Under review as a conference paper at ICLR 2025

GRAPHPROP: TRAINING THE GRAPH FOUNDATION
MODELS USING GRAPH PROPERTIES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we focus on training Graph Foundation Models (GFMs) for graph-
level tasks like protein classification. Effective GFM training requires capturing
information consistent across different domains. We have discovered that graph
structures provide more consistent cross-domain information compared to node
features and graph labels. However, traditional in-context learning methods pri-
marily focus on transferring node features from various domains into a unified rep-
resentation space but often lack structural cross-domain generalization. To address
this, we introduce a method called GraphProp, which emphasizes structural gener-
alization. The GraphProp training process consists of two main phases: initially,
it trains a structural GFM through the supervised prediction of graph structural
properties. It then uses the structural representation from this GFM as positional
encoding to train a comprehensive GFM. This phase of training utilizes in-context
learning with domain-specific node features and graph labels to improve cross-
domain node feature generalization. Additionally, employing data augmentation
in training the structural GFM helps address the scarcity of labeled graph data and
facilitates explicit cross-domain structural generalization. Our experimental re-
sults demonstrate that GraphProp significantly outperforms traditional in-context
learning methods, especially in handling graphs without node features.

1 INTRODUCTION

Graph Foundation Models (GFMs) are gaining more and more attention in research related to graph
data, as they aim to leverage diverse data to improve effectiveness across various tasks and domains.
Recent advancements (Galkin et al.|[2023;Zheng et al.|[2023)) demonstrate that GFMs can generalize
well to new, unseen graphs. These models are typically classified into three types based on their
adaptability: domain-specific, task-specific, and primitive (Mao et al.). Domain-specific GFMs are
designed to learn universal features within a particular domain, allowing a single model to efficiently
handle multiple tasks, often outperforming specialized models. Examples include Mole-BERT (Xia
et al., [2023)), DPA-2 (Zhang et al., [2023)), and DiG (Zheng et al.| 2023), which are developed to
handle multiple molecular tasks within the chemical domain. Task-specific GFMs are trained on
rich data sources to perform specific tasks, making them suitable for fields with less abundant data.
For example, ULTRAQUERY (Galkin et al.,[2024)) and ULTRA (Galkin et al.,|2023)) are designed for
knowledge graph reasoning and can be trained on extensive data sources like Wikipedia, enabling
their application in less data-rich domains. Similarly, GraphFM (Lachi et al., |2024), GraphAny
(Zhao et al.| [2024), and GRAPHTEXT (Zhao et al., [2023b)) are trained for node classification tasks
using graphs from various domains, including chemical and social networks. Primitive GFMs are
more versatile but limited in the range of datasets and tasks they can handle. For instance, UniAug
(Tang et al., [2024b), a universal graph structure augmentor based on a diffusion model, captures
diverse graph data patterns and can be used to adaptively assist downstream tasks.

The main challenge in developing GFMs is capturing consistent information from graph data that
varies across different domains (Galkin et al., 2023). For instance, in molecular data (Yang et al.,
2016), graph structures represent 3-D spatial relationships and atomic bonds, while node features
capture chemical properties. In social networks (Dwivedi et al., [2023)), structures represent user
connections, and node features reflect user attributes. Due to these differing distributions, it is
challenging for a single model to learn unified representations across domains. Traditionally, one
approach is to convert graph structures and node features into text and leverage large language mod-
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els (LLMs) to create unified representations for graphs from different domains. Although no direct
method currently exists for learning unified graph structure representations, existing graph reasoning
LLMs can be adapted for this purpose. For example, GraphQA (Fatemui et al.,|2023) describes graph
connectivity in text and then poses graph reasoning questions to LLMs. By incorporating domain
descriptions into these prompts, GraphQA can be adapted to learn unified representations of graph
structures, effectively functioning as a structural GFM. Similarly, other graph reasoning LLMs,
like NLGraph (Wang et al., 2024)), which focuses on tasks such as shortest paths and connectivity
by converting graphs into text, can also be used to learn unified graph structure representations. For
learning unified node feature representations, the One For All (OFA) method proposed by (Liu et al.,
2023a)) employs text-attributed graphs (TAGs) to consolidate graph datasets from various domains
into a single, large TAG dataset, and then utilizes LLMs to learn unified node feature representa-
tions across all domains jointly. However, these methods have limitations. Graph reasoning GFMs
primarily focus on reasoning abilities rather than comprehensive structural representations, and in-
context GFMs may struggle with structural generalization, especially when dealing with graph data
lacking node features.

To improve GFMs, we aim to capture information that remains consistent across different domains.
We have observed that the structure of graphs contains invariant information (properties depending
on the abstract structure only) that is shared across domains. For example, whether dealing with
molecular data or social networks, their abstract graph structures exhibit common properties like the
fractional chromatic number (Scheinerman & Ullmanl [2013)) and Lovasz number (Lovasz, |1979),
even if their specific values differ. On the other hand, node features and graph labels are highly
domain-specific and lack this cross-domain consistency. For instance, node features in molecular
data describe chemical properties, while in social networks, they represent user attributes, without
overlap between them. Similarly, graph labels, such as the class of a molecule or the type of social
community, are tied to domain-specific knowledge, making them unique to each domain.

Given these distinctions, we introduce GraphProp, a GFM training method that separates the use of
structural information from domain-specific node features and graph labels. GraphProp begins by
training a cross-domain structural GFM through the prediction of graph properties in a supervised
manner. To achieve comprehensive cross-domain structural representations, GraphProp incorporates
a wide range of graph properties, including novel ones like the fractional chromatic number. This
approach enables explicit unified graph structure learning through graph data augmentation, extend-
ing traditional methods like G-Mixup (Han et al.,2022) for cross-domain GFM training. GraphProp
also addresses the scarcity of graph data by leveraging unlabeled and synthetic graphs, ensuring
sufficient data for effective GFM training. After training the structural GFM, we use its structural
representation as positional encoding to train a comprehensive GFM. This training phase employs
in-context learning with domain-specific node features and graph labels to enhance cross-domain
node feature generalization. Overall, the GraphProp framework achieves both structural and node
feature generalization across domains.

Our contributions are as follows:

* We introduce GraphProp, a GFM training method that first trains a structural GFM by
predicting graph properties. Then, it uses these structural representations to train a com-
prehensive GFM through in-context learning with domain-specific features and labels.

* To the best of our knowledge, GraphProp is the first GFM that achieves both structural and
node feature generalization across domains for graph-level tasks. Many existing GFMs
merely use in-context learning with text-attributed graphs, lacking structural generalization.

* We bridge the use of graph theory in GFM training through graph property prediction. This
approach addresses the scarcity of labeled data by effectively utilizing unlabeled and even
synthetic graphs for scalable GFM training.

2 PRELIMINARY

2.1 NOTATIONS

In this work, we use z, x, X, and X to denote a scalar, vector, matrix, and set, respectively. We
define [n] = {1,2,...,n}. Let G = (V, E) be a graph with n nodes and node features {x, €
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R? | v € V}. We denote the adjacency matrix as A € {0,1}"*", the node features matrix as
X = [x1,...,%,]" € R"*? and the graph label as 3. Let G := {G™), ..., G(*)} be the graph
datasets from M different domains and denote G("™) € G(™) a graph from the m-th domain, with
adjacency matrix A ("), node feature matrix X (™), and graph label (") . For simplicity and without
loss of generality, we assume all graphs have the same number of nodes n, all domains have N
graphs, and all domains have the same feature dimension d. The actual values will be specified in
our experiments.

