as ordinary functions. For instance, in Example B.6, there are no ordinary symmetry invariants811

due to the constraint of translation symmetry.812

If we still have linear operators Dj =
∑

s as(x)Dαs , but on the other hand we have differential813

functions ηk = ηk(x, u
(n)), we can still perform integration by parts as in (47), but the final result814

becomes815 ∑
s

(−1)|αs|
∫
X

ηk(x, u
(n))Dαs

[as(x)ϕ(x)]dx, (48)

meaning we still have to evaluate whatever partial derivatives remain in ηk. It is possible that we816

can decrease the order of partial derivatives compared to vanilla sparse regression, but we cannot817

eliminate all partial derivatives compared to Weak SINDy without any symmetry information.818

24



Case 3 The most challenging case is when the invariant differential operators explicitly involve819

the partial derivative, such as Dj =
∑

s as(x, u
(n))Dαs

. Then, similar to (48), integration by parts820

yields:821 ∑
s

(−1)|αs|
∫
X

ηk(x, u
(n))Dαs

[as(x, u
(n))ϕ(x)]dx. (49)

In this case, we still need to compute the partial derivatives, not only those in ηk, but also those822

arising from as and Dαs
(as). The latter might involve higher-order derivatives and the benefit of823

using the weak formulation may further diminish.824

D Additional Experiment Results825

Contents of this section include:826

• Appendix D.1: Results for some variants of the sparse regression models considered in827

Table 1.828

• Appendix D.2: Results for genetic programming-based algorithms under different computa-829

tional budgets.830

• Appendix D.3: Samples of equations discovered by different methods.831

• Appendix D.4: Visualized prediction errors of equations discovered by different methods.832

D.1 Variant Sparse Regression Models833

Table 3: Results of sparse regression models on the Boussinesq equation and the reaction-diffusion
system. C stands for complexity, i.e., the dimensionality of the parameter space. SP stands for success
probability. The PySINDy and SI rows present the same results as the corresponding rows in Table 1.

Method Boussinesq (7) Reaction-diffusion (9)
C ↓ SP ↑ C ↓ SP ↑

PySINDy 15 0.00 38 0.53
PySINDy∗ 21 1.00 468 0.00

SI 13 1.00 28 0.54
SI-aligned - - 14 0.56

The original implementation of PySINDy (de Silva et al., 2020; Kaptanoglu et al., 2022) does not834

allow functions to be applied to partial derivative terms. As a result, terms such as u2
x cannot be835

modeled. This leads to its failure to discover the Boussinesq equation (7), as we have shown in836

Table 1.837

We modify the implementation and include an additional set of results with different libraries, denoted838

as PySINDy∗ in Table 3. The PySINDy∗ model supports a wider range of library functions, including839

functions of partial derivatives, e.g., u2
x. A complete description of the hypothesis spaces of different840

sparse regression-based methods is available in Appendix E.5.841

As Table 3 shows, PySINDy∗ succeeds in the Boussinesq equation. However, it fails in the reaction-842

diffusion system because its parameter space becomes too large due to a higher-dimensional total843

space X × U ≃ R2 × R2. This augments the point that SINDy’s success relies on an appropriate844

choice of function library. If the library is too small to contain all the terms appearing in the845

equation of interest, the discovery is sure to fail. If the library is too large, the optimization problem846

becomes more difficult in the high-dimensional parameter space. On the other hand, by introducing847

the inductive bias of symmetry, our method automatically identifies a proper function library that848

contains all the necessary terms for a PDE with a specific symmetry group, but not other redundant849

terms.850

We include another model in Table 3, SI-aligned, where we derive a set of linear constraints on the851

sparse regression parameters from the fact that the equations can be expressed in terms of symmetry852

invariants. In this way, we still optimize the original parameters (though in a constrained subspace)853

as in the base SINDy model without symmetry, effectively "aligning" the hypotheses about equations854
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from symmetry and the base SINDy model. This method is discussed in detail in Section 3.3 and855

Appendix C.2. We should also note that this method is mainly developed for incorporating the856

symmetry constraints into the weak formulation of SINDy. However, it is perfectly acceptable to857

implement it in the original formulation of SINDy, so we provide its results in Table 3 for reference.858

