
Under review as submission to TMLR

Handling Missing Data in Downstream Tasks With
Distribution-Preserving Guarantees

Anonymous authors
Paper under double-blind review

Abstract

Missing feature values are a significant hurdle for downstream machine-learning tasks such
as classification. However, imputation methods for classification might be time-consuming
for high-dimensional data, and offer few theoretical guarantees on the preservation of the
data distribution and imputation quality, especially for not-missing-at-random mechanisms.
First, we propose an imputation approach named F3I based on the iterative improvement of
a K-nearest neighbor imputation, where neighbor-specific weights are learned through the
optimization of a novel concave, differentiable objective function related to the preservation
of the data distribution on non-missing values. F3I can then be chained to and jointly trained
with any classifier architecture. Second, we provide a theoretical analysis of imputation quality
and data distribution preservation by F3I for several types of missing mechanisms. Finally,
we demonstrate the superior performance of F3I on several imputation and classification
tasks, with applications to drug repurposing and handwritten-digit recognition data.

1 Introduction

Most machine-learning approaches assume full access to the features of the input data points. However,
missing values might arise due to the incompleteness of public databases or measurement errors. Research on
the imputation of missing values and inference on possibly missing data is motivated by the fact that naive
approaches would not fare well. Indeed, ignoring samples with missing values might lead to severe data loss
and meaningless downstream models, for classification or regression (Liao et al., 2014; Shadbahr et al., 2023).
Yet, replacing missing values with zeroes (or any “simple” univariate approach such as taking the mean or the
median) can considerably distort the distribution of data values, as there is a more significant weight on the
default value for missing entries, and then perhaps bias the training of a downstream model for classification
or regression tasks (Khan & Hoque, 2020). However, multivariate approaches are often time-consuming and
prohibitive for high-dimensional data sets, as in biology (Brini & van den Heuvel, 2024; Gu et al., 2025).

The literature often distinguishes three main categories of missingness mechanisms (Rubin, 1976) depending
on the relationship between the probability pmiss of a missing value and the data. The simplest one is
Missing-Completely-At-Random (MCAR), where that probability is independent of the data. This can be
applied when the measurement tools fail at some probability, regardless of the analyzed data. The second,
more complex, setting is Missing-At-Random (MAR), where pmiss depends solely on the observed (not missing)
data. An example of MAR is when male patients drop out more often from a clinical study than female
patients. Finally, the Missing-Not-At-Random setting (MNAR), where pmiss depends on both the observed
and missing data, is widely regarded as the most challenging setting for analysis because the actual values
might not be identifiable.

2 Related work

As previously mentioned, the fastest approaches to imputation are often univariate because they are simple
operations applied feature-wise to a dataset. For instance, the missing value for a feature corresponding to a
column of the data matrix might be replaced by the mean or the median of all non-missing values or even by

1

Under review as submission to TMLR

zeroes in that column. Yet, such naive approaches might severely distort the distribution of values (Le Morvan
& Varoquaux, 2024).

That fact opened the path to multiple multivariate methods, such as MICE (van Buuren & Groothuis-
Oudshoorn, 2011), MissForest (Stekhoven & Bühlmann, 2012), RF-GAP (Rhodes et al., 2023) resorting
to random forests; MIDAS (Seu et al., 2022) using denoising auto-encoders; Optimal Transport-based
algorithms (Muzellec et al., 2020a); but also matrix factorizations (Mazumder et al., 2010), penalized logistic
regression methods (van Loon et al., 2024), Bayesian network-based approaches (for instance, MIWAE (Mattei
& Frellsen, 2019) for MAR mechanisms and its MNAR counterpart not-MIWAE (Ipsen et al., 2021)). Some
recent works also provide a pipeline for the automated finetuning and refinement of imputers, such as
MIRACLE (Kyono et al., 2021) or HyperImpute (Jarrett et al., 2022). We dwell further on newer diffusion
model and deep learning-based approaches in Appendix (Section A). However, as the number of features
increases, so does the computation time, making most of those approaches untractable on practical data sets.
For instance, in genomic data, the feature set (genes) can amount to as many as 20, 000 genes in humans.

Moreover, many published imputation methods come without any guarantee on the quality of the imputation
or often on the more straightforward settings such as MCAR (Mazumder et al., 2010) and MAR (Śmieja
et al., 2018); with a few exceptions such as (Tang et al., 2003; Mohan et al., 2018; Sportisse et al., 2020) for
pure imputation tasks, and NeuMiss networks (Le Morvan et al., 2020), which tackle a classification task
in the presence of missing values. However, the MCAR and MAR settings are usually not applicable to
real-life data, and (Tang et al., 2003; Mohan et al., 2018; Sportisse et al., 2020) rely on an assumption of
data generation through low-rank or linear random models instead of simpler data distributions.

Finally, nearest-neighbor imputers (Troyanskaya et al., 2001) are known to be performant in practice and
relatively fast (Emmanuel et al., 2021; Seu et al., 2022; Joel et al., 2024), at the price of some distortion in
high-dimensional data sets (Beretta & Santaniello, 2016). This observation led us to consider an improvement
of a nearest-neighbor imputation that preserves the data distribution even in larger dimensions while remaining
computationally fast.

2.1 Contributions

In Section 3, we describe an algorithm named Fast Iterative Improvement for Imputation (F3I) based on the
distribution-preserving improvement of a K nearest-neighbor imputer. F3I combines two ingredients: (1) a
novel concave and differentiable objective function to quantify the preservation of data distribution during
imputation; and (2) a fast routine to optimize that function through the weights in the nearest-neighbor
imputation, by drawing a parallel with the problem of expert advice in online learning (Cesa-Bianchi &
Lugosi, 2006; De Rooij et al., 2014; Lattimore & Szepesvári, 2020). This algorithm gives theoretical upper
bounds on the imputation quality and the preservation of initial data distribution in some MCAR, MAR, and
MNAR settings (Section 4). Furthermore, this imputation can also be chained to and jointly trained with a
downstream task, e.g., classification, to increase its accuracy (Section 5). Finally, we illustrate the performance
of F3I compared to several baselines on standard data sets for imputation and classification (Section 6), and
showcase its applications to drug repurposing and handwritten digit recognition (Appendix H).

2.2 Notation

We denote N , F and K the number of samples, features, and nearest neighbors. i, j, f are integer indices.
For all other alphabet letters, v is a scalar, v a vector, and V a matrix. vi is the ith column and vj is
the jth row of matrix V , and vj

i is the coefficient at position (i, j) in V for i, j > 0. For any K ≥ 2,
△K ≜ {p ∈ [0, 1]K |

∑
k≤K pk = 1} is the simplex of dimension K. The initial data matrix with missing

values is X ∈ (R ∪ {NaN})N×F , where X⋆ ∈ RN×F is the full (unavailable) data matrix. Finally, mf
i ∈ {0, 1}

is the random variable that indicates whether the value at position (i, f) is missing in the input data matrix,
where mf

i = 1 means it is missing.

2

Under review as submission to TMLR

3 The Fast Iterative Improvement for Imputation (F3I) algorithm

The key idea is that we would like to replace missing positions in X with the most probable values by iteratively
applying a “good” weighted combination of elements in the data set, starting from a guess, e.g., through
K-nearest neighbor imputation. For each value xf

i , we are looking to tune the weights α = (α1, α2, . . . , αK)
of a convex combination of the K closest neighbors of xi in a reference set Z ∈ RN×F without missing values,
zi(1), zi(2), . . . , zi(K), ordered by their increasing distance to xi. We denote that imputation improvement
model Impute(xi; α, Z), which is fully described in Appendix (Algorithm 2). When the reference set is
obvious, we define x(α) ≜ Impute(x; α, Z).

3.1 Theoretical assumptions

Assumptions are important–and all unrealistic to some extent–to control the behavior of the imputed values
compared to the ground truth values, which are in essence unavailable, during the theoretical analysis to
assess the imputation quality and the preservation of data distribution. Theoretical results on those controlled
settings allow data-independent comparisons and are key to robust scientific advancement. In this section,
we informally state our assumptions about the data generation procedure to derive theoretical guarantees.
Formal statements can be found in Appendix (Section B and Algorithm 3). In practice, those assumptions can
be ignored, and F3I can be applied to real-life data, as shown in Section 6. First, we assume that each value
in the full data matrix is drawn from independent fixed-variance Gaussian distributions (Assumption B.1).

Second, the random indicator variables mf
i are then independently drawn according to the missingness

mechanism with probability pmiss. If mf
i = 1, then the coefficient at position (i, f), xf

i in X is unavailable,
otherwise, xf

i = (x⋆)f
i . We provide an analysis of our algorithm for three types of missingness mechanisms:

a MCAR mechanism where the random indicator variables are drawn from Bernoulli law with fixed mean
(Assumption B.2); a MAR mechanism where the probability of missingness depends only on observed values
of the data set (Assumption B.3); and, finally, a MNAR mechanism called Gaussian self-masking (Assumption
4 from Le Morvan et al. (2020)) where the probability of mf

i = 1 is proportional to exp(−ζ−2((x⋆)f
i − µf)2)

where µf is specific to feature f and ζ is fixed (Assumption B.4).

Third, we also ensure that there are exactly K neighbors for the initial guesses (Assumption B.5), and that
we know a constant upper bound on the norm of any feature vectors (Assumption B.6). Then, the goal of
our algorithm F3I is to determine the proper weights in a nearest-neighbor imputation in a data-driven way
that preserves the data distribution. But how do we define that property?

3.2 A novel objective function for optimizing the preservation of the initial data distribution

Ideally, if we had access to the true distribution D on feature vectors, we would like to set the
weights α ∈ △K , the simplex of dimension K, such that the following quantity is maximized
Ex∼D

[
1(ΦΘ(Impute

(
x0; α, Z)) > ΦΘ(x0)

)]
, where 1 is the Kronecker symbol, x0 ∈ RF is an initial guess

on the missing values in x ∈ (R ∪ {NA})F , and ΦΘ is the parametrized true data distribution according to
Assumption B.1. That is, we want to choose α so that the imputed values are more probable than the current
guesses. Considering a full data set of N F -dimensional points Z = {(x0)1, (x0)2, . . . , (x0)N} ⊂ RF of initial
guesses on the missing values in X and approximating the true distribution D by a density kernel D0 on Z,
we would like to maximize 1

(
D0((x0)i(α)) > D0((x0)i)

)
for each sample xi, i ≤ N . That quantity can be

approximated by

max
(

0,
D0((x0)i(α))

D0((x0)i)
− 1
)
≈ log

(
D0((x0)i(α))

D0((x0)i)

)
,

To restrict overfitting, we can add a ℓ2-regularization on the parameter α with a regularization factor
η. If we estimate a Gaussian kernel over the reference set Z, then the density kernel D0 is defined as
D0 : x ∈ RF 7→ 1/N

∑
j≤N (

√
2πh)−F exp(−∥x−(x0)j∥2

2/(4h)), where h is the kernel width. Finally, we define
for any α ∈ △K , X ∈ RN×F and η ≥ 0, the function G : α, X 7→ 1/N

∑
i≤N log D0(xi(α))/D0(xi)− η∥α∥2

2.
An intuitive interpretation of G is that if G(α, X) ≤ 0, then the imputed points with α are, on average, less
probable than the previous imputations.

3

Under review as submission to TMLR

We now show that G can be maximized through standard convex optimization techniques. The proofs of the
following propositions are located in Appendix (Section C). First, G is continuous and infinitely differentiable
(Proposition C.1). A second less obvious result is that, if η < 4K, there always exists a bandwidth value h in
the definition of the Gaussian kernel in D0 such that G is also strictly concave in α (Proposition C.2). The
condition η < 4K is not restrictive, as η is the ℓ2-regularization factor and K ≥ 2 is the number of neighbors.
A practical value of h can be computed by explicitly finding the smallest positive root of a specific cubic
equation, for instance, by using Cardano’s method (Cardano et al., 1968). Moreover, another interesting
property of G is that its gradient is Lipschitz-continuous with respect to α (Proposition C.5), which allows us
to derive theoretical guarantees when G is combined with a loss function of a downstream task (Section 5).

Finally, imputation through the α maximizing G(·, X) does not require performing a regression on a subset
of the dataset, for example, by hiding some available values. This is an important property, as, in some cases,
the number of available values is smaller than the total number of elements in the data matrix by several
orders of magnitude, as in the collaborative filtering setting (Koren et al., 2021).

3.3 A fast procedure to maximize the objective function

Based on the function G defined in the previous section, an approach to imputation consists of first imputing
the missing values with K-nearest neighbors (K-NN) with uniform weights (Troyanskaya et al., 2001), and then
recursively improving the imputed values by finetuning the weights in convex combinations of neighbors. Note
that those neighbors might change for the same initial sample xi across iterations, since the imputed values
in that point are modified. At iteration s, the optimal weight vector αs is the solution to the maximization
problem of G(·, Xs−1), where Xs−1 is the data matrix with the imputed values obtained at the previous
iteration. The neighbors among the reference set (which are the initial K-NN-imputed points) are obtained
with a single k-d tree (Bentley, 1975).

However, solving a full convex optimization problem at each iteration might be time-consuming. Similarly to
prior works in other research fields (Degenne et al., 2020), we advocate for learning the optimal weight vector
on the fly by resorting to an online learner. We draw a parallel between the problem of finding the optimal
weight vector in a K-nearest neighbor imputation and the problem of expert advice with K experts in online
learning. The underlying idea is that we would like to put more credence on the kth closest neighbor if it
allows us to improve the probability of the imputed values. This analogy permits the leverage of powerful
online learners from the literature, for instance, AdaHedge (De Rooij et al., 2014) or EXP3 (Auer et al.,
2002), to obtain theoretical guarantees while having a computationally fast imputation.

Those two ingredients are the keys to our main contribution F3I, described in Algorithm 1. A normalization
step–for instance, with the ℓ2 norm–can be applied before the initial imputation step and reversed before
returning the final data matrix to minimize bias induced by varying feature value ranges. For the sake of
readability, we did not add that normalization in the pseudocode of F3I.

What’s the intuition behind the loss used to update the online learner? As we want to maximize the function
G(·, Xs−1) at iteration s, we set as the (possibly non-positive) “loss” for the kth weight, associated with the
kth closest neighbor, −αt

k
∂G
∂αk

(αt, Xs−1): the more G(α, Xs−1) increases as αk increases, the more weight we
would like to put on the kth closest neighbor.

4 Theoretical guarantees of F3I

In a nutshell, F3I iteratively improves the imputed values by changing the weight vector that combines the K
neighbors among the naively imputed points for each sample. One of the most common metrics to evaluate
the imputation quality is the Mean Squared Error (MSE) on the imputed values.

Definition 4.1. Mean squared error. We define the mean squared error as LMSE(Xt, X⋆) ≜
1/(NF)

∑
i≤N

∑
f≤F ((xt)f

i − (x⋆)f
i)2. The root-mean-squared error (RMSE) is then defined as

LRMSE(Xt, X⋆) ≜
√
LMSE(Xt, X⋆).

4

Under review as submission to TMLR

Algorithm 1 The Fast Iterative Improvement for Imputation (F3I) algorithm.
Input: Data X ∈ (R ∪ {N/A})N×F

Parameters: Maximum budget T > 0, number of neighbors K ≥ 2, regularization factor η > 0
Output: Imputed data X̂ ∈ RN×F

X0 ← KNN_imputer(X, weights=1/K1K)
Build a k-d tree T on Z = {(x0)1, (x0)2, . . . , (x0)N}
L ← (0, 0, . . . , 0) ∈ RK # Initialize the AdaHedge learner
for t = 1, . . . , T do

αt ← L # Get the predicted weight
vector

xt
i ← Impute((xt−1)i; αt, Z) for all i ≤ N # Apply Algorithm 2 using T

Update L with the loss −⟨αt, ∇αG(αt, Xt−1)⟩ # Update the online learner L
if G(αt, Xt−1) ≤ 0 then break; end if # Early stopping criterion

end for
X̂ ← Xt if t = T , Xt−1 otherwise

Note that F3I–and all of the baselines that we consider in our experimental study in Section 6–does not get
access to the ground truth values and does not need to compute the mean squared error during training.
However, we can still derive useful properties of F3I on the MSE. Imputation by convex combinations is
theoretically supported by the following upper bound when the data distribution of true values follows
Assumption B.1 and one of the missingness mechanisms in Assumptions B.2-B.4.

Theorem 4.2. Bounds in high probability and in expectation on the MSE for F3I. Under Assumptions B.1-
B.6, if Xt is any imputed matrix at iteration t ≥ 1, X⋆ is the corresponding full (unavailable in practice)
matrix, w.h.p. 1− 1/N , LMSE(Xt, X⋆) ≤ O((σmiss)2 + ln N/F), where σmiss is linked to the variance of the
data distribution and depends on the missingness mechanism.

In particular, this theorem means that the imputation quality decreases with the variance in the data, which
is what we expect, as convex imputations would hardly be able to generate outlier data points. The proof
and full expression of the bound in Theorem 4.2 are located in Appendix D.

The other performance measure that we are interested in is the preservation of the data distribution, which
we quantify with function G. However, function G features the Gaussian kernel density D0 estimated on the
naively imputed points {(x0)1, . . . , (x0)N}. What we would want to optimize for is the “true” probability
density D⋆ computed on the ground truth values {(x⋆)1, . . . , (x⋆)N} which are of course unavailable at all
times.

Then we introduce function G⋆ : α, X 7→ 1/N
∑

i≤N log D⋆(xi(α))/D⋆(xi) − η∥α∥2
2. We measure the

imputation quality by the improvement in the probability of imputed points across iterations, that is,∑t
s=1 G⋆(αs, Xs−1), where Xs ≜ (xs−1

i (αs))i≤N for s ≥ 1 and X0 is the data matrix imputed by the
initial KNN imputer. Note that this quantity features a telescoping series and is then equivalent to
comparing the final imputed values at time s = t and the initial values at s = 0 (Proposition G.7 in
Appendix). We compare this improvement with the imputation with the one incurred by the weight vector
which a posteriori maximizes the likelihood of imputed points for all previous iterations up to t, that is,
R(t) ≜ maxα∈△K

∑t
s=1 G⋆(α, Xs−1) − G⋆(αs, Xs−1). In the online learning community, this measure is

akin to the cumulative regret for the loss function −G⋆. 1

In F3I, we use a no-regret learner named AdaHedge (De Rooij et al., 2014) to predict the weight vector at
each iteration.

Definition 4.3. No-regret learners. A learner L over △K is no-regret if for t ≥ 1 and any sequence of
bounded gains {gs(α)}s≤t for any α ∈ △K , there exists C ∈ R+∗ such that, if α is the prediction of L at
iteration s ≤ t, then maxα∈△K

∑t
s=1 gs(α)− gs(αs) ≤ C

√
t.

1However, that loss function is not necessarily non-negative.

5

Under review as submission to TMLR

We denote CAH
G = O(

√
log(K)) the constant associated with the regret bound incurred by AdaHedge on the

objective function G. Combined with an upper bound on the difference between G⋆ and G in high probability,
we obtain the following upper bound on the imputation quality for F3I.
Theorem 4.4. High-probability upper bound on the imputation quality for F3I. Under Assumptions B.1-
B.6, for X ∈ (R ∪ {N/A})N×F , R(t) ≤ CAH

G

√
t + Hmissh−1t w.h.p. 1 − 1/N , where Hmiss = O(F + ln N)

depends on the missingness mechanism and h is chosen to guarantee that G is concave in its first argument
(Proposition C.2).

Proof. The full proof is in Appendix E. Applying the regret bound associated with AdaHedge (Lemma 2 in
Appendix) leads to an upper bound on quantity maxα∈△K

∑t
s=1 gs(α) − gs(αs) which correspond to the

difference in gain between the a posteriori optimal weights α and the weights predicted in F3I αs, s ≤ t,
using the gain gs : α 7→ α⊺∇αG(αs, Xs−1) at iteration s.

We denote R̂(α, t) ≜
∑t

s=1 G(α, Xs−1) − G(αs, Xs−1) for any α ∈ △K . For any α ∈ △K , R̂(α, t) ≤
maxα∈△K

∑t
s=1(α− αs)⊺∇αG(αs, Xs−1) by using the gradient trick on the concave function G. Finally,

we derive a high probability upper bound on |G⋆(α, X ′)−G(α, X ′)| for any α ∈ △K and X ′ ∈ RN×F . We
show that it suffices to find an upper bound Hmiss with high probability 1− 1/N on maxi≤N ∥(x0)i− (x⋆)i∥2

2,
which is the norm of a random vector with independent, zero-mean subgaussian coordinates, which allows us
to use Bernstein’s inequality (Corollary G.6 with δ = 1/N).

Subsequently, we show that for all x ∈ Rd, | log(D0(x)/D⋆(x))| ≤ Hmiss/(4h) with probability 1 − 1/N .
Finally, the definitions of G0 and G⋆ allow us to derive the second term of the sum in the upper bound.

The term in O(t) comes from the approximation in O(1) made between G and G⋆ (Corollary G.5) at each
round of F3I. Removing that term would perhaps require supplementary steps, e.g., considering Dt, the
density computed on points {(xt)1, (xt)2, . . . , (xt)N} at iteration t, instead of D0.