2.2  GRAPH PROPERTIES

In graph theory, a graph property, or invariant, depends solely on the structure of graph, not on its
representation or labeling. Given a graph G, a function a : A — R maps the adjacency matrix A to
a real number, representing a specific graph property p. In our study, we consider K different graph
properties to form a property vector p, where each property py is computed by a known algorithm
ai(A). This can be expressed as:

p=a(A), where p=[pi,...,px]" and p; = ai(A). (D

Because the scales of graph properties can vary, we normalize each property pj to ensure each is
equally important in the vector p. With a dataset of N graphs, the k-th property of the i-th graph is
D}, We normalize py, as follows:

i —

N N
_ pk — Pk _ 1 i - 1 i _\2
Py = p— where Py, = N ;pk, and oy = N ;(pk — Pr) 2

Some graph properties require NP-hard algorithms to compute, such as the independent number
Biggs| (1993) and clique number (Aigner} [1995) in Table [5] and Table [6} Others can be computed
using polynomial-time algorithms, like the fractional chromatic number (Scheinerman & Ullman,
2013)) and Lovasz number (Lovasz, [1979) in Table[z_f} We will provide detailed descriptions of these
properties, particularly those computable in polynomial time, in the Appendix [B.T]

2.3 TRANSFORMER

The transformer model (Vaswani, 2017) consists of a self-attention mechanism and a feed-forward
network (FFN). Let H = [hy,...,h,]" € R"*9 represent the matrix of hidden states, where each
h; is the hidden state at position <. This matrix is projected into three matrices: queries Q, keys K,
and values V, using the projection matrices W € R¥*4e Wy € R¥*x and Wy € R9Xdv,
respectively, i.e., Q = HWg, K = HWg, V = HWy. The self-attention mechanism is then
computed as:

KT
attn(H) = softmax <Q > V. 3)
Vi
The transformer updates the input through the following function:
T(H) = Norm(H + FFN(H)), where H = Norm(H + attn(H)). “4)

2.4 GRAPH TRANSFORMER

Graph transformers extend traditional transformers by integrating graph structural information
through positional encodings (Black et al., [2024). Let B = [by,...,b,]" € R"*9 represent the
positional encoding matrix, where each b, € R is the positional encoding for node i. The function
¢ : R™*" — R™*4 computes B = ¢(A). To enhance node features, the positional encodings can
be either concatenated with or added to the original features, i.e.,

Concatenate: %X; =x; ®b;, or Add: %X;=x;+b;, Vi€ |n 5)
The graph transformer then uses the augmented feature matrix X = [X1,...,%,] " as the input of
the transformer 7'(+). A variant using relative positional encodings is discussed in the Appendix

Definition 2.1 (Invertible Positional Encoding). A positional encoding matrix B is invertible if there
exists a mapping ¢! such that A = ¢~ 1(B).
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2.5 IN-CONTEXT LEARNING

In-context learning is a widely used method for creating unified graph representations across dif-
ferent domains. It works by describing graph structures or node features in text, incorporating
domain-specific details, and using a LLM to generate these unified representations. This technique
has been applied to both graph structures and node features.

Text-Structure Graphs (TSG) Building on GraphQA |Fatemi et al.| (2023)), we introduce TSG
to represent the adjacency matrix A of graph G using descriptive text prompts. For example:

Type: TSG; Domain: Molecular; Number of Nodes: 10; Overall Properties: Fiedler value = 0.85;
Lovész number = 1.67; Connectivity:

¢ Node 1: Connected to nodes 2 and 3;
¢ Node 2: Connected to nodes 6 and 8; ...

Text-Attributed Graphs (TAG) Building on OFA (Liu et al., [2023a)), we introduce TAG to rep-
resent the node feature matrix X of graph G using descriptive text prompts. For example:

Type: TAG; Domain: Molecular; Number of Nodes: 10; Overall Chemical Features: Polar,
Aromatic, Hydrophobic regions; Node Features:

* Node 1: Atom: Carbon, sp3 hybridization, helix chirality, ... ;
* Node 2: Atom: Oxygen, involved in a hydrogen bond, ...; ...

Learning Unified Representations Consider a graph G(™) from domain m. We define its unified
graph structure representation as ¢(™ and its unified node feature representation matrix as E(™).
These unified representations are generated by a LLM as follows:

c(™ = LLM(TSG of G'™)) and E™) = LLM(TAG of G(™). (6)
Since E(") = [e(lm), ey e%m)]—r represents the node-level features, we can compute the graph-level
representation as the average of all node features: &(™) = % Yo egm). Research in in-context

learning (Fatemi et al., 2023} [Liu et al., 2023a) suggests that these unified representations, even
from different domains, share common representation spaces.

3 GRAPHPROP METHODS

In this section, we present the GraphProp method, covering its motivation, the structural GFM train-
ing and the comprehensive GFM training.

3.1 MOTIVATIONS

Our goal is to train GFMs that effectively learn across different domains by capturing consistent in-
formation shared among them. This raises the question: How much cross-domain consistent infor-
mation do graph structures and node features contain, respectively? We intuitively believe that
graph structures hold more cross-domain consistent information than node features. For example,
both molecular data and social networks share common graph properties like the Lovadsz number,
even if the specific values differ. In contrast, node features are highly domain-specific—molecular
data features describe chemical properties, while social network features relate to user attributes,
with little overlap between them.

To quantify this, we used in-context learning (Section [2.5)) to obtain graph structure representations

C(7rz)

. and average node feature representations éz(-m) for each graph G Em). In-context learning ensures

that all graph structure representations are sampled from the same distribution, cl(.m) ~ D, and

similarly, &\

.~ ~ D.. We normalized these distributions to have zero means, i.e., E(c(m)) = 0 and

i
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Figure 1: In-domain and cross-domain correlation coefficients of the representations given by in-
context learning on eight graph datasets.

]E(égm)) = 0. The correlation coefficient between any two representations is defined as:

(m1) (m2) _(m1) =(m2)
(m) (ma)y _ (€ ) _(my) (ma)y (& € )
plei™ ) =~ T P& &) =
llez™Mllle; ™|l e e
When m; = msy, these measure in-domain correlations; when m; # meo, these measure cross-
domain correlations. We compiled the representations into matrices C = [cgl), e ,CE\J,M)]T €
RMNxd and E = [elV,...,e{"]T € RMNxd_ The correlation coefficient matrices cor(C) €

[—1, JMNXMN and cor(E) € [—1, 1]MN*MN capture the pairwise correlations of rows in C and
E. Visualizations given by Figure|l{show in-domain correlations on the diagonal blocks and cross-
domain correlations on the off-diagonal blocks. We observed that the cross-domain correlation of
C is higher than that of E, indicating that graph structures contain more cross-domain consistent
information than node features. Furthermore, the low cross-domain correlation of E suggests that
node features have little cross-domain consistent information. These results confirm our intuition
and match real-world observations, reinforcing the importance of focusing on graph structures in
GFM training.

To address this, we first trains a structural GFM by predicting graph properties. Then, we uses these
structural representations to train a comprehensive GFM through in-context learning with domain-
specific features and labels. The detailed steps are outlined as follows.