For the reaction-diffusion system, SI-aligned has a 14-dimensional parameter space. The basis for859

its parameter space is visualized in Figure 4. It achieves a slightly higher success probability than860

SI (regression with symmetry invariants) and PySINDy (without symmetry information). We do861

not apply SI-aligned to the Boussinesq equation, because it is not necessary to align the hypotheses862

from SINDy and symmetry in this case. We can readily convert any equation discovered from SI863

(regression with symmetry invariants) by multiplying both sides by u2
x.864

We note that the results on the reaction-diffusion system in Table 3 are for models with the original865

SINDy formulation, in contrast to the weak SINDy formulation used in Figure 3. Therefore, the866

results in Figure 3 should not be directly compared to those in Table 1 and Table 3.867

D.2 Genetic Programming868

5 10 15
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

Boussinesq GP Success Probability

SI (ours)
PySR

50 100 200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

Darcy GP Success Probability
SI (ours)
PySR

100 200 400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

R-D GP Success Probability
SI (ours)
PySR

Figure 5: Success Probabilities of GP-based methods on different systems. Our method with
symmetry invariants can discover the correct equations with fewer iterations.

869

For each system in Section 4.1, we run the genetic programming discovery algorithm with three870

different iteration counts, but otherwise keep all hyperparameters constant. In Figure 5, we plot the871

success probability as a function of the iteration count for both the base GP algorithm and our method872

that uses symmetry invariants.873

In all cases, we find that using symmetry invariants results in a higher success probability in compar-874

ison to unmodified PySR. Specifically, for the Boussinesq equation, our method achieves a 100%875

chance of discovery with 5 iterations, whereas even with 3 times the number of iterations, PySR only876

yields a 90% success probability. This highlights that using invariants improves the efficiency of877

equation discovery. For Darcy flow and Reaction-Diffusion, we find that the base genetic program-878

ming algorithm fails to ever make a correct prediction. On the other hand, using symmetry invariants879

leads to a successful discovery the majority of the time.880

We finally note that increasing the number of iterations to 200 for Darcy flow slightly lowers the881

success probability when using symmetry invariants. We hypothesize this is because at higher882

iterations, the search process begins to overfit and introduces extraneous low-order terms. While we883

already drop some terms with small enough coefficients, future works may consider a more refined884

filtration process.885

D.3 Samples of Discovered Equations886

In Table 4, we list some randomly selected equations discovered by different methods for the887

Boussinesq equation (7). Some methods almost consistently discover correct/incorrect equations (i.e.,888

have success probabilities close to 1 or 0), so we only select one sample for each. For other methods889

with a large variance in the discovered equations, we display two samples: a correct equation and an890

incorrect one.891

The ground truth equation in the original variables is given in (7). The ground truth equation in the892

symmetry invariants is given by893

η(0,2) + η(0,0)η(2,0) + η(4,0) + 1 = 0 (50)
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Table 4: Samples of discovered equations from the observed solution of the Boussinesq equation
(7). For GP-based methods, we include results from different numbers of iterations (indicated by "N
its"). For transformer-based methods, we include two samples for each method because of the large
variance of discovered equations from different runs.

Method Equation sample(s)

Sparse
regression

PySINDy utt = −1.01uxxxx − 0.79uuxx

PySINDy∗ utt = −1.01uxxxx − 0.99u2
x − 0.98uuxx

SI η(0,2) = −1.00− 1.00η(4,0) − 1.00η(0,0)η(2,0)

Genetic
programming

PySR (5 its) uuxx + 1.00utt + uxxxx = 0
PySR (15 its) uuxx + utt + u2

x + 1.00uxxxx = 0
SI (5 its) 1.00η(0,0)η(2,0) + 1.00η(0,2) + 1.00η(4,0) + 1 = 0

Transformer
E2E (1) utt = −1.13uuxx − 0.98uxxxx − 0.30|ux|

(2) utt = −0.85uuxx − 0.75u2
x − 0.99uxxxx

SI (1) η(0,2) = −1.05η(0,0)η(2,0) − 1.00η(4,0) − 0.96
(2) η(0,2) = −0.81η(0,0)η(2,0) − 0.40η(0,0) − 0.98η(4,0) − 0.90