5 Jointly training the imputation model and a model for a downstream task

As noticed by several prior works (Le Morvan et al., 2021; Le Morvan & Varoquaux, 2024; Vo et al., 2024), a
good imputation quality does not necessarily go hand in hand with an improved performance in a downstream
task run on the imputed data set, e.g., for classification (Le Morvan et al., 2021), regression (Ayme et al.,
2023), or structure learning (Vo et al., 2024). That might explain why, in some cases, data sets imputed
with naive constant imputations that are known to distort the initial data distribution might yield better
performance metrics than those with more sophisticated approaches (Le Morvan & Varoquaux, 2024). In this
section, we propose a generic approach that optimizes both for an imputation task and a specific downstream
task, by learning the optimal (convex) imputation pattern for some model parameters.

Assuming that there is a convex, differentiable pointwise loss function ℓ for the downstream task, we now
consider the maximization problem maxα∈△K

G(α, X; β) on X ∈ RN×F on α, where

G(α, X; β) ≜ (1− β)G(α, X)− β/N
∑
i≤N

ℓ(xi(α)) , (1)

where β ∈ [0, 1] is a positive regularization parameter related to the importance of the downstream task. As
reported in many papers on multi-task learning (Chen et al., 2018; Yu et al., 2020; Liu et al., 2021), simply
replacing the gradient of G in the loss of the AdaHedge learner in F3I by the weighted sum of the gradient of
G and ℓ might lead to optimization issues, for instance, stalling update due to orthogonal gradients.

A recent method named PCGrad (Yu et al., 2020) performs gradient surgery for multi-task learning. In
particular, PCGrad allows us to obtain theoretical guarantees on the performance of the training if the
weighted sum −G is convex and L-Lipschitz continuous with L > 0 and if both ℓ and −G are convex
and differentiable (Yu et al., 2020, Theorems 1-2). −G is convex by Proposition C.2 and differentiable
by Proposition C.1. Naturally, if ∇ℓ is itself Lipschitz continuous with a positive Lipschitz constant,
Proposition C.5 implies that this condition is verified for the objective function in Equation equation 1. A

6

Under review as submission to TMLR

simple example of such a loss function is the pointwise log loss ℓ(x) = −y log Cω(x) for the binary classification
task, where y is the true class in {0, 1} for sample x and Cω : x 7→ 1/(1 + exp(−ω⊺x)) is the sigmoid function
of parameter ω. Proofs are in Appendix (Section F).

Then, we modify F3I by changing the loss fed to the AdaHedge learner L in Line 10 in Algorithm 1. At
iteration s, instead of using the loss gs(α) ≜ −

〈
α,∇αG(αs, Xs−1)

〉
, we consider gs(α) ≜ −⟨α,L(α, Xs−1)⟩,

where L(α, Xs−1) is equal to

(1− β)∇αGPC(αs, Xs−1)− β/N
∑
i≤N

∇αℓPC((xs−1)i(αs))⟩ , (2)

and ∇αGPC and ∇αℓPC are the gradient function of G and ℓ with respect to their first argument corrected
by the PCGrad procedure (Yu et al., 2020, Algorithm 1). We call PCGrad-F3I this joint training version of
F3I. Under the conditions laid in the statement of Theorem 2 in (Yu et al., 2020), at any iteration s ≤ t, if
(αs)PC and αs are respectively the parameters obtained after applying one PCGrad or a regular AdaHedge
update to αs−1, then G((αs)PC, Xs−1; β) ≥ G(αs, Xs−1; β). That is,
Theorem 5.1. High-probability upper bound on the joint imputation-downstream task performance.
Under Assumptions B.1-B.6, for any X ∈ (R ∪ {N/A})N×F , convex pointwise loss ℓ such that ∇ℓ
is Lipschitz-continuous, and β ∈ [0, 1], under the conditions in Theorem 2 from (Yu et al., 2020),
maxα∈△K

∑t
s=1 G(α, Xs−1; β) − G(αs, Xs−1; β) ≤ CAH

(G,ℓ)
√

t + (1 − β)Hmissh−1t w.h.p. 1 − 1/N , where
Hmiss = O(F + ln N) depends on the missingness mechanism, h is chosen to guarantee that G is concave,
and CAH

(G,ℓ) is the constant related to AdaHedge being applied with gains gs(·).

For β = 0, this bound matches Theorem 4.4, and for β = 1, this is the classical AdaHedge regret bound
(Theorem 8 in (De Rooij et al., 2014)) with loss ℓ.

6 Experimental study

This section is restricted to the comparison of our algorithmic contributions F3I and PCGrad-F3I to baselines
for imputation-only and joint imputation-binary classification tasks on real-life data sets, due to space
constraints. In Appendix (Section H), we also empirically validate our theoretical results (Theorems 4.2, 4.4
and 5.1) and test the imputation and classification performance on additional real-life data sets for drug
repurposing (with up to 9, 000 features), compared to other (older) baselines, and on synthetic data sets
(with up to 20, 000 features) that comply with Assumptions B.1-B.6, for all missingness mechanisms. Further
information about hyperparameter tuning and computing infrastructure is also available in Section H. We
also report complementary experiments in Appendix I (e.g., on other missingness mechanisms).

6.1 Imputation-only task

First, we study the imputation quality–without any downstream task. We resorted to the framework
HyperImpute (Jarrett et al., 2022) to implement and run the benchmark for an imputation task across
different performance metrics (including RMSE) on four standard data sets BreastCancer (Wolberg et al., 1993),
Diabetes (from scikit-learn (Pedregosa et al., 2011)), HeartDisease (Janosi et al., 1989), Ionosphere (selva86,
2024) and a data set for drug repurposing, Gottlieb (Luo et al., 2016). In this benchmark, we included recent
methods from the literature which benefited from open-source, modular scikit-learn (Pedregosa et al.,
2011)-like implementations: GAIN (Yoon et al., 2018a), GRAPE (You et al., 2020), HyperImpute (Jarrett
et al., 2022), MIRACLE (Kyono et al., 2021), NewImp (Chen et al., 2024), Remasker (Du et al., 2023) and
TDM (Zhao et al., 2023). We considered the scenario MNAR in the framework HyperImpute to add missing
values. We report in Table 1 the corresponding numerical results across 10 runs with different random seeds.
We also perform additional experiments on the Ionosphere and the Breast Cancer data sets for varying
missing rates (0.1, 0.25, 0.5, 0.75, 0.9) and missingness mechanisms (MCAR, MAR, MNAR). The results are
reported in Table 2 (Ionosphere) and 3 (Breast Cancer).

Those results show that, on the imputation task alone, F3I offers a good tradeoff between imputation quality
(regardless of the performance metric) and computational efficacy (runtime). Indeed, F3I performs on par or

7

Under review as submission to TMLR

better than the state-of-the-art, while remaining computationally efficient by several orders of magnitude.
We also report numerical results across 100 runs restricted to the best baselines in Table 19 in Appendix
(Section H), which confirm these observations.

6.2 Joint imputation-binary classification task

Second, we implement the joint imputation-classification training with the log-loss function and sigmoid
classifier ℓ(x) ≜ −y log Cω(x) mentioned in Section 5, where y ∈ {0, 1} is the binary class associated with
sample x ∈ RF . To implement PCGrad-F3I, we chain the imputation phase by F3I with an MLP classifier,
which returns logits. At time t, the imputation part applies at a fixed set of parameters ωt with the learner
losses defined in Equation equation 2.

We compare the classification performance of PCGrad-F3I with imputation methods with separate classifier
training: imputing by the mean (Mean), a K nearest-neighbor algorithm with weights inversely proportional
to the distance to neighbors (K-NN (Troyanskaya et al., 2001)), a random forest classifier (RF-GAP (Rhodes
et al., 2023)), or one of the top baselines for imputation (HyperImpute (Jarrett et al., 2022) and Remasker (Du
et al., 2023)) prior to applying the MLP classifier; or with imputation methods with joint classifier training like
PCGradF3I: adding a NeuMiss block (Le Morvan et al., 2020) to the MLP classifier, or training simultaneously
GRAPE (You et al., 2020) and the MLP classifier. We use the same MLP architecture across all imputation
techniques. The criterion for training the models is the log loss, and we split the samples into training (70%),
validation (20%), and testing (10%) sets, where the former two sets are used for training the MLP and
hyperparameter finetuning (see Appendix in Section H.2), and the performance metric–Area Under the Curve
(AUC)–is computed on the latter set. Further experimental details can be found in Appendix (Section H).
We consider the MNIST dataset (LeCun et al., 1998), which comprises grayscale images of handwritten
digits, and another drug repurposing data set, PREDICT (Réda, 2023a). In MNIST, we restrict our study to
images annotated with class 0 or 1 to get a binary classification problem. Moreover, we also include again the
BreastCancer (Wolberg et al., 1993) and Ionosphere (selva86, 2024) data sets with their native classification
labels. In all data sets, we remove pixels at random with probability 50% using a MCAR mechanism. Table 4
displays the numerical results across 100 iterations with different random seeds.

The empirical performance of PCGrad-F3I on classification tasks is on par with the state-of-the-art, with a
very small average deterioration of performance compared to the top baseline RF-GAP (Rhodes et al., 2023)
(−2.1% in AUC). However, we argue that the fairest baselines to benchmark PCGradF3I for classification
might be the imputation approaches with joint classifier training, in which case PCGradF3I comes on top. We
also show in Appendix (Figures 9-10 in Section H) that PCGradF3I preserves the correct shapes in MNIST
across missingness proportions and mechanisms.

7 Limitations

We list here three limitations of our contribution. First, F3I is based on iterative improvements of a K-
NN imputer. Yet, K-NN imputation is costly when the number of samples is very large. A solution is
to use approximate neighbor-finding algorithms such as FAISS (Johnson et al., 2019), LSH (Zhao et al.,
2014; Tsai & Yang, 2014) or Annoy (Bernhardsson, 2018) and leverage the use of GPUs to accelerate F3I.
Under Assumptions B.1-B.6, our theoretical results still hold in that case. Second, F3I can only be used for
continuous variables. Third, the theoretical guarantees derived in Theorems 4.2-5.1 require strong assumptions
on the data distribution, which may not accurately reflect the statistical properties of data sets in practical
applications. However, as shown in Section 6 and H in Appendix, F3I can still be applied to real-life data
and be competitive.

8 Discussion

We introduce an algorithm named F3I which iteratively improves a K-nearest neighbor imputation, by tuning
the neighbor-associated weights. F3I is versatile as it can be jointly trained with any classification task to
meaningfully impute values depending on the end goal. Moreover, F3I features theoretical guarantees on the

8

Under review as submission to TMLR

Table 1: Average and standard deviation values of imputation quality metrics (rounded to the closest second
decimal place) and runtime across 10 different random seeds. HeartDisease has native missing values, which
is why the Wasserstein distance cannot be computed. RMSE: root mean square error. MAE: mean average
error. WD: Wasserstein distance. Runtime is in seconds. TDM failed on the Gottlieb data set. Bold type is
the top performer, underline denotes the second best (and average percentage of deterioration of performance
across metrics compared to the top performer).

Data set RMSE ↓ MAE ↓ WD ↓ Runtime ↓
BreastCancer
F3I (ours) 0.08 ±0.03 0.03 ±0.01 0.06 ±0.02 0.14 ±0.04
GAIN 0.28 ±0.03 0.11 ±0.02 0.25 ±0.05 34 ±6
GRAPE 0.37 ±0.03 0.19 ±0.02 0.28 ±0.03 5,091 ±1,707
HyperImpute (+231%) 0.26 ±0.03 0.09 ±0.02 0.22 ±0.04 7 ±2
MIRACLE 4.32 ±0.35 4.22 ±0.33 10.00 ±1.04 77 ±4
NewImp 415 ±189 294 ±179 695 ±416 3,282 ±819
Remasker 0.27 ±0.03 0.11 ±0.02 0.25 ±0.04 393 ±32
TDM 0.35 ±0.04 0.21 ±0.03 0.40 ±0.05 532 ±22
Diabetes
F3I (ours) (+9%) 0.34 ±0.05 0.27 ±0.04 0.61 ±0.20 0.09 ±0.01
GAIN 0.52 ±0.07 0.44 ±0.06 0.82 ±0.20 41 ±8
GRAPE 0.43 ±0.04 0.35 ±0.04 0.54 ±0.09 454 ±52
HyperImpute 0.32 ±0.05 0.25 ±0.04 0.54 ±0.19 19 ±6
MIRACLE 5.96 ±0.66 5.82 ±0.63 13.36 ±3.25 123 ±44
NewImp 2.40 ±0.94 1.76 ±0.68 3.85 ±1.22 2,304 ±583
Remasker 0.42 ±0.04 0.35 ±0.04 0.78 ±0.15 39 ±2
TDM 0.38 ±0.05 0.31 ±0.04 0.56 ±0.19 171 ±102
Gottlieb
F3I (ours) (+111%) 0.04 ±0.01 0.02 ±0.00 0.03 ±0.00 2 ±1
GAIN 0.04 ±0.01 0.02 ±0.00 0.02 ±0.00 103 ±9
GRAPE 0.12 ±0.01 0.09 ±0.01 0.12 ±0.02 6,670 ±217
HyperImpute 0.03 ±0.00 0.01 ±0.00 0.01 ±0.00 44 ±18
MIRACLE 4.44 ±0.32 4.38 ±0.31 10.50 ±0.75 212 ±20
NewImp 131 ±72.4 71.3 ±47.2 170 ±112 12,933 ±621
Remasker 0.18 ±0.04 0.14 ±0.03 0.30 ±0.08 3,016 ±42
TDM - - - -
HeartDisease
F3I (ours) 0.14 ±0.05 0.07 ±0.03 - 0.10 ±0.02
GAIN 0.30 ±0.07 0.18 ±0.05 - 34 ±7
GRAPE 0.54 ±0.03 0.38 ±0.04 - 536 ±439
HyperImpute (+210%) 0.24 ±0.07 0.13 ±0.05 - 17 ±5
MIRACLE 4.91 ±0.44 4.72 ±0.41 - 82 ±2
NewImp 308 ±176 197 ±127 - 2,404 ±270
Remasker 0.25 ±0.05 0.14 ±0.03 - 32 ±2
TDM 0.48 ±0.04 0.36 ±0.03 - 340 ±219
Ionosphere
F3I (ours) (+11%) 0.21 ±0.06 0.15 ±0.05 0.29 ±0.12 0.19 ±0.03
GAIN 0.47 ±0.05 0.34 ±0.05 0.57 ±0.07 50 ±11
GRAPE 0.48 ±0.03 0.39 ±0.04 0.49 ±0.12 765 ±110
HyperImpute 0.20 ±0.07 0.13 ±0.05 0.26 ±0.10 99 ±73
MIRACLE 5.22 ±0.54 5.14 ±0.53 12.4 ±1.35 96 ±2
NewImp 0.60 ±0.18 0.47 ±0.13 1.04 ±0.35 4,174 ±1,169
Remasker 0.33 ±0.03 0.26 ±0.04 0.51 ±0.09 77 ±3
TDM 0.39 ±0.04 0.33 ±0.04 0.57 ±0.10 697 ±139

Under review as submission to TMLR

Table 2: Average of RMSE score over 10 iterations (rounded to the closest third decimal place) on the
Ionosphere dataset for varying missing rates and missingness mechanisms.

MCAR F3I HyperImpute MIRACLE GAIN Remasker GRAPE
10% 0.205 ±0.038 0.197 ±0.042 5.328 ±0.177 0.435 ±0.035 0.351 ±0.043 0.470 ±0.048
25% 0.205 ±0.030 0.192 ±0.037 5.511 ±0.326 0.436 ±0.033 0.361 ±0.033 0.457 ±0.025
50% 0.222 ±0.040 0.215 ±0.041 5.081 ±0.530 0.459 ±0.022 0.351 ±0.030 0.457 ±0.017
75% 0.275 ±0.028 0.284 ±0.030 5.328 ±0.718 0.476 ±0.026 0.338 ±0.024 0.481 ±0.012
90% 0.388 ±0.039 0.377 ±0.026 5.952 ±1.605 0.476 ±0.030 0.387 ±0.034 0.500 ±0.022
MAR
10% 0.226 ±0.055 0.219 ±0.051 5.760 ±0.227 0.445 ±0.044 0.331 ±0.043 0.454 ±0.070
25% 0.238 ±0.044 0.217 ±0.053 5.439 ±0.247 0.422 ±0.066 0.371 ±0.029 0.489 ±0.036
50% 0.294 ±0.053 0.308 ±0.073 5.664 ±0.497 0.544 ±0.047 0.397 ±0.046 0.486 ±0.029
75% 0.305 ±0.027 0.302 ±0.034 5.653 ±0.409 0.424 ±0.031 0.343 ±0.018 0.476 ±0.037
90% 0.344 ±0.063 0.340 ±0.064 5.665 ±0.336 0.419 ±0.052 0.347 ±0.064 0.494 ±0.029
MNAR
10% 0.242 ±0.025 0.206 ±0.037 5.380 ±0.142 0.412 ±0.069 0.391 ±0.049 0.477 ±0.042
25% 0.198 ±0.047 0.188 ±0.043 5.405 ±0.188 0.486 ±0.025 0.348 ±0.032 0.482 ±0.014
50% 0.224 ±0.036 0.239 ±0.061 5.016 ±0.624 0.489 ± 0.057 0.351 ±0.029 0.481 ±0.023
75% 0.286 ±0.038 0.279 ±0.052 4.829 ±0.645 0.474 ±0.053 0.362 ±0.050 0.472 ±0.020
90% 0.348 ±0.037 0.341 ±0.040 4.867 ±0.555 0.453 ±0.016 0.345 ±0.032 0.465 ±0.014

Table 3: Average of RMSE score over 10 iterations (rounded to the closest third decimal place) on the Breast
Cancer dataset for varying missing rates and missingness mechanisms.

MCAR/Rate 10% 25% 50% 75% 90%
F3I 0.030 ±0.012 0.045 ±0.011 0.060 ±0.005 0.089 ±0.015 0.108 ±0.020
HyperImpute 0.049 ±0.032 0.110 ±0.040 0.157 ±0.019 0.202 ±0.016 0.238 ±0.039
MAR
F3I 0.138 ±0.027 0.103 ±0.015 0.108 ±0.030 0.089 ±0.014 0.134 ±0.019
HyperImpute 0.479 ±0.020 0.346 ±0.047 0.288 ±0.017 0.255 ±0.004 0.241 ±0.004
MNAR
F3I 0.126 ±0.039 0.075 ±0.018 0.090 ±0.012 0.100 ±0.019 0.121 ±0.036
HyperImpute 0.344 ±0.051 0.275 ±0.022 0.240 ±0.011 0.215 ±0.017 0.234 ±0.024

10

Under review as submission to TMLR

Table 4: Average and standard deviation of Area Under the Curve (AUC) values (rounded to the closest second
decimal place) across several runs on the joint imputation-classification task (MCAR scenario, pmiss = 50%).
Bold type is the top performer, underline denotes the second best (and average percentage of change in
performance across data sets compared to the top performer RF-GAP). ∗ Remasker and HyperImpute are
extremely slow when combined with a MLP, especially on the largest data sets MNIST and PREDICT, which
is why the values are shown for 20 iterations for HyperImpute on the MNIST data set, and otherwise missing.

Imputation / Data BreastCancer Ionosphere MNIST PREDICT
Joint classifier training
GRAPE 0.55 ±0.13 0.71 ±0.12 1.00 ±0.00 0.49 ±0.07
NeuMiss 0.62 ±0.18 0.70 ±0.16 0.99 ±0.07 0.50 ±0.01
PCGradF3I (ours) (+7%) 0.70 ±0.14 0.77 ±0.14 0.99 ±0.09 0.51 ±0.01
Separate classifier training
HyperImpute 0.56 ±0.14 0.74 ±0.18 0.82 ±0.24∗ –∗

K-NN 0.54 ±0.13 0.74 ±0.15 0.93 ±0.17 0.47 ±0.07
Mean 0.52 ±0.07 0.72 ±0.13 0.64 ±0.18 0.48 ±0.00
Remasker 0.56 ±0.13 0.80 ±0.15 –∗ –∗

RF-GAP 0.50 ±0.00 0.83 ±0.17 1.00 ±0.00 0.53 ±0.13

imputation quality and the preservation of the data distribution across missingness mechanisms, including
not-missing-at-random. Empirically, the performance of F3I is similar or better than the state-of-the-art
across data sets, while being more computationally tractable. The experimental code and implementation of
F3I are provided as supplementary material.

Combining online learning and density ratio estimation is a simple and flexible idea that could be improved
further, notably to perhaps remove the linear term in the number of iterations in Theorem 4.4. For instance,
the density ratio estimation step might benefit from the classifier-based approach developed in BORE (Tiao
et al., 2021), in particular in a version of F3I where a k-d tree would be rebuilt at every iteration to consider
density Dt on points {(xt)1, . . . , (xt)N} instead of the density estimated on the naively imputed initial points
{(x0)1, . . . , (x0)N}. Another avenue of research would be to adapt F3I to heterogenous data with both
continuous or categorical features. A naive approach would use Gower’s distance (Gower, 1971) instead
of Chebyshev distance to find the K nearest neighbors for any point, and then use a consensus procedure
to obtain the imputed value depending on the type of variable (categorical or continuous). This approach
achieves a significant improvement over HyperImpute, which natively handles heterogeneous data. Further
details can be found in Appendix H.3.