3.2 TRAINING A STRUCTURAL GFM

Training We begin by calculating a ground truth graph properties vector p using established graph
theory algorithms (see Section[2.2). The goal is to train a structural GFM to predict this vector. Let
B ¢ R"*9 be the positional encoding matrix, computed as B = ¢(A). The structural GFM, denoted
as f(-;©), is implemented using graph transformers with parameters ©. Since node features X are
not used during training, we feed the positional encoding matrix B directly into f(-; ©), which
generates a structural representation Z € R™*?, The graph properties are then predicted using a
regressor o(+; ¥), with parameters U:

Po,v = ¢(Ze; V), where Ze = f(B;0). ®)

We denote {prop (-, -) the graph property regression loss. During the training process, we optimize
the parameters © and W by solving the minimization problem presented below:

C"‘)*’ P* — argmin ﬂprop(f)@,\lh p) (9)
o,V

)

where Cpop(Po,w, P) = |[Po,w — p||* for example.
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Figure 2: Framework of GraphProp

It is essential that the positional encoding matrix B used for graph property prediction must be
invertible (see Definition 2.1)). Invertibility ensures that graph properties can be accurately predicted
as p = a(¢~1(B)). If B is not invertible, it may fail to capture all the necessary information
from A, leading to inaccurate predictions. For example, spectral embedding is a common positional
encoding in graph transformers. Let D = diag(3_; A;;) be the degree matrix and L = D —

A the Laplacian matrix, with singular value decomposition L. = UAUT. The eigenvectors U
corresponding to the top-k eigenvalues are often used as the positional encodings. However, this
specrtal embedding is not invertible because A cannot be reconstructed from U. Therefore, spectral
embedding is not effective for property prediction. In contrast, the positional encoding B = UA!/2
is invertible and can be used for effective property prediction.

Data Augmentation Given two graphs G("1) and G("™2) with adjacency matrices A (™) and
A(m2) we can create a cross-domain augmented graph G with an adjacency matrix A using a
mixup technique: A= mixup(A (1) A(m2)) (see Section E We then compute its graph prop-
erties and incorporate them into the GFM training process, enhancing the model’s ability to learn
cross-domain invariant structural information within our GraphProp framework. Traditional data
augmentation methods, like G-Mixup (Han et al., 2022)), are effective when the graphs come from
the same domain, requiring the creation of a soft label ¢ (as in equation for training. However,
this approach fails when combining graphs from different domains, as mixing labels from unrelated
domains doesn’t make sense.

To extend structural GFM training to handle graphs from unseen domains beyond the M domains
in the training dataset, we can randomly generate adjacency matrices and use them for property
prediction. Previous methods couldn’t utilize synthetic graphs due to the absence of labels and task
context. However, our property prediction approach allows us to include these synthetic graphs in
the training process, further strengthening the structural learning capabilities of GFMs.

3.3 TRAINING A COMPREHENSIVE GFM

In this section, we train a comprehensive GFM using in-context learning (see Section [2.5). Given
the trained structural GFM f with parameters ©*, we compute the positional encoding B for each
graph G to obtain the structural representation Z:

Z = f(B;0") where B =¢(A). (10)
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Let E = [es,...,e,]  be the unified node features obtained from equation @ We can create an
augmented feature matrix X by combining the unified node features e; with the corresponding
structural representation z;:

Next, we train the comprehensive GFM F'(-; ®) with trainable parameters ® by minimizing the
cross-entropy loss £ for classification:

®* = argminl. (§o,y), where Jo = F(X, D). (12)
®

3.4 ADVANTAGES

* Structural and Node Feature Cross-Domain Generalization: To the best of our knowl-
edge, GraphProp is the first GFM that achieves both structural and node feature generaliza-
tion across domains, designed for graph-level tasks. It learns unified structural represen-
tations Z through property prediction and unified node features via in-context learning on
TAG, enabling it to handle various graph types, including those without node features.
Many existing GFMs prioritize node feature generalization through in-context learning but
often overlook structural generalization. For instance, OFA (Liu et al.l [2023a) performs
well with node features but struggles with graphs that lack them. Models like GraphQA
Fatemi et al.| (2023)) try to achieve structural generalization by reasoning with TSGs and
posing simple questions to LLMs, yet they mainly focus on enhancing reasoning rather than
developing comprehensive structural representations. Converting complex graph structures
into text can result in the loss of essential information about the graph’s overall proper-
ties. In contrast, our structural GFM directly regresses graph properties without relying
on TSGs, enabling effective cross-domain structural generalization, as these properties are
topological characteristics present across various domains.

* Bridging GFMs and Graph Theory: GraphProp is a self-learning method that leverages
a wide array of graph properties from graph theory, enabling the structural GFM to learn
comprehensive representations Z. Beyond graph-level properties, this method can also pre-
dict node-level properties (e.g., degree and centrality in Table [8) and node-pair properties
(e.g., shortest path (Schrijver} 2012))). More details are available in Appendix@

* Addressing Data Scarcity: Training foundation models usually requires large amounts of
labeled data, which can be hard to find. In contrast, unlabeled data is much more plenti-
ful. Similar to how LLMs like GPT (Radford, 2018) are pre-trained on unlabeled data by
predicting the next word in a sequence, GraphProp uses unlabeled graph data for training
structural GFMs through property prediction. Additionally, for large structural GFMs, data
augmentation can create synthetic graphs to support scalable GFM training.

3.5 LIMITATIONS

* Limited Scalability for Large Node-Level Tasks: GraphProp is primarily designed for
graph-level tasks and may struggle with large-scale node-level tasks, such as those involv-
ing graphs with many nodes (e.g., ogbn-arxiv (Wang et al., 2020)). Some graph property
computations have polynomial complexity, while others are NP-hard, making them ineffi-
cient for very large graphs.

* Graph Property Requirements: Certain graph properties, like graph diameter, apply only
to specific types of graphs, such as connected graphs. This means that graphs must be
checked before certain properties can be used.

* Addressing Domain-Specific Node Features: While GraphProp can generate synthetic
graphs to alleviate the scarcity of structural data, it does not address the lack of domain-
specific node features, which requires specialized knowledge.

4 RELATED WORKS

Due to limited space, we have included graph properties, GFMs, graph transformers, graph reason-
ing methods, data augmentation and other graph theory benchmarks in the Appendix
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5 EXPERIMENTS

In this section, we evaluate the cross-domain generalization of GraphProp in supervised learning
and few-shot learning.

5.1 EXPERIMENT SETTINGS

Graph Properties: All the graph properties

introduced in Appendix [B.T] can be used in Table 1: Statistics of Datasets
GraphProp. To simplify implementation, we
selected fifteen properties with polynomial- Name #of #of #of node
time complexity, as listed in Table 4] graphs | classes | nodes | attributes
o ) PROTEINS | 1113 2 39.1 yes
Dataset: We divided the dataset into two NCI1 4110 2 299 yes
groups based on whether they have node fea- AIDS 2000 2 15.69 yes
tures. The first group G; includes datasets HIV 41127 ) 255 yes
with node features: PROTEINS, NCI1, AIDS, PCBA 437929 128 26.0 )
. . yes
HIV, and PCBA. The second group G5 includes COLLAB 5000 3 24,49 o
datasets without node features: COLLAB, IMDB.B 1000 2 | 9' g
IMDB-B, DD, REDDIT-B, and REDDIT-M5K. b o S e I
HIV, and PCBA are from the OGB dataset [Hu '8 84321 o
et al| (2020) and other from TUDataset [Morris REDDIT-B 2000 2 | 42963 no

Baselines: Many GFMs for graph-level tasks are tailored to specific domains and are not suitable as
baselines for cross-domain graph tasks. For instance, models like LLM4Mol (Qian et al., 2023) and
GIMLET (Zhao et al.,|2023a) are designed specifically for the molecular domain. Thus, we choose
to use OFA with different LLMs as our baseline. Additionally, we included GNNs for comparison,
such as a 5-layer GCN and a 3-layer Graph Transformer. Following OFA (Liu et al.| [2023a), we
selected three popular LLMs for both GraphProp and OFA: Sentence Transformer (st) (Reimers)}
2019), e5-large-v2 (e5) (Wang et al., [2022), and Llama2-7b(Touvron et al., 2023|).

