HIDISC: A Hyperbolic Framework for Domain Generalization with Generalized Category Discovery

Vaibhav Rathore¹ Divyam Gupta¹ Biplab Banerjee¹

Indian Institute of Technology Bombay¹ {vaibhav.rathor.in, divs25.iitb, getbiplab}@gmail.com

Abstract

Generalized Category Discovery (GCD) aims to classify test-time samples into either seen categories—available during training—or novel ones, without relying on label supervision. Most existing GCD methods assume simultaneous access to labeled and unlabeled data during training and arising from the same domain, limiting applicability in open-world scenarios involving distribution shifts. Domain Generalization with GCD (DG-GCD) lifts this constraint by requiring models to generalize to unseen domains containing novel categories, without accessing targetdomain data during training. The only prior DG-GCD method, DG²CD-Net [1], relies on episodic training with multiple synthetic domains and task vector aggregation, incurring high computational cost and error accumulation. We propose HIDISC, a hyperbolic representation learning framework that achieves domain and category-level generalization without episodic simulation. To expose the model to minimal but diverse domain variations, we augment the source domain using GPTguided diffusion, avoiding overfitting while maintaining efficiency. To structure the representation space, we introduce *Tangent CutMix*, a curvature-aware interpolation that synthesizes pseudo-novel samples in tangent space, preserving manifold consistency. A unified loss—combining penalized Busemann alignment, hybrid hyperbolic contrastive regularization, and adaptive outlier repulsion—facilitates compact, semantically structured embeddings. A learnable curvature parameter further adapts the geometry to dataset complexity. HIDISC achieves state-ofthe-art results on PACS [2], Office-Home [3], and DomainNet [4], consistently outperforming the existing Euclidean and hyperbolic (DG)-GCD baselines. ¹

1 Introduction

Deep neural networks have achieved impressive success in visual recognition [5, 6], yet typically assume a shared domain and label space between training and test data. This assumption breaks down in real-world applications such as autonomous driving [7] and medical diagnostics [8], where both domain shift and label shift frequently co-occur. While semi/self-supervised learning [9, 10] reduces labeling demands, it still operates under closed-world constraints. Domain Adaptation (DA) and Domain Generalization (DG) [11, 12] address distribution shift but assume a fixed set of categories. Open-set DG [13, 14] allows test-time novelty but collapses all unknowns into a single rejection class, erasing semantic granularity.

Generalized Category Discovery (GCD) [15–17] seeks to identify both known and novel classes from unlabeled test data but requires joint access to labeled and unlabeled samples from the same domain. Cross-Domain GCD (CD-GCD) [18, 19] introduces domain shift but still assumes concurrent access to source–target domains during training. In contrast, **Domain Generalization with GCD (DG-**

¹Code Link: https://vaibhavrathore1999.github.io/HiDISC/

GCD) [1] represents a more realistic setting: the model is trained solely on labeled source data and must generalize to an unseen target domain containing both seen and novel categories.

Addressing DG-GCD requires (i) learning domain-invariant features and (ii) discovering novel semantic structures without supervision. The only existing solution tailored for DG-GCD, DG²CD-Net [1] approaches this via episodic training with synthetic domains and task aggregation, but suffers from high computational cost and cumulative approximation errors that limit generalization.

From a different perspective, existing GCD and DG-GCD methods typically rely on Euclidean or hyperspherical geometry [1, 18], which struggle to capture semantic hierarchies. Hyperbolic geometry [20, 21], with its negative curvature and exponential volume growth, offers a natural alternative for modeling inter-class structure (Fig. 1). While hyperbolic embeddings have shown benefits in GCD (HypCD) [22] and DG [23] recently, their use in DG-GCD, where both domain and label shifts co-occur, remains unexplored. This raises our central question:

Can hyperbolic geometry provide a unified foundation for solving DG-GCD, addressing both distribution shift and novel-class discovery?

Our approach. We introduce H₁DISC, the first hyperbolic geometry-aware framework for DG-GCD that learns semantically structured and domain-invariant embeddings in the Poincaré ball [20] without requiring target supervision. Unlike HypCD [22], which addresses standard GCD in single-domain settings, and DG²CD-Net [1], which operates in Euclidean space and relies on episodic simulation, H₁DISC provides a unified, non-episodic solution using the representational advantages of hyperbolic space.

Since the hyperbolic space offers substantial domain invariance and focuses on shared semantics [23] (Fig. 1, **Sup. Mat.**), we still chose to augment the training source domain with controlled stylistic variations and generate only 1–2 synthetic domains per image via a GPT-40 [24]-guided diffusion model, avoiding the computational over-

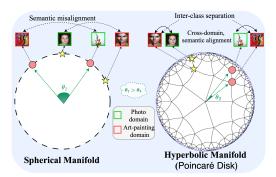


Figure 1: **Spherical** vs. **hyperbolic** (Poincaré) embeddings on PACS. Same-class samples from different domains (green/red) cluster more tightly in hyperbolic space, demonstrating improved class separation. Refer to **Sup. Mat.** for quantitative analysis.

head of task-based simulation in DG²CD-Net. A novel *domain-diversity score* ranks these augmentations by measuring source divergence and intra-pair variability, enabling a principled and scalable domain diversification strategy.

To ensure the model does not overfit the known classes and encourage semantic diversity, we propose *Tangent CutMix*, a curvature-aware interpolation method that mixes labeled features in the tangent space of the Poincaré ball to create pseudo-open samples. Unlike Euclidean mixing used in SimGCD [25] or CMS [26], our method preserves hyperbolic consistency and generates geometrically valid pseudo-novel embeddings that support open-set regularization.

To structure the latent space, we introduce a unified loss that combines three novel components not jointly explored in prior (DG)-GCD literature: (i) a penalized Busemann loss that aligns seen-class features to fixed prototypes at the hyperbolic boundary while reserving interior space for unknowns; (ii) a hybrid hyperbolic contrastive loss balancing angular and geodesic similarities to enable fine-grained clustering across known and novel categories; and (iii) an adaptive outlier rejection loss that pushes synthetic cut-mix samples away from known-class regions, encouraging open-space generalization without relying on adversarial or domain-specific objectives. A learnable curvature parameter further adapts the geometry to dataset-specific complexity. Major contributions include:

- HIDISC, the first hyperbolic DG-GCD framework, jointly handles domain and category shift without target supervision or episodic simulation.
- A unified loss formulation integrating Busemann alignment, hybrid contrastive regularization, and an adaptive outlier repulsion.
- Tangent CutMix, the first open-set augmentation designed specifically for hyperbolic geometry.

