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Abstract

Generalized Category Discovery (GCD) aims to classify test-time samples into
either seen categories—available during training—or novel ones, without relying
on label supervision. Most existing GCD methods assume simultaneous access
to labeled and unlabeled data during training and arising from the same domain,
limiting applicability in open-world scenarios involving distribution shifts. Domain
Generalization with GCD (DG-GCD) lifts this constraint by requiring models to
generalize to unseen domains containing novel categories, without accessing target-
domain data during training. The only prior DG-GCD method, DG2CD-Net [1],
relies on episodic training with multiple synthetic domains and task vector aggre-
gation, incurring high computational cost and error accumulation. We propose
HIDISC, a hyperbolic representation learning framework that achieves domain and
category-level generalization without episodic simulation. To expose the model to
minimal but diverse domain variations, we augment the source domain using GPT-
guided diffusion, avoiding overfitting while maintaining efficiency. To structure
the representation space, we introduce Tangent CutMix, a curvature-aware interpo-
lation that synthesizes pseudo-novel samples in tangent space, preserving manifold
consistency. A unified loss—combining penalized Busemann alignment, hybrid
hyperbolic contrastive regularization, and adaptive outlier repulsion—facilitates
compact, semantically structured embeddings. A learnable curvature parameter
further adapts the geometry to dataset complexity. HIDISC achieves state-of-
the-art results on PACS [2], Office-Home [3], and DomainNet [4], consistently
outperforming the existing Euclidean and hyperbolic (DG)-GCD baselines.1

1 Introduction

Deep neural networks have achieved impressive success in visual recognition [5, 6], yet typically
assume a shared domain and label space between training and test data. This assumption breaks down
in real-world applications such as autonomous driving [7] and medical diagnostics [8], where both
domain shift and label shift frequently co-occur. While semi/self-supervised learning [9, 10] reduces
labeling demands, it still operates under closed-world constraints. Domain Adaptation (DA) and
Domain Generalization (DG) [11, 12] address distribution shift but assume a fixed set of categories.
Open-set DG [13, 14] allows test-time novelty but collapses all unknowns into a single rejection class,
erasing semantic granularity.

Generalized Category Discovery (GCD) [15–17] seeks to identify both known and novel classes from
unlabeled test data but requires joint access to labeled and unlabeled samples from the same domain.
Cross-Domain GCD (CD-GCD) [18, 19] introduces domain shift but still assumes concurrent access
to source–target domains during training. In contrast, Domain Generalization with GCD (DG-
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GCD) [1] represents a more realistic setting: the model is trained solely on labeled source data and
must generalize to an unseen target domain containing both seen and novel categories.

Addressing DG-GCD requires (i) learning domain-invariant features and (ii) discovering novel
semantic structures without supervision. The only existing solution tailored for DG-GCD, DG2CD-
Net [1] approaches this via episodic training with synthetic domains and task aggregation, but suffers
from high computational cost and cumulative approximation errors that limit generalization.

From a different perspective, existing GCD and DG-GCD methods typically rely on Euclidean
or hyperspherical geometry [1, 18], which struggle to capture semantic hierarchies. Hyperbolic
geometry [20, 21], with its negative curvature and exponential volume growth, offers a natural
alternative for modeling inter-class structure (Fig. 1). While hyperbolic embeddings have shown
benefits in GCD (HypCD) [22] and DG [23] recently, their use in DG-GCD, where both domain and
label shifts co-occur, remains unexplored. This raises our central question:

Can hyperbolic geometry provide a unified foundation for solving DG-GCD,
addressing both distribution shift and novel-class discovery?

Figure 1: Spherical vs. hyperbolic (Poincaré)
embeddings on PACS. Same-class samples
from different domains (green/red) cluster more
tightly in hyperbolic space, demonstrating im-
proved class separation. Refer to Sup. Mat. for
quantitative analysis.

Our approach. We introduce HIDISC, the
first hyperbolic geometry-aware framework for
DG-GCD that learns semantically structured and
domain-invariant embeddings in the Poincaré
ball [20] without requiring target supervision. Un-
like HypCD [22], which addresses standard GCD
in single-domain settings, and DG2CD-Net [1],
which operates in Euclidean space and relies on
episodic simulation, HIDISC provides a unified,
non-episodic solution using the representational
advantages of hyperbolic space.

Since the hyperbolic space offers substantial do-
main invariance and focuses on shared semantics
[23] (Fig. 1, Sup. Mat.), we still chose to aug-
ment the training source domain with controlled
stylistic variations and generate only 1–2 synthetic
domains per image via a GPT-4o [24]-guided dif-
fusion model, avoiding the computational over-
head of task-based simulation in DG2CD-Net. A novel domain-diversity score ranks these augmenta-
tions by measuring source divergence and intra-pair variability, enabling a principled and scalable
domain diversification strategy.

To ensure the model does not overfit the known classes and encourage semantic diversity, we
propose Tangent CutMix, a curvature-aware interpolation method that mixes labeled features in
the tangent space of the Poincaré ball to create pseudo-open samples. Unlike Euclidean mixing
used in SimGCD [25] or CMS [26], our method preserves hyperbolic consistency and generates
geometrically valid pseudo-novel embeddings that support open-set regularization.

To structure the latent space, we introduce a unified loss that combines three novel components not
jointly explored in prior (DG)-GCD literature: (i) a penalized Busemann loss that aligns seen-class
features to fixed prototypes at the hyperbolic boundary while reserving interior space for unknowns;
(ii) a hybrid hyperbolic contrastive loss balancing angular and geodesic similarities to enable fine-
grained clustering across known and novel categories; and (iii) an adaptive outlier rejection loss
that pushes synthetic cut-mix samples away from known-class regions, encouraging open-space
generalization without relying on adversarial or domain-specific objectives. A learnable curvature
parameter further adapts the geometry to dataset-specific complexity. Major contributions include:

– HIDISC, the first hyperbolic DG-GCD framework, jointly handles domain and category shift
without target supervision or episodic simulation.