Structure: Both the structural GFM f(-; ©) and the comprehensive GFM F(-; @) are 3-layer graph
transformers. The properties regressor o(-; ¥) is implemented with a 1-layer graph transformer
followed by a 3-layer DNN. The structural representation Z has a dimension of 128, and the unified
node representations E from the LLM in equation EI are also 128, making the augmented feature X
have a total dimension of 256.

5.2 CROSS-DOMAIN SUPERVISED LEARNING

We ran experiments on supervised learning using all datasets from G; and Gy, training GFMs sep-
arately for each group. Each experiment used 10-fold cross-validation, with 80% for training, 10%
for validation, and 10% for testing. The results are presented in Tables 2]and 3} To visualize over-
all performance, we plotted the average results for each group in subfigure (a) of Figure[3] In G,
(datasets with node features), GraphProp slightly outperforms OFA. In G+ (datasets without node
features), GraphProp performs significantly better than OFA. This difference arises because OFA’s
in-context learning for a graph G is defined as follows:

§=GNN(A,E), where E =LLM(TAG of G). (13)

OFA’s generalization depends on LLMs processing the TAG of G. In the case of Gy, where node
features are missing, there is no detailed TAG available. Instead, it only uses basic node features,
such as degrees, which limits its generalization capabilities and reduces it to a basic GNN. In con-
trast, GraphProp’s generalization benefits from both in-context learning and the structural GFM f.
This enables GraphProp to capture cross-domain information from both node features and graph
structure, making it applicable to graph datasets that lack node features.

5.3 CROSS-DOMAIN FEW-SHOT LEARNING

We conducted few-shot and zero-shot experiments using datasets from G; and Gs, training GFMs
separately for each group. In the transfer scenario, both the test graphs and classes are unseen during
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Table 2: Results of supervised learning on data group G;. The largest value is bold.

Data PROTEINS NCIT AIDS HIV PCBA

Metric ACC 1T ACCT APR?T AUCT APR?T

GCN .66 £ 1. STET. A5ETL . . .53+£0.
GT 75.73 £1.14 76.39 £1.52 58.64+1.57 75.86£1.09 23.15+0.55
OFA-st 78.61 £2.35 7995 £ 1.67 61.91£1.96 78.04E£1.26 21.86+0.73
OFA-e5 80.24 £1.08 81.77 £0.92 58.2440.75 76.22+1.93 24.11+£0.48
OFA-llama2 79.66 == 1.42 80.07 £ 1.35 60.03+1.17 77.52£1.88 22.3530.62

GraphProp-st J2 £ 1. 79 £ 1. .64L1. . . .07X0.
GraphProp-e5 | 82.63 £1.25 8343 £2.06 64.07+0.93 78.17+1.34 22.65+0.73
GraphProp-llama2 | 81.45 +1.60 81.15 £ 1.30 63.19+1.38 78.54+1.42 24.65+0.61

Table 3: Results of supervised learning on data group Go. The largest value is bold.

Data COLLAB IMDB-B DD REDDIT-B  REDDIT-M5K
Metric ACC 1 ACCt ACCt ACCt ACCT
GCN 7252 £ 1.47 7639 £ 147 75.62 £ 1. 7745 £ 1. 24 £ 1.
GT 74.86 +2.35 77.13 +£1.32 7455+ 1.31 7852+ 1.14 52.69 +1.75
OFA-st 7424 £ 1. 7592 £ 1. T71.34 £ 1. 03 £ 1. 28+ 1.
OFA-e5 76.25 +1.09 78.19 +1.33 76.65 +1.23 79.62 + 1.17 55.17 £1.59
OFA-llama2 7544 +1.37 77.69 +1.25 7546 +1.80 7823 +1.35 5426+ 1.13
GraphProp-st 7927 £ 1.14 8512 £ 1.31 81.43 £ 1.25 82.69 £ 1.52 58.67 £ 1.22
GraphProp-e5 81.35+1.32 82.78 +1.85 82.31 +1.41 85.32 +1.17 59.36 + 1.27
GraphProp-llama?2 | 82.64 + 1.58 83.42 +1.70 80.25 £+ 1.38 84.38 +1.26 60.93 + 1.45
Y | mm NN
S | m—OFA g = OFA g~
€ | == GraphProp S = GraphProp | G mm GraphProp
£ . 3
S Lo g
o @ "
[} a = a .,
<) o ®
© oY) o,
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(a) Supervised Learning (b) Few-shot Learning on G (c) Few-shot Learning on G2

Figure 3: Average Performance of Supervised and Few-shot Learning on Groups G; and Gs.

training. For example, in the k-shot experiment with the PROTEIN dataset from G1, we trained the
model on the other four datasets in this group and then tuned it using k& samples from each class in
PROTEIN. We repeated this process 10 times and reported the results for G, in Tables [I0] and [9]
and for G in Tables[TT|and[T2] The average results across all datasets are presented in Figure 3] (b)
and (c). Both GraphProp and OFA perform well on G;, but GraphProp significantly outperforms
OFA on Gs. This highlights the key contribution of our paper: GraphProp achieves both node
feature and structural cross-domain generalization, while previous in-context learning methods
primarily focus on node feature generalization and may struggle with datasets lacking node features.

5.4 ADDITIONAL EXPERIMENTS IN THE APPENDIX

Additional experiment results are provided in the Appendix. Appendix [C.2) compares the structural
GFM f with other unsupervised methods like InfoGraph [Sun et al (2019). Appendix [C.3|explores
cross-domain and random data augmentation to improve GFM f on unseen datasets. Finally, Ap-
pendix [C.4] presents an ablation study analyzing the contributions of each part of GraphProp.

6 CONCLUSION

This paper introduces a new method called GraphProp for training GFMs by predicting graph prop-
erties. The idea comes from the observation that graph structures share common properties across
different domains, offering more consistent cross-domain information than domain-specific node
features. By training a structural GFM, we can improve the structural generalization of other GFMs.
Finally, we combine the structural GFM with widely used in-context GFMs to achieve better gener-
alization in both graph structure and node features.
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A APPENDIX

You may include other additional sections here.

B RELATED WORKS
This section outlines related works relevant to our study.

B.1 INTRODUCE TO GRAPH PROPERTIES

We discuss the range of graph properties utilized in our GraphProp method. These properties are
detailed in several tables:

* Polynomial computation complexity properties in Table 4]

* NP-hard computation complexity properties in Table 5] and Table [6]
* Node-level properties in Table|[7}

* Node pairwise properties in Table 8]

These properties encompass a broad spectrum of graph theory areas, including mathematics, com-
binatorics, topology, molecular geometry, and computational biochemistry. Our GraphProp method
integrates these properties into GFM training, bridging the gap between GFMs and graph theory.
Beyond predicting graph properties as discussed in the main paper, we extend GraphProp to train
GFMs using both node-level and node pairwise properties. Node-level properties, such as degree or
centrality, are represented as vectors q = [q1, ..., ¢n] € R™, where g; denotes the property of node i.
These properties are predicted using a node-level regressor:

(Al®,\11 = @node(ZG); \11)7 where Z@ = f(B, @) (14)

Similarly, node pairwise properties such as connectivity or shortest path between nodes ¢ and j are
represented by Q, and are predicted using:

Q@,\I/ = @node-pair(Z@); \I’), where Zg = f(Ba 6) (15)

These diverse and extensive graph theory properties allow GraphProp to learn comprehensive unified
graph representations, denoted as Z. Since most graph properties can be incorporated into Graph-
Prop, our approach is fundamental and versatile. In experiments, to ensure manageable computation
times, we primarily focus on the fifteen polynomial-time computable graph properties listed in Table

4

B.2 GRAPH FOUNDATION MODELS (GFMS)

In the introduction, we categorized GFMs into three types: domain-specific, task-specific, and prim-
itive, providing examples of each (Mao et al.). This section takes a different angle by focusing on
GFMs based on LLMs|Li et al.| (2023b). These can be further classified into two categories depend-
ing on their interaction with LLMs: using LLLMs as encoders or predictors. Finally, we touch upon
in-context learning, which intersects with the LLM-based GFMs discussion.