 State-of-the-art results on PACS [2], Office-Home [3], and DomainNet [4], outperforming all the baselines consistently and reducing training FLOPs by over 96 × vs. DG²CD-Net.

2 Related Works

Domain Generalization. DG aims to train models on labeled data from one or more source domains to generalize effectively to previously unseen target domains [12, 27]. DG variants include closed-set, open-set, single-source, and multi-source settings [28]. Methods like MixStyle [29] and StyleHallucination [30] enhance robustness via feature-level style perturbations, while metalearning techniques [31, 32] simulate domain shifts episodically to improve adaptability. *Open-set DG methods address novel test-time classes* [33, 34, 14, 35], but typically collapse all unknowns into a single "outlier" class, hindering fine-grained discovery needed in DG-GCD.

Category Discovery. Category Discovery seeks to partition unlabeled data into known and novel categories. While Novel Category Discovery (NCD) [36] assumes complete disjointness between training and test classes, GCD allows overlap and requires identifying both seen and unseen categories during inference [15–17, 25, 37, 38, 26]. Most GCD approaches assume joint access to source and target domains during training, limiting real-world applicability. CD-GCD methods like CDAD-Net [18] and HiLo [28] reduce domain gaps via adversarial alignment or style normalization but still depend on concurrent domain access. To remove this constraint, DG-GCD [1] simulates domain shifts through text-driven image manipulation (e.g., InstructPix2Pix [39]) and aggregates task-specific knowledge via task vectors [40]. However, these methods operate in Euclidean spaces, which struggle to encode the hierarchical and shared semantic structures crucial for robust domain and category generalization.

Hyperbolic Embedding Spaces. Hyperbolic geometry, defined by negative curvature and exponential volume growth, is well-suited for modeling hierarchical and part-whole semantic structures [20, 21]. Hyperbolic embeddings have improved performance in classification [41–43], few-shot learning [44], segmentation [45], and action recognition [46], supported by hyperbolic variants of standard network components [47, 48, 21, 49]. Recent Busemann-based techniques [23, 50] anchor ideal prototypes on the Poincaré boundary for directional alignment. HypCD [22] successfully applies this to GCD, but assumes joint source–target access. Beyond these, hyperbolic methods have been applied across diverse tasks: Ge et al. [51] explore contrastive learning for hierarchical scene–object representation, Yue et al. [52] study metric learning with hard negatives, Liu et al. [53] extend contrastive learning to EEG, Sun & Ma [54] investigate recommendation, while others address hashing [55] and face antispoofing with hierarchical prototypes [56]. To date, no work has explored hyperbolic representations for DG-GCD, which combines open-set discovery and domain shift without target supervision.

3 Methodology

3.1 The DG-GCD Problem Definition

In DG-GCD, we are given a labeled source-domain dataset:

$$D_S = \{(x_i^s, y_i^s)\}_{i=1}^{n_s}, \quad x_i^s \in \mathcal{X}_s, \ y_i^s \in \mathcal{Y}_s,$$

where x_i^s represents source-domain inputs, and y_i^s denotes labels drawn from a set of *known* categories \mathcal{Y}_s . At test time, we encounter an unlabeled target-domain dataset:

$$D_T = \{x_j^t\}_{j=1}^{n_t}, \quad x_j^t \in \mathcal{X}_t,$$

where samples belong either to known categories $(\mathcal{Y}_t^{\text{old}} = \mathcal{Y}_s)$ or previously unseen, *novel* categories $(\mathcal{Y}_t^{\text{new}})$, such that $\mathcal{Y}_t^{\text{new}} \cap \mathcal{Y}_s = \emptyset$. Crucially, the data distributions across domains differ significantly, i.e., $P(\mathcal{X}_s) \neq P(\mathcal{X}_t)$, and the target dataset D_T is inaccessible during training.

Our objective is to construct an embedding space using only D_S that generalizes across domains and categories, effectively clustering both known and novel-class samples from the unseen dataset D_T .

3.2 Rationale Behind Using Hyperbolic Space for DG-GCD

Semantic structures in visual data—such as hierarchies, taxonomies, and part—whole relationships—are inherently suited to spaces with exponential capacity. Hyperbolic space, characterized

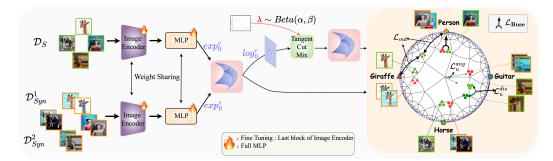


Figure 2: Illustration of the H1DISC pipeline for DG-GCD in hyperbolic space. The model is trained using labeled source data \mathcal{D}_S (green borders) and 1–2 GPT-guided synthetic domains $\mathcal{D}_{\text{Syn}}^1$, $\mathcal{D}_{\text{Syn}}^2$ (orange borders) to simulate domain shift. Features from the shared encoder are projected to the Poincaré ball via \exp_0^c . To mimic novel categories, Tangent CutMix performs interpolation in the tangent space and maps the result z_{mix} back to hyperbolic space. The embedding space is structured via: (i) penalized Busemann loss $\mathcal{L}_{\text{Buse}}$ for aligning seen classes to boundary-fixed prototypes; (ii) hybrid contrastive loss \mathcal{L}_u for clustering and separability; and (iii) adaptive outlier loss \mathcal{L}_{out} to repel pseudo-novel points. Together, these shape a curvature-aware space for generalization and discovery.

by negative curvature and exponential volume growth, naturally encodes such structures, making it particularly beneficial for DG-GCD, where labeled classes typically reflect coarse semantic strata, while novel categories often reside in finer or more abstract regions.

In contrast to Euclidean or spherical embeddings [16, 57], which are constrained by polynomial growth, hyperbolic embeddings support both local compactness and global semantic separation. Moreover, hyperbolic geometry improves domain generalization by amplifying higher-level semantic distances and attenuating domain-specific low-level variations, thereby fostering robust, domain-invariant representations under substantial distributional shifts (more details provided in **Sup. Mat**).