Table 5 lists the equation samples discovered from the Darcy flow dataset. The ground truth equation894

in original variables is given in (8), and the ground truth equation in symmetry invariants is given by895

8ζ2 −∆u− e4R
2

= 0, (51)

where ζ2 = xux + yuy, ∆u = uxx + uyy, and R2 = x2 + y2 are among the rotational invariants896

used in symbolic regression.897

Table 5: Samples of discovered equations for the Darcy flow dataset.
Method Equation sample

Genetic
programming

PySR u− 0.47x2y2 − 0.38e0.09(uxx+uyy) + 0.20 = 0

SI ζ2 − 0.13∆u− 0.13e4.01R
2

= 0

Transformer E2E uxx = −7.43
√

u2 + 0.65u2
x

SI ∆u = −2.56u+ 0.85ζ2 + 0.29

Finally, Table 6 lists the equation samples discovered from the reaction-diffusion dataset. The ground898

truth equation in original variables is given in (9) with d1 = d2 = 0.1, and the ground truth equation899

in symmetry invariants is given by900

It = 0.1(Ixx + Iyy) +A(1−A)

Et = 0.1(Exx + Eyy)−A2 (52)

where Iµ = uuµ + vvµ and Eµ = −vuµ + uvµ for any multiindex µ of t, x, y, and A = u2 + v2.901

D.4 Prediction Errors of Discovered Equations902

In Table 1, we report the prediction errors of the discovered equations on the three PDE systems.903

Specifically, for the Boussinesq equation and the reaction-diffusion system, we simulate the discovered904

PDE from an initial condition for a certain time period, e.g., t ∈ [0, 20] for the Boussinesq equation905

and t ∈ [0, 10] for the reaction-diffusion system. Then, we compare the numerical solution with the906

ground truth solution from the same initial condition at the end of the time period.907
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Table 6: Samples of discovered equations for the reaction-diffusion system dataset. Each discovered
result contains two equations, since this is an evolution system with two dependent variables u, v.

Method Equation sample

Sparse
regression

PySINDy
{
ut = 0.96u− 0.97u3 + 1.003 − 0.97uv2 + 1.00u2v + 0.09uxx + 0.09uyy

vt = 0.96v − 1.00u3 − 0.97v3 − 1.00uv2 − 0.96u2v + 0.09vxx + 0.09vyy

PySINDy∗
{
ut = 0.21u− 0.24u3 + 1.00v3 − 0.23uv2 + 0.99u2v

vt = 0.21v − 1.01u3 − 0.24v3 − 0.99uv2 − 0.23u2v

SI
{
It = 0.10Ixx + 0.10Iyy + 0.96A− 0.96A2

Et = 0.10Exx + 0.10Eyy − 1.00A2

SI-aligned
{
ut = 0.95u− 0.96u3 + 1.00v3 − 0.96uv2 + 1.00u2v + 0.09uxx + 0.09uyy

vt = 0.95v − 1.00u3 − 0.96v3 − 1.00uv2 − 0.96u2v + 0.09vxx + 0.09vyy

Genetic
programming

PySR
{
ut = 0.92v

vt = −0.92u

SI
{
It = 0.10Ixx + 0.10Iyy +A− 1.00A2

Et = 0.10Exx + 0.10Eyy − 1.00A2

Transformer
E2E

{
ut = 0.89uy

vt = −0.91u

SI
{
It = 0

Et = 0.50 arctan(0.45Ey − 0.31Ey/(−540.12AEy + ...) + ...) + ...
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Figure 6: Prediction error over time using the discovered equations.