Broader Impact Statement

The contributions of this paper are essentially theoretical. However, by the definition of our imputation
algorithm, possibly sensitive information can leak to imputed values without specific steps taken to avoid
it, potentially undermining fairness in downstream analyses. This might be mitigated by modifying the
imputation model in Algorithm 2 for instance.

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In The 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 2623–2631, 2019.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical report,
Stanford, 2006.

11

Under review as submission to TMLR

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002. doi: 10.1137/S0097539701398375. URL
https://doi.org/10.1137/S0097539701398375.

Alexis Ayme, Claire Boyer, Aymeric Dieuleveut, and Erwan Scornet. Naive imputation implicitly regularizes
high-dimensional linear models. In International Conference on Machine Learning, pp. 1320–1340. PMLR,
2023.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM, 18
(9):509–517, sep 1975. ISSN 0001-0782. doi: 10.1145/361002.361007. URL https://doi.org/10.1145/
361002.361007.

Lorenzo Beretta and Alessandro Santaniello. Nearest neighbor imputation algorithms: a critical evaluation.
BMC medical informatics and decision making, 16:197–208, 2016.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimiza-
tion. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.), Advances in Neural
Information Processing Systems, volume 24. Curran Associates, Inc., 2011. URL https://proceedings.
neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Erik Bernhardsson. Annoy: Approximate Nearest Neighbors in C++/Python, 2018. URL https://pypi.
org/project/annoy/. Python package version 1.13.0.

Alberto Brini and Edwin R van den Heuvel. Missing data imputation with high-dimensional data. The
American Statistician, 78(2):240–252, 2024.

Girolamo Cardano, T. Richard Witmer, and Øystein Ore. Ars magna, or, The rules of algebra. Dover, New
York, 1968. ISBN 9780486678115; 0486678113.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.

Yu Chen, Wei Deng, Shikai Fang, Fengpei Li, Nicole Tianjiao Yang, Yikai Zhang, Kashif Rasul, Shandian
Zhe, Anderson Schneider, and Yuriy Nevmyvaka. Provably convergent schrödinger bridge with applications
to probabilistic time series imputation. In International Conference on Machine Learning, pp. 4485–4513.
PMLR, 2023.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm: Gradient normalization
for adaptive loss balancing in deep multitask networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 794–803. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/chen18a.
html.

Zhichao Chen, Haoxuan Li, Fangyikang Wang, Odin Zhang, Hu Xu, Xiaoyu Jiang, Zhihuan Song, and
Hao Wang. Rethinking the diffusion models for missing data imputation: A gradient flow perspective.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=fIz8K4DJ7w.

Steven De Rooij, Tim Van Erven, Peter D Grünwald, and Wouter M Koolen. Follow the leader if you can,
hedge if you must. The Journal of Machine Learning Research, 15(1):1281–1316, 2014.

Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko. Gamification of pure exploration for
linear bandits. In International Conference on Machine Learning, pp. 2432–2442. PMLR, 2020.

Tianyu Du, Luca Melis, and Ting Wang. Remasker: Imputing tabular data with masked autoencoding. arXiv
preprint arXiv:2309.13793, 2023.

Tianyu Du, Luca Melis, and Ting Wang. Remasker: Imputing tabular data with masked autoencoding. In
The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=KI9NqjLVDT.

12

https://doi.org/10.1137/S0097539701398375
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://pypi.org/project/annoy/
https://pypi.org/project/annoy/
https://proceedings.mlr.press/v80/chen18a.html
https://proceedings.mlr.press/v80/chen18a.html
https://openreview.net/forum?id=fIz8K4DJ7w
https://openreview.net/forum?id=fIz8K4DJ7w
https://openreview.net/forum?id=KI9NqjLVDT
https://openreview.net/forum?id=KI9NqjLVDT

Under review as submission to TMLR

Tlamelo Emmanuel, Thabiso Maupong, Dimane Mpoeleng, Thabo Semong, Banyatsang Mphago, and Oteng
Tabona. A survey on missing data in machine learning. Journal of Big data, 8:1–37, 2021.

Chu-Qiao Gao, Yuan-Ke Zhou, Xiao-Hong Xin, Hui Min, and Pu-Feng Du. Dda-skf: predicting drug–disease
associations using similarity kernel fusion. Frontiers in Pharmacology, 12:784171, 2022.

J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics, 27(4):857–871, 1971.
ISSN 0006341X, 15410420. URL http://www.jstor.org/stable/2528823.

Lin-Lin Gu, Hong-Shan Wu, Tian-Yi Liu, Yong-Jie Zhang, Jing-Cheng He, Xiao-Lei Liu, Zhi-Yong Wang,
Guo-Bo Chen, Dan Jiang, and Ming Fang. Rapid and accurate multi-phenotype imputation for millions of
individuals. Nature Communications, 16(1):387, 2025.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. CoRR,
abs/1706.02216, 2017. URL http://arxiv.org/abs/1706.02216.

F Harrell. Data for titanic passengers. https://raw.githubusercontent.com/datasciencedojo/
datasets/refs/heads/master/titanic.csv, 2011.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked autoencoders
are scalable vision learners. CoRR, abs/2111.06377, 2021. URL https://arxiv.org/abs/2111.06377.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing hyperparameter
importance. In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp. 754–762, Bejing, China,
22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/hutter14.html.

Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. not-{miwae}: Deep generative modelling
with missing not at random data. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=tu29GQT0JFy.

Andras Janosi, William Steinbrunn, Matthias Pfisterer, and Robert Detrano. Heart Disease. UCI Machine
Learning Repository, 1989. DOI: https://doi.org/10.24432/C52P4X.

Daniel Jarrett, Bogdan C Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyperimpute:
Generalized iterative imputation with automatic model selection. In International Conference on Machine
Learning, pp. 9916–9937. PMLR, 2022.

Luke Oluwaseye Joel, Wesley Doorsamy, and Babu Sena Paul. On the performance of imputation techniques
for missing values on healthcare datasets. arXiv preprint arXiv:2403.14687, 2024.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE Transactions
on Big Data, 7(3):535–547, 2019.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data via
diffusion and flow-based gradient-boosted trees. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen
Li (eds.), Proceedings of The 27th International Conference on Artificial Intelligence and Statistics,
volume 238 of Proceedings of Machine Learning Research, pp. 1288–1296. PMLR, 02–04 May 2024. URL
https://proceedings.mlr.press/v238/jolicoeur-martineau24a.html.

Shahidul Islam Khan and Abu Sayed Md Latiful Hoque. Sice: an improved missing data imputation technique.
Journal of big Data, 7(1):37, 2020.

Stefan Kögl. Kdtree python package. https://github.com/stefankoegl/kdtree, 2013.

Yehuda Koren, Steffen Rendle, and Robert Bell. Advances in collaborative filtering. Recommender systems
handbook, pp. 91–142, 2021.

Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. Miracle: Causally-aware imputation via
learning missing data mechanisms. Advances in Neural Information Processing Systems, 34:23806–23817,
2021.

13

http://www.jstor.org/stable/2528823
http://arxiv.org/abs/1706.02216
https://raw.githubusercontent.com/datasciencedojo/datasets/refs/heads/master/titanic.csv
https://raw.githubusercontent.com/datasciencedojo/datasets/refs/heads/master/titanic.csv
https://arxiv.org/abs/2111.06377
https://proceedings.mlr.press/v32/hutter14.html
https://openreview.net/forum?id=tu29GQT0JFy
https://proceedings.mlr.press/v238/jolicoeur-martineau24a.html
https://github.com/stefankoegl/kdtree

Under review as submission to TMLR

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Marine Le Morvan and Gaël Varoquaux. Imputation for prediction: beware of diminishing returns. arXiv
preprint arXiv:2407.19804, 2024.

Marine Le Morvan, Julie Josse, Thomas Moreau, Erwan Scornet, and Gaël Varoquaux. Neumiss networks:
differentiable programming for supervised learning with missing values. Advances in Neural Information
Processing Systems, 33:5980–5990, 2020.

Marine Le Morvan, Julie Josse, Erwan Scornet, and Gaël Varoquaux. What’sa good imputation to predict
with missing values? Advances in Neural Information Processing Systems, 34:11530–11540, 2021.

Y. LeCun, C. Cortes, and C.J.C. Burges. The mnist database of handwritten digits. https://drive.google.
com/file/d/1eEKzfmEu6WKdRlohBQiqi3PhW_uIVJVP/view, 1998.

Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. Learning from incomplete data with generative
adversarial networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=S1lDV3RcKm.

Serena G Liao, Yan Lin, Dongwan D Kang, Divay Chandra, Jessica Bon, Naftali Kaminski, Frank C Sciurba,
and George C Tseng. Missing value imputation in high-dimensional phenomic data: imputable or not, and
how? BMC bioinformatics, 15(1):346, 2014.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for multi-task
learning. Advances in Neural Information Processing Systems, 34:18878–18890, 2021.

Huimin Luo, Jianxin Wang, Min Li, Junwei Luo, Xiaoqing Peng, Fang-Xiang Wu, and Yi Pan. Drug
repositioning based on comprehensive similarity measures and bi-random walk algorithm. Bioinformatics,
32(17):2664–2671, 2016.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with generative
adversarial networks. Advances in neural information processing systems, 31, 2018.

Pierre-Alexandre Mattei and Jes Frellsen. MIWAE: Deep generative modelling and imputation of incomplete
data sets. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 4413–4423.
PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/mattei19a.html.

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learning large
incomplete matrices. The Journal of Machine Learning Research, 11:2287–2322, 2010.

Karthika Mohan, Felix Thoemmes, and Judea Pearl. Estimation with incomplete data: The linear case. In
Proceedings of the International Joint Conferences on Artificial Intelligence Organization, 2018.

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal transport.
In International Conference on Machine Learning, pp. 7130–7140. PMLR, 2020a.

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal transport.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 7130–7140. PMLR, 13–18 Jul
2020b. URL https://proceedings.mlr.press/v119/muzellec20a.html.

Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion models on tabular
data with missing values, 2025. URL https://openreview.net/forum?id=PyyoSwPaSa.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

14

https://drive.google.com/file/d/1eEKzfmEu6WKdRlohBQiqi3PhW_uIVJVP/view
https://drive.google.com/file/d/1eEKzfmEu6WKdRlohBQiqi3PhW_uIVJVP/view
https://openreview.net/forum?id=S1lDV3RcKm
https://openreview.net/forum?id=S1lDV3RcKm
https://proceedings.mlr.press/v97/mattei19a.html
https://proceedings.mlr.press/v119/muzellec20a.html
https://openreview.net/forum?id=PyyoSwPaSa

Under review as submission to TMLR

Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing data imputation and acquisition
with deep hierarchical models and hamiltonian monte carlo. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=xpR25Tsem9C.

Balaji Rajagopalan and Upmanu Lall. A kernel estimator for discrete distributions. Journaltitle of Nonpara-
metric Statistics, 4(4):409–426, 1995.

Jake S Rhodes, Adele Cutler, and Kevin R Moon. Geometry-and accuracy-preserving random forest proximities.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):10947–10959, 2023.

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

Clémence Réda. Predict drug repurposing dataset. doi: 10.5281/zenodo.7983090, 2023a. URL https:
//doi.org/10.5281/zenodo.7983090.

Clémence Réda. Transcript drug repurposing dataset. doi: 10.5281/zenodo.7982976, 2023b. URL https:
//doi.org/10.5281/zenodo.7982976.

selva86. Datasets. https://github.com/selva86/datasets/blob/master/Ionosphere.csv, 2024.

Kimseth Seu, Mi-Sun Kang, and HwaMin Lee. An intelligent missing data imputation techniques: A review.
JOIV: International Journal on Informatics Visualization, 6(1-2):278–283, 2022.

Tolou Shadbahr, Michael Roberts, Jan Stanczuk, Julian Gilbey, Philip Teare, Sören Dittmer, Matthew
Thorpe, Ramon Viñas Torné, Evis Sala, Pietro Lió, et al. The impact of imputation quality on machine
learning classifiers for datasets with missing values. Communications medicine, 3(1):139, 2023.

Marek Śmieja, Łukasz Struski, Jacek Tabor, Bartosz Zieliński, and Przemysław Spurek. Processing of missing
data by neural networks. Advances in neural information processing systems, 31, 2018.

Aude Sportisse, Claire Boyer, and Julie Josse. Estimation and imputation in probabilistic principal component
analysis with missing not at random data. Advances in Neural Information Processing Systems, 33:7067–
7077, 2020.

Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for mixed-type
data. Bioinformatics, 28(1):112–118, 2012.

Gong Tang, Roderick JA Little, and Trivellore E Raghunathan. Analysis of multivariate missing data with
nonignorable nonresponse. Biometrika, 90(4):747–764, 2003.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion
models for probabilistic time series imputation. Advances in Neural Information Processing Systems, 34:
24804–24816, 2021a.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional Score-based Diffusion
Models for Probabilistic Time Series Imputation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
24804–24816. Curran Associates, Inc., 2021b. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/cfe8504bda37b575c70ee1a8276f3486-Paper.pdf.

Louis C Tiao, Aaron Klein, Matthias W Seeger, Edwin V Bonilla, Cedric Archambeau, and Fabio Ramos.
Bore: Bayesian optimization by density-ratio estimation. In International Conference on Machine Learning,
pp. 10289–10300. PMLR, 2021.

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David
Botstein, and Russ B Altman. Missing value estimation methods for dna microarrays. Bioinformatics, 17
(6):520–525, 2001.

15

https://openreview.net/forum?id=xpR25Tsem9C
https://doi.org/10.5281/zenodo.7983090
https://doi.org/10.5281/zenodo.7983090
https://doi.org/10.5281/zenodo.7982976
https://doi.org/10.5281/zenodo.7982976
https://github.com/selva86/datasets/blob/master/Ionosphere.csv
https://proceedings.neurips.cc/paper_files/paper/2021/file/cfe8504bda37b575c70ee1a8276f3486-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/cfe8504bda37b575c70ee1a8276f3486-Paper.pdf

Under review as submission to TMLR

Yi-Hsuan Tsai and Ming-Hsuan Yang. Locality preserving hashing. In 2014 IEEE International Conference
on Image Processing (ICIP), pp. 2988–2992. IEEE, 2014.

Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in r.
Journal of Statistical Software, 45(3):1–67, 2011. doi: 10.18637/jss.v045.i03.

Wouter van Loon, Marjolein Fokkema, Frank de Vos, Marisa Koini, Reinhold Schmidt, and Mark de Rooij.
Imputation of missing values in multi-view data. Information Fusion, pp. 102524, 2024.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47.
Cambridge university press, 2018.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Vy Vo, He Zhao, Trung Le, Edwin V Bonilla, and Dinh Phung. Optimal transport for structure learning
under missing data. arXiv preprint arXiv:2402.15255, 2024.

William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Diagnostic). UCI
Machine Learning Repository, 1993. DOI: https://doi.org/10.24432/C5DW2B.

Michael Yan. Gower python package. https://github.com/wwwjk366/gower, 2019.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative adversarial
nets. In International conference on machine learning, pp. 5689–5698. PMLR, 2018a.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing data imputation using generative
adversarial nets. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5689–5698. PMLR,
10–15 Jul 2018b. URL https://proceedings.mlr.press/v80/yoon18a.html.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling Missing Data
with Graph Representation Learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 19075–19087. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
dc36f18a9a0a776671d4879cae69b551-Paper.pdf.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gra-
dient surgery for multi-task learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 5824–5836. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
3fe78a8acf5fda99de95303940a2420c-Paper.pdf.

He Zhao, Ke Sun, Amir Dezfouli, and Edwin V Bonilla. Transformed distribution matching for missing value
imputation. In International Conference on Machine Learning, pp. 42159–42186. PMLR, 2023.

Kang Zhao, Hongtao Lu, and Jincheng Mei. Locality preserving hashing. In Proceedings of the AAAI
conference on artificial intelligence, volume 28, 2014.

Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation in tabular data.
In NeurIPS 2022 First Table Representation Workshop, 2022. URL https://openreview.net/forum?id=
4q9kFrXC2Ae.

16

https://github.com/wwwjk366/gower
https://proceedings.mlr.press/v80/yoon18a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/dc36f18a9a0a776671d4879cae69b551-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/dc36f18a9a0a776671d4879cae69b551-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://openreview.net/forum?id=4q9kFrXC2Ae
https://openreview.net/forum?id=4q9kFrXC2Ae

Under review as submission to TMLR

A Other related works and comments on F3I

Related works Relevant methods developed for multivariate time-series data might also be adapted
to single-timepoint data sets: Conditional Score-based Diffusion Models (CDSI) (Tashiro et al., 2021a),
Generative Adversarial Networks (Luo et al., 2018; Yoon et al., 2018a) or Last Observation Carried Forward
(LOCF), where the last non-missing value is duplicated until the next non-missing time point. However,
those methods are best-suited in the case where temporal connections can be made, and we restrict our study
to single-timepoint data.

Due to diffusion models’ impressive generative modeling capacity, many imputation approaches based on
them have been developed in recent years. One of the first approaches in this direction was Conditional
Score-Based Diffusion models (Tashiro et al., 2021b), which attempts to impute values at missing time points
in multivariate time-series data by conditioning the diffusion model on the observed time points and then
denoising from white noise using the conditional diffusion model. Another similar approach (Chen et al.,
2023) constructs and solves a Schrödinger Bridge problem with conditional constraints to impute missing
values in time-series data, where the conditional constraints are derived from the observed values. However,
both these approaches are only available for imputation in multivariate time-series data, which is out of the
scope of our paper.

An interesting approach for tabular data (Zheng & Charoenphakdee, 2022) consists of removing the temporal
transformer layers from CSDI (Tashiro et al., 2021b) and constructing embeddings for categorical variables,
after which the same diffusion procedure as CSDI is applied. Another diffusion-based approach (Jolicoeur-
Martineau et al., 2024) constructs multiple copies of the dataset with different noise samples added, on which
gradient-boosted trees are trained to perform the reverse diffusion process to reconstruct the missing data
values. The NewImp (Chen et al., 2024) model, on the other hand, attempts to learn the missing value
distribution by learning the score function of the joint distribution using a Denoising Score Matching approach
and then by stepwise reconstructing the missing values using an ODE simulation of the joint distribution
based on these learned scores. Another similar approach, MissDiff (Ouyang et al., 2025), attempts to learn a
score-based model by modifying the loss in a conventional Variance Preserving SDE for diffusion models to
only consider the observed values.

A variational autoencoder-based approach (Peis et al., 2022) generates the missing data by training multiple
separate variational autoencoders to encode the latent space of each feature and the dependencies among
them. This training is helpful in the presence of diverse feature types. New approaches also explore the use
of transformer models in missing data imputation. For instance, ReMasker (Du et al., 2024) is an extension
of the Masked AutoEncoder (He et al., 2021) where the encoder and decoder models consist of a sequence of
transformer layers, and the model learns by masking additionally available values and learning to predict them,
similar to CSDI (Tashiro et al., 2021b). Another approach based on a modification of OTImputer (Muzellec
et al., 2020b) attempts to minimize the Wasserstein distance between latent representations of the original
and imputed data set generated via a neural network, where the latent representation generating neural
network is fit to maximize the Mutual Information to prevent model collapse.

Other generative approaches involve using Generative Adversarial Networks. The simplest GAN-based
approach (Li et al., 2019) jointly trains two pairs of generator-discriminator networks, one to predict the
data and the other to predict the missing masks. Another GAN-based approach masks certain values in
the data set besides the missing ones. It uses the generator to generate all masked values, after which the
discriminator is trained to predict the mask matrix from the imputed data set (Yoon et al., 2018b).

Finally, GRAPE is a somewhat more novel approach (You et al., 2020), which consists of representing the
data set as a labeled bipartite graph, with the two node types representing the samples and the features
and each edge label representing the value of the particular feature for that sample. One then uses a
GraphSAGE (Hamilton et al., 2017) inspired Graph Neural Network to predict the missing edge labels, which
are the imputed values.

Comparison of F3I to optimal transport-based imputation Authors of OTImputer in (Muzellec
et al., 2020a) leverage optimal transport (OT) to define a loss function based on Sinkhorn divergences for

17

Under review as submission to TMLR

Algorithm 2 Imputation improvement model Impute(·; α, Z)
Input: Guess for a F -dimensional x ∈ RF , missing indicator for that sample m ∈ {0, 1}F

Parameters: Number of neighbors K, weights α ∈ △K , reference set Z = {zi}0≤i≤N ⊂ RF

Output: Improved guess x̃ ∈ RF

Neighbor indices by increasing Chebychev distance:
1,2,...,K

arg minj≤N selects the K elements in 1, 2, . . . , N
with smallest values (with a k-d tree for instance)

(n1, n2, . . . , nK)←
1,2,...,K

arg minj≤N maxf≤F |xf − zj
f |

x̃f ←
∑

k≤K αkznk

f for any f ≤ F , mf = 1

imputation. This loss function, like G, aims at quantifying the gap in data distribution between any two
random batches of samples from the data matrix and can also be iteratively minimized through a gradient
descent approach. The imputation is performed feature-wise. However, this approach requires the input of
several parameters, among which tmax, the budget for the number of improvements, which is always fully
exhausted (contrary to F3I where an early stopping criterion exists); m the size of the randomly sampled
batches and K the number of batches which are evaluated. Moreover, contrary to F3I, the OT imputer does
not provide theoretical guarantees on the imputation quality.