LLMs as Encoders In Text-Attributed Graphs (TAG) of G(™), let E(™) e R™*? represent the
unified node feature matrix and H € R"* the hidden graph representation for downstream tasks.
The role of LLMs as encoders in GFMs can be summarized with:

H =GNN(A™ E(™) and E(™) = LLM(TAG of G'™). (16)

For instance, GIANT |Chien et al.| (2021)) enhances a language model with XR-Transformers for
multi-label classification and link prediction. SimTeG Duan et al.|(2023)) and TouchUp-G|Zhu et al.
(2024) use link prediction methods to refine language models for better structural recognition, with
TouchUp-G employing negative sampling and SimTeG using efficient tuning. G-Prompt Huang
et al.|(2023) adds a graph adapter to language models for node-specific feature extraction, using task-
specific prompts for different applications. WalkLLM (Tan et al.|(2024) creates textual sequences from
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Table 4: Graph Properties with Polynomial Complexity Computation. Note that it is possible to
reduces some of these complexities using techniques such as truncated SVD.

Name Notation Reference Description Complexity
. Number of edges
Size m - in graph G O(1)
Number of vertices
Order n - in graph G O(1)
Fiedler ) Fiedler|(1973) Second—small_est elgeqvalue )
value of Laplacian matrix
Diameter d Bouttier et al.|(2003) Max eccentricity O(nm)
of any vertex
Eisntéiia EE(G) Estrada|(2000) Measure of protein folding O(n?)
Fractional e
chromatic X¢(G) |[Scheinerman & Ullman|(2013) Smallest' k with distribution depends on G
over independent sets
number
Hyper-Wiener — 7 Topological index 3
index WW(G) Randic|(1993) based on distances O(n*)
Lovasz 9(G) Lovasz|(1979) Upper boqnd on Shannon O(n?)
number capacity of graph
Parry—Sullivan . ] | Quantity of incidence matrices, 3
invariant PS(G) Parry & Sulllvani(l975) PS(G) = det(I — A) O(n?)
Radius r Bouttier et al.|(2003) Min eccentricity O(nm)
of any vertex
~ 2 ~ T
Randi¢ - Randic|(1975} Sum of 1/(dsd;) O(m)
index for vertices ¢ and j
Rank - - Rank of adjacency matrix O(n?)
Splittance a(G) Hammer & Simeone|(1981) Measure of'dlstance depends on G
from a split graph
Strength - Cunningham|(1985) Min ratio of edges removed depends on G
to components created
Wiener : Sum of shortest paths 3
index ) Rouvray|(2002) between all vertex pairs o)

random graph walks and refines a language model to extract useful data representations. METERN
Jin et al.| (2023)) incorporates special tokens to highlight relationship-specific features using a single
encoder for shared traits across relationships. LEADING Xue et al.|(2023)) optimizes the refinement
of language models to transfer risk knowledge to graph neural networks with lower computational
demands and memory use.

Moreover, some studies explain the node features EM™) generated by LLMs. TAPE |He et al.[(2023),
for example, prompts LLMs to provide explanations and pseudo labels, enriching the textual data for
subsequent fine-tuning of smaller language models into initial node embeddings. (Chen et al.|(2024)
utilize LLMs in graph learning by generating knowledge entities and textual descriptions, which are
then processed by PLMs and sentence embedding models. LLM4Mol |Qian et al.[ (2023) employs
LLMs for molecular property predictions, generating comprehensive molecular descriptions for fur-
ther refinement. LLMRec |Wei et al.| (2024)) leverages LLMs to address data scarcity and quality
issues in recommendation systems, enhancing interactions and generating additional information
for users and items.

LLMs as Predictors LLMs can serve as predictors by translating graph structures into text se-
quences for direct processing. The flatten-based prediction process first transforms the graph into
a sequence of nodes or tokens, h, using the function Flat(-). Then, it extracts the predicted label
through a parsing function, Parse(-). Thus the flatten-based prediction process is as follows

§ = Parse(LLM(h, t)), h = Flat(GNN(A, X)) (17)
Here, t specifies the prompt for the graph task. For example, GraphText|Zhao et al.| (2023b) uses
graph-syntax trees to transform graph structures into node sequences for training-free reasoning
with LLMs. ReLM [Shi et al.| (2023) employs SMILES strings to linearize molecular structures.

GraphTMI Das et al.|(2023)) integrates graph data with LLMs using motifs and images. GPT4Graph
Guo et al.[(2023)) mimics GNN aggregation to enhance structural input. GIMLET Zhao et al.|(2023al)
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uses distance-based embeddings to improve LLMs’ graph perception, while InstructGLM |Ye et al.
(2023)) uses scalable prompts to optimize the understanding of graph connectivity.

For GNN-based prediction, GNNs analyze graph structures by recursively exchanging and aggre-
gating node information, and integrating these features with LLMs to enhance structural awareness:

y = Parse(LLM(H, ?)), H = GNN(A,X) (18)

where X is the node embedding matrix, A the adjacency matrix, and H the structure-aware embed-
dings. This approach aligns GNN structural patterns with LLM contextual information, requiring
specific tuning to standardize LLM outputs during training. To integrate GNNSs’ structural patterns
with LLMs’ contextual abilities, several methods have been developed. GIT-Mol [Liu et al.| (2024)
and MolCA [Liu et al.[(2023c) use BLIP-2’s QFormer |Li et al.| (2023a)) as a cross-modal projector
linking graph encoder outputs to LLM inputs. GraphLLM |Chai et al.[(2023)) applies linear projec-
tion in prefix tuning to optimize graph prefixes for better integration with graph transformers and
LLMs. Similarly, GraphGPT [Tang et al.| (2024a)) and InstructMol (Cao et al. (2023) use a simple
linear layer for aligning graph data with LLM text processing. DGTL Qin et al.|(2023)) incorporates
disentangled graph embeddings directly into the LLM, enhancing the perception of graph topology
and semantics.

In-context learning In-context learning is an effective approach for generating unified graph rep-
resentations across different domains. This method involves describing node features with text, in-
cluding domain-specific details, and utilizing a large language model (LLM) to create these unified
representations. It is particularly relevant to Text-Attributed Graphs (TAG), which use descriptive
text prompts to represent the node feature matrix X of a graph G. For a graph G(™ from domain
m, in-context learning helps create a unified node feature representation E(™ € R"*4, where each
row corresponds to the features of a node. These features, along with the adjacency matrix A (™),
are then used by a GNN for downstream tasks such as classification:

3™ = GNN(A™ E™) and E™ = LLM(TAG of G(™). (19)

Examples include OFA (Liu et al2023a)), which offers a general solution for building and training
foundational GNN models with in-context learning capabilities across various domains. Another ex-
ample, PRODIGY (Huang et al.| |2024), is a pretraining framework designed to facilitate in-context
learning on graphs by tailoring both model architecture and pretraining objectives for prompt-based
graph tasks. This enables the model to handle a broad spectrum of tasks and graphs straight out-of-
the-box. Comprehensive surveys on in-context and prompt learning in graph contexts are available
in (Sun et al.| 2023} |Liu et al.| [2023b)).