– A unified loss formulation integrating Busemann alignment, hybrid contrastive regularization,
and an adaptive outlier repulsion.

– Tangent CutMix, the first open-set augmentation designed specifically for hyperbolic geometry.
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– State-of-the-art results on PACS [2], Office-Home [3], and DomainNet [4], outperforming all the
baselines consistently and reducing training FLOPs by over 96× vs. DG2CD-Net.

2 Related Works

Domain Generalization. DG aims to train models on labeled data from one or more source
domains to generalize effectively to previously unseen target domains [12, 27]. DG variants include
closed-set, open-set, single-source, and multi-source settings [28]. Methods like MixStyle [29]
and StyleHallucination [30] enhance robustness via feature-level style perturbations, while meta-
learning techniques [31, 32] simulate domain shifts episodically to improve adaptability. Open-set
DG methods address novel test-time classes [33, 34, 14, 35], but typically collapse all unknowns into
a single “outlier” class, hindering fine-grained discovery needed in DG-GCD.

Category Discovery. Category Discovery seeks to partition unlabeled data into known and novel
categories. While Novel Category Discovery (NCD) [36] assumes complete disjointness between
training and test classes, GCD allows overlap and requires identifying both seen and unseen categories
during inference [15–17, 25, 37, 38, 26]. Most GCD approaches assume joint access to source and
target domains during training, limiting real-world applicability. CD-GCD methods like CDAD-
Net [18] and HiLo [28] reduce domain gaps via adversarial alignment or style normalization but still
depend on concurrent domain access. To remove this constraint, DG-GCD [1] simulates domain
shifts through text-driven image manipulation (e.g., InstructPix2Pix [39]) and aggregates task-specific
knowledge via task vectors [40]. However, these methods operate in Euclidean spaces, which struggle
to encode the hierarchical and shared semantic structures crucial for robust domain and category
generalization.

Hyperbolic Embedding Spaces. Hyperbolic geometry, defined by negative curvature and exponential
volume growth, is well-suited for modeling hierarchical and part-whole semantic structures [20, 21].
Hyperbolic embeddings have improved performance in classification [41–43], few-shot learning [44],
segmentation [45], and action recognition [46], supported by hyperbolic variants of standard network
components [47, 48, 21, 49]. Recent Busemann-based techniques [23, 50] anchor ideal prototypes
on the Poincaré boundary for directional alignment. HypCD [22] successfully applies this to GCD,
but assumes joint source–target access. Beyond these, hyperbolic methods have been applied across
diverse tasks: Ge et al. [51] explore contrastive learning for hierarchical scene–object representation,
Yue et al. [52] study metric learning with hard negatives, Liu et al. [53] extend contrastive learning to
EEG, Sun & Ma [54] investigate recommendation, while others address hashing [55] and face anti-
spoofing with hierarchical prototypes [56]. To date, no work has explored hyperbolic representations
for DG-GCD, which combines open-set discovery and domain shift without target supervision.

3 Methodology

3.1 The DG-GCD Problem Definition

In DG-GCD, we are given a labeled source-domain dataset:

DS = {(xs
i , y

s
i )}

ns
i=1, xs

i ∈ Xs, y
s
i ∈ Ys,

where xs
i represents source-domain inputs, and ysi denotes labels drawn from a set of known categories

Ys. At test time, we encounter an unlabeled target-domain dataset:

DT = {xt
j}

nt
j=1, xt

j ∈ Xt,

where samples belong either to known categories (Yold
t = Ys) or previously unseen, novel categories

(Ynew
t ), such that Ynew

t ∩ Ys = ∅. Crucially, the data distributions across domains differ significantly,
i.e., P (Xs) ̸= P (Xt), and the target dataset DT is inaccessible during training.

Our objective is to construct an embedding space using only DS that generalizes across domains and
categories, effectively clustering both known and novel-class samples from the unseen dataset DT .

3.2 Rationale Behind Using Hyperbolic Space for DG-GCD

Semantic structures in visual data—such as hierarchies, taxonomies, and part–whole relation-
ships—are inherently suited to spaces with exponential capacity. Hyperbolic space, characterized
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Figure 2: Illustration of the HIDISC pipeline for DG-GCD in hyperbolic space. The model is
trained using labeled source data DS (green borders) and 1–2 GPT-guided synthetic domains D1

Syn,
D2

Syn (orange borders) to simulate domain shift. Features from the shared encoder are projected to the
Poincaré ball via expc0. To mimic novel categories, Tangent CutMix performs interpolation in the
tangent space and maps the result zmix back to hyperbolic space. The embedding space is structured
via: (i) penalized Busemann loss LBuse for aligning seen classes to boundary-fixed prototypes; (ii)
hybrid contrastive loss Lu for clustering and separability; and (iii) adaptive outlier loss Lout to repel
pseudo-novel points. Together, these shape a curvature-aware space for generalization and discovery.

by negative curvature and exponential volume growth, naturally encodes such structures, making it
particularly beneficial for DG-GCD, where labeled classes typically reflect coarse semantic strata,
while novel categories often reside in finer or more abstract regions.

In contrast to Euclidean or spherical embeddings [16, 57], which are constrained by polynomial
growth, hyperbolic embeddings support both local compactness and global semantic separation.
Moreover, hyperbolic geometry improves domain generalization by amplifying higher-level semantic
distances and attenuating domain-specific low-level variations, thereby fostering robust, domain-
invariant representations under substantial distributional shifts (more details provided in Sup. Mat).