In addition to the prediction error at the end of the simulation time, Figure 6 shows the errors at908

each simulation timestep. We do not include methods whose error curves grow too fast due to the909

incorrectly identified equations. The results in Figure 6 are consistent with those in Table 1. Generally,910

the discovered equations with smaller prediction errors at the end of the simulation time also have911

lower prediction errors throughout the entire time interval.912

For Darcy flow (8), since it describes the steady state of a system and does not involve time derivatives,913

we do not simulate the discovered PDEs. Instead, we evaluate each discovered PDE F (x, u(n)) = 0914

on the test dataset {(x, u(n)) : x ∈ Ω} and report the residual as the prediction error. In addition to915

the average error over all the spatial grid points reported in Table 1, we visualize the error heatmaps916

over the grid in Figure 7. It can be observed that the discovered equations with symmetry invariants917

have lower errors across the entire grid.918
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Figure 7: Prediction error of discovered equations from genetic programming methods for Darcy
flow. Left: genetic programming with regular variables. Right: genetic programming with symmetry
invariants.

E Experiment Details919

In this section, we describe the experiment setups required to reproduce the experiments. In terms of920

computational resources, our experiments are conducted with 12 INTEL(R) XEON(R) PLATINUM921

8558 CPUs and should be reproducible within minutes with any modern CPUs.922

E.1 Data generation923

Boussinesq equation The equation is solved using a Fourier pseudospectral method for spatial924

derivatives and a fourth-order Runge-Kutta (RK4) scheme for time integration. The solution is925

computed on a periodic spatial domain [−L,L] with N = 256 grid points. The equation is reformu-926

lated as a first-order system in time by introducing v = ut, and both u and v are evolved in time.927

Spatial derivatives are computed using the Fast Fourier Transform, and time derivatives of u up to928

the fourth order are derived analytically from the governing equation. At each time step, values of u929

are recorded in the dataset for equation discovery. The simulation starts from an initial condition of930

u(x) = 0.5e−x2

and ut = 0 and proceeds up to a final time T = 20 with a time step of ∆t = 0.001.931

Starting from the solution at T = 20, we simulate for another T ′ = 20 with the same configuration932

to obtain a test dataset for evaluating prediction errors of the discovered equations.933

Darcy flow We use the data generation code2 from PDEBench (Takamoto et al., 2022) to generate934

the steady-state solution of Darcy flow over a unit square. The solution is obtained by numerically935

solving a temporal evolution equation936

ut(x, t)−∇(a(x)∇u(x, t)) = f(x),x ∈ (−0.5, 0.5)2, (53)

with a(x) = e−4∥x∥2
2 and f(x) = 1.937

Reaction-diffusion We use the data generation code3 from PySINDy (de Silva et al., 2020; Kap-938

tanoglu et al., 2022). The spatial domain is [−10, 10] × [−10, 10] with 128 grid points in each939

direction. The simulation proceeds up to a final time T = 10 with a time step ∆t = 0.05. We perturb940

the numerical solution by a 0.05% noise and record the values of u, v to the dataset for equation941

discovery. Starting from the solution at T = 10, we simulate for another T ′ = 10 with the same942

configuration to obtain a test dataset for evaluating prediction errors of the discovered equations.943

2https://github.com/pdebench/PDEBench/tree/main/pdebench/data_gen/data_gen_NLE/ReactionDiffusionEq
3https://github.com/dynamicslab/pysindy/blob/master/examples/10_PDEFIND_examples.ipynb
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E.2 Sparse regression944

Boussinesq equation For SINDy with original variables, we fix utt as the LHS of the equation945

and include functions of up to 4th-order derivatives on the RHS. For PySINDy in Table 1, the library946

contains monomials on U (4) with degree in u no larger than 2 and degree in any partial derivative947

terms uα no larger than 1. For example, u2ux is included, but u3, u2
x are not. For PySINDy∗, the948

library contains all monomials on U (4) up to degree 2. For example, u2
x and uux are included. Note949

that the PySINDy∗ library does not contain all functions in the original PySINDy library, e.g., u2ux950

is not included because it has degree 3.951

Our method, SI, uses the invariant set in Example B.6 for sparse regression. Specifically, η(0,2) =952

utt/u
2
x is used as the LHS of the equation, and the rest of the invariants are included in the RHS.953

The function library contains all monomials of these RHS invariants up to degree 2. Also, since the954

invariants contain rational functions with ux on the denominator, we remove the data points with955

small |ux| to avoid numerical issues.956

For all methods, we flatten the data on the spatiotemporal grid and randomly sample 2% of the data957

for each run. The data filtering process in SI-raw is performed after subsampling. The threshold value958

for sequential thresholding is set to 0.25, and the coefficient for L2 regularization is set to 0.05.959