Poincaré Ball Geometry. We adopt the Poincaré ball [20] as our hyperbolic model. For curvature $-c^2$, the *n*-dimensional ball is defined as:

$$\mathbb{D}_c^n = \left\{ \mathbf{a} \in \mathbb{R}^n \mid c \|\mathbf{a}\|^2 < 1 \right\},\,$$

where $\|\cdot\|$ denotes the Euclidean norm. Additional geometric details are provided in the **Sup. Mat.**

3.3 Navigating through HIDISC for DG-GCD

We propose HIDISC (Fig. 2), a hyperbolic framework that jointly addresses the dual challenges of DG-GCD: domain-invariant representation learning and unsupervised semantic disentanglement. The synthesis-driven components of our model include: (i) *Synthetic Domain Augmentation*, which introduces a compact set of diverse, diffusion-generated domains to simulate realistic distribution shifts without relying on target access; and (ii) *Tangent CutMix*, a curvature-aware interpolation mechanism operating in the tangent space of the Poincaré ball, generating pseudo-novel samples while preserving manifold fidelity. Complementing these are three loss-driven modules: (iii) *Prototype Anchoring*, which aligns seen-class embeddings to fixed ideal prototypes on the Poincaré boundary, reserving central space for novel classes; (iv) *Adaptive Outlier Loss*, which ensures synthetic samples are repelled from known-class clusters, promoting open-space regularization; and (v) *Hybrid Hyperbolic Contrastive Loss*, which combines geodesic and angular similarity to improve local cohesion and global separability. Each component is described in detail in the subsequent sections.

3.3.1 Lightweight Synthetic Domain Augmentation

To simulate domain variability without relying on expensive episodic training (as in DG²CD-Net [1]), we generate only one or two synthetic domains per experiment using a diffusion model guided by GPT-4o [24]-curated prompts (e.g., underwater, night-time variants of *class* instances) (see **Sup. Mat.** for qualitative visualizations). These synthetic domains serve as proxy distributions that expose the model to varied visual shifts and support generalization to unseen domains.

Unlike DG²CD-Net, which depends on numerous episodic tasks and synthetic domain permutations, our strategy is lightweight and avoids both computational overhead and error propagation across

episodes. Crucially, in hyperbolic space, even a small number of diverse augmentations can induce expansive representational changes due to the geometry's exponential capacity—effectively stretching the semantic space and encouraging separation between seen and unseen regions.

First, we introduce a *domain-diversity score* that ranks a given synthetic domain $\mathcal{D}_{\text{syn}}^{(s)}$ with respect to other synthetic domains $\{\mathcal{D}_{\text{syn}}^{(l)}\}_{l=1}^{\mathcal{M}}$ and the source domain \mathcal{D}_S based on the notion of mutual diversity calculated using the Fréchet Inception Distance (FID) [58] for \mathcal{M} synthesized domains:

$$Score(\mathcal{D}_{syn}^{(s)}) = \frac{1}{\mathcal{M} - 1} \sum_{\substack{l=1, \\ l \neq s}}^{\mathcal{M}} \left[FID(\mathcal{D}_S, \mathcal{D}_{syn}^{(s)}) + FID(\mathcal{D}_{syn}^{(s)}, \mathcal{D}_{syn}^{(l)}) \right]. \tag{1}$$

This scoring promotes both source-domain divergence and intra-pair complementarity. We select the top-scoring 1-2 domains to augment \mathcal{D}_S to obtain $\mathcal{D}_{\text{train}}$.

As shown in Fig. 3, excessive augmentation leads to overfitting on seen classes and degrades novel class discovery. Notably, training solely on \mathcal{D}_S yields competitive results, highlighting the inherent domain robustness of hyperbolic space, and using these augmentation provides marginal boosts. Effects of redundant augmentations are mentioned in **Sup. Mat.**

3.3.2 Mapping Visual Features into Curvature-Aware Hyperbolic Geometry

With the augmented training set, we learn representations using a frozen DINO [59]-pretrained ViT [60] followed by a 3-layer MLP. The resulting Euclidean feature $\mathbf{z}^{\mathbb{E}} \in \mathbb{R}^d$ is projected into the Poincaré ball \mathbb{D}^d_c via the exponential map:

$$\mathbf{z}_{i}^{s} = \exp_{0}^{c}(\mathbf{z}^{\mathbb{E}}) = \tanh(\sqrt{c}\|\mathbf{z}^{\mathbb{E}}\|) \cdot \frac{\mathbf{z}^{\mathbb{E}}}{\sqrt{c}\|\mathbf{z}^{\mathbb{E}}\|},$$
(2)

where c is a learnable curvature parameter in our case to approximate the data complexity more effectively. Let $z_i := \mathbf{z}_i^s$ denote the hyperbolic feature. This projection facilitates the encoding of hierarchical semantics and ensures geometric consistency in the downstream tasks.

3.3.3 Tangent CutMix and Adaptive Outlier Loss

To hallucinate novel-category samples and regularize the open space in hyperbolic geometry, we introduce **Tangent CutMix** [61]—a curvature-aware variant of CutMix tailored for the Poincaré ball. Traditional CutMix interpolates feature representations in Euclidean space to synthesize outliers, which can violate the geometric constraints of hyperbolic space. In contrast, Tangent CutMix performs mixing in the tangent space at the origin, ensuring consistency with the underlying manifold structure.

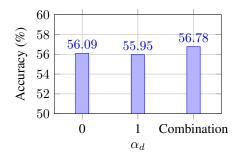
Given two embeddings $z_i, z_i \in \mathbb{D}_c^d$ with different class labels, we:

- (1) **Project to tangent space:** $v_i = \log_0^c(z_i), \ v_i = \log_0^c(z_i)$
- (2) **Linear mix:** Compute $v_{\text{mix}}^{i,j} = \lambda v_i + (1 \lambda)v_j$, where $\lambda \sim \text{Beta}(1,1) = \text{Uniform}(0,1)$
- (3) **Map back:** $z_{\text{mix}}^{i,j} = \exp_0^c(v_{\text{mix}})$

The resulting embedding $z_{\rm mix}$ represents a curvature-preserving interpolation of features with incompatible semantics, mimicking out-of-distribution behavior while remaining valid in the hyperbolic space. Furthermore, to prevent these synthetic features from collapsing into known class regions, we apply an adaptive outlier loss:

$$\mathcal{L}_{\text{out}} = \underset{(x,y) \sim \mathcal{P}(\mathcal{D}_{\text{train}})}{\mathbb{E}} \sum_{i,j,y_i \neq y_j} \max(0, \gamma - \min_{k \in \mathcal{Y}_s} \mathbb{D}_{\mathbb{H}}(z_{\text{mix}}^{i,j}, \mathbf{p}_k)), \tag{3}$$

where $\mathbb{D}_{\mathbb{H}}$ is the hyperbolic distance, and γ is a quantile-based adaptive margin over the distances from all class prototypes in $\{\mathbf{p}_k\}_{k=1}^{|\mathcal{Y}_s|}$. This encourages pseudo-novel embeddings to remain outside the regions occupied by seen classes, effectively reserving space for novel category discovery. For further analysis regarding adaptive margin and the generated CutMix samples, see **Sup. Mat.**



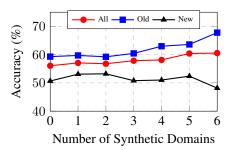


Figure 3: (**Left**) Effect of α_d in hybrid contrastive loss. A balanced combination of angular and geodesic components achieves the highest accuracy. (**Right**) Impact of synthetic domains on old and new category performance. While old-class accuracy increases due to augmented seen data, new-class performance slowly degrades with more synthetic domains, as they cause seen-class bias.