Poincaré Ball Geometry. We adopt the Poincaré ball [20] as our hyperbolic model. For curvature
−c2, the n-dimensional ball is defined as:

Dn
c =

{
a ∈ Rn

∣∣ c∥a∥2 < 1
}
,

where ∥ · ∥ denotes the Euclidean norm. Additional geometric details are provided in the Sup. Mat.

3.3 Navigating through HIDISC for DG-GCD

We propose HIDISC (Fig. 2), a hyperbolic framework that jointly addresses the dual challenges of
DG-GCD: domain-invariant representation learning and unsupervised semantic disentanglement. The
synthesis-driven components of our model include: (i) Synthetic Domain Augmentation, which intro-
duces a compact set of diverse, diffusion-generated domains to simulate realistic distribution shifts
without relying on target access; and (ii) Tangent CutMix, a curvature-aware interpolation mechanism
operating in the tangent space of the Poincaré ball, generating pseudo-novel samples while preserving
manifold fidelity. Complementing these are three loss-driven modules: (iii) Prototype Anchoring,
which aligns seen-class embeddings to fixed ideal prototypes on the Poincaré boundary, reserving
central space for novel classes; (iv) Adaptive Outlier Loss, which ensures synthetic samples are
repelled from known-class clusters, promoting open-space regularization; and (v) Hybrid Hyperbolic
Contrastive Loss, which combines geodesic and angular similarity to improve local cohesion and
global separability. Each component is described in detail in the subsequent sections.

3.3.1 Lightweight Synthetic Domain Augmentation

To simulate domain variability without relying on expensive episodic training (as in DG2CD-Net [1]),
we generate only one or two synthetic domains per experiment using a diffusion model guided by
GPT-4o [24]-curated prompts (e.g., underwater, night-time variants of class instances) (see Sup.
Mat. for qualitative visualizations). These synthetic domains serve as proxy distributions that expose
the model to varied visual shifts and support generalization to unseen domains.

Unlike DG2CD-Net, which depends on numerous episodic tasks and synthetic domain permutations,
our strategy is lightweight and avoids both computational overhead and error propagation across
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episodes. Crucially, in hyperbolic space, even a small number of diverse augmentations can induce
expansive representational changes due to the geometry’s exponential capacity—effectively stretching
the semantic space and encouraging separation between seen and unseen regions.

First, we introduce a domain-diversity score that ranks a given synthetic domain D(s)
syn with respect to

other synthetic domains {D(l)
syn}Ml=1 and the source domain DS based on the notion of mutual diversity

calculated using the Fréchet Inception Distance (FID) [58] for M synthesized domains:

Score(D(s)
syn) =

1

M− 1

M∑
l=1,
l ̸=s

[
FID(DS ,D(s)

syn) + FID(D(s)
syn ,D(l)

syn)

]
. (1)

This scoring promotes both source-domain divergence and intra-pair complementarity. We select the
top-scoring 1− 2 domains to augment DS to obtain Dtrain.

As shown in Fig. 3, excessive augmentation leads to overfitting on seen classes and degrades novel
class discovery. Notably, training solely on DS yields competitive results, highlighting the inherent
domain robustness of hyperbolic space, and using these augmentation provides marginal boosts.
Effects of redundant augmentations are mentioned in Sup. Mat.

3.3.2 Mapping Visual Features into Curvature-Aware Hyperbolic Geometry

With the augmented training set, we learn representations using a frozen DINO [59]-pretrained
ViT [60] followed by a 3-layer MLP. The resulting Euclidean feature zE ∈ Rd is projected into the
Poincaré ball Dd

c via the exponential map:

zsi = expc0(z
E) = tanh(

√
c∥zE∥) · zE√

c∥zE∥
, (2)

where c is a learnable curvature parameter in our case to approximate the data complexity more
effectively. Let zi := zsi denote the hyperbolic feature. This projection facilitates the encoding of
hierarchical semantics and ensures geometric consistency in the downstream tasks.

3.3.3 Tangent CutMix and Adaptive Outlier Loss

To hallucinate novel-category samples and regularize the open space in hyperbolic geometry, we
introduce Tangent CutMix [61]—a curvature-aware variant of CutMix tailored for the Poincaré ball.
Traditional CutMix interpolates feature representations in Euclidean space to synthesize outliers,
which can violate the geometric constraints of hyperbolic space. In contrast, Tangent CutMix performs
mixing in the tangent space at the origin, ensuring consistency with the underlying manifold structure.

Given two embeddings zi, zj ∈ Dd
c with different class labels, we:

(1) Project to tangent space: vi = logc0(zi), vj = logc0(zj)

(2) Linear mix: Compute vi,jmix = λvi + (1− λ)vj , where λ ∼ Beta(1, 1) = Uniform(0, 1)

(3) Map back: zi,jmix = expc0(vmix)

The resulting embedding zmix represents a curvature-preserving interpolation of features with incom-
patible semantics, mimicking out-of-distribution behavior while remaining valid in the hyperbolic
space. Furthermore, to prevent these synthetic features from collapsing into known class regions, we
apply an adaptive outlier loss:

Lout = E
(x,y)∼P(Dtrain)

∑
i,j,yi ̸=yj

max(0, γ − min
k∈Ys

DH(z
i,j
mix,pk)), (3)

where DH is the hyperbolic distance, and γ is a quantile-based adaptive margin over the distances
from all class prototypes in {pk}|Ys|

k=1. This encourages pseudo-novel embeddings to remain outside
the regions occupied by seen classes, effectively reserving space for novel category discovery. For
further analysis regarding adaptive margin and the generated CutMix samples, see Sup. Mat.
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Figure 3: (Left) Effect of αd in hybrid contrastive loss. A balanced combination of angular and
geodesic components achieves the highest accuracy. (Right) Impact of synthetic domains on old
and new category performance. While old-class accuracy increases due to augmented seen data,
new-class performance slowly degrades with more synthetic domains, as they cause seen-class bias.