Out-of-sample imputation for F3I For a new sample x ∈ (R ∪ {N/A})F , is there a way not to re-run
the full F3I procedure? If we assume that the new sample comes from the data set, the simplest idea is to
apply on x the initial imputer and successively the imputation improvement model in Algorithm 2 with the
weight vector αt, where t is the final step of F3I. However, this out-of-sample imputation loses the theoretical
guarantees in Section 4.

B Theoretical assumptions

In this section, we state the formal expression of our assumptions about the data generation procedure to
derive theoretical guarantees from our algorithm. We explicitly write the pseudo-code for the imputation
improvement model in Algorithm 2 and the full data generation procedure in Algorithm 3.

First, we assume that each value in the full data matrix is drawn from independent fixed-variance Gaussian
distributions.

Assumption B.1. Independent Gaussian distributions. There exist µ ∈ RF and σ > 0 such that, for any
sample i ≤ N and any feature f ≤ F , (x⋆)f

i ∼iid N (µf , σ2).

The random indicator variables mf
i are then independently drawn according to the missingness mechanism

with probability pmiss. If mf
i = 1, then the coefficient at position (i, f) xf

i in X is unavailable, otherwise,
xf

i = (x⋆)f
i . We will provide an analysis of our algorithm for three types of missingness mechanisms:

Assumption B.2. MCAR mechanism: Bernouilli distribution. The random indicator variables for missing
values mf

i are drawn iid from B(pmiss(x)), where pmiss(x) ∈ (0, 1) is a constant value for any x.

Assumption B.3. MAR mechanism. We assume a subset Fo of size Fo < F features is always observed.
We denote (x⋆)| obs

i ≜ (x⋆
i [f])f∈Fo . Then there exist a function pmiss, ∀x ∈ RFo , P(mf

i = 1 | (x⋆)| obs
i = x) =

pmiss(x) .

Assumption B.4. MNAR mechanism: Gaussian self-masking (Assumption 4 from Le Morvan et al. (2020)).
The probability of event {mf

i = 1} depends on (x⋆)f
i : ∃Kf ∈ (0, 1), ∀x ∈ R, P(mf

i = 1 | (x⋆)f
i = x) =

Kf e− 1
σ2 (x−µf)2

= pmiss(x) .

We also ensure that there are exactly K neighbors for the initial simple guesses and that we know a (constant)
upper bound on the norm of any feature vectors.

18

Under review as submission to TMLR

Algorithm 3 Data generation procedure according to Assumptions B.1-B.6
Input: N number of samples, F number of features
Output: Initial data Xmiss ∈ (R ∪ {NaN})N×F and naively imputed X0 ∈ RN×F

Generation of the complete data set
for i = 1, 2, . . . , N do

for f = 1, 2, . . . , F do
(x⋆)i ∼ NF (µf , σ2) (where Θ ≜ (µ = (µ1, . . . , µF), σ2IF ×F) ∈ RF × RF ×F)

end for
end for
Missingness mechanism
for i = 1, 2, . . . , N do

for f = 1, 2, . . . , F do
mf

i ∼iid pmiss((x⋆)i, f)
if mf

i = 1 then
then (xmiss)f

i ← NaN
else (xmiss)f

i ← (x⋆)f
i

end if
end for

end for
Create the naively imputed data set
for i = 1, 2, . . . , N do

for f = 1, 2, . . . , F do
if mf

i = 1 then
K-nearest neighbor imputation with uniform weights
kth closest neighbor for (xmiss)f

i is denoted K((xmiss)i, f, k)
then (x0)f

i ← 1
K

∑
k≤K xf

K((xmiss)i,f,k) = 1
K

∑
k≤K(x⋆)f

K((xmiss)i,f,k)

else (x0)f
i ← (x⋆)f

i

end if
end for

end for

Assumption B.5. Number of neighbors K. In the remainder of the paper, if {i ≤ N | mf
i = 0} is the set of

data point indices for which the feature f is not missing, then K ≤ minf≤F |{i ≤ N | mf
i = 0}|. Without a

loss of generality, minf≤F |{i ≤ N | mf
i = 0}| ≥ 2 (otherwise, we can ignore the corresponding feature).

Assumption B.6. Upper bound on any of the (∥xi∥2
2)i≤n. We assume a constant S > 0 exists, such that

for any i ≤ N , ∥xi∥2
2 ≤ S (ignoring potential missing values). Up to renormalization, we assume that S = 1.

Moreover, the initial imputation step (the “simple guess”) preserves that condition, meaning that for any
i ≤ N and t ≥ 0, ∥xt

i∥2
2 ≤ S, where X0 is the imputed data matrix with the initial imputation step, and Xt

for t ≥ 1 is obtained through Algorithm 2.

Remark B.7. Assumption B.6 can hold. Indeed, Assumption B.6 is satisfied by the K-nearest neighbor
imputation with uniform weights, where the imputed value equals the mean of all feature-wise values from
the K neighbors.

Assumption B.8. Assumptions on G and l for Theorem 5.1 Let ℓ be a convex pointwise loss such
that ∇ℓ is Lipschitz-continuous and β ∈ [0, 1]. Define G as in equation 1. Also define H(G; α, α′) =∫ 1

0 ∇G(α, X; β)⊺∇2G(α + a(α′ − α), X; β)da. Let g1 = ∇α(1− β)G(α), g2 = −∇α
β
N

∑
i≤N ℓ(xi(α)), ϕ12

be the angle between g1 and g2, and g = g1 + g2. Let αt be the updated value of α and let λ be the
step-size for this update. Lemma F.1 shows that −G is also Lipschitz-continuous w.r.t. α, so let this Lipschitz
constant be L. We assume that there exists w ≤ L such that H(−G, α, αt) ≥ w∥g∥2

2. We also assume that
cos ϕ12 ≤ 2∥g1∥2∥g2∥2

∥g1∥2
2∥g2∥2

2
, w ≥ (1− cos2(ϕ12) ∥g1−g2∥2

2
∥g1+g2∥2

2
W and λ ≥ 2

w−(1−cos2(ϕ12))
∥g1−g2∥2

2
∥g1+g2∥2

2
W

.

19

Under review as submission to TMLR

C Properties of the objective function G

Proposition C.1. Continuity and derivability of G. G is continuous and infinitely derivable with respect to
α ∈ △K .

Proof. G is a composition and sum of indefinitely derivable functions on their respective domains, which are
compatible: log on R+∗, exp on R of image domain R+∗, ∥ · ∥2 and the linear imputation model (Algorithm 2)
on R with image domain R.

Proposition C.2. Strict concavity of G in α. Assume that η < 4KN . Then there exists h0 > 0 such that
for all h ≥ h0, G is strictly concave in α.

We aim to show that a value of h0 always exists such that, for h ≥ 0, the Hessian matrix of G with respect to
α is negative (semi-)definite. First, we compute the Hessian matrix of G.
Lemma C.3. Gradient of G with respect to α. The gradient ∇αG(α, X) ∈ RK at α ∈ RK and fixed
X ∈ RN×F is

∇αG(α, X) = −
∑
i≤N

D0(xi(α))−1

2hN2(
√

2πh)F

∑
j≤N

e− 1
4h ∥xi(α)−(x0)j∥2

2
(
xi(α)− (x0)j

)⊺

Z̃ni − 2ηα ,

where ni ≜ (ni
1, ni

2, . . . , ni
K) is the set of indices of the K-nearest neighbors of xi among the reference set

Z = {(x0)1, (x0)2, . . . , (x0)N}, Z̃ni ∈ RF ×K where the kth column of Z̃ni is defined as (z̃ni)f
k = 0 if mf

i = 0,
(z̃ni)f

k = (x0)f
ni

k

otherwise. That is, (z̃ni)k is equal to the kth closest neighbor of xi (by increasing order of
distance) on missing coordinates of xi, and equal to zero otherwise.

Proof. The gradient of G at α ∈ △K for a fixed X ∈ RN×F is

∇αG(α, X) =
∑
i≤N

D0(xi(α))−1

N
∇αD0(xi(α))− 0− 2ηα

∇αD0(xi(α)) = − 1
4hN(

√
2πh)F

∑
j≤N

e− 1
4h ∥xi(α)−(x0)j∥2

2∇α∥xi(α)− (x0)j∥2
2

∇α∥xi(α)− (x0)j∥2
2 = 2

(
xi(α)− (x0)j

)
∇αxi(α) and ∇αxi(α) = Z̃ni .

Lemma C.4. Hessian matrix of G with respect to α. Let us denote for any i, j ≤ N and α ∈ △K

• uij
α ≜ e− 1

4h ∥xi(α)−(x0)j∥2
2 and U i

α ≜
∑

j≤N uij
α = N(

√
2πh)F D0(xi(α)),

• Si
α ≜

∑
j≤N uij

α(xi(α)− (x0)j) and T i
α ≜

∑
j≤N uij

α(∥xi(α)− (x0)j∥2
2 − 2h).

Then the coefficient at position (k, q) of Hessian matrix ∇2
αG(α, X) ∈ RK×K at α and fixed X is

∂2G(α, X)
∂αk∂αq

=
∑
i≤N

(
T i

α

NU i
α

− (Si
α)⊺Si

α

4h2(U i
α)2

)
(z̃ni)⊺q (z̃ni)k − η1(q = k) .

Proof. According to Lemma C.3, for any k ≤ K

∂G(α, X)
∂αk

= −
∑
i≤N

D0(xi(α))−1

2hN2(
√

2πh)F
(Si

α)⊺(z̃ni)k − 2ηαk .

20

Under review as submission to TMLR

This implies that

∂2G(α, X)
∂αk∂αq

+ 2η1(q = k) =
∑
i≤N

−D0(xi(α))−1

2hN2(
√

2πh)F

((∂Si
α

∂αq

)⊺

(z̃ni)k

− (Si
α)⊺(z̃ni)k

D0(xi(α))
∂D0(xi(α))

∂αq

)
And then

∂Si
α

∂αq
= −1

4h

∑
j≤N

e− 1
4h ∥xi(α)−(x0)j∥2

2

(∂∥xi(α)− (x0)j∥2
2

∂αq

)⊺
(xi(α)− (x0)j)

+
∑
j≤N

e− 1
4h ∥xi(α)−(x0)j∥2

2
∂xi(α)

∂αq

= −1
2h

∑
j≤N

e− 1
4h ∥xi(α)−(x0)j∥2

2(z̃ni)⊺q (xi(α)− (x0)j)⊺
(
xi(α)− (x0)j

)
+

∑
j≤N

e− 1
4h ∥xi(α)−(x0)j∥2

2(z̃ni)⊺q

That is,

∂Si
α

∂αq
= (z̃ni)⊺q

∑
j≤N

e− 1
4h ∥xi(α)−(x0)j∥2

2

(
1− (2h)−1∥xi(α)− (x0)j∥2

2

)
︸ ︷︷ ︸

=−2hT i
α

∂D0(xi(α))
∂αq

= − (Si
α)⊺(z̃ni)q

2hN(
√

2πh)F
according to Lemma C.3 .

Moreover, since Si
α, (z̃ni)k ∈ RF for any k ≤ K

(Si
α)⊺(z̃ni)k(Si

α)⊺(z̃ni)q = (Si
α)⊺(z̃ni)q︸ ︷︷ ︸

=(z̃ni)⊺q Si
α

(Si
α)⊺(z̃ni

)k = (z̃ni)⊺q (Si
α)⊺Si

α(z̃ni)k .

Then, to show that G is (strictly) concave, it is enough to show that the Hessian matrix ∇2
αG(α, X) is

negative semi-definite (or definite). We assume that η < 4S2K = 4K (using Assumption B.6), which is the
case for most realistic settings.

Proof. Let us denote xij
α ≜ xi

α − (x0)j for any i, j ≤ N . Then

T i
α

NU i
α

− (Si
α)⊺Si

α

4h2(U i
α)2 = T i

α

NU i
α

− 1
4h2

 ∑
j,j′≤N

uij
α

U i
α

uij′

α

U i
α

(xij
α)⊺xij′

α

 . (3)

Now consider (xij
α)⊺xij′

α = ⟨xi(α) − (x0)j , xi(α) − (x0)j′⟩. From the triangle equality, we have, for all
j, j′ ≤ N

⟨xi(α)− (x0)j , xi(α)− (x0)j′⟩ = 1
2(∥xi(α)− (x0)j∥2

2 + ∥xi(α)− (x0)j′∥2
2 − ∥(x0)j − (x0)j′∥2

2) .

21

Under review as submission to TMLR

We plug this inequality into Equation equation 3

T i
α

NU i
α

− (Si
α)⊺Si

α

4h2(U i
α)2 = T i

α

NU i
α

+ 1
8h2

∑
j,j′≤N

uij
α

U i
α

uij′

α

U i
α

∥(x0)j − (x0)j′∥2
2

− 1
8h2

∑
j,j′≤N

uij
α

U i
α

uij′

α

U i
α

(∥xi(α)− (x0)j∥2
2 + ∥xi(α)− (x0)j′∥2

2)︸ ︷︷ ︸
≥0

≤ T i
α

NU i
α

+ 1
8h2

∑
j,j′≤N

uij
α

U i
α

uij′

α

U i
α

∥(x0)j − (x0)j′∥2
2 .

Obviously uij
α

Ui
α
≤ 1. Moreover, since Assumption B.6 gives ∥(x0)j∥2

2 ≤ S and ∥xj(α)∥2
2 ≤ S (using Jensen’s

inequality) for any j ≤ N ,

T i
α

NU i
α

− (Si
α)⊺Si

α

4h2(U i
α)2 ≤

T i
α

NU i
α

+ 2N2S

8h2 = T i
α

NU i
α

+ N2S

4h2

=
∑
j≤N

uij
α

NU i
α

(∥xi(α)− (x0)j∥2
2 − 2h) + NS

4h2

≤ 1
N

∑
j≤N

∥xi(α)− (x0)j∥2
2 − 2h + N2S

4h2

≤ 1
N

∑
j≤N

(∥xi(α)||22 + ∥(x0)j∥2
2)− 2h + N2S

4h2

≤ 2S − 2h + N2S(4h2)−1 .

We set C(h) ≜ h−2(−2h3 + 2Sh2 + N2S/4), and fix v ∈ RK . Then

v⊺∇2
αG(α, X)v = −η∥v∥2

2 +
∑
i≤N

(
T i

α

NU i
α

− (Si
α)⊺Si

α

4h2(U i
α)2

)
(v⊺(Z̃ni)⊺Z̃niv)

≤ −η∥v∥2
2 + C(h)

∑
i≤N

∥Z̃niv∥2
2

so, using Technical lemma 1 (proven below),

v⊺∇2
αG(α, X)v ≤ ∥v∥2

2(2KSC(h)− η) = ∥v∥2
2 × h−2

(
−4KSh3 + (4S2K − η)h2 + KN2S2

2

)
.

Then we choose h > 0 such that v⊺∇2
αG(α, X)v < 0. That is

−4KSh3 + (4S2K − η)h2 + KN2S2

2 < 0⇔ −2h3 + 4S2K − η

2KS
h2 + N2S

4 < 0 . (4)

Under the assumption of η < 4S2K, this is equivalent to analyzing the following cubic equation

−2h3 + bh2 + c = 0 where b, c > 0 .

The cubic equation above admits three roots and at least one real root. We show that at least one real root is
positive (thus, corresponds to a valid bandwidth). To show that there exists h > 0 such that −2h3+bh2+c < 0,
it is enough to show that there exists h′ ∈ R such that on [h′, + inf), continuous and infinitely derivable
function x 7→ −2x3 + bx2 + c is strictly decreasing. We have d

dh (−2h3 + bh2 + c) = −6h2 + 2bh with roots 0

22

Under review as submission to TMLR

and b/3, and d2

d2h
(−2h3 + bh2 + c) = −12h + 2b, and then −12× 0 + 2b = 2b > 0 and −12× b

3 + 2b = −2b < 0.
The analysis of the behavior of x 7→ −2x3 + bx2 + c then shows that the condition is fulfilled for h′ = b/3 > 0.

Finally, the value of h can be found through the known closed-form expressions of roots of the rightmost
cubic polynomial in h in Equation equation 4.

Proposition C.5. The gradient of G(·, X) for any X ∈ RN×F is Lipschitz-continuous. There exists a positive
constant H such that

∥∇αG(α, X)−∇αG(α′, X)∥2 ≤ H∥α−α′∥2 .

Proof. According to Lemma C.3, and using notation from Lemma C.4, for any X ∈ RN×F and α ∈ △K

∇αG(α, X) = − 1
2hN

∑
i,j≤N

uij
α

U i
α

(
xi(α)− (x0)j

)⊺
Z̃ni − 2ηα .

Then for any α, α′ ∈ △K

∥∇αG(α, X)−∇αG(α′, X)∥2

= ∥ − 1
2hN

∑
i,j≤N

(uij
α

U i
α

(
xi(α)− (x0)j

)
−

uij
α′

U i
α′

(
xi(α′)− (x0)j

))⊺
Z̃ni − 2η(α−α′)∥2

≤ 1
2hN

∑
i≤N

∥
∑
j≤N

(uij
α

U i
α

(
xi(α)− (x0)j

)
−

uij
α′

U i
α′

(
xi(α′)− (x0)j

))⊺
Z̃ni∥2 + 2η∥α−α′∥2

≤ 1
2hN

∑
i≤N

∥
∑
j≤N

uij
α

U i
α

(
xi(α)− (x0)j

)
−

uij
α′

U i
α′

(
xi(α′)− (x0)j

)
∥2
√

2KS + 2η∥α−α′∥2

(using the Cauchy-Schwartz inequality and Technical lemma 1)

=
√

KS√
2hN

∑
i≤N

∥
∑
j≤N

uij
α

U i
α

xi(α)− uij
α′

U i
α′

xi(α′) +
(uij

α′

U i
α′
− uij

α

U i
α

)
(x0)j∥2 + 2η∥α−α′∥2

=Ui
α=
∑

j
uij

α

√
KS√
2hN

∑
i≤N

∥xi(α)− xi(α′) +
∑
j≤N

(uij
α′

U i
α′
− uij

α

U i
α

)
(x0)j∥2 + 2η∥α−α′∥2

≤
√

KS√
2hN

∑
i≤N

(√
S∥α−α′∥2 + ∥

∑
j≤N

(uij
α′

U i
α′
− uij

α

U i
α

)
(x0)j∥2

)
+ 2η∥α−α′∥2

≤ S
√

K√
2hN

∑
i≤N

(
∥α−α′∥2 +

√
2F

√√√√∑
j≤N

(uij
α′

U i
α′
− uij

α

U i
α

)2)
+ 2η∥α−α′∥2 ,

(using Cauchy-Schwartz, Assumption B.6, and ∥X0∥F ≤
√

2FS)

All that remains is to show that fi : α ∈ △K 7→ (uij
α

Ui
α

)j≤N ∈ △N (which is a bounded space) is Lipschitz-
continuous in α. For starters, if all coordinates of fi fi,j : α ∈ △K 7→ uij

α/U i
α ∈ [0, 1] are Lipschitz-continuous,

each with constant Lj , then it is easy to show that fi is Lipschitz-continuous (always with respect to the
ℓ2-norm) with constant L =

√∑
j≤N L2

j . Let’s consider now any j ≤ N . For any pair of points α1, α2 ∈ △K ,
let’s introduce the linear path γ : t ∈ [0, 1] 7→ tα1 + (1 − t)α2. fi,j ◦ γ is well-defined, continuous on the
closed space [0, 1], differentiable on (0, 1), then by the mean-value theorem

fi,j(α1)− fi,j(α2) = fi,j ◦ γ(1)− fi,j ◦ γ(0) ≤ sup
t′∈[0,1]

∇tfi,j ◦ γ(t′)︸ ︷︷ ︸
=(∇αfi,j)(γ(t′))⊺(α1−α2)

(1− 0) .

23

Under review as submission to TMLR

Meaning that, using the Cauchy-Schwartz inequality ‘

|fi,j(α1)− fi,j(α2)| ≤ ∥ sup
t∈[0,1]

(∇αfi,j)(γ(t))∥2∥α1 −α2∥2 ≤ ∥ sup
α∈△K

∇αfi,j(α)∥2︸ ︷︷ ︸
=Lj

∥α1 −α2∥2 .