3.3.4 Prototype Anchoring with Penalized Busemann Loss

To enforce semantic structure among the known categories, we associate each class $k \in \mathcal{Y}_s$ with a fixed *ideal prototype* $\mathbf{p}_k \in \partial \mathbb{D}_c^d$ [23], placed uniformly on the boundary of the Poincaré ball. These prototypes serve as directional anchors and remain fixed throughout training, enabling compact clustering of seen-class features while leaving the interior volume of the ball available for unknown category discovery.

To align the features z_i with their respective class prototypes, we adopt a **penalized Busemann loss**:

$$\mathcal{L}_{\text{Buse}} = \log \left(\frac{\|z_i - \mathbf{p}_{y_i}\|^2}{1 - c\|z_i\|^2} \right) + \phi \log(1 - \|z_i\|^2), \tag{4}$$

where \mathbf{p}_{y_i} is the prototype corresponding to the class label of z_i , and ϕ is a regularization coefficient. The first term guides directional alignment between features and their prototypes, preserving semantic proximity in the hyperbolic geometry. The second term penalizes embeddings that approach the boundary too aggressively, thereby maintaining stability during optimization and avoiding overconfidence.

3.3.5 Hybrid Hyperbolic Contrastive Loss

While the Busemann loss anchors known classes via directional alignment, it does not explicitly enforce local structure among unlabeled or novel samples. To address this, we incorporate a **hybrid hyperbolic contrastive loss** [22], designed to refine the latent space by encouraging consistency between augmented views and separating unrelated instances—even in the absence of explicit labels.

For each positive pair of embeddings z'_i, z''_i , corresponding to different augmentations of the same input, we define the contrastive objective as:

$$\mathcal{L}_{u} = \frac{1}{|B|} \sum_{i \in B} -\log \frac{\exp(\delta(z_{i}^{"}, z_{i}^{"})/\tau)}{\sum_{j \neq i} \exp(\delta(z_{i}^{"}, z_{j})/\tau)},\tag{5}$$

where τ is a temperature hyperparameter and B is the batch of samples. We use a **hybrid similarity function** $\delta(.,.)$, which linearly combines distance-based and angle-based measures:

$$\delta(.,.) = \alpha_d \cdot \underbrace{\left[-\mathbb{D}_{\mathbb{H}}(.,.)\right]}_{L_u^{dis}} + (1 - \alpha_d) \cdot \underbrace{\cos(.,.)}_{L_u^{ng}}, \tag{6}$$

 $\cos(\cdot, \cdot)$ computes cosine similarity in the tangent space, thanks to the co-conformality of the Euclidean and Hyperbolic spaces. α_d is the balancing factor (for more details see **Sup. Mat.**).

This hybrid formulation leverages the metric structure of hyperbolic space to promote global semantic separation via geodesic distances, while retaining angular consistency within local neighborhoods. Fig. 3 shows the importance of the full δ over the individual distance metrics.

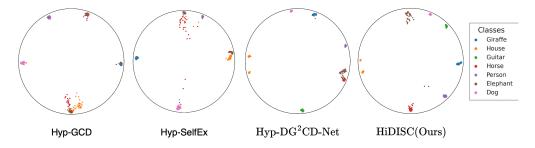


Figure 4: **Poincaré-disk UMAP** [62] **embeddings** of the target domain ("Photo") clusters, as produced by Hyp-GCD [22], Hyp-SelfEx [22], Hyp-DG²CD-Net, and HiDISC(Ours) for the PACS dataset, with "Sketch" as the source. HiDISC produces a visually clean and compact embedding space, supported by **silhouette scores** [63] (\in [-1.1], \uparrow), indicating improved cluster compactness and separation: (Hyp-GCD: **-0.52**, Hyp-SelfEx: **-0.42**, Hyp-DG²CD-Net: **-0.29**, HiDISC: **-0.14**)

3.3.6 Training Objective

Our final minimization objective integrates all components:

$$\mathcal{L}_{\text{total}} = \lambda_1 \underbrace{\mathcal{L}_{\text{Buse}}}_{\text{Semantic alignment}} + \lambda_2 \underbrace{\mathcal{L}_u}_{\text{Contrastive regularization}} + \lambda_3 \underbrace{\mathcal{L}_{\text{out}}}_{\text{Outlier repulsion}}, \text{ where } \lambda_1 + \lambda_2 + \lambda_3 = 1. \tag{7}$$

Test-time Protocol. After training, we extract hyperbolic features from target-domain samples and perform clustering using K-Means as in [1, 15]. See **Sup. Mat.** for detailed algorithm.

3.4 Theoretical Justification: Generalization in Euclidean vs. Hyperbolic Spaces

We analyze HiDISC under the lens of generalization theory in hyperbolic space. Given \mathcal{D}_S , \mathcal{D}_T , and synthetic augmentations $\{\mathcal{D}_{\text{syn}}^{(l)}\}_{l=1}^{\mathcal{M}}$, the goal is to minimize the expected target risk:

$$\mathcal{L}_T(f) = \mathbb{E}_{x \sim T}[\ell(f(x))],\tag{8}$$

Extending Rademacher-based analysis to the Poincaré ball \mathbb{D}_c^d [21], we obtain:

$$\mathcal{L}_T(f) \le \mathcal{L}_{S'}(f) + \Delta_{\mathbb{H}}(S', T) + \mathcal{R}_{\mathbb{H}}(\mathcal{H}) + \epsilon, \tag{9}$$

where: $\mathcal{L}_{S'}(f)$: empirical loss over the augmented training set S'; $\Delta_{\mathbb{H}}(S',T)$: hyperbolic discrepancy between augmented source and target; $\mathcal{R}_{\mathbb{H}}(\mathcal{H})$: Rademacher complexity of the hypothesis class \mathcal{H} ; ϵ : a residual optimization error.