3.3.4 Prototype Anchoring with Penalized Busemann Loss

To enforce semantic structure among the known categories, we associate each class k ∈ Ys with a
fixed ideal prototype pk ∈ ∂Dd

c [23], placed uniformly on the boundary of the Poincaré ball. These
prototypes serve as directional anchors and remain fixed throughout training, enabling compact
clustering of seen-class features while leaving the interior volume of the ball available for unknown
category discovery.

To align the features zi with their respective class prototypes, we adopt a penalized Busemann loss:

LBuse = log

(
∥zi − pyi∥2

1− c∥zi∥2

)
+ ϕ log(1− ∥zi∥2), (4)

where pyi is the prototype corresponding to the class label of zi, and ϕ is a regularization coeffi-
cient. The first term guides directional alignment between features and their prototypes, preserving
semantic proximity in the hyperbolic geometry. The second term penalizes embeddings that ap-
proach the boundary too aggressively, thereby maintaining stability during optimization and avoiding
overconfidence.

3.3.5 Hybrid Hyperbolic Contrastive Loss

While the Busemann loss anchors known classes via directional alignment, it does not explicitly
enforce local structure among unlabeled or novel samples. To address this, we incorporate a hybrid
hyperbolic contrastive loss [22], designed to refine the latent space by encouraging consistency
between augmented views and separating unrelated instances—even in the absence of explicit labels.

For each positive pair of embeddings z′i, z
′′

i , corresponding to different augmentations of the same
input, we define the contrastive objective as:

Lu =
1

|B|
∑
i∈B

− log
exp(δ(z

′′

i , z
′
i)/τ)∑

j ̸=i exp(δ(z
′
i, zj)/τ)

, (5)

where τ is a temperature hyperparameter and B is the batch of samples. We use a hybrid similarity
function δ(., .), which linearly combines distance-based and angle-based measures:

δ(., .) = αd · [−DH(., .)]︸ ︷︷ ︸
Ldis

u

+(1− αd) · cos(., .)︸ ︷︷ ︸
Lang

u

, (6)

cos(·, ·) computes cosine similarity in the tangent space, thanks to the co-conformality of the Eu-
clidean and Hyperbolic spaces. αd is the balancing factor (for more details see Sup. Mat.).

This hybrid formulation leverages the metric structure of hyperbolic space to promote global semantic
separation via geodesic distances, while retaining angular consistency within local neighborhoods.
Fig. 3 shows the importance of the full δ over the individual distance metrics.
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Figure 4: Poincaré-disk UMAP [62] embeddings of the target domain (“Photo") clusters, as
produced by Hyp-GCD [22], Hyp-SelfEx [22], Hyp-DG2CD-Net, and HIDISC(Ours) for the PACS
dataset, with “Sketch" as the source. HIDISC produces a visually clean and compact embedding
space, supported by silhouette scores [63] (∈ [−1.1], ↑), indicating improved cluster compactness
and separation: (Hyp-GCD: -0.52, Hyp-SelfEx: -0.42, Hyp-DG2CD-Net: -0.29, HIDISC: -0.14)
3.3.6 Training Objective

Our final minimization objective integrates all components:
Ltotal = λ1 LBuse︸ ︷︷ ︸

Semantic alignment

+λ2 Lu︸︷︷︸
Contrastive regularization

+λ3 Lout︸︷︷︸
Outlier repulsion

, where λ1+λ2+λ3 = 1. (7)

Test-time Protocol. After training, we extract hyperbolic features from target-domain samples and
perform clustering using K-Means as in [1, 15]. See Sup. Mat. for detailed algorithm.

3.4 Theoretical Justification: Generalization in Euclidean vs. Hyperbolic Spaces

We analyze HIDISC under the lens of generalization theory in hyperbolic space. Given DS , DT , and
synthetic augmentations {D(l)

syn}Ml=1, the goal is to minimize the expected target risk:
LT (f) = Ex∼T [ℓ(f(x))], (8)

Extending Rademacher-based analysis to the Poincaré ball Dd
c [21], we obtain:

LT (f) ≤ LS′(f) + ∆H(S
′, T ) +RH(H) + ϵ, (9)

where: LS′(f): empirical loss over the augmented training set S′; ∆H(S
′, T ): hyperbolic discrepancy

between augmented source and target; RH(H): Rademacher complexity of the hypothesis class H; ϵ:
a residual optimization error.

Compared to the Euclidean bound LE
T (f) ≤ LS′(f)+∆E(S

′, T )+RE(H)+ϵ, the hyperbolic version
benefits from the exponential volume and hierarchical structure of Dd

c . This allows semantically
distant concepts to be placed further apart with less distortion and curvature-driven compression
around known classes—thereby making fewer, well-chosen augmentations sufficient to span the
generalization space. As such, ∆H(S

′, T ) < ∆E(S
′, T ) holds under the same augmentation budget,

yielding a tighter bound (see Sup. Mat. for a formal proof).

Each loss in HIDISC contributes to improving specific terms: (i) The Busemann loss LBuse aligns
seen-class features to ideal prototypes at the boundary, stabilizing LS′(f) via directional compact-
ness; (ii) The hybrid contrastive loss Lu integrates angular and geodesic similarity to encourage
semantically meaningful clusters and reduce model complexity RH(H); (iii) The outlier loss Lout,
applied on Tangent CutMix samples, helps partition the open space, reducing false positives on novel
categories without explicit domain alignment; (iv) The curated synthetic domains {D(l)

syn} enrich S′,
approximating T ’s support and reducing ∆H(S

′, T ) in a geometry-consistent manner.

In Sup. Mat., we show that FID-based estimates of ∆H yield minimal improvement over the inherent
domain-independence of hyperbolic geometry. We also compare our loss terms in Euclidean and
hyperbolic spaces, demonstrating that hyperbolic geometry better reduces the generalization gap.