Let’s show that the value of Lj is bounded (we are not interested in finding the tightest value of Lj , simply
that Lj <∞). Then for any α ∈ △K

∇αfi,j(α) =

− uij
α

2hU i
α

(xi(α)− (x0)j)− uij
α

(U i
α)2

∑
ℓ≤N

−1
2h

uiℓ
α(xi(α)− (x0)ℓ)

⊺

Z̃ni

= − uij
α

2hU i
α

(xi(α)− (x0)j)−
∑
ℓ≤N

uiℓ
α

U i
α

(xi(α)− (x0)ℓ)

⊺

Z̃ni ,

Using the Cauchy-Schwartz inequality and Technical lemma 1

∥∇αfi,j(α)∥2 ≤ 1
2h

∣∣∣∣uij
α

U i
α

∣∣∣∣︸ ︷︷ ︸
≤1

∥∥∥∥∥∥(xi(α)− (x0)j)−
∑
ℓ≤N

uiℓ
α

U i
α

(xi(α)− (x0)ℓ)

∥∥∥∥∥∥
2

√
2KS

Using the triangular inequality on the ℓ2-norm

≤ 1
2h

∥xi(α)− (x0)j∥2︸ ︷︷ ︸
≤

√
2S

+
∑
ℓ≤N

∣∣∣∣uiℓ
α

U i
α

∣∣∣∣︸ ︷︷ ︸
≤1

∥xi(α)− (x0)ℓ∥2︸ ︷︷ ︸
≤

√
2S

√2KS

≤ 1
2h

(N + 1)
√

2S
√

2KS = (N + 1)
h

S
√

K .

All in all, fi,j is (N+1)
h S

√
K-Lipschitz continuous in α and then fi is (N+1)

h S
√

NK-Lipschitz continuous in
α. Finally

∥∇αG(α, X)−∇αG(α′, X)∥2 ≤ S
√

K√
2hN

∑
i≤N

(
∥α−α′∥2 +

√
2F∥fi(α′)− fi(α)∥2

)
+2η∥α−α′∥2

≤ S
√

K√
2hN

∑
i≤N

(
1 +
√

2F
(N + 1)

h
S
√

NK
)
∥α−α′∥2

+2η∥α−α′∥2

≤

(
S
√

K√
2h

(
1 +
√

2F
(N + 1)

h
S
√

K
)

+ 2η

)
︸ ︷︷ ︸

≜H

∥α−α′∥2

Then ∇αG(α, X) is H-Lipschitz continuous in α with respect to the ℓ2-norm.

24

Under review as submission to TMLR

D Bounds on the mean squared error

We recall that the loss function associated with the mean squared error (MSE) is defined as the average of
the MSE between each true sample and its corresponding imputed sample at iteration t (Definition 4.1)

LMSE(Xt, X⋆) ≜ 1
N

∑
i≤N

MSE((xt)i, (x⋆)i) = 1
N

∑
i≤N

1
F

∑
f≤F

((xt)f
i − (x⋆)f

i)2 .

Theorem D.1. Bounds in high probability and in expectation on the MSE for F3I (Theorem 4.2). Under
Assumptions B.1-B.6, if Xt is any imputed matrix at iteration t ≥ 1 (after the initial imputation step), X⋆ is
the corresponding full (unavailable in practice) matrix

LMSE(Xt, X⋆) ≤ Cmiss/F with high probability 1− 1/N, where Cmiss = O((σmiss)2F + ln N) ,

and σmiss is linked to the variance of the data distribution and depends on the missingness mechanism.

Proof. First, we denote K(x, X0, k) the index of the kth nearest neighbor to vector x among the rows of X0,
that is, {(x0)1, (x0)2, . . . , (x0)N}. The selection of neighbors does not depend on f after the initial imputation
step at t = 0. We recall that for any step t ≥ 1, (xt)f

i ≜ (x⋆)f
i if mf

i = 0,
∑

k≤K αt
k(x0)f

K((xt−1)i,X0,k) otherwise.
Then, for any i ≤ N

MSE(xt
i, x⋆

i) = 1
F

∑
f≤F

(∑
k≤K

αt
k(x0)f

K(xt−1
i

,X0,k) − (x⋆)f
i

)2

≤ 1
F

∑
k≤K

αt
k

∑
f≤F

(
(x0)f

K(xt−1
i

,X0,k) − (x⋆)f
i

)2

(using Jensen’s inequality on convex function x 7→ x2 and
∑
k≤K

αt
k = 1)

≤ 1
F

∑
k≤K

αt
k∥(x0)K(xt−1

i
,X0,k) − (x⋆)i∥2

2 .

Applying Corollary G.6 (proven below) with δ = 1/N and using
∑

k≤K αt
k = 1 yields

∀i ≤ N, MSE(xt
i, x⋆

i) ≤ 1
F
× 1× Cmiss

1/N3 w.p. 1− 1/N .

Then we conclude by noticing that LMSE(Xt, X⋆) ≤ N
N

1
F Cmiss

1/N3 w.p. 1− 1/N .

E Regret analysis of F3I

Theorem E.1. High-probability upper bound on the imputation quality for F3I (Theorem 4.4). Under
Assumptions B.1-B.6, for any initial matrix X ∈ (R ∪ {N/A})N×F ,

max
α∈△K

t∑
s=1

G⋆(α, Xs−1)−G⋆(αs, Xs−1) ≤ CAH
G

√
t + Hmissh−1t ,

with probability 1 − 1/N , where Hmiss = O(F + ln N) is another value which depends on the missingness
mechanism and h is chosen to guarantee that G is concave in its first argument (Proposition C.2). CAH

G =
O(
√

log(K)) is the constant associated with the regret bound on the gain in F3I incurred by AdaHedge.

Proof. We set the gain in F3I to gs(α) ≜
∑

k≤K αk
∂G
∂αk

(αs, Xs−1) for s ≤ t and α ∈ △K . We use the
“gradient trick” to transfer the regret bound from a linear loss function to the convex loss −G(·, Xt−1) for

25

Under review as submission to TMLR

any t ≥ 1, for all α, αs ∈ △K , s ≤ t,

t∑
s=1

G(α, Xs−1)−G(αs, Xs−1) ≤
t∑

s=1
(α−αs)⊺∇αG(αs, Xs−1) .

and note that for any α ∈ △K ,

t∑
s=1

gs(α)− gs(αs) =
t∑

s=1
α⊺∇αG(αs, Xs−1)− (αs)⊺∇αG(αs, Xs−1)

=
t∑

s=1
(α−αs)⊺∇αG(αs, Xs−1) .

Then applying the regret bound of AdaHedge (Technical lemma 2, proven below) to that gain yields at
time t > 1 (rightmost term) and the gradient trick on the function G which is concave in its first argument
(leftmost term) with Proposition C.2

∀α ∈ △K ,

t∑
s=1

G(α, Xs−1)−G(αs, Xs−1) ≤ 2δt

√
t log(K) + 16δt

(
2 + log K

3

)
, (5)

where δt ≜ maxs≤t

(
maxk≤K

∂G
∂αk

(αs, Xs−1)−minq≤K
∂G
∂αq

(αs, Xs−1)
)

. Now we go from G to G⋆ point-wise.
Corollary G.6 with δ = 1/N states that under Assumptions B.1-B.6, there exists Cmiss

1/N3 = O(F + ln N) such
that for any i ≤ N , ∥(x0)i − (x⋆)i∥2

2 ≤ Cmiss
1/N3 with probability 1− 1/N . By triangle inequality,

∀x ∈ RF ∀i ≤ N, ∥x− (x⋆)i∥2
2 − ∥x− (x0)i∥2

2 ≤ ∥(x0)i − (x⋆)i∥2
2 ≤ Cmiss

1/N3 w.p. 1− 1/N .

Then, with probability 1− 1/N ,

∀x ∈ RF , ∥x− (x⋆)i∥2
2 ≤ ∥x− (x0)i∥2

2 + Cmiss
1/N3

=⇒ − 1
4h∥x− (x⋆)i∥2

2 ≥ − 1
4h
∥x− (x0)i∥2

2 −
Cmiss

1/N3

4h

=⇒ e− 1
4h ∥x−(x⋆)i∥2

2 ≥ e−
Cmiss

1/N3
4h e− 1

4h ∥x−(x0)i∥2
2

=⇒
∑

i≤N e− 1
4h ∥x−(x⋆)i∥2

2 ≥ e−
Cmiss

1/N3
4h

∑
i≤N

e− 1
4h ∥x−(x0)i∥2

2

=⇒ log
(∑

i≤N
e

− 1
4h

∥x−(x0)i∥2
2∑

i≤N
e

− 1
4h

∥x−(x⋆)i∥2
2

)
= log

(
D0(x)
D⋆(x)

)
≤

Cmiss
1/N3

4h
.

Symmetrically (by switching the roles of (x⋆)i and (x0)i in the previous inequalities), we obtain with
probability 1− 1/N

∀x ∈ RF , log
(

D⋆(x)
D0(x)

)
= − log

(
D0(x)
D⋆(x)

)
≤ Cmiss

1/N3/(4h)

=⇒
∣∣∣ log

(
D0(x)
D⋆(x)

) ∣∣∣ ≤ Cmiss
1/N3/(4h) .

That is, for any α ∈ △K and X ∈ RN×F , with probability 1− 1/N

|(G−G⋆)(α, X)| = 1
N

∑
i≤N

log
(

D0(Impute(xi; α))
D⋆(Impute(xi; α))

)
− log

(
D0(xi)
D⋆(xi)

)
≤

Cmiss
1/N3

2h
. (6)

26

Under review as submission to TMLR

Finally, we combine Equations equation 5-equation 6 to obtain for any α ∈ △K , with probability 1− 1/N

t∑
s=1

G⋆(α, Xs−1)−G⋆(αs, Xs−1) ≤
Cmiss

1/N3

h
t + 2δt

√
t log(K) + 16δt

(
2 + log K

3

)
︸ ︷︷ ︸

=CAH
G

√
t

.

F Joint training on a downstream task

Lemma F.1. Any loss ℓ with a Lipschitz continuous gradient allows the use of PCGrad (Yu et al., 2020)
combined with F3I. If ∇ℓ is L-Lipschitz continuous with a finite L > 0 with respect to its single argument,
then for any matrix X ∈ RN×F , α 7→ ∇α

(
(1 − β)G(α, X) − β

N

∑
i≤N ℓ(Impute(xi, α))

)
is also Lipschitz

continuous with a positive finite constant.

Proof. Note that Proposition C.5 establishes that the gradient of G with respect to α is H-Lipschitz continuous
with H > 0. Then for all α, α′ ∈ △K∥∥∥∥∥∥∇α

(
(1− β)G(α, X) + β

N

∑
i≤N

ℓ(xi(α))−
(

(1− β)G(α′, X) + β

N

∑
i≤N

ℓ(xi(α′))
))∥∥∥∥∥∥

2

≤ (1− β) ∥∇αG(α, X)−∇αG(α′, X)∥2 + β

N

∑
i≤N

∥∇αℓ(xi(α))−∇αℓ(xi(α′))∥2

≤ H(1− β)∥α−α′∥2 + Lβ

N

∑
i≤N

∥xi(α)− xi(α′)∥2

≤ (H(1− β)− Lβ
√

KS)∥α−α′∥2 .

The last step holds because of the fact that, for any i ≤ N , if K(xi, X0, k) is the index of the kth nearest
neighbor of xi among {(x0)1, . . . , (x0)N} ⊆ RF and xMi

i is the vector restricted to columns f such that xf
i

is missing

∥xi(α)− xi(α′)∥2
2 =

∥∥∥ ∑
k≤K

(αk − α′
k)(x0)Mi

K(xi,X0,k)

∥∥∥2

2

=
∑

f∈Mi

(∑
k≤K

(αk − α′
k)(x0)f

K(xi,X0,k)

)2

=
∑

f∈Mi

⟨α−α′, [(x0)f
K(xi,X0,1), ..., (x0)f

K(xi,X0,K)]
⊺⟩2

≤ ∥α−α′∥2
2
∑

f∈Mi

∥[(x0)f
K(xi,X0,1), ..., (x0)f

K(xi,X0,K)]
⊺∥2

2

= ∥α−α′∥2
2
∑

f∈Mi

∑
k≤K

((x0)f
K(xi,X0,k))

2

≤ ∥α−α′∥2
2
∑
k≤K

∑
f≤F

((x0)f
K(xi,X0,k))

2

= ∥α−α′∥2
2
∑
k≤K

∥(x0)K(xi,X0,k)∥2
2

≤ ∥α−α′∥2
2KS using Assumption B.6 .

The first inequality is obtained by applying the Cauchy-Schwartz inequality |Mi| times, since the selection of
neighbors does not depend on α. Note that (xi(α))f = (xi(α′))f for any f ̸∈ Mi.

27

Under review as submission to TMLR

Example 1. A simple example of a convex loss function ℓ with a Lipschitz-continuous gradient function.
The pointwise log loss ℓ(x) = −y log Cω(x) for the binary classification task is convex and such that ∇xℓ is
Lipschitz continuous, where y is the true class in {0, 1} for sample x and Cω : x 7→ 1/(1 + exp(−ω⊺x)) is
the sigmoid function of parameter ω.

Proof. ℓ is continuous and twice differentiable on RF . Knowing that ∇xCω(x) = Cω(x)(1− Cω(x))ω⊺, the
Hessian matrix of ℓ in its single argument is

∀x ∈ RF ∀y ∈ {0, 1}, ∇2
xℓ(x) = yCω(x)(1− Cω(x))ωω⊺ .

In particular, it is easy to see that ℓ is convex, because for any v ∈ RF ,

v⊺∇2
xℓ(x)v = yCω(x)(1− Cω(x))︸ ︷︷ ︸

≥0

(v⊺ω)2 ≥ 0 .

Then for any x ∈ RF and y ∈ {0, 1},

∥∇2
xℓ(x)∥2

F = yCω(x)(1− Cω(x))︸ ︷︷ ︸
≤1×1/4

∑
f,f ′≤F

(ωf)2 ≤ 1
4∥ω∥

2
F .

Similarly to the proof of Proposition C.5, proving that ∇xℓ is Lipschitz continuous in each of its F coordinates
will be enough to prove that ∇xℓ is Lipschitz continuous as well. For any pair of points x1, x2 ∈ RF , we
introduce the linear path γ′ : t ∈ [0, 1] 7→ tx1 + (1− t)x2. For any f ≤ F , t ∈ [0, 1] 7→

(
∇xℓ(γ′(t))

)f ∈ R is
well-defined, continuous on the closed space [0, 1], differentiable on (0, 1). Then applying the mean value
theorem to this function yields

|
(
∇xℓ(x1)

)f −
(
∇xℓ(x2)

)f | ≤ ∥ sup
x∈RF

(
∇2

xℓ(x)
)f∥2∥x1 − x2∥2 ≤

∥ω∥2

2 ∥x1 − x2∥2 .

Then ∇xℓ is Lipschitz-continuous with constant
√∑

f≤F
1
4∥ω∥

2
2 = ∥ω∥2

F

2 > 0.

Theorem F.2. High-probability upper bound on the joint imputation-downstream task performance (Theo-
rem 5.1).Under Assumptions B.1-B.6, for any initial matrix X ∈ (R ∪ {N/A})N×F , convex pointwise loss ℓ
such that ∇ℓ is Lipschitz-continuous, and β ∈ [0, 1], under the conditions mentioned in Theorem 2 from Yu
et al. (2020)

max
α∈△K

t∑
s=1

(1− β)
(

G⋆(α, Xs−1)−G⋆(αs, Xs−1)
)
− β

N

∑
i≤N

(
ℓ((xs−1)i(α))− ℓ((xs−1)i(αs))

)
≤ CAH

(G,ℓ)
√

t + (1− β)Hmissh−1t ,

with probability 1− 1/N ∈ (0, 1), where Hmiss = O(F + ln N) depends on the missingness mechanism and
CAH

(G,ℓ) is the constant related to AdaHedge being applied with gains gs(·).

Proof. Similarly to the proof of Theorem 4.4, the application of the AdaHedge regret bound (Technical
lemma 2), and the gradient trick on the concave function (1− β)G(·, X) + βℓ(·)

t∑
s=1

(1− β)
(

G(αPC, Xs−1)−G((αs)PC, Xs−1)
)

+ β

N

∑
i≤N

(
ℓ((xs−1)i(αs)PC)− ℓ((xs−1)i(αPC))

)
≤ CAH

(G,ℓ)
√

t ,

28

Under review as submission to TMLR

where αPC and (αs)PC are the parameters updated with PCGrad (Yu et al., 2020). Assuming the three
conditions in Theorem 2 from Yu et al. (2020) are all satisfied, which only depend on functions G and ℓ, then
for θ ∈ {α, αs}

(1− β)G(θ, Xs−1)− β

N

∑
i≤N

ℓ((xs−1)i(θ)) ≤ (1− β)G(θPC, Xs−1)− β

N

∑
i≤N

ℓ((xs−1)i(θPC)) .

Finally, we apply the pointwise approximation in high probability of G⋆ by G (Corollary G.6 for δ = 1/N)
that yields for any α ∈ △K

t∑
s=1

(1− β)
(

G⋆(α, Xs−1)−G⋆(αs, Xs−1)
)

+ β

N

∑
i≤N

(
ℓ((xs−1)i(αs))− ℓ((xs−1)i(α))

)
≤ CAH

(G,ℓ)
√

t + (1− β)Cmiss
1/N3h−1t .

To implement PCGrad-F3I, we also need to compute ∇αℓ((xs−1)i(αs)) at each iteration s for each point i.
By the chain rule,

∇αℓ((xs−1)i(αs)) = ∇xℓ(x)|x=(xs−1)i(αs)∇α(xs−1)i(α)|α=αs ,

In particular, we give the gradient at any α and i ≤ N for the log-loss with sigmoid classifier below
Lemma F.3. Gradient ∇αℓ((xs−1)i(α)) for Example 1. The gradient at any α for the log-loss ℓ with
sigmoid classifier Cω where the true class for sample x ∈ RF is y ∈ {0, 1} is

∇αℓ(x(α)) = −y(1− Cω(x(α)))ω⊺Z̃ni
s ,

where Z̃ni
s ∈ RF ×K is the matrix which kth column is defined as (z̃ni

s)k
f = 0 if mf

i = 0, and otherwise, (z̃ni
s)k

f

is the value of the feature f for the kth closest neighbor to (xs−1)i among rows (x0)2, . . . , (x0)N} of X0

{(x0)1, (x0)2, . . . , (x0)N} (see Lemma C.3).

G Technical lemmas

We consider below for any i ≤ N the matrix Z̃ni ∈ RF ×K where the kth column of Z̃ni is defined as (z̃ni)k
f = 0

if mf
i = 0, otherwise (z̃ni)k

f is the value of the feature f for the kth closest neighbor to (xs−1)i among rows of
X0 {(x0)1, (x0)2, . . . , (x0)N}. That is, (z̃ni)k is equal to the kth closest neighbor of xi (by increasing order
of distance) on missing coordinates of xi, and equal to zero otherwise. To upper-bound norms involving
matrix Z̃ni , we use the following lemma
Technical lemma 1. Upper bound on ℓ2 norms on Z̃ni . For any i ≤ N and any vectors v ∈ RK and
u ∈ RF ,

∥Z̃niv∥2 ≤
√

2KS∥v∥2 and ∥u⊺Z̃ni∥2 ≤
√

2KS∥u∥2 .

Proof. Using the Cauchy-Schwartz inequality applied respectively F and K times and if ∥M∥F =√∑
i

∑
j |m

j
i |2 =

√∑
i ∥mi∥2

2 =
√∑

j ∥mj∥2
2 is the Frobenius matrix norm of matrix M , then ∥Z̃ni∥2

F ≤
2KS and

∥Z̃niv∥2
2 =

∑
f≤F

⟨(Z̃ni)⊺f , v⟩2 ≤
∑
f≤F

∥(Z̃ni)⊺f∥
2
2︸ ︷︷ ︸

=def∥Z̃ni ∥2
F

∥v∥2
2 ≤ 2KS∥v∥2

2 .

∥u⊺Z̃ni∥2
2 =

∑
k≤K

⟨u, (Z̃ni)k⟩2 ≤ ∥u∥2
2
∑
k≤K

∥(Z̃ni)k∥2
2︸ ︷︷ ︸

=def∥Z̃ni ∥2
F

≤ 2KS∥u∥2
2 .

29

Under review as submission to TMLR

Technical lemma 2. Regret of AdaHedge. On the online learning problem with K elements, using gains
α 7→ gs(α) ≜

∑
k≤K αkUk for s ≤ t, and denoting δt ≜ maxs≤t (maxk≤K Uk −minq≤K Uq), the regret at

time t > 1 incurred by AdaHedge with predictions (αs)s≤t is

max
α∈△K

t∑
s=1

gs(α)− gs(αs) ≤ 2δt

√
t log(K) + 16δt(2 + log(K)/3) .

Proof. This statement stems directly from Theorem 8 and Corollary 17 in De Rooij et al. (2014) applied to
the loss ℓs = −gs, and using the fact that αk ≤ 1 for any k ≤ K.