Darcy flow Sparse regression-based methods are not directly applicable to Darcy flow (8) because960

there exist terms such as e−4(x2+y2). While it is still possible to include all necessary terms in the961

function library so that the equation can be written in the linear combination form (4), the knowledge962

of these complicated terms is nontrivial and should not be assumed available before running the963

equation discovery algorithm.964

Reaction-Diffusion For SINDy with original variables, We fix ut and vt as the LHS of the equation965

and include functions of up to 2nd-order spatial derivatives on the RHS. In PySINDy, the library966

contains monomials of u, v up to degree 3 and all spatial derivatives up to order 2. In PySINDy∗, the967

library contains all monomials of u, v and their up to second-order spatial derivatives up to degree 3.968

Our method uses the invariant set {t, x, y, u2 + v2}
⋃
{u · uµ}

⋃
{u⊥ · uµ}, where u = (u, v)T and969

µ is a multiindex of t, x, y. We will denote Iµ = u · uµ and Eµ = u⊥ · uµ. We use It and Et as970

the LHS of the equation, and the rest of the invariants are included in the RHS. The function library971

contains all monomials of these RHS invariants up to degree 2.972

We randomly sample 10% of the data for each run. The threshold value for sequential thresholding is973

set to 0.05. The coefficient for L2 regularization is set to 0 for SINDy with original variables and 0.1974

for our method with symmetry invariants.975

For the experiments with different levels of noise (Section 4.4), we use weak SINDy as the base976

algorithm. The function library is the same as PySINDy as described above. To enforce symmetry,977

instead of directly using the symmetry invariants, we derive a set of linear constraints on the sparse978

regression parameters to adapt to weak SINDy. This procedure is further described in Appendix C.3.979

E.3 Genetic Programming980

In all experiments, to determine if an equation matches the ground truth we first expand the prediction981

into a sum of monomial terms. We then eliminate all terms whose relative coefficient is below 0.01.982

For each term in the filtered expression, we see if it matches any term in the ground truth expression.983

This is done by randomly sampling 100 points from the standard normal distribution and evaluating984

both the prediction and candidate ground truth term on the generated points. Note that we drop the985

coefficients before evaluation. If all evaluations of the predicted term have a relative error of less than986

5% from those of the ground truth, the terms are said to match. If there is a perfect matching between987

the terms in the ground truth and prediction, the prediction is listed as correct.988

Rather than directly returning a single equation, PySR finally produces a hall-of-fame that consists of989

multiple candidate solutions with varying complexities. To finally pick a single prediction, we use a990

selection strategy equivalent to the “best” option from PySR.991
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Boussinesq equation For the Boussinesq equation (7), we first randomly subsample 10000 data-992

points. We configure PySR to use the addition and multiplication operators, to have 127 populations993

of size 27, and to have the default fraction-replaced coefficient of 0.00036.994

When running with ordinary variables, we sequentially try fixing the LHS to each variable in (x, u(4))995

and allow the RHS to be a function of all remaining variables. Similarly, runs using invariants996

sequentially fix the LHS from the set given by Example B.6 and the RHS as a function of all other997

invariants.998

For each iteration count of 5, 10, and 15, we run the algorithm using invariant or ordinary variables999

and report the number of correct predictions out of 100 trials.1000

Darcy flow In the Darcy experiment (8), we eliminate all points that are within 3 pixels from the1001

border and then randomly subsample 10000 datapoints. We configure PySR to use the addition,1002

multiplication, and exponential operators; to have 127 populations of size 64; and to have a fraction-1003

replaced coefficient of 0.1. We further constrain it to disallow nested exponentials (e.g. exp(exp(x)+1004

4).1005

We try all possible ordinary variables in (x, u(2)) for the LHS and the RHS is then a function of the1006

unused variables. Likewise when using invariants, we fix the LHS to each possible invariant specified1007

in Example B.5 and set the RHS as a function of the remaining invariants.1008

For each iteration count of 50, 100, and 200, we run the algorithm using invariant or ordinary variables1009

and report the number of correct predictions out of 100 trials.1010

Reaction-Diffusion For the Reaction Diffusion equation (9), we remove all points that are within 31011

pixels from the border or have timestamp greater than or equal to 40, and then randomly subsample1012