4 Experimental Evaluations

Dataset Details. We evaluate our method on three standard DG-GCD benchmarks: PACS [2],
Office-Home[3], and Domain-Net[4]. We follow the protocol of [1] for constructing known/novel
class-splits and source-target domain pairs. The dataset details are provided in the Sup. Mat.
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Table 1: Comparison of clustering accuracy (%) for known (Old), novel (New), and overall (All)
categories across PACS, Office-Home, and DomainNet. It can be seen that HIDISC beats other
synthetic domain augmentation based baselines using significantly less number of synthetic domains
(from 6/9 to 2). (Bold : best , underline : second best).

Method Venue PACS Office-Home DomainNet Avg.

All Old New All Old New All Old New All Old New

ViT [60] ICLR’21 41.98 50.91 33.16 26.17 29.13 21.62 25.35 26.48 22.41 31.17 35.51 25.73
GCD [15] CVPR’22 52.28 62.20 38.39 52.71 54.19 50.29 27.41 27.88 26.13 44.13 48.09 38.27
SimGCD [25] ICCV’23 34.55 38.64 30.51 36.32 49.48 13.55 2.84 2.16 3.75 24.57 30.09 15.94
CMS [26] CVPR’24 28.95 28.13 36.80 10.02 9.66 10.53 2.33 2.40 2.17 13.77 13.40 16.50
SelfEx [64] ECCV’24 71.82 73.37 71.55 50.18 48.59 52.16 24.78 24.99 24.21 48.93 48.98 49.31
CDAD-Net [18] CVPR-W’24 69.15 69.40 68.83 53.69 57.07 47.32 24.12 23.99 24.35 48.99 50.15 46.83

GCD+ 6 Synth CVPR’22 65.33 67.10 64.42 50.50 51.48 48.96 24.71 24.80 21.94 46.85 47.78 45.11
SimGCD+ 6 Synth ICCV’23 39.76 43.76 35.97 35.57 48.58 12.89 2.71 1.99 4.14 26.01 31.44 17.67
CMS+ 6 Synth CVPR’24 28.01 26.71 29.04 12.09 12.66 11.13 3.22 3.28 3.03 14.44 14.22 14.40
CDAD+ 6 Synth CVPR-W’24 60.76 61.67 59.49 53.49 56.90 47.76 23.85 23.88 24.26 46.03 47.47 43.84

Hyp-GCD [22] CVPR’25 65.33 67.11 64.42 50.13 49.36 48.08 22.88 23.74 25.89 46.12 46.74 46.13
Hyp-SelfEx [64] ECCV’24 72.44 74.70 71.20 52.91 52.65 52.96 29.30 30.45 26.37 51.55 52.60 50.18

DG2CD-Net [1] (9 Synth) CVPR’25 73.30 75.28 72.56 53.86 53.37 54.33 29.01 30.38 25.46 52.06 53.01 50.78
Hyp-DG2CD-Net †(9 Synth) CVPR’25 74.07 74.40 73.95 49.40 50.29 48.03 22.31 21.52 24.29 48.59 48.74 48.76

HIDISC (Ours) (2 Synth) – 75.07 75.54 74.52 56.78 59.23 53.21 30.51 31.40 28.41 54.12 55.39 52.05
∆ – +1.00 +0.26 +0.57 +2.92 +2.16 –1.12 +1.21 +0.95 +2.04 +2.06 +2.38 +1.27

CDAD-Net (DA) [UB] CVPR-W’24 83.25 87.58 77.35 67.55 72.42 63.44 70.28 76.46 65.19 73.69 78.82 68.66

Evaluation Metrics. Following [15, 18, 1], we evaluate clustering using three metrics: Old (accuracy
on known classes Yold

t ), New (accuracy on novel classes Ynew
t ), and All (overall accuracy on DT ).

Hungarian matching is used to align predicted clusters with ground-truth labels. Scores are averaged
over three runs and all source-target combinations. Further experimental details and hyper-parameter
choices are mentioned in Sup. Mat.

4.1 Comparisons to the Literature

Table 1 compares our proposed HIDISC against state-of-the-art methods on the said datasets.
Baselines are categorized into four groups: (i) Euclidean source-only GCD methods, including
GCD [15], SimGCD [25], CMS [26], and SelfEx [64]; (ii) Synthetic augmentation-based GCD
methods, such as SimGCD+Synthetic, CMS+Synthetic, and CDAD-Net+Synthetic [18], which
incorporate domain-shifted images via diffusion-based generation; (iii) Hyperbolic GCD methods,
including Hyp-GCD [22] and Hyp-SelfEx, which project features into hyperbolic space to improve
clustering but do not generalize across domains. To ensure consistency with the DG-GCD setting,
we retain only the components of these methods that rely on labeled data during training and omit
terms involving unlabeled samples in all the above baselines, as recommended in [1]; and (iv) the
DG-GCD baseline DG2CD-Net [1], which simulates multiple domains using diffusion models and
aggregates task-level knowledge via episodic training and task vectors. For a fairer comparison, we
also implement a hyperbolic variant, Hyp-DG2CD-Net, by replacing its embedding space with a
Poincaré ball. As in [1], we report results for CDAD-Net [18] under joint access to source and target
domains as an upper bound of our results. Table 2: Estimated number of clusters. Correct

estimates are in green, small errors in orange, and
large deviations in red.