In several proofs, we need an upper bound on ∥(x0)j − (x⋆)i∥2
2 for any pair i, j ≤ N , where X0 is the initially

K-nearest neighbor-imputed matrix and X⋆ is the corresponding full matrix. This is our most important
lemma for analyzing F3I. This result still holds for any missingness mechanism such that the random variable
(x0)f

i − (x⋆)f
i is a zero-mean subgaussian for any i ≤ N and f ≤ F , independent across features. We show

below that this statement includes all three mechanisms mentioned in Assumptions B.2-B.4 as described in
Algorithm 3.
Technical lemma 3. Concentration bound on the norm of the difference between (x0)j and (x⋆)i. Under
any assumption in Assumptions B.2-B.4, if we consider a subset of features F ⊆ {1, 2, . . . , F} such that x|F

is the restriction of x ∈ RF to features in F , then

∀c ≥ 4 ln N

(σmiss)2

(
1 +

√
1 + 4(σmiss)2|F|

ln N

)
∀i, j ≤ N, ∥(x0)|F

j − (x⋆)|F
i ∥

2
2 ≤ (σmiss)2(|F|+ c) ,

with probability 1 − exp
(
− (σmissc)2

4(8|F|+c) + 2 ln N
)
∈ [0, 1], where σmiss ≜ max(σ2, σGSM), where for an initial

K-nearest imputation with uniform weights,

σ2 ≜ σ
√

1 + 1/K (Assumptions B.2-B.3) and σGSM ≜ σ
√

(K + 3)/3K (Assumption B.4) .

Proof. We summarized the procedure according to which the data matrices X⋆ and X0 are generated in
Algorithm 3. In particular, we assumed that (x⋆)f

i ∼iid N (µf , σ2) for any i ≤ N, f ≤ F and fixed σ > 0
(Assumption B.1), µ = (µ1, . . . , µF) ∈ RF , and that K ≤ minf≤F |{i ≤ N | mf

i = 0}| (Assumption B.5),
where the last term is the number of samples which do not miss the value of feature f in the data set. Based
on this, we can assume the following independence relationships for any i, j ≤ F , where i ̸= j, and f, f ′ ≤ F ,
where f ̸= f ′

(x⋆)f
i ⊥⊥ (x⋆)f

j (7)

(x0)f
i ⊥⊥ (x⋆)f

i | m
f
i = 1 (8)

(x0)f
i ⊥̸⊥ (x⋆)f

i | m
f
i = 0 (since

(
(x0)f

i | m
f
i = 0

)
= (x⋆)f

i) (9)
(x0)f

i ⊥̸⊥ (x0)f
j | m

f
i = 1, mf

j = 1 (the two points can share a neighbor) (10)

(x0)f
i ⊥̸⊥ (x0)f

j | m
f
i = 1, mf

j = 0 ((x⋆)j can be a neighbor of xi for f) (11)

(x0)f
i ⊥⊥ (x0)f

j | m
f
i = 0, mf

j = 0 (12)

(x⋆)f
i ⊥⊥ (x⋆)f ′

j (13)

(x⋆)f
i ⊥⊥ (x⋆)f ′

j (14)

(x⋆)f
i ⊥⊥ (x⋆)f ′

i and (x0)f
i ⊥⊥ (x0)f ′

i . (15)

What is the distribution of random variable
(
(x0)f

i | m
f
i = m

)
for m ∈ {0, 1}? If mf

i = 0, that is, if the value
for the feature f and sample i is not missing in the input matrix X, then

(
(x0)f

i | m
f
i = 0

)
follows the same

law as (x⋆)f
i . Otherwise, if mf

i = 1, then at the initial imputation step, (x0)f
i | mf

i = 1 is the arithmetic

30

Under review as submission to TMLR

mean of exactly K independent random variables of distribution N (µf , σ2) (by Independence equation 7). 2

All in all, (
(x0)f

i | m
f
i = 0

)
= (x⋆)f

i ∼ N (µf , σ2) and
(
(x0)f

i | m
f
i = 1

)
∼ N (µf , σ2/K) . (16)

Let us denote σ0 ≜ σ and σ1 ≜ σ/
√

K and σ2 ≜
√

σ2
0 + σ2

1 and σ3 ≜
√

σ2
0 − σ2

1 and pmiss
if ≜ P(mf

i = 1). Let
us now consider the distribution of the random variable

(
(x0)f

i − (x⋆)f
i

)
for any i, f

∀i ≤ N, ∀f ≤ F,
(
(x0)f

i − (x⋆)f
i | m

f
i = 0

)
= 0(

(x0)f
i − (x⋆)f

i | m
f
i = 1

)
∼ N (0, σ2

2) (by Independence 8) .

Similarly, for any i, j ≤ N

∀j ̸= i,∀f ≤ F,
(
(x0)f

j − (x⋆)f
i | m

f
j = 0

)
∼ N (0, 2σ2) (by Independence 7)(

(x0)f
j − (x⋆)f

i | m
f
j = 1

)
∼

{
N (0, σ2

2) if ∀k ≤ K, i ̸= K(xf
j , X0, k)

N (0, σ2
3) otherwise

,

because in the last case, (x0)f
j − (x⋆)f

i = 1
K

∑
q ̸=k(x⋆)f

K(xf
j

,X0,q)
+ (1

K − 1)(x⋆)f
i . Let us denote now

pij ≜ P
(
∀k ≤ K, i ̸= K(xf

j , X0, k) | mf
j = 1

)
. The law of total probability gives

∀i ≤ N, ∀f ≤ F, ∀x ̸= 0, P
((

(x0)f
i − (x⋆)f

i

)
= x

)
= pmiss

if N (x; 0, σ2
2) (17)

P
((

(x0)f
i − (x⋆)f

i

)
= 0
)

= 1 + pmiss
if

(
N (0; 0, σ2

2)− 1
)

︸ ︷︷ ︸
=1/
√

2πσ2
2−1

∀i ̸= j, ∀f ≤ F, ∀x ∈ R, P
((

(x0)f
j − (x⋆)f

i

)
= x

)
= (1− pmiss

if)N (0, 2σ2
0) (18)

+ pmiss
if

(
pijN (x; 0, σ2

2) + (1− pij)N (x; 0, σ2
3)
)

.

Then, we show that the random variable (x0)f
j − (x⋆)f

i is a zero-mean σmiss-subgaussian variable under
Assumptions B.2-B.4, where σmiss depends on the missingness mechanism and the initial imputation algorithm.
We recall that a zero-mean σ-subgaussian variable X satisfies E[eλX] ≤ eσ2λ2/2 for all λ ∈ R, with equality
for any zero-mean Gaussian random variable of variance σ2.

Lemma G.1. (x0)f
j − (x⋆)f

i is a zero-mean σ2-subgaussian random variable under Assumption B.2. For all
i ̸= j ≤ N , f ≤ F , under the MCAR assumption, pmiss

jf = p ∈ (0, 1) is a constant and then (x0)f
j − (x⋆)f

i is a
zero-mean σ2-subgaussian random variable.

Proof. First, let us denote Xf
ij ≜ (x0)f

j − (x⋆)f
i for i, j ≤ N and f ≤ F . Then using Equation equation 17, it

is clear that Xf
ii is centered for any i ≤ N . Similarly, due to Equation equation 18 for any i ̸= j ≤ N

E[Xf
ij] = (1− p)E[Xf

ij | m
f
j = 0]︸ ︷︷ ︸

=0

+pE[Xf
ij | m

f
j = 1]︸ ︷︷ ︸

=0

= 0 .

Moreover,

∀λ ∈ R, E[eλXf
ii] = 1×

(
1 + p

(
1/
√

2πσ2
2 − 1

))
+ pEY ∼N (0,σ2

2)[eλY]− p× 1×
(

1/
√

2πσ2
2

)
,

and then
∀λ ∈ R, exp(σ2

2λ2/2)− E[eλXf
ii] = p− 1 + (1− p) exp(σ2

2λ2/2) ≥ 0 .

2Due to the upper bound on K (Assumption B.5).

31

Under review as submission to TMLR

Second, we notice that σ3 ≤ σ1 ≤ σ0 ≤ σ0
√

2 ≤ σ2 (since K > 1). It is easy to see that any σ′-subgaussian
variable is also a σ′′-subgaussian variable, where σ′ ≤ σ′′. Then Xf

ij | m
f
j = 1 and Xf

ij | m
f
j = 0 are both

σ2-subgaussian. Then Xf
ij is σ2-subgaussian for any i, j ≤ N .

Lemma G.2. (x0)f
j − (x⋆)f

i is a zero-mean σ2-subgaussian random variable under Assumption B.3. For all
i ̸= j ≤ N , f ≤ F , under the MAR assumption, the missingness depends on a fixed subset of always observed
values F O ⊂ {1, 2, . . . , F}: P(mf

j = 1 | x⋆
j) = h

(
(x⋆)F O

j , f
)

where (x⋆)F O

i is the restriction of (x⋆)i to rows in
F O and h some deterministic function. 3 Then (x0)f

j − (x⋆)f
i is a zero-mean σ2-subgaussian random variable.

Proof. Under Assumption B.3, for all j ≤ N and for all f ∈ F O, pmiss
jf = 0 and for all f ̸∈ F O,

pmiss
jf =

∫
xf′ ,f ′∈F O

h
(
[(x⋆)f ′

j = xf ′
, f ′ ∈ F O], f

)
Πf ′∈F ON (xf ′

; µf ′ , σ2)dx .

By Independence equation 14 and similarly to the proof of Lemma G.1, Xf
ji is then a zero-mean σ2-subgaussian

random variable for any f ≤ F and i, j ≤ N .

Lemma G.3. (x0)f
j − (x⋆)f

i is a zero-mean σGSM-subgaussian random variable under Assumption B.4. For
all i ̸= j ≤ N , f ≤ F , under the Gaussian self-masking mechanism from Assumption 4 in Le Morvan et al.
(2020), the probability of xf

i missing is given by

∀x ∈ R, P(mf
i = 1 | (x⋆)f

i = x) = pmiss
i (x, f) = Kf exp

(
− (x− µf)2

σ2

)
with Kf ∈ (0, 1) .

Then (x0)f
j − (x⋆)f

i is a zero-mean σGSM-subgaussian random variable, where σGSM ≜ σ
√

K+3
3K .

Proof. For all i ≤ N , f ≤ F , and for any x ̸= 0, by the law of total probability

P(Xf
ii = x) = P(Xf

ii = x|mf
i = 1)P(mf

i = 1) + P(Xf
ii = x|mf

i = 0)︸ ︷︷ ︸
=0 because x̸=0

P(mf
i = 0) .

Then since P(Xf
ii = x|mf

i = 1, (x⋆)f
i = y) = P((x0)f

i = x + y|mf
i = 1), using Equation 16

P(Xf
ii = x) =

∫
y∈R

P(Xf
ii = x|mf

i = 1, (x⋆)f
i = y)P(mf

i = 1|(x⋆
i)f = y)P((x⋆)f

i = y)dy

=
∫

y∈R
N (x + y; µf , σ2/K)pmiss

i (y, f)N (y; µf , σ2)dy ≜ Ii,f (x)

3With an abuse in notation as we denote x⋆
i both the random variable and its realization.

32

Under review as submission to TMLR

∀x ∈ R, Ii,f (x) =
∫

y∈R

Kf

√
K

2πσ2 exp
(
− (x + y − µf)2

2σ2

K

)
exp

(
− (y − µf)2

σ2

)
exp

(
− (y − µf)2

2σ2

)
dy

= Kf

√
K

2πσ2

∫
y∈R

exp
(
−Kx2 + 2Kx(y − µf) + K(y − µf)2 + 2(y − µf)2 + (y − µf)2

2σ2

)
dy

= Kf

√
K

2πσ2

∫
y∈R

exp
(
− 1

2σ2

(
(K + 3)(y − µf)2 + 2

√
K + 3(y − µf) Kx√

K + 3

+ K2

K + 3x2 − K2

K + 3x2 + Kx2
))

dy

= Kf

√
K

2πσ2

∫
y∈R

exp
(
− 1

2σ2

(
(y
√

K + 3− µf + Kx√
K + 3

)2 − 3Kx2

K + 3

))
dy

= Kf

√
K

2πσ2 exp
(
− 3Kx2

2σ2(K + 3)

)∫
y∈R

exp
(
−K + 3

2σ2

(
y − µf√

K + 3
+ Kx

K + 3

)2
)

dy

= Kf

√
K

2πσ2 exp
(
− 3Kx2

2σ2(K + 3)

)√
2πσ2

K + 3

= Kf

√
K

2πσ2(K + 3) exp
(
− 3K

2σ2(K + 3)x2
)

.

When x = 0, Xf
ii follows the second law described at Equation equation 17 and then

P(Xf
ii = 0) = P(Xf

ii = 0|mf
i = 1)P(mf

i = 1) + P(Xf
ii = 0|mf

i = 0)︸ ︷︷ ︸
=1

P(mf
i = 0)︸ ︷︷ ︸

=1−P(mf
i

=1)

=
∫

y∈R
P(Xf

ii = 0|mf
i = 1, (x⋆)f

i = y)P(mf
i = 1 | (x⋆)f

i = y)P((x⋆)f
i = y)dy

+ 1−
∫

y∈R
P(mf

i = 1 | (x⋆)f
i = y)P((x⋆)f

i = y)dy

=
∫

y∈R
N (y; µf , σ2/K)pmiss

i (y, f)N (y; µf , σ2)dy + 1−
∫

y∈R
pmiss

i (y, f)N (y; µf , σ2)dy

= Ii,f (0) + 1− Kf√
2πσ2

∫
y∈R

e− 3
2σ2 (y−µf)2

dy

= Kf

√
K

2πσ2(K + 3) + 1− Kf√
2πσ2

√
2πσ2

3 = 1 + Kf

(√
K

2πσ2(K + 3) −
1√
3

)
.

That is

∀x ̸= 0, P((x0)f
i − (x⋆)f

i = x) = Kf√
3
×N (x; 0, (σGSM)2) where σGSM ≜ σ

√
K + 3

3K
(19)

P((x0)f
i − (x⋆)f

i = 0) = 1 + Kf

(√
K

2πσ2(K + 3) −
1√
3

)
.

33

Under review as submission to TMLR

For the zero-mean variable X following the distribution described in Equation equation 19, the moment-
generating function (MGF) of X is given by

E[etX] =
∫

P(X = x)etxdx

=
∫

x ̸=0
etx Kf√

6π(σGSM)2
exp

(
− x2

2(σGSM)2

)
dx

=Kf√
3
EY ∼N (0,(σGSM)2)[etY] = Kf√

3
exp

(
(σGSM)2t2

2

)
.

Choose s = σGSM. Then,

exp(s2t2

2)− E[etX] = exp
(

(σGSM)2t2

2

)
− Kf√

3
exp

(
(σGSM)2t2

2

)
= exp

(
(σGSM)2t2

2

)(
1− Kf√

3

)
.

Clearly the minimum value, achieved at t = 0, is 1− Kf√
3 ≥ 0 since Kf ∈ (0, 1) by definition. All in all, X is a

zero-mean σGSM-subgaussian variable.

Lemma G.4. If X is s-subgaussian, then βX is βs-gaussian when β > 0. For any β > 0 and X zero-mean
s-subgaussian, βX is zero-mean βs-subgaussian.

Proof. If X is a zero-mean s-subgaussian, then E[βX] = 0 and

∀t > 0, P(|βX| ≥ t) = P(|X| ≥ β−1t) ≤ 2 exp
(
− t2

2(βs)2

)
,

and using Proposition 2.5.2 from Vershynin (2018), βX is a (zero-mean) βs-subgaussian variable.

Finally, we determine a concentration bound on ∥(x0)|F
j − (x⋆)|F

i ∥2
2 for any i, j ≤ N and F ⊆ {1, 2, . . . , F}

under any of the Assumptions B.2-B.4. Let us set σmiss ≜ max(σ2, σGSM) and introduce the |F|-dimensional
random vector X̃

|F
ji ≜ (x0)|F

j − (x⋆)|F
i for any i, j ≤ N . The |F| coefficients of X̃

|F
ji follow the distribution

described in Equations equation 17-equation 18. Then, the random vector (σmiss)−1X̃
|F
ji has |F| independent

1-subgaussian zero-mean coefficients. The independence holds by Independence equation 15 and equation 7.
The coefficients are 1-subgaussian due to Lemma G.4. Using Theorem 3.1.1 from (Vershynin, 2018), which
relies on Bernstein’s inequality applied to the random variables (σmiss)−1X̃f

ji, for any feature f ∈ F and
samples i, j ≤ N , for any constant c > 0

P[(σmiss)−2∥X̃ |F
ji ∥

2
2 ≥ |F|+ c] ≤ exp

(
− c2

4(8|F|+ c)

)
=⇒ P[∥(x0)|F

j − (x⋆)|F
i ∥

2
2 ≥ (σmiss)2(|F|+ c)] ≤ exp

(
− (σmissc)2

4(8|F|+ c)

)
=⇒ P[∪i,j≤N{∥(x0)|F

j − (x⋆)|F
i ∥

2
2 ≥ (σmiss)2(|F|+ c)}] ≤ exp

(
− (σmissc)2

4(8|F|+ c) + 2 ln N

)
,

by applying an union bound on {1, 2, . . . , N}2. And then for any positive constant c such that 2 ln N −
(σmissc)2/(4(8|F|+ c)) ≤ 0,

P[∩i,j≤N ∥(x0)|F
j − (x⋆)|F

i ∥
2
2 ≤ (σmiss)2(|F|+ c)]

= 1− P[∪i,j≤N ∥(x0)|F
j − (x⋆)|F

i ∥
2
2 ≥ (σmiss)2(|F|+ c)]

≥ 1− exp
(
− (σmissc)2

4(8|F|+ c) + 2 ln N

)
.

34

Under review as submission to TMLR

A positive such c always exists, which can be shown by choosing c such that

c ≥ 4 ln N

(σmiss)2

(
1 +

√
1 + 4(σmiss)2|F|/ ln N

)
> 0 =⇒ 2 ln N − (σmissc)2/(4(8|F|+ c)) ≤ 0 .

Note that, similarly, by union bound on {1, 2, . . . , N}, for such a c,

P[∩i≤N ∥(x0)|F
i − (x⋆)|F

i ∥
2
2 ≤ (σmiss)2(|F|+ c)] ≥ 1− exp

(
− (σmissc)2

4(8|F|+ c) + ln N

)
∈ [0, 1] .

Corollary G.5. First concentration bound on ∥(x0)j − (x⋆)i∥2
2. Under any assumption in Assumptions B.2-

B.4, then

∀c ≥ 4 ln N

(σmiss)2

(
1 +

√
1 + 4(σmiss)2F

ln N

)
∀i, j ≤ N, ∥(x0)j − (x⋆)i∥2

2 ≤ (σmiss)2(F + c) ,

with probability 1−exp
(
− (σmissc)2

4(8F +c) + 2 ln N
)
∈ [0, 1], where σmiss ≜ max(σ2, σGSM) ∝ σ is defined in Technical

lemma 3.

Proof. This statement holds by application of Lemma 3 with F = {1, 2, . . . , F}.

Corollary G.6. Second concentration bound on ∥(x0)j−(x⋆)i∥2
2 and ∥(x0)i−(x⋆)i∥2

2. Under any assumption
in Assumptions B.2-B.4, for σmiss ≜ max(σ2, σGSM) ∝ σ (Technical lemma 3), let us denote

Cmiss
δ ≜ (σmiss)2F + 2 ln(1/δ)

(
1 +

√
1 + 8(σmiss)2F/ ln(1/δ)

)
for δ ≤ 1/N .

Then, with probability 1− δ ∈ (0, 1), for all i, j ≤ N , ∥(x0)j − (x⋆)i∥2
2 ≤ Cmiss

δ/N2 .

Proof. We solve the following equation in c > 0 from Corollary G.5,

δ = exp
(
− (σmissc)2

4(8F + c) + 2 ln N

)
⇔ −(σmiss)2c2 + (4 ln(N2/δ))c + 32F ln(N2/δ) = 0 .

This equation has two real roots, one positive root being

cδ ≜
4 ln(N2/δ)

(σmiss)2

(
1 +

√
1 + 8(σmiss)2F/ ln(N2/δ)

)
.

Applying Corollary G.5 with c = cδ when δ ∈ (0, 1) yields for any j, i ≤ N , with probability 1− δ
N2 ∈ (0, 1),

∥(x0)j − (x⋆)i∥2
2 ≤ Cmiss

δ/N2 .

Applying an upper bound on {1, 2, . . . , N}2 yields the expected result.

Proposition G.7. Iterative improvement from X0 until Xt. For G◦ ∈ {G, G⋆}, for any data matrix
X ∈ (R ∪ {NaN})N×F and (αs)s≤t ∈ (△K)t

t∑
s=1

G◦(αs, Xs−1) = 1
N

∑
i≤N

log D◦((xt)i(αt))/ log D◦((x0)i)− η

t∑
s=1
∥αs∥2

2 .

Proof. For any G◦ ∈ {G, G⋆} and t ≥ 1, since (xs)i = (xs−1)i(αs) for s < t and i ≤ N

t∑
s=1

G◦(αs, Xs−1) =
t∑

s=1

1
N

∑
i≤N

log D◦((xs−1)i(αs))
D◦((xs−1)i)

− η∥αs∥2
2

= 1
N

∑
i≤N

log D◦((xt)i(αt))
D◦((x0)i)

− η

t∑
s=1
∥αs∥2

2 .