B.3 GRAPH REASONING METHODS

The graph reasoning methods focus only on reasoning about the graph’s structure without involving
node features, similar to our approach with graph properties prediction. For example, GraphQA
(Fatemi et al.| 2023)) describes graph connectivity in text and then poses reasoning questions to
LLMs, while GraphToken |Perozzi et al.[ (2024) trains LLMs to reason about graph structure with
questions like "Is there a cycle in the graph?". CLRS [Ibarz et al|(2022)) trains LLMs to reason
about graph algorithms such as search and greedy algorithms. These methods mainly train LLMs
by asking questions and focus on reasoning skills. In contrast, our method, GraphProp, focuses on
learning a comprehensive structural representation. The goals are different. However, some graph
reasoning tasks, like finding the shortest path, can be incorporated into GraphProp, as it involves
predicting node pairwise properties, as shown in Table

B.4 GRAPH DATA AUGMENTATION

Graph data augmentation (Ding et al., [2022) enhances model performance and generalization by
adding new training data. We introduce a graph mixup augmentation technique based on graph
matching. Given two graphs G; and (G5 with adjacency matrices A; and Ao, and labels y; and yo,
the optimal matching permutation matrix P € {0, 1}"*" is obtained by solving

P* = argmin |A; — PA,PT|% (20)
P
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The mixup function mixup(-, -) generates an augmented graph G with adjacency matrix A as
A = mixup(A1, As) =0 (AA; + (1 - )P*ALP*T +¢), (21)

where o is an activation function mapping to {0,1}"*™, A € [0, 1] is a mixup coefficient, and
e ~ N(0,1) is Gaussian noise. In the G-Mixup method (Han et al.,[2022), if G; and G are from
the same domain, a soft label § is created for downstream tasks as follows

g=2y1 + (1= Ny (22)

However, this approach only works when the graphs are from the same domain, as combining labels
from different domains is meaningless.

B.5 GRAPH TRANSFORMER

In addition to the absolute positional encoding graph transformer discussed in the main paper, there
is a variant known as the Relative Positional Encoding (RPE) graph transformer, outlined below:

Definition B.1 (RPE-Graph Transformer). The RPE-Graph Transformer assigns an encoding vector
to each pair of nodes in graph G and then reflects this encoding to a value, like the shortest path
between nodes |Ying et al| (2021). We define a mapping function ¢’ : R"*"™ — R™*"™ which
computes the RPE matrix B’ = ¢/(A) with B’ € R™"*™. The self-attention in this transformer is
modified as follows:

T

K
Adding: attn(H) = softmax (Q
Vg

QK'
s

+ B’) V,
(23)

or Hadamard Product:  attn(H) = softmax < OB > V.

Several examples of graph transformers illustrate the diversity in their applications and methodolo-
gies. GraphBert |Zhang et al.| (2020) encodes nodes using the graph structure without changing the
fundamental attention mechanism. Gophormer Zhao et al.| (2021) introduces scalability through
sampling techniques, while NAGphormer (Chen et al.| (2022) and Nodeformer Wu et al.| (2022)
are node-level transformers utilizing kernelized attention mechanisms. Difformer |Wu et al.| (2023)
operates on a continuous-time, diffusion-based model. GraphGPS Rampasek et al| (2022) com-
bines message-passing networks with attention mechanisms, allowing for a variety of embeddings.
Graphormer Ying et al.|(2021)) integrates dense attention with structural features like centrality and
spatial encodings, while GraphiT Mialon et al.| (2021)) incorporates relative positional encodings
based on diffusion kernels. Finally, BigBird [Zaheer et al.| (2020) introduces sparse transformer
models for better performance and scalability.

B.6 OTHER GRAPH THEORY BENCHMARKS

To learn comprehensive unified representations across domains, our GraphProp incorporates a broad
set of graph properties that can be computed in polynomial time, including some properties like the
fractional chromatic number and graph strength, which are introduced to graph learning for the first
time. Existing benchmarks for graph properties are not well-suited for training GFMs. For example,
the GNN benchmarking dataset(Dwivedi et al.| (2023)) includes only three properties—connectivity,
diameter, and spectral radius—limiting its scope for comprehensive graph representation learning.
Similarly, the Circular Skip Link (CSL) dataset [Murphy et al.| (2019) is too small, with only 150
graphs. Other benchmarks, such as GraphQA |Fatemi et al.| (2023), CLRS |Velickovic et al.| (2022),
and NLGraph|Wang et al.|(2024), focus on reasoning tasks like shortest paths and connectivity, often
converting graphs into text for LLMs. These benchmarks are designed to train reasoning abilities
rather than to provide comprehensive graph property learning.

C ADDITIONAL EXPERIMENT DETAILS

In this section, we provide additional experimental details and some numerical results.
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C.1 NUMERICAL RESULTS OF FEW-SHOT LEARNING

Here, we present the numerical results of few-shot learning, as shown in Table Table @ Table

[T1] and Table[12]

C.2 UNSUPERVISED GRAPH REPRESENTATION LEARNING

The structural GEM F' can be used as an unsupervised graph representation learning model, and we
compare it with other unsupervised methods like InfoGraph|Sun et al.[(2019)), GCL|You et al.| (2020),
and GraphACL (Luo et al.| 2023)). We evaluate the models based on clustering performance, using
clustering accuracy (ACC) and Normalized Mutual Information (NMI) as metrics. The experiments
are conducted on group G4, focusing on graphs without node features. The results are reported in
Table[13]

C.3 DATA AUGMENTATION

For group G2, we added either 500 cross-domain augmented data or 500 randomly generated data
to train the structural GFM f. The classification results, shown in Table [14] demonstrate that data
augmentation improves performance.

C.4 ABLATION STUDY

In this section, we analyse GraphProp by removing each part of it.

Removing In-context Learning From GraphProp: When in-context learning is removed from
the GraphProp framework, it becomes a graph transformer with Z as its positional encoding. We
compare this version with other graph transformers in graph classification tasks, and the results are
shown in Table

Removing Structural GFM From GraphProp When the structural GFM is removed from the
GraphProp framework, the remaining part is identical to the in-context learning OFA |[Liu et al.
(2023a). We compare this version with OFA in graph classification tasks, and the results are shown
in Table

Removing Some Graph Properties From GraphProp In the main paper, we used fifteen graph
properties listed in Table @] Now, we randomly remove some of these properties and repeat the
supervised learning experiments. For each number of removed properties, we repeat the process ten
times and report the average performance. The results are shown in Table[T7]
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Table 5: Graph Properties with NP-hard Complexity Computation (Part I)