Method PACS Office-Home DomainNet

Ground Truth 7 65 345
DG2CD-Net 7 67 355
CDAD-Net (DG) 12 60 362
CDAD-Net (DA) 7 66 349
HIDISC (Ours) 7 66 351

Quantitatively, HIDISC achieves state-of-the-art
performance across all metrics and datasets. It
improves upon DG2CD-Net by +2.06% in aver-
age overall clustering accuracy and by +1.27% on
novel class discovery. On DomainNet—the most
diverse and challenging benchmark—HIDISC
outperforms the best previous method by +1.21%.
UMAP visualizations (Fig. 4) show HIDISC
forms a compact embedding space. These gains
are achieved without target access and with over
96× lower training FLOPs than [1] while using the same number of synthetic domains (see Sup.
Mat). On the other hand, the performance of DG2CD-Net degrades drastically as the number of
synthetic domains is reduced (see Sup. Mat.)
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Table 3: Impact of loss components of HIDISC
on Office-Home

Config. LBuse Lu
hrep Lout

Office-Home
All Old New

Vanilla ✗ ✗ ✗ 26.17 29.13 21.62
LBuse ✓ ✗ ✗ 56.32 59.74 50.32
Lu

hrep ✗ ✓ ✗ 50.95 49.33 53.06
LBuse+Lu

hrep ✓ ✓ ✗ 56.29 60.36 50.41
LBuse+Lout ✓ ✗ ✓ 51.04 51.51 50.29

Full HIDISC ✓ ✓ ✓ 56.78 59.23 53.21

Table 4: Performance metrics demonstrating the
influence of key model components of HIDISC
for Office-Home.

Model Variant Office-Home
All Old New

- With manual augmentations based Dsyn 50.80 51.75 49.15
- Without synthetic domain 56.07 59.29 50.67
- Fixed curvature (c=0.01, close to Euclidean) 56.23 58.65 52.68
- Fixed curvature (c=0.03) 55.67 57.39 52.69
- Cut-Mix (In Euclidean Space) 53.46 54.86 51.06
- Full HIDISC 56.78 59.23 53.21

Furthermore, Table 2 compares the estimated number of clusters inferred by each method against
the ground truth on PACS, Office-Home, and DomainNet. HIDISC is found to approximate the
cluster counts more precisely than the counterparts.

The learnable curvature converges to dataset-specific values: 0.041 for Office-Home, 0.059 for
PACS, and 0.38 for DomainNet. The curvature evolution plots are mentioned in Sup. Mat.

4.2 Ablation Analysis

Impact of Loss Components and Key Model Components. Table 3 evaluates the contribution of
each loss component in HIDISC on Office-Home. The vanilla model, trained without any loss terms,
yields only 26.17% overall accuracy. Introducing the Busemann loss alone improves performance
substantially to 56.32%, while the hybrid hyperbolic contrastive loss independently achieves 50.95%.
Combining both leads to further gains, particularly in old-class accuracy. Incorporating the outlier
repulsion term yields the best overall result, with 56.78% total accuracy, 59.23% on known classes,
and 53.21% on novel classes.

Table 4 presents ablations on key architectural components. Manual augmentations achieve 50.80%
accuracy. Replacing the learnable curvature with static values (c = 0.01 and 0.03) reduces accuracy
considerably, as it fails to manage the data manifold effectively. Substituting Tangent CutMix with
Euclidean CutMix lowers performance by 3.96%, confirming the benefits of curvature-consistent
mixing. The complete HIDISC configuration consistently outperforms all variants, confirming the
complementary benefits of its geometric and loss-driven design.

Ablation of Norm Radius and Slope in Hyperbolic Embedding. We study two key hyperparameters
in our hyperbolic embedding setup: the ℓ2 norm radius before exponential mapping and the slope
ϕ in the penalized Busemann loss, both controlling embedding compactness and placement. As
per Table 5, lower slopes (e.g., ϕ = 0.10) favor seen-class accuracy but hurt generalization, while
higher slopes (e.g., ϕ = 0.90) improve novel-class performance by restricting dispersion. We choose
ϕ = 0.75 for balance. For the norm radius, Table 5 shows that 1.5 best balances alignment to
boundary-anchored prototypes and generalization, whereas smaller values (e.g., 1.0) overfit YS .

Table 5: Ablation on hyperbolic embedding parameters on Office-Home. (Left) Effect of slope
coefficient ϕ in the penalized Busemann loss. Lower ϕ concentrates embeddings near the boundary,
improving seen-class accuracy but reducing generalization. (Right) Effect of ℓ2 radius constraint
before exponential mapping. Radius = 1.5 yields the best trade-off between known and novel
categories.

Slope ϕ All Old New

0.10 58.84 65.77 47.07
0.75 56.78 59.23 53.21
0.90 57.76 62.82 49.18

Radius All Old New

1.5 56.78 59.23 53.21
1.0 57.33 61.14 51.76
2.3 57.31 60.96 52.04

Choice of Hyperbolic Model: Poincaré vs. Lorentz Model

We adopt the Poincaré ball model, which we find performs more favorably than the Lorentz model [65]
for DG-GCD on Office-Home in Table 6. Full theoretical details are in the Sup. Mat. The empirical
comparison is below:

Hyperparameter Sensitivity for Loss Weights. We conducted an ablation study on the loss weights
(λ1, λ2, λ3) and found our chosen configuration achieves near-optimal performance, demonstrating
robustness Table 7. More details are in the Sup. Mat.
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Table 6: Comparison of Poincaré ball and
Lorentz models on Office-Home.

Model All Old New
Poincaré Ball [20] 56.78 59.23 53.21
Lorentz Model [65] 54.28 56.01 51.41

Table 7: Ablation study on loss term weights
(λ1, λ2, λ3) on OfficeHome.

Loss Weights Acc. (%)
Config. λ1 λ2 λ3 All Old New

Config. 1 0.60 0.25 0.15 56.78 59.23 53.21
Config. 2 0.15 0.60 0.25 52.12 53.33 50.07
Config. 3 0.25 0.15 0.60 51.37 52.17 50.01
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Figure 5: Computational efficiency of
HIDISC. Hyp-Busemann requires only 16.53
PFLOPs over 50 epochs with a batch size of
128 × 2, representing a ∼ 2× reduction com-
pared to GCD (33.06 PFLOPs), ∼ 12× vs.
GCD+Synthetic (198.36 PFLOPs), and nearly
∼ 96× vs. DG2CD-Net (1,586 PFLOPs). De-
spite this efficiency, Hyp-Busemann maintains
superior accuracy without relying on episodic-
training loops, simplifying the overall training
pipeline.