Compared to the Euclidean bound $\mathcal{L}_T^{\mathbb{E}}(f) \leq \mathcal{L}_{S'}(f) + \Delta_{\mathbb{E}}(S',T) + \mathcal{R}_{\mathbb{E}}(\mathcal{H}) + \epsilon$, the hyperbolic version benefits from the exponential volume and hierarchical structure of \mathbb{D}_c^d . This allows semantically distant concepts to be placed further apart with less distortion and curvature-driven compression around known classes—thereby making fewer, well-chosen augmentations sufficient to span the generalization space. As such, $\Delta_{\mathbb{H}}(S',T) < \Delta_{\mathbb{E}}(S',T)$ holds under the same augmentation budget, yielding a tighter bound (see **Sup. Mat.** for a formal proof).

Each loss in HiDISC contributes to improving specific terms: (i) The Busemann loss $\mathcal{L}_{\text{Buse}}$ aligns seen-class features to ideal prototypes at the boundary, stabilizing $\mathcal{L}_{S'}(f)$ via directional compactness; (ii) The hybrid contrastive loss \mathcal{L}_u integrates angular and geodesic similarity to encourage semantically meaningful clusters and reduce model complexity $\mathcal{R}_{\mathbb{H}}(\mathcal{H})$; (iii) The outlier loss \mathcal{L}_{out} , applied on Tangent CutMix samples, helps partition the open space, reducing false positives on novel categories without explicit domain alignment; (iv) The curated synthetic domains $\{\mathcal{D}_{\text{syn}}^{(l)}\}$ enrich S', approximating T's support and reducing $\Delta_{\mathbb{H}}(S',T)$ in a geometry-consistent manner.

In **Sup. Mat.**, we show that FID-based estimates of $\Delta_{\mathbb{H}}$ yield minimal improvement over the inherent domain-independence of hyperbolic geometry. We also compare our loss terms in Euclidean and hyperbolic spaces, demonstrating that hyperbolic geometry better reduces the generalization gap.

4 Experimental Evaluations

Dataset Details. We evaluate our method on three standard DG-GCD benchmarks: PACS [2], Office-Home[3], and Domain-Net[4]. We follow the protocol of [1] for constructing known/novel class-splits and source-target domain pairs. The dataset details are provided in the **Sup. Mat**.

Table 1: **Comparison of clustering accuracy** (%) for known (Old), novel (New), and overall (All) categories across PACS, Office-Home, and DomainNet. It can be seen that HIDISC beats other synthetic domain augmentation based baselines using significantly less number of synthetic domains (from 6/9 to 2). (**Bold**: best, underline: second best).

Method	Venue	PACS		Of	fice-Ho	me	DomainNet		Avg.				
		All	Old	New	All	Old	New	All	Old	New	All	Old	New
ViT [60]	ICLR'21	41.98	50.91	33.16	26.17	29.13	21.62	25.35	26.48	22.41	31.17	35.51	25.73
GCD [15]	CVPR'22	52.28	62.20	38.39	52.71	54.19	50.29	27.41	27.88	26.13	44.13	48.09	38.27
SimGCD [25]	ICCV'23	34.55	38.64	30.51	36.32	49.48	13.55	2.84	2.16	3.75	24.57	30.09	15.94
CMS [26]	CVPR'24	28.95	28.13	36.80	10.02	9.66	10.53	2.33	2.40	2.17	13.77	13.40	16.50
SelfEx [64]	ECCV'24	71.82	73.37	71.55	50.18	48.59	52.16	24.78	24.99	24.21	48.93	48.98	49.31
CDAD-Net [18]	CVPR-W'24	69.15	69.40	68.83	53.69	<u>57.07</u>	47.32	24.12	23.99	24.35	48.99	50.15	46.83
GCD+ 6 Synth	CVPR'22	65.33	67.10	64.42	50.50	51.48	48.96	24.71	24.80	21.94	46.85	47.78	45.11
SimGCD+ 6 Synth	ICCV'23	39.76	43.76	35.97	35.57	48.58	12.89	2.71	1.99	4.14	26.01	31.44	17.67
CMS+ 6 Synth	CVPR'24	28.01	26.71	29.04	12.09	12.66	11.13	3.22	3.28	3.03	14.44	14.22	14.40
CDAD+ 6 Synth	CVPR-W'24	60.76	61.67	59.49	53.49	56.90	47.76	23.85	23.88	24.26	46.03	47.47	43.84
Hyp-GCD [22]	CVPR'25	65.33	67.11	64.42	50.13	49.36	48.08	22.88	23.74	25.89	46.12	46.74	46.13
Hyp-SelfEx [64]	ECCV'24	72.44	74.70	71.20	52.91	52.65	52.96	<u>29.30</u>	<u>30.45</u>	<u>26.37</u>	51.55	52.60	50.18
DG ² CD-Net [1] (9 Synth)	CVPR'25	73.30	75.28	72.56	53.86	53.37	54.33	29.01	30.38	25.46	52.06	53.01	50.78
Hyp-DG ² CD-Net †(9 Synth)	CVPR'25	74.07	74.40	73.95	49.40	50.29	48.03	22.31	21.52	24.29	48.59	48.74	48.76
HiDISC (Ours) (2 Synth)	_	75.07	75.54	74.52	56.78	59.23	53.21	30.51	31.40	28.41	54.12	55.39	52.05
Δ	-	+1.00	+0.26	+0.57	+2.92	+2.16	-1.12	+1.21	+0.95	+2.04	+2.06	+2.38	+1.27
CDAD-Net (DA) [UB]	CVPR-W'24	83.25	87.58	77.35	67.55	72.42	63.44	70.28	76.46	65.19	73.69	78.82	68.66

Evaluation Metrics. Following [15, 18, 1], we evaluate clustering using three metrics: **Old** (accuracy on known classes $\mathcal{Y}_t^{\text{old}}$), **New** (accuracy on novel classes $\mathcal{Y}_t^{\text{new}}$), and **All** (overall accuracy on \mathcal{D}_T). Hungarian matching is used to align predicted clusters with ground-truth labels. Scores are averaged over three runs and all source-target combinations. Further experimental details and hyper-parameter choices are mentioned in **Sup. Mat.**

4.1 Comparisons to the Literature

Table 1 compares our proposed HIDISC against state-of-the-art methods on the said datasets. Baselines are categorized into four groups: (i) **Euclidean source-only GCD methods**, including GCD [15], SimGCD [25], CMS [26], and SelfEx [64]; (ii) **Synthetic augmentation-based GCD methods**, such as SimGCD+Synthetic, CMS+Synthetic, and CDAD-Net+Synthetic [18], which incorporate domain-shifted images via diffusion-based generation; (iii) **Hyperbolic GCD methods**, including Hyp-GCD [22] and Hyp-SelfEx, which project features into hyperbolic space to improve clustering but do not generalize across domains. To ensure consistency with the DG-GCD setting, we retain only the components of these methods that rely on labeled data during training and omit terms involving unlabeled samples in all the above baselines, as recommended in [1]; and (iv) the **DG-GCD baseline** DG²CD-Net [1], which simulates multiple domains using diffusion models and aggregates task-level knowledge via episodic training and task vectors. For a fairer comparison, we also implement a hyperbolic variant, Hyp-DG²CD-Net, by replacing its embedding space with a Poincaré ball. As in [1], we report results for CDAD-Net [18] under joint access to source and target domains as an upper bound of our results.