Name Notation Reference Description
Arboricity . Edmonds|(1965) Min. num‘?ef of for?st§ into which
- edges can be partitioned
Biclique
Cover d(G) Amilhastre et al.|(1997) Min. number of bicliques of G
Number |
Boxicity box(G) Chandran et al.|(2010) Min. dimension fgr G as an intersection
3 graph of axis-parallel boxes
Carving . | Edges separating clusters in a hierarchical
Width ) Seymour & T{lomaa (1994) clustering of vertices
Cheeger | ical P s "botl K"
Constant hG) Mohar|(1989) Numerical measure of a graph’s "bottlenec
C;}L?E{)f;c X(G) Jensen & Toft|(2011) Smallest number of colors needed to color G
Chromatic , . | | Smallest number of colors needed in a proper
Index X'(G) Akiyama et al. |(1980) edge coloring of G
I\?ul:gggc:r w(Q) Albal(1973) Number of vertices in a maximum clique in G
Colin de s . .
Verdiere’s uw(G) de Verdiere|(1990) Max.fmultvlphglt}): ?fj_the 2nd e1genv?lue
Invariant of certain Schrodinger operators
Conductance | ¢(G) Jerrum & Sinclair|(1988) Pa{r.ametelr tied to ’mlxmg t1Tne of a Markov
B chain, analyzing random walk convergence
Cop } Bonato|(2011) Min. n}lrpber of cops' to ensure a win in a
Number pursuit—evasion game on the graph
Crossing | Lowest number of edge crossings in a plane
Number cr(GQ) Purchase et al.|(1996) drawing of G
. . . | Least integer n for classical representation
Dimension ) Erdos et al. f1965) of G in Euclidean space with edges of unit length
Dissociation diss(G) Yannakakis (1981) Number of vertices in a max. cardinality
Number dissociation set in G
Dlslt\llrtll%rlll ése}rnng - Albertson & Collins|(1996) Min. number of colors in a distinguishing coloring
gﬁﬁi:f - Cockayne & Hedetniemi|(1975) Max. size of a domatic partition
D(Iilrﬂiggtelron v(G) Alber et al.|(2004) Number of vertices in a smallest dominating set for G
Edge )
Covering p(G) Lewis|(1983) Size of a minimum edge covering
Number 3
Entanglement - Berwanger & Gridel|(2005) | Measure of how strongly cycles of G are intertwined
Friendly o] Absolute value of the difference between the
Index FI(G) Kwong et al. 7(2008" number of edges labeled 0 and 1
Girth - Diestel|(2024) Length of the shortest cycle in the graph
Graph . ] | Minimal bandwidth of a symmetric matrix which is
Bandwidth . (Chinn et ?1' (1982) an adjacency matrix of G
Pebbling (@) Chungl(1989) Lowest natural number sza.tlsfylng pebbling game
Number conditions
Toughness - Bauer et al.|(2006) Max. t for which G is t-tough
g;lrlrrlfeyr - Erdos et al.|(2003) Max. number of colors in a greedy coloring strategy
Hadwiger ] Bollobis et al.|(1980) Size of the largest cgmplete graph obtained by
Number A contracting edges of G
l-igz(;};a - Hosoya|(1971) Total number of matchings in G
Ind;ﬁi:g:rnce a(G) Godsil & Royle|(2001) Size of maximum independent set of G
Intersection ] Gross et al. |(2018) Smallest number of glements'm a representation
Number 3 of GG as an intersection graph
Linear . | Smallest number of linear forests its edges
Arboricity B Akiyama et fﬂ' (1981) can be partitioned into
“ﬁfgﬂ)‘gf v(G) Gibbons|(1985) Size of a maximum matching
Matching I . ] o
Preclusion mp(G) Brigham et al. (2005} Min. number olfledg?s whose }?eletlon eliminates
Number all perfect matchings
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Table 6: Graph Properties with NP-hard Complexity Computation (Part IT)

Name Notation Reference Description
Meshedness | Invariant of planar graphs measuring the number
Coefficient ) Buhl et al. f2004" of bounded faces
Metric Min. cardinality of a vertex subset such that all
Dimension - Feng et al.|(2013) other vertices are uniquely determined by their
distances to this subset
Minimum ) | Smallest rank of any generalized adjacency
Rank mr(G) | [Fallat & Hogber{ (2007) matrix of (@
Padmakar—Ivan PI(G) Khadikar et al.|(2001) Sum over all edges‘ uu of GG of the number of edges
Index 7 not equidistant from v and v
Pathwidth . Diestel & Kiihn|(2005) Measure of how mucffl(l) rtrfrlle Cg)atth was thickened to
Perron . Borwein (2002) Algebraic integer greater .than 1 with all conjugate
Number i elements smaller in absolute value
I\%lllﬁng qm(G) ||Heath & Rosenberg|(1992) Min. number of queues in a queue layout
ghannf)n . Lovisz|(1979) Number of independent sets of strong
apacity graph products
Slope )] | Min. number of distinct slopes of edges in
Number - Pach & Palvolgyi|(2006) a drawing of G
Szeged | Topological index of a molecule,
Index 52(G) Gutman|(1994) generalizes the Wiener index
. . ) | Min. number of planar graphs into which
Thickness B Beineke & Harfiry (1965) the edges of GG can be partitioned
Thue ) Alon et al.|(2002) Variation of chromatic index used to study
Number square-free words
Treewidth ] Diestel (2024} Integer specifying how far G is
from being a tree
Twin - | Number associated with G, used to study
Width ) Bonnet et al. (?021" parameterized complexity of algorithms
c Vertf{x ' ) Schrijver et al.[(2003) Largest k for which the graph is
onnectivity k-vertex-connected
Ve;tli);qcbgrver T Chen et al.|(2006) Size of a minimum vertex cover
Table 7: Node-level Properties
Name Notation Reference Description Complexity
Betweenpess ] Freeman|(1977) Centrality based on shortest paths O(n3)
Centrality between nodes
Closeness . A | | Centrality based on inverse of the total
Centrality Cp(z) |[Sabidussi|{1966) distance to all other nodes O((n +m)n)
Degree - - Number of connections a node has O(1)
Degree ) ) Distribution of node degrees O(n)
Distribution in the network
Katz ] | Centrality measuring a node’s influence 3
Centrality ) Katz (1953) through connections O(n%)
Table 8: Node Pairwise Properties
Name Notation Reference Description Complexity
Connectivity i i Predict if two nodes are connected by oQ)
an edge
Shortest ] | Predict the shortest path between 3
Path - Yu & Yang|(1998) two nodes O(n?)
Maximum .. | | Predict the maximum flow between 9
Flow ) Schrijver|(2002) two nodes in a weighted graph O(n’m)
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Table 9: Results of few-shot learning on PROTEIN and NCI1 data in group G;.

Data PROTEINS NCIT
task 10-shot 5-shot 1-shot 0-shot 10-shot 5-shot 1-shot 0-shot
OFA-st 70.04 £4.41 63.45 £7.01 57.1T£5.10 48.60 £4.40[61.52 £6.19 5633 £5.63 51.83 £7.82 5048 £6.05
OFA-e5 68.27 +5.88 60.50 + 6.98 55.22 +4.25 51.41 +5.59|64.83 £4.20 55.64 £9.72 4891 £3.74 54.82 +£7.92
OFA-1lama2 65.32 £4.92 62.73 £2.29 56.37 +3.52 55.92 +7.92|62.70 £ 7.35 54.78 £3.90 50.18 £2.45 49.50 £ 2.37
GraphProp-st 67.64 £6.05 61.34 £4.74 52.83 £6.67 5434 £6.28[60.41 £3.44 57.19 £2.26 5335£6.36 43779 £472
GraphProp-e5 | 75.88 £3.93 66.60 + 8.63 54.66 +£7.44 51.65+8.74|63.97 £5.73 60.02 &+ 8.37 55.72 + 5.40 45.45 + 8.58
GraphProp-1lama2 | 71.24 + 5.10 64.91 + 1.37 59.24 +4.39 53.28 +4.37 | 67.25 £ 4.87 59.91 £ 7.63 5448 +6.23 51.13 £4.61
Table 10: Results of few-shot learning on AIDS and HIV data in group G1.
Data AIDS HIV
task 10-shot 5-shot 1-shot 0-shot 10-shot 5-shot 1-shot 0-shot
OFA-st 5371£7.32 46.74£7.43 47.50£6.77 41.81£8.27]68.1616.31 60.53£5.61 50.08£7.33 47.76£6.37
OFA-e5 56.95+2.76 54.96+4.82 49.68+2.03 40.62+7.94 | 62.37+3.66 57.96+7.74 52.34+5.19 53.36+2.60
OFA-llama2 58.42+4.18 49.42+42.28 46.42+7.94 35.464+3.67 | 65.78+8.32 62.254+6.88 54.23+3.61 43.45+5.41
GraphProp-st [ 59.63£7.45 47.23£6.97 4227E£8.26 42.37%£6.79|67.34£5.23 55.43£3.97 51.91+4.48 46.38£3.32
GraphProp-e5 | 56.28+3.24 55.60£5.21 48.454+9.37 37.93+3.80 | 61.49+4.75 57.514+4.05 56.70+6.34 47.82+4.14
GraphProp-llama2 | 52.07+£6.98 50.81+4.76 42.384+6.40 44.04+9.03 | 68.60+8.17 54.60+9.26 53.66+9.85 53.71+9.85

Table 11: Results of few-shot learning on COLLAB and REDDIT-B data in group Go.