5 Takeaways
We addressed the problem of DG-GCD, where novel categories emerge in unseen domains without
target supervision. To this end, we proposed HIDISC, a hyperbolic representation learning framework
that leverages penalized Busemann alignment, Tangent CutMix-based augmentation, and hybrid
contrastive regularization to enable domain- and category-level generalization. Extensive experiments
across PACS, Office-Home, and DomainNet show that HIDISC achieves state-of-the-art performance,
particularly improving novel class discovery under domain shift. Our findings underscore the utility
of hyperbolic geometry for scalable open-world recognition. Future directions include extending
HIDISC to continual DG-GCD and integrating it with large-scale vision-language models.

Broader Impact and Limitations: While HIDISC advances open-world recognition under domain
shift using geometry-aware learning, which is extremely practical, its reliance on synthetic augmenta-
tions guided by diffusion models may limit applicability in resource-constrained or safety-critical
environments where generative artifacts could propagate bias.

10



Acknowledgments and Disclosure of Funding

We thank our colleague Shubranil B. for his assistance with the figures in this paper. We are also
grateful to Adobe Research and the CMInDS department for providing the necessary resources and
support.

References
[1] Vaibhav Rathore, Shubhranil B, Saikat Dutta, Sarthak Mehrotra, Zsolt Kira, and Biplab Banerjee.

When domain generalization meets generalized category discovery: An adaptive task-arithmetic
driven approach, 2025. URL https://arxiv.org/abs/2503.14897.

[2] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier
domain generalization. In Proceedings of the IEEE international conference on computer vision,
pages 5542–5550, 2017.

[3] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5018–5027, 2017.

[4] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1406–1415, 2019.

[5] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopa-
padakis. Deep learning for computer vision: A brief review. Computational intelligence and
neuroscience, 2018(1):7068349, 2018.

[6] Junyi Chai, Hao Zeng, Anming Li, and Eric WT Ngai. Deep learning in computer vision:
A critical review of emerging techniques and application scenarios. Machine Learning with
Applications, 6:100134, 2021.

[7] Tao et al. Sun. Shift: a synthetic driving dataset for continuous multi-task domain adaptation.
In CVPR, 2022.

[8] Jee Seok Yoon, Kwanseok Oh, Yooseung Shin, Maciej A Mazurowski, and Heung-Il Suk.
Domain generalization for medical image analysis: A survey. arXiv preprint arXiv:2310.08598,
2023.

[9] Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine
learning, 109(2):373–440, 2020.

[10] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2, 2020.

[11] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocomputing,
312:135–153, 2018.

[12] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396–4415,
2022.

[13] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain
adaptation by backpropagation. In Proceedings of the European conference on computer vision
(ECCV), pages 153–168, 2018.

[14] Prathmesh Bele, Valay Bundele, Avigyan Bhattacharya, Ankit Jha, Gemma Roig, and Biplab
Banerjee. Learning class and domain augmentations for single-source open-domain generaliza-
tion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pages 1816–1826, 2024.

[15] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7492–7501, 2022.

11

https://arxiv.org/abs/2503.14897


[16] Nan Pu, Zhun Zhong, and Nicu Sebe. Dynamic conceptional contrastive learning for generalized
category discovery. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 7579–7588, 2023.

[17] Sheng Zhang, Salman Khan, Zhiqiang Shen, Muzammal Naseer, Guangyi Chen, and Fa-
had Shahbaz Khan. Promptcal: Contrastive affinity learning via auxiliary prompts for gener-
alized novel category discovery. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3479–3488, 2023.

[18] Sai Bhargav Rongali, Sarthak Mehrotra, Ankit Jha, Shirsha Bose, Tanisha Gupta, Mainak
Singha, Biplab Banerjee, et al. Cdad-net: Bridging domain gaps in generalized category
discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2616–2626, 2024.

[19] Shuo Wen and Maria Brbic. Cross-domain open-world discovery. arXiv preprint
arXiv:2406.11422, 2024.

[20] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. Advances in neural information processing systems, 30, 2017.

[21] Ines Chami, Aditya Wolf, Pierre Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Hyper-
bolic neural networks. In NeurIPS, pages 5345–5355, 2019.

[22] Yuanpei Liu, Zhenqi He, and Kai Han. Hyperbolic category discovery. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

[23] Mina Ghadimi Atigh, Martin Keller-Ressel, and Pascal Mettes. Hyperbolic busemann learning
with ideal prototypes. Advances in neural information processing systems, 34:103–115, 2021.

[24] OpenAI. Chatgpt, 2024. https://chat.openai.com/.

[25] Xin Wen, Bingchen Zhao, and Xiaojuan Qi. Parametric classification for generalized category
discovery: A baseline study. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 16590–16600, 2023.

[26] Sua Choi, Dahyun Kang, and Minsu Cho. Contrastive mean-shift learning for generalized
category discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 23094–23104, 2024.

[27] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen,
Wenjun Zeng, and S Yu Philip. Generalizing to unseen domains: A survey on domain general-
ization. IEEE transactions on knowledge and data engineering, 35(8):8052–8072, 2022.

[28] Hongjun Wang, Sagar Vaze, and Kai Han. Hilo: A learning framework for generalized category
discovery robust to domain shifts, 2024. URL https://arxiv.org/abs/2408.04591.

[29] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle.
arXiv preprint arXiv:2104.02008, 2021.