Quantitatively, HIDISC achieves state-of-the-art performance across all metrics and datasets. It improves upon DG²CD-Net by +2.06% in average overall clustering accuracy and by +1.27% on novel class discovery. On DomainNet—the most diverse and challenging benchmark—HIDISC outperforms the best previous method by +1.21%. UMAP visualizations (Fig. 4) show HIDISC forms a compact embedding space. These gains are achieved without target access and with over

Table 2: **Estimated number of clusters**. Correct estimates are in green, small errors in orange, and large deviations in red.

Method	PACS	Office-Home	DomainNet
Ground Truth	7	65	345
DG ² CD-Net	7	67	355
CDAD-Net (DG)	12	60	362
CDAD-Net (DA)	7	66	349
HIDISC (Ours)	7	66	351

96× lower training FLOPs than [1] while using the same number of synthetic domains (see Sup. Mat). On the other hand, the performance of DG²CD-Net degrades drastically as the number of synthetic domains is reduced (see Sup. Mat.)

Table 3: Impact of **loss components** of HIDISC on Office-Home

Config.	\mathcal{L}_{Buse}	Cu	c	Office-Home			
		$\mathcal{L}_{ ext{hrep}}^{u}$	$\mathcal{L}_{ ext{out}}$	All	Old	New	
Vanilla	Х	Х	Х	26.17	29.13	21.62	
$\mathcal{L}_{\mathbf{Buse}}$	/	X	Х	56.32	59.74	50.32	
\mathcal{L}_{hrep}^{u}	Х	/	Х	50.95	49.33	53.06	
$\mathcal{L}_{\text{Buse}} + \mathcal{L}_{\text{hren}}^{u}$	1	1	X	56.29	60.36	50.41	
$\mathcal{L}_{\text{Buse}} + \mathcal{L}_{\text{out}}$	1	Х	/	51.04	51.51	50.29	
Full HIDISC	1	1	✓	56.78	59.23	53.21	

Table 4: Performance metrics demonstrating the **influence of key model components** of HIDISC for Office-Home.

Model Variant		Office-Home			
		Old	New		
- With manual augmentations based \mathcal{D}_{syn}	50.80	51.75	49.15		
- Without synthetic domain	56.07	59.29	50.67		
- Fixed curvature (c=0.01, close to Euclidean)	56.23	58.65	52.68		
- Fixed curvature (c=0.03)	55.67	57.39	52.69		
- Cut-Mix (In Euclidean Space)	53.46	54.86	51.06		
- Full HIDISC	56.78	59.23	53.21		

Furthermore, Table 2 compares the **estimated number of clusters** inferred by each method against the ground truth on PACS, Office-Home, and DomainNet. HIDISC is found to approximate the cluster counts more precisely than the counterparts.

The **learnable curvature** converges to dataset-specific values: 0.041 for Office-Home, 0.059 for PACS, and 0.38 for DomainNet. The curvature evolution plots are mentioned in **Sup. Mat.**

4.2 Ablation Analysis

Impact of Loss Components and Key Model Components. Table 3 evaluates the contribution of each loss component in HiDISC on Office-Home. The vanilla model, trained without any loss terms, yields only 26.17% overall accuracy. Introducing the Busemann loss alone improves performance substantially to 56.32%, while the hybrid hyperbolic contrastive loss independently achieves 50.95%. Combining both leads to further gains, particularly in old-class accuracy. Incorporating the outlier repulsion term yields the best overall result, with 56.78% total accuracy, 59.23% on known classes, and 53.21% on novel classes.

Table 4 presents ablations on key architectural components. Manual augmentations achieve 50.80% accuracy. Replacing the learnable curvature with static values (c=0.01 and 0.03) reduces accuracy considerably, as it fails to manage the data manifold effectively. Substituting Tangent CutMix with Euclidean CutMix lowers performance by 3.96%, confirming the benefits of curvature-consistent mixing. The complete HiDISC configuration consistently outperforms all variants, confirming the complementary benefits of its geometric and loss-driven design.

Ablation of Norm Radius and Slope in Hyperbolic Embedding. We study two key hyperparameters in our hyperbolic embedding setup: the ℓ_2 norm radius before exponential mapping and the slope ϕ in the penalized Busemann loss, both controlling embedding compactness and placement. As per Table 5, lower slopes (e.g., $\phi=0.10$) favor seen-class accuracy but hurt generalization, while higher slopes (e.g., $\phi=0.90$) improve novel-class performance by restricting dispersion. We choose $\phi=0.75$ for balance. For the norm radius, Table 5 shows that 1.5 best balances alignment to boundary-anchored prototypes and generalization, whereas smaller values (e.g., 1.0) overfit \mathcal{Y}_S .

Table 5: **Ablation on hyperbolic embedding parameters on Office-Home.** (**Left**) Effect of slope coefficient ϕ in the penalized Busemann loss. Lower ϕ concentrates embeddings near the boundary, improving seen-class accuracy but reducing generalization. (**Right**) Effect of ℓ_2 radius constraint before exponential mapping. Radius = 1.5 yields the best trade-off between known and novel categories.

Slope ϕ	All	Old	New	
0.10	58.84	65.77	47.07	
0.75	56.78	59.23	53.21	
0.90	57.76	62.82	49.18	

Radius	All	Old	New	
1.5	56.78	59.23	53.21	
1.0	57.33	61.14	51.76	
2.3	57.31	60.96	52.04	

Choice of Hyperbolic Model: Poincaré vs. Lorentz Model

We adopt the Poincaré ball model, which we find performs more favorably than the Lorentz model [65] for DG-GCD on Office-Home in Table 6. Full theoretical details are in the **Sup. Mat.** The empirical comparison is below:

Hyperparameter Sensitivity for Loss Weights. We conducted an ablation study on the loss weights $(\lambda_1, \lambda_2, \lambda_3)$ and found our chosen configuration achieves near-optimal performance, demonstrating robustness Table 7. More details are in the **Sup. Mat.**

Table 6: Comparison of Poincaré ball and Lorentz models on Office-Home.