35

Under review as submission to TMLR

H Experimental study

We compare our algorithmic contributions F3I and PCGrad-F3I to baselines for imputation and joint
imputation-classification tasks. We considered as baselines the imputation by the mean value, the MissForest
algorithm (Stekhoven & Bühlmann, 2012), K-nearest neighbor (KNN) imputation with uniform weights
and distance-proportional weights, where the weight is inversely proportional to the distance to the neigh-
bor (Troyanskaya et al., 2001), an Optimal Transport-based imputer (Muzellec et al., 2020a) and finally
not-MIWAE (Ipsen et al., 2021).

We consider synthetic data sets produced by Algorithm 3, public drug repurposing data sets and the MNIST
data set for handwritten-digit recognition (LeCun et al., 1998), along with the three missingness mechanisms
corresponding to Assumptions B.2-B.4 for different missingness frequencies in {0.1, 0.25, 0.5, 0.75, 0.9} across
the full matrix. The missingness frequencies aim at approximating the actual expected probability of a
missing value.
Remark H.1. Implementation of the missingness mechanisms. The implementations of the MCAR and MAR
mechanisms come from (Muzellec et al., 2020a) (with opt=‘logistic’). For a MCAR mechanism or MAR
mechanism implemented by (Muzellec et al., 2020a), it corresponds to the random probability of missing
data. For the MNAR Gaussian self-masking and feature f , using the notation in Assumption B.4, we sample
Kf from N (3.5

3 pmiss(1− pmiss), 0.1) and we clip Kf in [0.01, 0.99] whenever necessary. Empirically, as long as
pmiss, the expected missingness frequency is not too extreme (i.e., far from the bounds of [0, 1]), the empirical
probability of missingness is close to pmiss. However, controlling this probability more finely in the case of a
MNAR mechanism might break the not-missing-at-random property.
Remark H.2. Computational resources. The experiments on synthetic data (Subsection H.1) were run on
a personal laptop (processor 13th Gen Intel(R) Core(TM) i7-13700H, 20 cores @5GHz, RAM 32GB). The
experiments on drug repurposing (Subsection H.2) were run on remote cluster servers (processor QEMU
Virtual v2.5+, 48 cores @2.20GHz, RAM 500GB, and processor Intel Core i7-8750H, 20 cores @2.50GHz,
RAM 7.7GB for the TRANSCRIPT drug repurposing data set (Réda, 2023b)). No GPU was used in our
experiments.
Remark H.3. Numerical considerations. To ensure the stability of the optimization procedure, we compute
directly the logarithm of the kernel density D0 using function kernel_density(·,h=h,kernel=‘gaussian’)
from the k-d tree class in the Python package scikit-learn (Pedregosa et al., 2011).
Remark H.4. Time complexity for the imputation steps in F3I (Algorithm 1). The time complexity of
running the KNN imputer (Troyanskaya et al., 2001) with uniform weights and building the k-d tree on N
F -dimensional points is O(FN log N), both steps being performed once. For each input point x, Algorithm 2
first queries K nearest neighbors (each query has a time complexity of O(log N)) and then performs the
imputation in at most FK operations, for a total time complexity across all points of O(NK(log N + F)).

H.1 Synthetic Gaussian data sets

The data matrices X ∈ RN×F with N = 50 samples and F = 100 features are generated according to
Algorithm 3 (Lines 4-18), with the multivariate mean parameter µ ∼ N (0F , ν2IF ×F) where ν = 0.1 and
covariance parameter Σ = σ2IF ×F . Hyperparameter values are reported in Table 5. We use K = 5 neighbors
here for all algorithms for which it is relevant.

H.1.1 Validation of theoretical results (single imputation task)

We first show on synthetic data that both Theorems 4.2 and 4.4 are experimentally validated, and look at
the behavior of α across imputation steps in F3I for all missingness mechanisms.

Empirical validation of Theorem 4.2 We fix the missingness frequency to 25% for all three missingness
mechanisms. First, in Figure 1, for each missingness type in Assumptions B.2-B.4, we ran F3I on 100
randomly generated synthetic data matrices with each σ ∈ {0.01, 0.1, 0.15, 0.2, 0.25, 0.5} instead of σ = 0.1
and reported the mean-squared error (MSE) loss LMSE(Xt, X⋆) (where Xt is the last imputed data set
in F3I) along with the corresponding σ-dependent upper bound Cmiss = O((σmiss)2F + ln N). The exact

36

Under review as submission to TMLR

Table 5: Hyperparameters for F3I (Algorithm 1) and its baselines, unless otherwise specified (as some of
those hyperparameters might be finetuned in our experiments). K is the number of neighbors in F3I. The
names of the hyperparameters match the corresponding argument names in their implementation in Python
(official, in scikit-learn (Pedregosa et al., 2011) or in HyperImpute (Jarrett et al., 2022), if present). The k in
TDM is not a number of neighbors or anything equivalent.

Imputer Hyperparameters
F3I n_neighbors= K, max_iter= 500, η= 0.001, S= 1, β= 0
MissForest (Stekhoven & Bühlmann, 2012) n_estimators= K, max_depth= 10, max_size= 0.5,

max_iters= 500, β= 0
KNN (Troyanskaya et al., 2001) (uniform) n_neighbors= K, distance=‘nan_euclidean’
KNN (Troyanskaya et al., 2001) (distance) n_neighbors= K, distance=‘nan_euclidean’
Optimal Transport (Muzellec et al., 2020a) eps= 0.01, lr= 0.01, max_iters= 500, batch_size= 128,

n_pairs= 1, noise= 0.1, scaling= 0.9
not-MIWAE (Ipsen et al., 2021) n_latent= ⌊F/2⌋, n_hidden= 150
GAIN (Yoon et al., 2018a) batch_size= 128, n_epochs= 100, hint_rate= 0.8,

loss_alpha= 10
GRAPE (You et al., 2020) node_dim= 64, edge_dim= 16, nepochs= 20, 000
HyperImpute (Jarrett et al., 2022) imputation_order= 2, baseline_imputer= 0,

optimizer=’simple’, class_threshold= 5,
optimize_thresh= 5, 000, n_inner_iter= 40,
select_patience= 5

MIRACLE (Kyono et al., 2021) lr= 0.001, batch_size= 1, 024, num_outputs= 1,
n_hidden= 32, reg_lambda= 1, reg_beta= 1, reg_m= 1.0,
window= 10, max_steps= 400, seed_imputation=’mean’

NewImp (Chen et al., 2024) entropy_reg= 10, eps= 0.01, lr= 0.01, opt=’Adam’, niter= 50,
kernel_func=’xRBF’, mlp_hidden= [256, 256],
score_net_epoch= 2, 000, score_net_lr= 0.001,
score_loss_type=’dsm’, bandwidth= 10,
sampling_step= 500, batchsize= 128, n_pairs= 1,
noise= 0.1, scaling= 0.9

Remasker (Du et al., 2023) batch_size= 64, max_epochs= 600, accum_iter= 1,
mask_ratio= 0.5, embed_dim= 32, depth= 6, decoder_depth= 4,
num_heads= 4, mlp_ratio= 4, encode_func=’linear’,
weight_decay= 0.05, lr=None, blr= 0.001, min_lr= 0.00001,
warmup_epochs= 40

TDM (Zhao et al., 2023) k= 2, depth= 3, im_lr= 0.01, proj_lr= 0.01, opt=’RMSprop’,
niter= 2, 000, batchsize= 128, n_pairs= 1, noise= 0.1

RF-GAP (Rhodes et al., 2023) prox_method=’rfgap’

definition of Cmiss is in the proof of Theorem 4.2, in Appendix D. The upper bound is largely above the MSE
value for each iteration. This might be because concentration bounds derived from Bernstein’s inequality
are not very tight. From Table 6 which reports the numerical values shown on Figure 1, we notice that
there is a correlation between σ and LMSE(Xt, X⋆). Moreover, Cmiss recovers interesting dependencies as an
upper bound of LMSE(Xt, X⋆). Indeed, we also observe empirically that LMSE(Xt, X⋆) is roughly linear in
σ2 ≈ (σmiss)2 regardless of the missingness mechanism (see Figure 2), which matches the upper bound given
by Theorem 4.2.

Behavior of αt depending on imputation round t Second, we look at the evolution of αt depending
on the round t, knowing that at t = 0, α0 = 1

K 1K is a uniform weight vector. Figure 3 displays the evolution
of weight (αt)k for each k-nearest neighbor in iteration t in F3I. Surprisingly enough, the optimal weight
vector is not proportional to the rank of the neighbor; that is, the closer the neighbor, the higher the weight,

37

Under review as submission to TMLR

Figure 1: Emprical validation of Theorem 4.2 by comparing the value of the upper bound N × Cmiss and
NF × LMSE(Xt, X⋆) where t is the final round for F3I. Left: MCAR setting. Center: MAR setting. Right:
MNAR setting.

Figure 2: NF × LMSE(Xt, X⋆) is linear in σ2 regardless of the missingness mechanism (numerical values are
reported in Table 6).

Figure 3: Evolution of the weight of each of the K-nearest neighbors for each sample as computed by F3I,
where the k neighbor is the kth-nearest point, depending on the round T . Left: MCAR setting. Center:
MAR setting. Right: MNAR setting.

38

Under review as submission to TMLR

Table 6: Empirical validation of Theorem 4.2 by comparing the value of the upper bound N × Cmiss and the
average and standard deviation value of NF×LMSE(Xt, X⋆) across iterations where t is the final round for F3I.
All values are rounded to the closest second decimal place. Theorem 4.2 states that LMSE(Xt, X⋆) ≤ Cmiss/F
with probability 1− 1/50.

Missingness type σ NF × LMSE(Xt, X⋆) N × Cmiss

MCAR (Assumption B.2) 0.01 0.63 ±0.38 2,352.60
0.10 16.36 ±0.93 2,816.02
0.15 36.12 ±1.89 3,286.57
0.20 63.26 ±3.14 3,839.30
0.25 97.44 ±4.56 4,450.16
0.50 376.29 ±16.76 8,109.04

MAR (Assumption B.3) 0.01 0.42 ±0.21 2,352.60
0.10 11.53 ±0.78 2,816.02
0.15 25.19 ±1.58 3,286.57
0.20 44.07 ±2.65 3,839.30
0.25 68.50 ±4.08 4,450.16
0.50 266.19 ±15.22 8,109.04

MNAR (Assumption B.4) 0.01 0.37 ±0.23 2,352.60
0.10 7.13 ±0.64 2,816.02
0.15 15.50 ±1.22 3,286.57
0.20 26.53 ±1.86 3,839.30
0.25 40.36 ±2.66 4,450.16
0.50 152.03 ±9.56 8,109.04

which often motivates some heuristics about k-nearest neighbor algorithms. Optimality (preserving the data
distribution) puts higher weights on the first and last closest neighbors.

Empirical validation of Theorem 4.4 Third, we look at the upper bound for the expected cumulative
regret stated in Theorem 4.4. Using a missingness frequency of 25% again, we run 100 times F3I on synthetic
data sets for all three missingness mechanisms and track the values of maxα∈△K

∑t
s=1 G∗(α, Xs−1) −

G∗(αs, Xs−1) and its upper bound CAH√t + Hmissh−1t across iterations, where t is the final step of F3I
(that can change across iterations). We compute the value of maxα∈△K

∑t
s=1 G∗(α, Xs−1) by solving the

related convex problem with function minimize in Python package scipy.optimize (Virtanen et al., 2020)
after running F3I

min
α∈RK

−
t∑

s=1
G⋆(α, Xs−1) such that ∀k ≤ K, αk ≥ 0 and

∑
k≤K

αk = 1 ,

where G⋆ is computed with respect to the true complete points {(x⋆)1, . . . , (x⋆)N} and (xs)i =
Impute((xs−1)i; αs) if s ≥ 1 and X0 is the naively imputed matrix. Figure 4 and Table 7 show that
the upper bound is always valid across those experiments. Some random data sets among the 100 might be
harder than the others, incurring larger regret. However, Figure 4 shows that the upper bound adapts to
these instances. The large gap between the empirical and theoretical peaks in hardness might be due, as for
Theorem 4.2, to the conservative estimates given by Bernstein’s inequality.

H.1.2 Empirical performance (single imputation task)

Now we compare the MSE of F3I to its baselines on synthetic data sets generated with Algorithm 3. Note
that the definition of the MSE is slightly different from Definition 4.1 as we only compute the gaps in the

39

Under review as submission to TMLR

Figure 4: Cumulative regret for F3I and upper bound from Theorem 4.4 across 100 iterations. The blue
points are always below the red lines. Left: MCAR setting. Center: MAR setting. Right: MNAR setting.

Figure 5: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012), Optimal-Transport imputer (Muzellec et al., 2020a)
and not-MIWAE (Ipsen et al., 2021).

40

Under review as submission to TMLR

Table 7: Empirical validation of Theorem 4.4 by comparing the value of the upper bound and the average
and standard deviation value of the cumulative regret maxα∈△K

∑t
s=1 G∗(α, Xs−1)−G∗(αs, Xs−1) across

iterations where t is the final round for F3I (the maximum number of rounds is set to 500). All values are
rounded to the closest second decimal place, except for the time round t, which is rounded to the closest
integer. Theorem 4.4 states that maxα∈△K

∑t
s=1 G∗(α, Xs−1)−G∗(αs, Xs−1) ≤ CAH√t + Hmissh−1t with

probability 1− 1/2, 500 ≈ 0.9996.
Missingness type t Cumulative regret on G CAH

G

√
t + Hmissh−1t

MCAR (Assumption B.2) 24 ±78 113.76 ±371.39 2,067.60 ±6,734.50
MAR (Assumption B.3) 40 ±111 153.06 ±417.40 3,542.96 ±9,659.89
MNAR (Assumption B.4) 35 ±96 158.61 ±438.45 3,015.86 ±8,336.243

positions of missing values

LMSE(Xt, X⋆) ≜ 1
N

∑
i≤N

1
|{f | mf

i = 1}|

∑
f,mf

i
=1

((xt)f
i − (x⋆)f

i)2 ≤ FLMSE(Xt, X⋆) .

We consider the following baselines: imputation by the mean value, random-forest-based imputation by
MissForest (Stekhoven & Bühlmann, 2012), traditional KNN imputation (Troyanskaya et al., 2001) with
uniform and distance-based weights, Optimal Transport-based imputation (Muzellec et al., 2020a) and the
Bayesian network approach not-MIWAE (Ipsen et al., 2021). We consider a number of neighbors (for F3I and
KNN) or of estimators (for MissForest) K = 3, a number of features F ∈ {100; 500; 1, 000; 10, 000; 20, 000}
with N = 50 samples, and a missingness frequency pmiss ∝ {0.10, 0.25, 0.50, 0.75}. We generate 2 random
data sets and perform 10 iterations of each algorithm on each data set, for a total of 20 values per combination
of parameters (F , missingness mechanism), where the missingness mechanism is either MCAR, MAR, or
MNAR.

We first note that not-MIWAE has a significantly worse imputation error than all other algorithms; see
Figure 5. We then do not report the results for not-MIWAE in all other cases. Moreover, from F = 1, 000,
the runtime of MissForest is too long to be run. The remainder of the boxplots for the mean squared error
and imputation runtime across iterations and data sets can be found in Figures 11-19.

Second, we note the superior performance of F3I, nearest neighbor, and mean imputers regarding the
computational cost of imputation across missingness frequencies pmiss, missingness mechanisms (MCAR,
MAR, MNAR), and numbers F of features. This makes F3I a competitive approach when the number of
features is huge (for instance, F ∈ {10, 000; 20, 000}).

Third, as a general rule across missingness mechanisms and frequencies, the performance of F3I is close to
the ones of other nearest-neighbor imputers and sometimes better when the number of features is large. It
might be because F3I considers the same neighbors across features past the initial imputation step. This
allows us to impute perhaps more reliably missing values, contrary to the other NN imputers where neighbor
assignation is performed feature-wise. Moreover, we notice that the performance of F3I and all baselines are
on par (that is, boxplots overlap) for data where the missing values are generated from a MNAR mechanism
(Figures 17-19) regardless of the missing frequency.

Fourth, F3I performs worst for data generated by a MCAR or a MAR mechanism, which is the setting where
mean imputation works best. This might make sense, as F3I tries to capture a specific missingness pattern
that depends on neighbors in the data set. The (perfectly) random pattern might be the most difficult to
infer for F3I and other nearest-neighbor imputers.

H.1.3 Validation of theoretical results (joint imputation-classification task)

We implement the joint imputation-classification training with the log-loss function and sigmoid classifier
ℓ(x) ≜ −y log Cω(x) mentioned in Example 1 (Appendix F), where y ∈ {0, 1} is the binary class associated
with sample x ∈ RF . To implement PCGrad-F3I, we chain the imputation phase by F3I with an MLP, which

41

Under review as submission to TMLR

Figure 6: Cumulative regret for F3I and upper bound from Theorem 5.1 across 100 iterations for β = 0.5.
The blue points are always below the red lines. Left: MCAR setting. Center: MAR setting. Right: MNAR
setting.

Table 8: Empirical validation of Theorem 5.1 by comparing the value of the upper bound and the average
and standard deviation value of the cumulative regret maxα∈△K

∑t
s=1 G(α, Xs−1) − G(αs, Xs−1) across

iterations where t is the final round for F3I in the last epoch. All values are rounded to the closest
second decimal place. The time round is fixed to T = 3 in PCGrad-F3I and β = 0.5. Theorem 4.4
states that maxα∈△K

∑t
s=1 G(α, Xs−1) − G(αs, Xs−1) ≤ CAH

(G,ℓ)
√

t + (1 − β)Hmissh−1t with probability
1− 1/2, 500 ≈ 0.9996.

Missingness type t Cumulative regret on G CAH
(G,ℓ)
√

t + (1− β)Hmissh−1t

MCAR (Assumption B.2) 3 2.31 ±0.03 6.38 ±0.22
MAR (Assumption B.3) 3 2.21 ±0.01 6.37 ±0.22
MNAR (Assumption B.4) 3 2.21 ±0.00 6.38 ±0.22

returns logits. At time t, the imputation part applies at a fixed set of parameters ωt with the learner losses
defined in Equation equation 2. We construct the synthetic data sets for classification as follows. We draw
two random matrices in the synthetic data set as in Algorithm 3 corresponding to the item and user feature
matrices. We assign binary class labels to each item-user pair using a K-means++ algorithm (Arthur &
Vassilvitskii, 2006) with K = 2 clusters on the item-user concatenated feature vectors.

We first validate the upper bound on the cumulative regret in Theorem 5.1 for all three missingness mechanisms
we studied, similar to what was done for Theorem 4.4. As in our proofs (see Appendix F), we consider the
log-loss ℓ with the sigmoid classifier Cω and β = 0.5. We consider a missingness frequency of 50%. To obtain
the value of arg maxα∈△K

∑t
s=1 G(α, Xs−1), where G is defined as

G : α ∈ △K , X ∈ RN×F 7→ (1− β)G⋆(α, X)− β

N

∑
i≤N

ℓ(xi(α)) ,

we solve the following optimization problem by solving the related convex problem with function minimize
in Python package scipy.optimize (Virtanen et al., 2020), considering the (Xs−1)s≤t and parameter of the
sigmoid classifier Cω in the last epoch in PCGrad-F3I

min
α∈RK

−
t∑

s=1
G(α, Xs−1) such that ∀k ≤ K, αk ≥ 0 and

∑
k≤K

αk = 1 .

The gradient and the Hessian matrix of the objective function G with respect to α are obtained by combining
the results from Lemmas C.3, Lemma C.4 and Section F. Figure 6 and Table 8 indeed show that the upper
bound reliably holds on the cumulative regret for G.

42

Under review as submission to TMLR

Table 9: Hyperparameter values for the training of the MLP block for each imputation method (NeuMiss,
mean imputation, F3I).

Hyperparameter # epochs Weight decay in the optimizer Learning rate MLP depth
Value 10 0 0.01 1 layer

H.1.4 Empirical performance (joint imputation-classification task)

Then, we compare the performance of PCGrad-F3I with adding a NeuMiss block (Le Morvan et al., 2020)
and with performing an imputation by the mean (“Mean”) before the classifier. Similarly to PCGrad-F3I,
we chain an imputation part with an MLP classifier, which returns logits. In the baselines, at time t, the
imputation part applies at a fixed set of parameters ωt an imputation by the mean, or a shared-weights
NeuMiss block, as introduced in Le Morvan et al. (2021). The criterion for training the model is the log loss,
and we split the samples into training (70%), validation (20%), and testing (10%) sets, where the former two
sets are used for training the MLP, and the performance metrics are computed on the latter set. We consider
the classical Area Under the Curve (AUC) on the test set (hidden during training) as the performance metric
for the binary classification task. In this section, we set the number of imputation rounds in F3I to T = 2,
and we train the MLPs for each imputation approach with the hyperparameter values reported in Table 9.