[30] Yuyang Zhao, Zhun Zhong, Na Zhao, Nicu Sebe, and Gim Hee Lee. Style-hallucinated
dual consistency learning for domain generalized semantic segmentation, 2022. URL https:
//arxiv.org/abs/2204.02548.

[31] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021.

[32] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-
learning for domain generalization. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[33] Xiran Wang, Jian Zhang, Lei Qi, and Yinghuan Shi. Generalizable decision boundaries:
Dualistic meta-learning for open set domain generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 11564–11573, 2023.

12

https://arxiv.org/abs/2408.04591
https://arxiv.org/abs/2204.02548
https://arxiv.org/abs/2204.02548


[34] Ronghang Zhu and Sheng Li. Crossmatch: Cross-classifier consistency regularization for
open-set single domain generalization. In International conference on learning representations,
2022.

[35] Yang Shu, Zhangjie Cao, Chenyu Wang, Jianmin Wang, and Mingsheng Long. Open do-
main generalization with domain-augmented meta-learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9624–9633, 2021.

[36] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories
via deep transfer clustering. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8401–8409, 2019.

[37] Florent Chiaroni, Jose Dolz, Ziko Imtiaz Masud, Amar Mitiche, and Ismail Ben Ayed. Para-
metric information maximization for generalized category discovery. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1729–1739, 2023.

[38] Dahyun Kang, Piotr Koniusz, Minsu Cho, and Naila Murray. Distilling self-supervised vision
transformers for weakly-supervised few-shot classification & segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19627–19638,
2023.

[39] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18392–18402, 2023.

[40] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International
Conference on Learning Representations, 2023.

[41] Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets.
Hyperbolic vision transformers: Combining improvements in metric learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 7409–7419,
2022.

[42] Yunhui Guo, Xudong Wang, Yubei Chen, and Stella X Yu. Clipped hyperbolic classifiers are
super-hyperbolic classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11–20, 2022.

[43] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempit-
sky. Hyperbolic image embeddings. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 6418–6428, 2020.

[44] Zhi Gao, Yuwei Wu, Yunde Jia, and Mehrtash Harandi. Curvature generation in curved spaces
for few-shot learning. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 8691–8700, 2021.

[45] Zhenzhen Weng, Mehmet Giray Ogut, Shai Limonchik, and Serena Yeung. Unsupervised
discovery of the long-tail in instance segmentation using hierarchical self-supervision. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
2603–2612, 2021.

[46] Luca Franco, Paolo Mandica, Bharti Munjal, and Fabio Galasso. Hyperbolic self-paced learning
for self-supervised skeleton-based action representations. arXiv preprint arXiv:2303.06242,
2023.

[47] Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. arXiv
preprint arXiv:2006.08210, 2020.

[48] Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully hyperbolic convolutional neural
networks for computer vision. arXiv preprint arXiv:2303.15919, 2023.

[49] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al. Hyperbolic
attention networks. arXiv preprint arXiv:1805.09786, 2018.

13



[50] Martin Keller-Ressel. A theory of hyperbolic prototype learning. arXiv preprint
arXiv:2010.07744, 2020.

[51] Songwei Ge, Shlok Mishra, Simon Kornblith, Chun-Liang Li, and David Jacobs. Hyperbolic
contrastive learning for visual representations beyond objects. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6840–6849, 2023.

[52] Yun Yue, Fangzhou Lin, Guanyi Mou, and Ziming Zhang. Understanding hyperbolic metric
learning through hard negative sampling. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 1891–1903, 2024.

[53] Jiang Chang, Zhixin Zhang, Yuhua Qian, and Pan Lin. Multi-scale hyperbolic contrastive
learning for cross-subject eeg emotion recognition. IEEE Transactions on Affective Computing,
2025.

[54] Shengyin Sun and Chen Ma. Hyperbolic contrastive learning with model-augmentation for
knowledge-aware recommendation. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 199–217. Springer, 2024.

[55] Rukai Wei, Yu Liu, Jingkuan Song, Yanzhao Xie, and Ke Zhou. Exploring hierarchical
information in hyperbolic space for self-supervised image hashing. IEEE Transactions on
Image Processing, 33:1768–1781, 2024.

[56] Chengyang Hu, Ke-Yue Zhang, Taiping Yao, Shouhong Ding, and Lizhuang Ma. Rethinking
generalizable face anti-spoofing via hierarchical prototype-guided distribution refinement in
hyperbolic space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1032–1041, 2024.

[57] Jona Otholt, Christoph Meinel, and Haojin Yang. Guided cluster aggregation: A hierarchical
approach to generalized category discovery. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages 2618–2627, January 2024.

[58] Thomas Eiter and Heikki Mannila. Computing discrete fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, 1994.

[59] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[60] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[61] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 6023–6032,
2019.

[62] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[63] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[64] Sarah Rastegar, Mohammadreza Salehi, Yuki M Asano, Hazel Doughty, and Cees G M Snoek.
Selex: Self-expertise in fine-grained generalized category discovery. In European Conference
on Computer Vision, 2024.

[65] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model
of hyperbolic geometry. In International conference on machine learning, pages 3779–3788.
PMLR, 2018.

14



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state the contributions in the abstract and introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the Limitations in 5
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper includes the full set of assumptions and a complete (and correct)
proof in Section 3.4, with detailed extensions provided in the Sup. Mat.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: For details on reproducing the experimental results, please refer to section 4
and for further details refer Sup. Mat.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please refer to Section 4 for the datasets used , all are publicly available.
Further code will be available on the project website.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section 4 for experimental settings about the data splits , test
details , training details(in Sup Mat) .

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper carefully reports the statistical significance details in Section 4,
following standard practices in the literature.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments are done on NVIDIA A100-SMX-80GB GPU’s.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm the research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our work in Section 5

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all datasets and models utilized in our experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

20

paperswithcode.com/datasets


Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The Gpt 4-o usage is described in Section 3.3
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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