Model	All	Old	New
Poincaré Ball [20]	56.78	59.23	53.21
Lorentz Model [65]	54.28	56.01	51.41

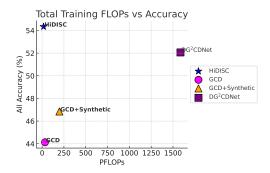


Table 7: Ablation study on loss term weights $(\lambda_1, \lambda_2, \lambda_3)$ on OfficeHome.

	Loss Weights			Acc. (%)			
Config.	λ_1	λ_2	λ_3	All	Old	New	
Config. 1	0.60	0.25	0.15	56.78	59.23	53.21	
Config. 2	0.15	0.60	0.25	52.12	53.33	50.07	
Config. 3	0.25	0.15	0.60	51.37	52.17	50.01	

Figure 5: Computational efficiency of H1DISC. Hyp-Busemann requires only 16.53 PFLOPs over 50 epochs with a batch size of 128×2 , representing a $\sim 2 \times$ reduction compared to GCD (33.06 PFLOPs), $\sim 12 \times$ vs. GCD+Synthetic (198.36 PFLOPs), and nearly $\sim 96 \times$ vs. DG²CD-Net (1,586 PFLOPs). Despite this efficiency, Hyp-Busemann maintains superior accuracy without relying on episodictraining loops, simplifying the overall training pipeline.

5 Takeaways

We addressed the problem of DG-GCD, where novel categories emerge in unseen domains without target supervision. To this end, we proposed HIDISC, a hyperbolic representation learning framework that leverages penalized Busemann alignment, Tangent CutMix-based augmentation, and hybrid contrastive regularization to enable domain- and category-level generalization. Extensive experiments across PACS, Office-Home, and DomainNet show that HIDISC achieves state-of-the-art performance, particularly improving novel class discovery under domain shift. Our findings underscore the utility of hyperbolic geometry for scalable open-world recognition. **Future directions** include extending HIDISC to continual DG-GCD and integrating it with large-scale vision-language models.

Broader Impact and Limitations: While HIDISC advances open-world recognition under domain shift using geometry-aware learning, which is extremely practical, its reliance on synthetic augmentations guided by diffusion models may limit applicability in resource-constrained or safety-critical environments where generative artifacts could propagate bias.

Acknowledgments and Disclosure of Funding

We thank our colleague Shubranil B. for his assistance with the figures in this paper. We are also grateful to Adobe Research and the CMInDS department for providing the necessary resources and support.

References

- [1] Vaibhav Rathore, Shubhranil B, Saikat Dutta, Sarthak Mehrotra, Zsolt Kira, and Biplab Banerjee. When domain generalization meets generalized category discovery: An adaptive task-arithmetic driven approach, 2025. URL https://arxiv.org/abs/2503.14897.
- [2] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain generalization. In *Proceedings of the IEEE international conference on computer vision*, pages 5542–5550, 2017.
- [3] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 5018–5027, 2017.
- [4] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 1406–1415, 2019.
- [5] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis. Deep learning for computer vision: A brief review. *Computational intelligence and neuroscience*, 2018(1):7068349, 2018.
- [6] Junyi Chai, Hao Zeng, Anming Li, and Eric WT Ngai. Deep learning in computer vision: A critical review of emerging techniques and application scenarios. *Machine Learning with Applications*, 6:100134, 2021.
- [7] Tao et al. Sun. Shift: a synthetic driving dataset for continuous multi-task domain adaptation. In *CVPR*, 2022.
- [8] Jee Seok Yoon, Kwanseok Oh, Yooseung Shin, Maciej A Mazurowski, and Heung-Il Suk. Domain generalization for medical image analysis: A survey. *arXiv preprint arXiv:2310.08598*, 2023.
- [9] Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. *Machine learning*, 109(2):373–440, 2020.
- [10] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia Makedon. A survey on contrastive self-supervised learning. *Technologies*, 9(1):2, 2020.
- [11] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. *Neurocomputing*, 312:135–153, 2018.
- [12] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396–4415, 2022.
- [13] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain adaptation by backpropagation. In *Proceedings of the European conference on computer vision (ECCV)*, pages 153–168, 2018.
- [14] Prathmesh Bele, Valay Bundele, Avigyan Bhattacharya, Ankit Jha, Gemma Roig, and Biplab Banerjee. Learning class and domain augmentations for single-source open-domain generalization. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 1816–1826, 2024.
- [15] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 7492–7501, 2022.

- [16] Nan Pu, Zhun Zhong, and Nicu Sebe. Dynamic conceptional contrastive learning for generalized category discovery. In *Proceedings of the IEEE/CVF conference on computer vision and pattern* recognition, pages 7579–7588, 2023.
- [17] Sheng Zhang, Salman Khan, Zhiqiang Shen, Muzammal Naseer, Guangyi Chen, and Fahad Shahbaz Khan. Promptcal: Contrastive affinity learning via auxiliary prompts for generalized novel category discovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3479–3488, 2023.
- [18] Sai Bhargav Rongali, Sarthak Mehrotra, Ankit Jha, Shirsha Bose, Tanisha Gupta, Mainak Singha, Biplab Banerjee, et al. Cdad-net: Bridging domain gaps in generalized category discovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2616–2626, 2024.
- [19] Shuo Wen and Maria Brbic. Cross-domain open-world discovery. *arXiv preprint* arXiv:2406.11422, 2024.
- [20] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. Advances in neural information processing systems, 30, 2017.
- [21] Ines Chami, Aditya Wolf, Pierre Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Hyperbolic neural networks. In *NeurIPS*, pages 5345–5355, 2019.
- [22] Yuanpei Liu, Zhenqi He, and Kai Han. Hyperbolic category discovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.
- [23] Mina Ghadimi Atigh, Martin Keller-Ressel, and Pascal Mettes. Hyperbolic busemann learning with ideal prototypes. *Advances in neural information processing systems*, 34:103–115, 2021.
- [24] OpenAI. Chatgpt, 2024. https://chat.openai.com/.
- [25] Xin Wen, Bingchen Zhao, and Xiaojuan Qi. Parametric classification for generalized category discovery: A baseline study. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 16590–16600, 2023.
- [26] Sua Choi, Dahyun Kang, and Minsu Cho. Contrastive mean-shift learning for generalized category discovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 23094–23104, 2024.
- [27] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng, and S Yu Philip. Generalizing to unseen domains: A survey on domain generalization. *IEEE transactions on knowledge and data engineering*, 35(8):8052–8072, 2022.
- [28] Hongjun Wang, Sagar Vaze, and Kai Han. Hilo: A learning framework for generalized category discovery robust to domain shifts, 2024. URL https://arxiv.org/abs/2408.04591.
- [29] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. *arXiv preprint arXiv:2104.02008*, 2021.
- [30] Yuyang Zhao, Zhun Zhong, Na Zhao, Nicu Sebe, and Gim Hee Lee. Style-hallucinated dual consistency learning for domain generalized semantic segmentation, 2022. URL https://arxiv.org/abs/2204.02548.
- [31] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In *International Conference on Learning Representations*, 2021.
- [32] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Metalearning for domain generalization. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.
- [33] Xiran Wang, Jian Zhang, Lei Qi, and Yinghuan Shi. Generalizable decision boundaries: Dualistic meta-learning for open set domain generalization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 11564–11573, 2023.