Data COLLAB REDDIT-B
task 10-shot 5-shot 1-shot 0-shot 10-shot 5-shot 1-shot 0-shot
OFA-st 54.16 £7.46 4851 £8.51 45.80 £7.36 37.34 £4.06|58.14 £5.12 53.15£229 5132 £654 4561 £472
OFA-e5 52.22 £9.51 41.69 +5.45 37.62 +5.22 32.62 +7.49|43.95 +£4.34 5190 £6.30 5691 £3.13 5298 £ 7.85
OFA-1lama2 51.04 £2.87 4647 £ 6.89 40.27 £+ 6.87 45.53 £+ 5.30|55.63 + 8.68 48.64 =5.75 52.16 + 6.27 54.27 +2.62
GraphProp-st 65.19 £4.24 6392 £7.12 4845 £4.79 3987 £484[59.19 £541 57.1T £7.17 45.62 £438 49.44 £697
GraphProp-e5 57.35 £ 890 58.03 £5.27 50.18 £8.51 46.34 £8.73|61.08 £3.19 5547 £4.98 54.24 £8.76 52.32 £7.22
GraphProp-1lama2 | 60.81 + 5.13 59.25 +4.76 47.90 +5.14 4291 +6.15|64.63 +7.63 54.26 + 6.33 51.77 +£7.21 47.75 4+ 3.60
Table 12: Results of few-shot learning on IMDB-B and DD data in group G; .
Data IMDB-B DD
task 10-shot 5-shot 1-shot 0-shot 10-shot 5-shot 1-shot 0-shot
OFA-st 5721 £6.71 55.39 £4.65 54.36 £5.84 5621 £7.56|63.81 £7.77 59.1T £4.24 5429 £8.65 51.71 £4.16
OFA-e5 5849 4+7.74 53.27 +£3.74 51.26 £ 6.35 51.38 £ 6.15|60.21 £4.66 54.63 £6.75 53.12 £4.31 54.66 £5.77
OFA-1lama2 55.57 £2.75 51.84 £2.47 48.71 £3.49 50.73 +4.24 | 64.85 +2.21 57.39 +8.67 51.88 +2.38 55.93 + 8.04
GraphProp-st 65.39 £3.28 61.49 £7.38 49.36 £4.82 5388 £5.73[7322£6.49 6148 E£5.18 5247 £6.25 52774 £5.65
GraphProp-e5 72.37 £5.27 65.81 £5.42 57.57 +7.50 53.45+3.48|76.95+7.23 6327 £4.39 58.75+£1.76 51.15+£7.53
GraphProp-llama2 | 69.36 + 4.36 67.52 + 8.59 62.57 +2.37 51.26 +8.20|75.16 +£5.81 64.71 +£8.24 57.26 +£7.31 55.78 £ 843

Table 13: ACC and NMI of Graph Clustering on datasets in group Ge.

Method [ Metric DD COLLAB IMDB-B REDDIT-B REDDIT-M5K
InfoGranh ACC [0.57£0.06 0.58 £0.28 0.67 £0.07 0.57 £0.07  0.58 £0.09
PRV NMI [0.24 +£0.04 0.37 £0.01 0.18 £0.05 0.22+0.04  0.25 +0.03
GCL ACC [0.59 £0.0T 0.53 £0.12 0.61 £0.04 0.56 £0.0I  0.50 £0.18
NMI [0.23 £0.02 0.27 £0.03 0.21 £0.05 0.14 +£0.03  0.27 +0.05
GranhACL ACC 10.59 £0.03 0.56 £0.05 0.60 £0.03 0.57 £0.07  0.56 £0.04
P NMI [0.32+£0.03 0.29 £0.06 0.33 +£0.30 0.23 +0.03 0.22 +0.09
GraphPro ACC [0.58 £0.05 0.61 £0.18 0.62 £0.02 0.64 £0.04 0.61 £0.03
P Pl NMI |0.36 +0.02 0.334+0.09 0.34 +0.01 0.28 +0.02 0.27 £0.01

Table 14: Data Augmentation (Adding 500 new graphs). Results of supervised learning.

Data Augmentation| COLLAB IMDB-B DD REDDIT-B  REDDIT-M5K
Metric ACC 1 ACCYT ACCYT ACCYT ACC?T
GraphProp-e5 no 8135+ 132 8278 £1.85 8231 £1.41 8532 1.17 59.36 £ 1.27
GraphProp-e5 cross-domain | 86.24 +1.29 86.15 £ 1.24 86.80 £ 1.30 87.13 £1.26 62.37 +1.18
GraphProp-e5 random 87.16 £ 1.15 8526 £ 1.13 84.14 £ 1.18 86.11 £ 1.18 60.87 £+ 1.31
GraphProp-Ilama2 no 82.64 £ 1.58 8342 £1.70 80.25 £ 1.38 8438 £ 1.26 60.93 £ 1.45
GraphProp-llama2 | cross-domain | 85.17 & 1.27 85.11 = 1.12 84.47 £ 1.56 88.49 £1.29 62.31 £ 1.69
GraphProp-llama2 random 87.88 £ 1.10 86.90 + 1.78 83.51 +1.72 86.10 + 1.35 61.16 &+ 1.57

Table 15: Ablation Study: Removing In-context Learning. Supervised learning results.

Data
Metric
GraphGPS
Graphormer

7

LLAB
ACCT
+

IMDB-B
ACC 1
7

DD
ACC 1

7427 £ 1.

REDDIT-B REDDIT-M5K
ACC 1

ACC 1
7

71.16 £ 1.27 7627 +1.79 75.63 £1.21 75.10+1.49 54.66 £+ 1.63

GraphProp [75.22 £ 1.26 7833 £ 1.13 7722 £1.49 79.61 £ 1.78 59.14 £ 1.87
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Table 16: Abl

Data

Metric

OFA-st

OFA-e5

OFA-llama2
GraphProp-st
GraphProp-e5
GraphProp-llama2

ation Study: Removing Structural GFM. Supervised learning results.

ACC 1 ACC 1 ACC 1 ACC 1 ACC 1

7625+ 1.09 78.19 & 1.33 76.65+ 1.23 79.62+ 1.17 55.17 + 1.59
75.44 + 137 77.69 + 1.25 75.46 + 1.80 78.23 + 1.35 5426 + 1.13
73.66 + 1.17 7621+ 1.13 7728 + 1.42 78.13 + 1.53 54.23 + 1.44
76.59 + 1.65 7834+ 1.17 77.13+ 1.01 79.61 + 1.54 5228 + 1.78

Table 17: Ablation Study: Removing Graph Properties. Supervised learning results.

Data Num. of Properties| COLLAB — IMDB-B DD REDDIT-B REDDIT-M5K
Metric ACC 1 ACC 4 ACC ¢ ACC 1 ACC +
GraphProp-TlamaZ 5 8264 £ 158 8342 £ 1.70 8025 £ 138 8438 £ 1.26 6093 L 1.45
GraphProp-Tlama?Z 10 7418 £ 1.65 7817 £ 158 7413 £ 1.70 7844 £ 1.79 5552 L .88
GraphProp-llama2 5 63.24 £ 1.17 7428 £1.32 6829+ 1.15 71.16 = 1.14 51.47 + 1.91
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