10000 datapoints. We configure PySR to use the addition and multiplication operators, to have 1271013

populations of size 64, and to have a fraction-replaced coefficient of 0.5.1014

In the ordinary variable case, we fix the LHS as either utt or vtt and allow the RHS to be a function1015

of all other variables in (x, u(2)). When using invariants, the LHS is fixed to be either It or Et and1016

the RHS is then a function of all remaining invariants.1017

For each iteration count of 100, 200, and 400, we run the algorithm using regular and ordinary1018

variables and report the number of correct predictions out of 100 trials.1019

E.4 Symbolic Transformer1020

We use the pretrained symbolic transformer model provided in the official codebase4 from Kamienny1021

et al. (2022). The transformer-based symbolic regressor is initialized with 200 maximal input points1022

and 100 expression trees to refine. The variable sets used in the symbolic transformer are the same as1023

those described in the genetic programming experiments, except for the Boussinesq equation, where1024

we remove all mixed derivative terms in both the original variable set and the symmetry invariant set.1025

We find that the symbolic transformer can sometimes discover the correct equation under this further1026

simplified setup, but fails when using the larger variable sets.1027

We also fix the LHS of the function and use the remaining variables as RHS features. For the1028

Boussinesq equation, the LHS is fixed to utt for original variables and η(0,2) for symmetry invariants.1029

For the Darcy flow, the LHS is fixed to uxx for original variables and ∆u for symmetry invariants.1030

For the reaction-diffusion system, the LHS is fixed to ut, vt for original variables and It, Et for1031

symmetry invariants.1032

E.5 Hypothesis Spaces of Equation Discovery Algorithms1033

Table 7 and Table 8 describe the hypothesis spaces of different equation discovery algorithms when1034

applied to the Boussinesq equation and the reaction-diffusion system.1035

4https://github.com/facebookresearch/symbolicregression/blob/main/Example.ipynb
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Table 7: Hypothesis spaces of different equation discovery algorithms for the Boussinesq equation.
Method Hypothesis space

Sparse
Regression

PySINDy utt = Wθ(u(4)), {θj} = {ab : a ∈ Mono≤2(U), b ∈ {1, ux, ..., uxxxx}}
PySINDy∗ utt = P (u(4)) ∈ Poly≤2(U

(4))
SI η(0,2) = P (η) ∈ Poly≤2({η(α,β)}\{η(0,2)})

Genetic
Programming

PySR zj = f(z−j) for z = (x, u(4)) and some j
SI η(α0,β0) = f(η−(α0,β0)) for η = {η(α,β) : α+ β ≤ 4} and some (α0, β0)

Table 8: Hypothesis spaces of different equation discovery algorithms for 2D reaction-diffusion.
u(n) ∈ U (n) denotes the collection of all up to nth order spatial derivatives. α = [α1, α2] is the
multiindex for spatial variables. x = (x, y, t). A = u2 + v2.

Method Hypothesis space

Sparse
Regression

PySINDy ut = Wθ(u(2)), {θj} = Mono≤3(U)
⋃
{uα : |α| ≤ 2}

PySINDy∗ ut = P (u(2)) ∈ Poly≤3(U
(2))

SI [It, Et]
T = P ∈ Poly≤2(A,x, Iα, Eα; |α| ≤ 2)

SI-aligned ut = Wθ(u(2)),W jk = Qijkβi for some precomputed Q

Genetic
Programming

PySR ut = f(x,u(2))
SI [It, Et]

T = f(A,x, Iα, Eα; |α| ≤ 2)

F Broader Impacts1036

The method in this paper can potentially be used to expedite the process of discovering governing1037

equations from data and aid researchers in other scientific domains. Equally important, equations in-1038

ferred from imperfect or biased data may appear authoritative yet embed systematic errors. Thorough1039

validation checks, uncertainty quantification, and domain-expert review protocols for the discovered1040

equations are essential.1041
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