- [34] Ronghang Zhu and Sheng Li. Crossmatch: Cross-classifier consistency regularization for open-set single domain generalization. In *International conference on learning representations*, 2022.
- [35] Yang Shu, Zhangjie Cao, Chenyu Wang, Jianmin Wang, and Mingsheng Long. Open domain generalization with domain-augmented meta-learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 9624–9633, 2021.
- [36] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories via deep transfer clustering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 8401–8409, 2019.
- [37] Florent Chiaroni, Jose Dolz, Ziko Imtiaz Masud, Amar Mitiche, and Ismail Ben Ayed. Parametric information maximization for generalized category discovery. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 1729–1739, 2023.
- [38] Dahyun Kang, Piotr Koniusz, Minsu Cho, and Naila Murray. Distilling self-supervised vision transformers for weakly-supervised few-shot classification & segmentation. In *Proceedings of* the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19627–19638, 2023.
- [39] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image editing instructions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18392–18402, 2023.
- [40] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In *The Eleventh International Conference on Learning Representations*, 2023.
- [41] Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. Hyperbolic vision transformers: Combining improvements in metric learning. In *Proceedings* of the IEEE/CVF conference on computer vision and pattern recognition, pages 7409–7419, 2022.
- [42] Yunhui Guo, Xudong Wang, Yubei Chen, and Stella X Yu. Clipped hyperbolic classifiers are super-hyperbolic classifiers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11–20, 2022.
- [43] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky. Hyperbolic image embeddings. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6418–6428, 2020.
- [44] Zhi Gao, Yuwei Wu, Yunde Jia, and Mehrtash Harandi. Curvature generation in curved spaces for few-shot learning. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 8691–8700, 2021.
- [45] Zhenzhen Weng, Mehmet Giray Ogut, Shai Limonchik, and Serena Yeung. Unsupervised discovery of the long-tail in instance segmentation using hierarchical self-supervision. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 2603–2612, 2021.
- [46] Luca Franco, Paolo Mandica, Bharti Munjal, and Fabio Galasso. Hyperbolic self-paced learning for self-supervised skeleton-based action representations. arXiv preprint arXiv:2303.06242, 2023.
- [47] Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. *arXiv* preprint arXiv:2006.08210, 2020.
- [48] Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully hyperbolic convolutional neural networks for computer vision. *arXiv preprint arXiv:2303.15919*, 2023.
- [49] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al. Hyperbolic attention networks. *arXiv preprint arXiv:1805.09786*, 2018.

- [50] Martin Keller-Ressel. A theory of hyperbolic prototype learning. arXiv preprint arXiv:2010.07744, 2020.
- [51] Songwei Ge, Shlok Mishra, Simon Kornblith, Chun-Liang Li, and David Jacobs. Hyperbolic contrastive learning for visual representations beyond objects. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6840–6849, 2023.
- [52] Yun Yue, Fangzhou Lin, Guanyi Mou, and Ziming Zhang. Understanding hyperbolic metric learning through hard negative sampling. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 1891–1903, 2024.
- [53] Jiang Chang, Zhixin Zhang, Yuhua Qian, and Pan Lin. Multi-scale hyperbolic contrastive learning for cross-subject eeg emotion recognition. *IEEE Transactions on Affective Computing*, 2025.
- [54] Shengyin Sun and Chen Ma. Hyperbolic contrastive learning with model-augmentation for knowledge-aware recommendation. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 199–217. Springer, 2024.
- [55] Rukai Wei, Yu Liu, Jingkuan Song, Yanzhao Xie, and Ke Zhou. Exploring hierarchical information in hyperbolic space for self-supervised image hashing. *IEEE Transactions on Image Processing*, 33:1768–1781, 2024.
- [56] Chengyang Hu, Ke-Yue Zhang, Taiping Yao, Shouhong Ding, and Lizhuang Ma. Rethinking generalizable face anti-spoofing via hierarchical prototype-guided distribution refinement in hyperbolic space. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1032–1041, 2024.
- [57] Jona Otholt, Christoph Meinel, and Haojin Yang. Guided cluster aggregation: A hierarchical approach to generalized category discovery. In *Proceedings of the IEEE/CVF Winter Conference* on Applications of Computer Vision (WACV), pages 2618–2627, January 2024.
- [58] Thomas Eiter and Heikki Mannila. Computing discrete fréchet distance. Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, 1994.
- [59] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 9650–9660, 2021.
- [60] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021.
- [61] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF international conference on computer vision, pages 6023–6032, 2019.
- [62] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.
- [63] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. *Journal of computational and applied mathematics*, 20:53–65, 1987.
- [64] Sarah Rastegar, Mohammadreza Salehi, Yuki M Asano, Hazel Doughty, and Cees G M Snoek. Selex: Self-expertise in fine-grained generalized category discovery. In *European Conference on Computer Vision*, 2024.
- [65] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of hyperbolic geometry. In *International conference on machine learning*, pages 3779–3788. PMLR, 2018.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We state the contributions in the abstract and introduction sections.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the Limitations in 5

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes the full set of assumptions and a complete (and correct) proof in Section 3.4, with detailed extensions provided in the **Sup. Mat.**

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: For details on reproducing the experimental results, please refer to section 4 and for further details refer **Sup. Mat.**

Guidelines:

• The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Please refer to Section 4 for the datasets used , all are publicly available. Further code will be available on the project website.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Please refer to Section 4 for experimental settings about the data splits, test details, training details(in Sup Mat).

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper carefully reports the statistical significance details in Section 4, following standard practices in the literature.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: All experiments are done on NVIDIA A100-SMX-80GB GPU's.

Guidelines:

• The answer NA means that the paper does not include experiments.

- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our work in Section 5

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This work poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite all datasets and models utilized in our experiments.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This work does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The Gpt 4-o usage is described in Section 3.3

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.