Figure 7 shows the results for MCAR (Assumption B.2), MAR (Assumption B.3), and MCAR (Assumption B.4)
synthetic data with an approximate missingness frequency of 50% and varying values of β ∈ {0.25, 0.5, 0.75}.
Figure 8 shows the corresponding results when the approximated missingness frequency is in {25%, 75%}.
There is a significant improvement in PCGrad-F3I over the baseline NeuMiss. However, the imputation by
the mean remains the top contender on the synthetic Gaussian data sets, as already noticed for imputation
in the previous paragraph, even if PCGrad-F3I is sometimes on par regarding classification performance.

H.2 Real-life data sets (drug repurposing & handritten-digit recognition)

In addition to the synthetic Gaussian data sets, we also evaluate the performance of F3I on real-life data for
drug repurposing or handwritten-digit recognition on the well-known MNIST data set (LeCun et al., 1998).

Drug repurposing aims to pair diseases and drugs based on their chemical, biological, and physical features.
However, those features might be missing due to the incompleteness of medical databases or to a lack or
failure of measurement. Table 10 reports the sizes of the considered drug repurposing data sets, which can
be found online as indicated in their corresponding papers. A positive drug-disease pair is a therapeutic
association (that is, the drug is known to treat the disease). In contrast, a negative one is associated with a
failure in treating the disease or the emergence of toxic side effects.

Table 10: Overview of the drug repurposing data sets in the experimental study in Section H, with the
number of drugs, drug features, diseases, disease features, along with the number of positive and negative
drug-disease pairs.

Name of the data set Ndrugs Fdrugs Ndiseases Fusers Positive pairs Negative pairs
Cdataset (Luo et al., 2016) 663 663 409 409 2,532 0
DNdataset (Gao et al., 2022) 550 1,490 360 4,516 1,008 0
Gottlieb (Luo et al., 2016) 593 593 313 313 1,933 0
PREDICT-Gottlieb (Gao et al., 2022) 593 1,779 313 313 1,933 0
TRANSCRIPT (Réda, 2023b) 204 12,096 116 12,096 401 11

H.2.1 Imputation quality and runtimes (drug repurposing task)

Drug repurposing aims to pair diseases and drugs based on their chemical, biological, and physical features.
However, those features might be missing due to the incompleteness of medical databases or to a lack

43

Under review as submission to TMLR

Figure 7: Joint-Imputation on a synthetic data set with MCAR (left), MAR (center) and MNAR (right)
missing values and approximate missingness frequency pmiss = 0.5, for β ∈ {0.25, 0.5, 0.75}.

44

Under review as submission to TMLR

Figure 8: Joint-Imputation on a synthetic data set with MCAR (left), MAR (center) and MNAR (right)
missing values and approximate missingness frequency pmiss ∈ {0.25, 0.75}, for β ∈ {0.25, 0.5, 0.75}.

45

Under review as submission to TMLR

Table 11: Fine-tuned hyperparameter values using Optuna to train the MLP block for each imputation
method (NeuMiss, Mean imputation, PCGradF3I) on the MNIST data set. K, T, β and η are F3I-specific
parameters, whereas all remaining parameters are common to all three methods and belong to the MLP
block.

Hyperparameter Number of epochs MLP depth K T β η

Value 5 5 layers 17 13 0.71 0.053

or failure of measurement. We consider five public drug repurposing data sets of varying sizes without
missing values (see Table 10 in Appendix H.2). We add missing values with a MNAR Gaussian self-masking
mechanism (Assumption B.4). We run each imputation method 100 times on the drug and the disease
feature matrices with different random seeds. Note that the position of the missing values is the same across
runs. We considered as baselines the imputation by the feature-wise mean value (Mean), the MissForest
algorithm (Stekhoven & Bühlmann, 2012), K-nearest neighbor (KNN) imputation with distance-proportional
weights, where the weight is inversely proportional to the distance to the neighbor (Troyanskaya et al., 2001),
an Optimal Transport-based imputer (Muzellec et al., 2020a) and finally not-MIWAE (Ipsen et al., 2021).
Hyperparameter values are reported in Table 5.

Since the number of features F ≈ 12, 000 in the TRANSCRIPT dataset (Réda, 2023b) is prohibitive for most
of the baselines, we reduce the number of features to 9, 000, selecting the features with the highest variance
across drugs and diseases. Moreover, MissForest (Stekhoven & Bühlmann, 2012) and not-MIWAE (Ipsen
et al., 2021) are too resource-consuming to be run on the largest data sets, DNdataset (Gao et al., 2022),
PREDICT-Gottlieb (Gao et al., 2022) and TRANSCRIPT (Réda, 2023b). Figures 20-24 show the boxplots
of average mean squared errors and runtimes of each algorithm across the 100 iterations for both drug and
disease feature matrices. Table 17 shows the corresponding numerical results (average values ±standard
deviations across the 100 iterations).

Overall, F3I has a runtime comparable to the fastest baselines, that is, the Optimal Transport-based
imputer (Muzellec et al., 2020a) (OT in plots), the imputation by the mean value (Mean) and the k-nearest
neighbor approach (Troyanskaya et al., 2001) (KNN), while having a performance in imputation which is on
par with the best state-of-the-art algorithm MissForest (Stekhoven & Bühlmann, 2012), as reported by several
prior works (Emmanuel et al., 2021; Joel et al., 2024). However, MissForest is several orders of magnitude
slower than F3I and sometimes cannot be run at all (for instance, for the highly-dimensional TRANSCRIPT
data set). The Optimal Transport imputer also performs well across the data sets and often competes with
our contribution F3I in imputation and computational efficiency.

H.2.2 Classification quality (handwritten-digit recognition task)

Again, we compare the performance of PCGrad-F3I with a simple mean imputation or NeuMiss (Le Morvan
et al., 2020; 2021), chaining the corresponding imputation part with an MLP as previously done on synthetic
data sets in Subsection H.1. The training procedure of the full architecture is provided in the code. We
consider the MNIST dataset (LeCun et al., 1998), which comprises grayscale images of 25× 25 pixels. We
restrict our study to images annotated with class 0 or class 1 to get a binary classification problem. We
remove pixels at random with probability 50% using a MCAR mechanism (Assumption B.2).

Hyperparameter tuning and importance. We employed the Optuna framework to optimize our model’s
hyperparameters (Akiba et al., 2019). The optimization process focused on tuning several key parameters:
β, η, T, K, and the depth of the classifier MLP. For the hyperparameter search, we utilized Optuna’s default
Tree-structured Parzen Estimator-based sampler (Bergstra et al., 2011), conducting 50 trials to explore the
parameter space. The dataset was evenly divided into three portions, with 34% allocated for training, 33%
for validation, and 33% for testing. During the optimization process, we aimed to maximize the logarithm of
the Area Under the Curve (AUC) scores from the Receiver Operating Characteristic (ROC) curve on the
validation set. After identifying the optimal hyperparameter configuration, we constructed the final model.
Final hyperparameter values are reported in Table 11.

46

Under review as submission to TMLR

Table 12: Area Under the Curve (AUC) values (average ±standard deviation) in the testing subset in MNIST
(hidden during the training phase) and corresponding tuned hyperparameter values (rounded up to the 2nd

decimal place for values in R) for N = 100 iterations. NeuMiss has been trained on the same number of
epochs and the same MLP architecture as PCGradF3I and the mean imputation followed by the MLP (Mean
imputation). Those are the same results displayed in the third column of Table 4.

Type pmiss Algorithm AUC
MCAR (Assumption B.2) 50% GRAPE (You et al., 2020) 1.00 ±0.00

K-NN (Troyanskaya et al., 2001) 0.93 ±0.17
Mean 0.64 ±0.18
NeuMiss (Le Morvan et al., 2020) 0.99 ±0.07
PCGradF3I (ours) 0.99 ±0.09
RF-GAP (Rhodes et al., 2023) 1.00 ±0.00

We also estimated the importance of each hyperparameter on the objective function using the functional
analysis of variance, or fANOVA (Hutter et al., 2014). fANOVA estimates the percentage of variance in
the classification performance on the validation set explained by each hyperparameter, given a regression
tree and a hyperparameter space. Then, the larger the percentage, the greater impact on the classification
performance on the validation set. The corresponding values are listed in Table 13.

Table 13: Percentages of variance of the Area Under the Curve (AUC) on the validation set explained by
each hyperparameter finetuned on the MNIST data set for PCGradF3I. Hyperparameters are listed in the
order of decreasing explained variance.

Hyperparameter Number of epochs η K T β MLP depth
Explained variance (%) 38.1 32.6 12.5 9.6 4.1 2.9

We observe that the number of training epochs for the MLP and the regularization factor η for the weight
vector α account for approximately 38% and 33% respectively of the variability of the performance across the
entire hyperparameter space. The number K of nearest neighbours chosen for the convex combination is also
relatively important. This is expected, as the number of neighbors controls the quality of the estimation of
the data distribution in the imputation algorithm. Surprisingly, the number of iterations T explains less than
10% of the variance in the performance, demonstrating that F3I probably reaches the early stopping criterion
(Line 16 in Algorithm 1) very quickly, without exhausting the budget T . Another surprising observation is
the relatively low importance for the classification performance of β and the depth of the MLP. This shows
that even a relatively simple classifier can achieve higher classification accuracy with good imputation quality
on the MNIST data set restricted to the classes 0 and 1.

Training. This optimized model underwent training using the designated training set, followed by performance
evaluation. We assessed its performance by measuring the AUC score of the ROC curve on the test set,
repeating this evaluation process across 100 iterations to ensure robust results.

Results. We report the numerical results in Table 12. We also display the imputed images for the
first 6 samples in MNIST by F3I or by mean imputation, trained on the first 600 samples. 4 We vary
pmiss ∈ {25%, 50%, 75%} in Figure 9. Finally, we modify the missingness mechanism in Figure 10, switching
the MCAR missingness mechanism to MAR (Assumption B.3) or MNAR (Assumption B.4).

As mentioned in the main text, PCGradF3I beats the mean imputation and NeuMiss regarding classification
accuracy according to Table 12. It also preserves a good imputation of the MNIST images compared to
the mean imputation, even when the number of missing values increases (see Figure 9). Even if one still
can distinguish between ones and zeroes with the mean imputation, there is a higher confidence in the
predicted labels when looking at F3I-imputed images. Moreover, F3I turns out to be more robust to the

4The NeuMiss network (Le Morvan et al., 2020) does not perform imputation, only classification or regression.

47

Under review as submission to TMLR

Figure 9: Imputed grayscale images by F3I (first two rows) or mean imputation (last two rows) for the
first 6 samples (trained on the first 600 samples of MNIST with the hyperparameters in Table 11) with
MCAR-missing pixels, with missingness frequencies in {25%, 50%, 75%}. Columns 1 to 3 correspond to
pmiss = 25%, columns 4 to 6 to pmiss = 50%, and columns 7 to 9 to pmiss = 75%. Positions of red pixels
represent missing pixels during the training phase which are imputed by either F3I or mean imputation.

Figure 10: Imputed grayscale images by F3I (first two rows) or mean imputation (last two rows) for the first 6
samples (trained on the first 600 samples of MNIST with the hyperparameters in Table 11). Positions of red
pixels represent missing pixels during the training phase which are imputed by either F3I or mean imputation.
Columns 1 to 3 correspond to MCAR-missing pixels (Assumption B.2), columns 4 to 6 to MAR-missing
pixels (Assumption B.3), and columns 7 to 9 to MNAR-missing pixels (Assumption B.4). Note that in one of
the samples with MAR-missing pixels, no pixel is missing, which is due to randomness in the generation of
missing pixels.

different types of missingness mechanisms compared to the mean imputation, as illustrated by Figure 10.
For missing-completely-at-random pixels, both methods fare good regarding imputation. However, the
performance of the mean imputation is limited in the case of MAR or MNAR-missing pixels (Columns 4 et
6), as most samples represent both a 0 and a 1.

Table 14: Overview of the drug repurposing data set PREDICT for joint imputation-classification experiments,
with the number of drugs, drug features, percentage of missing drug data, diseases, disease features, percentage
of missing disease features, along with the number of positive and negative drug-disease pairs.

Data set Ndrugs Fdrugs (% missing) Ndiseases Fusers (% missing) Pos Neg
PREDICT (Réda, 2023a) 1,150 1,642 (24) 1,028 1,490 (26) 4,627 132
PREDICT (reduced) 175 326 (36) 175 215 (60) 454 0

48

Under review as submission to TMLR

Table 15: Fine-tuned hyperparameter values using Optuna to train the MLP block for each imputation
method (NeuMiss, Mean imputation, PCGradF3I) on the PREDICT data set. K, T, β and η are F3I-specific
parameters, whereas all remaining parameters are common to all three methods and belong to the MLP
block.

Hyperparameter Number of epochs Learning rate MLP depth K T β η

Value 10 0.01 1 layer 12 25 0.246 0.008

Table 16: Area Under the Curve (AUC) values (average ±standard deviation) in the testing subset in
PREDICT (hidden during the training phase) and corresponding tuned hyperparameter values (rounded
up to the 2nd decimal place for values in R) for N = 100 iterations. NeuMiss has been trained on the same
number of epochs and the same MLP architecture as PCGradF3I and the mean imputation followed by the
MLP (Mean imputation). Those are the same results displayed in the fourth column of Table 4.

Type pmiss Algorithm AUC
MCAR (Assumption B.2) 50% GRAPE (You et al., 2020) 0.49 ±0.07

K-NN (Troyanskaya et al., 2001) 0.47 ±0.07
Mean 0.48 ±0.00
NeuMiss (Le Morvan et al., 2020) 0.50 ±0.01
PCGradF3I (ours) 0.51 ±0.01
RF-GAP (Rhodes et al., 2023) 0.53 ±0.13

H.2.3 Classification quality (drug repurposing task)

Joint imputation and repurposing This time, we consider the drug (item) and disease (user) feature
matrices, along with the drug-disease association class labels from another drug repurposing data set,
which natively includes missing values in the drug and disease feature matrices. This data set, named
PREDICT (Réda, 2023a), is further described in Table 14. All unknown drug-disease associations are labeled
0.5, whereas positive (respectively, negative) ones are labeled +1 (resp., −1). To restrict the computational
cost, we restricted the data set to its first 500 ratings (i.e., drug-disease pairs) and to the 350 features with
highest variance across all drugs and diseases. We also add other missing values to the data set via a MCAR
mechanism –as we might have lost some missing values when reducing the data set– and run a hyperparameter
optimization procedure, similarly to what has been done on the MNIST data set (see Subsection H.2.2). See
Table 15 for the selected hyperparameter values.

The corresponding numerical results compared to the mean imputation and NeuMiss (with the same
architecture of MLPs) is displayed in Table 16. This table shows that PCGradF3I performs slightly better
than NeuMiss on this very difficult data set, while being significantly better than the naive approach relying
on the imputation by the mean value. Those results confirm what we observed on the MNIST data set (see
Table 12).

49

Under review as submission to TMLR

Figure 11: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012) and Optimal-Transport imputer (Muzellec et al.,
2020a).

50

Under review as submission to TMLR

Figure 12: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012) and Optimal-Transport imputer (Muzellec et al.,
2020a).

51

Under review as submission to TMLR

Figure 13: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012) and Optimal-Transport imputer (Muzellec et al.,
2020a).

52

Under review as submission to TMLR

Figure 14: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012) and Optimal-Transport imputer (Muzellec et al.,
2020a).

53

Under review as submission to TMLR

Figure 15: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012) and Optimal-Transport imputer (Muzellec et al.,
2020a).

54

Under review as submission to TMLR

Figure 16: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012) and Optimal-Transport imputer (Muzellec et al.,
2020a).

55

Under review as submission to TMLR

Figure 17: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012) and Optimal-Transport imputer (Muzellec et al.,
2020a).

56

Under review as submission to TMLR

Figure 18: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012) and Optimal-Transport imputer (Muzellec et al.,
2020a).

57

Under review as submission to TMLR

Figure 19: Imputation on 2 synthetic data sets × 10 different random seeds for generating missing values
for F3I, K-nearest neighbor imputers (Troyanskaya et al., 2001) (uniform or distance-based weights), mean
imputation, MissForest (Stekhoven & Bühlmann, 2012) and Optimal-Transport imputer (Muzellec et al.,
2020a).

58

Under review as submission to TMLR

Figure 20: Imputation of missing values in the drug (left) and disease (right) feature matrices for F3I and
its baselines in the Cdataset drug repurposing data set (Luo et al., 2016). The first row shows boxplots
of mean-squared errors (MSE) across each algorithm’s 100 iterations (with different random seeds). In
contrast, the second row displays the runtimes (in seconds) across iterations for the imputation step. The
average value of MSE and runtime is displayed above each corresponding boxplot. Abbreviations: OT:
Optimal Transport-based imputer (Muzellec et al., 2020a), KNN: KNN imputer with distance-associated
weights (Troyanskaya et al., 2001), Mean: imputation by the feature-wise mean value.

59

Under review as submission to TMLR

Figure 21: Imputation of missing values in the drug (left) and disease (right) feature matrices for F3I and
its baselines in the DNdataset drug repurposing data set (Gao et al., 2022). The first row shows boxplots
of mean-squared errors (MSE) across each algorithm’s 100 iterations (with different random seeds). In
contrast, the second row displays the runtimes (in seconds) across iterations for the imputation step. The
average value of MSE and runtime is displayed above each corresponding boxplot. Abbreviations: OT:
Optimal Transport-based imputer (Muzellec et al., 2020a), KNN: KNN imputer with distance-associated
weights (Troyanskaya et al., 2001), Mean: imputation by the feature-wise mean value.

60

Under review as submission to TMLR

Figure 22: Imputation of missing values in the drug (left) and disease (right) feature matrices for F3I and
its baselines in the Gottlieb drug repurposing data set (Luo et al., 2016). The first row shows boxplots
of mean-squared errors (MSE) across each algorithm’s 100 iterations (with different random seeds). In
contrast, the second row displays the runtimes (in seconds) across iterations for the imputation step. The
average value of MSE and runtime is displayed above each corresponding boxplot. Abbreviations: OT:
Optimal Transport-based imputer (Muzellec et al., 2020a), KNN: KNN imputer with distance-associated
weights (Troyanskaya et al., 2001), Mean: imputation by the feature-wise mean value.

61

Under review as submission to TMLR

Figure 23: Imputation of missing values in the drug (left) and disease (right) feature matrices for F3I and
its baselines in the PREDICT-Gottlieb drug repurposing data set (Gao et al., 2022). The first row shows
boxplots of mean-squared errors (MSE) across each algorithm’s 100 iterations (with different random seeds).
In contrast, the second row displays the runtimes (in seconds) across iterations for the imputation step.
The average value of MSE and runtime is displayed above each corresponding boxplot. Abbreviations: OT:
Optimal Transport-based imputer (Muzellec et al., 2020a), KNN: KNN imputer with distance-associated
weights (Troyanskaya et al., 2001), Mean: imputation by the feature-wise mean value.

62

Under review as submission to TMLR

Figure 24: Imputation of missing values in the drug (left) and disease (right) feature matrices for F3I and its
baselines in the TRANSCRIPT drug repurposing data set (Réda, 2023b), restricted to the 9, 000 features
with highest variance across samples. The first row shows boxplots of mean-squared errors (MSE) across each
algorithm’s 100 iterations (with different random seeds). In contrast, the second row displays the runtimes
(in seconds) across iterations for the imputation step. The average value of MSE and runtime is displayed
above each corresponding boxplot.

63

Under review as submission to TMLR

Table 17: Mean Squared Errors and runtimes (average ±standard deviation) of the imputation of missing
values on drug feature matrices, for 100 random seeds, rounded to the closest 1st decimal place. Best values
are in bold type, second best values underlined.

Algorithm/Data set MSE ↓ Runtime (sec.) ↓
Cdataset
KNN 16.9 ±0.2 2.0 ±0.2
Mean 29.4 ±0.2 0.0 ±0.0
MissForest 14.2 ±0.4 12,089.7 ±268.8
not-MIWAE 70.0 ±0.3 76.3 ±3.8
Optimal Transport 13.5 ±0.2 12.0 ±0.9
F3I 15.2 ±0.2 5.0 ±0.9
DNdataset
F3I (ours) 14.4 ±0.3 221.7 ±59.3
KNN 8.1 ±0.2 65.3 ±27.1
Mean 72.7 ±0.4 0.1 ±0.1
MissForest - -
not-MIWAE - -
Optimal Transport 21.7 ±0.5 62.8 ±55.1
Gottlieb
KNN 16.1 ±0.2 1.1 ±0.2
Mean 28.1 ±0.2 0.0 ±0.0
MissForest 12.4 ±0.4 12,599.1 ±3,115.5
not-MIWAE 71.3 ±0.3 146.9 ±111.5
Optimal Transport 11.1 ±0.2 10.9 ±2.6
F3I 14.6 ±0.2 2.7 ±0.4
PREDICT-Gottlieb
KNN 33.5 ±0.3 7.4 ±1.7
Mean 49.3 ±0.3 0.1 ±0.0
MissForest - -
not-MIWAE - -
Optimal Transport 28.3 ±0.3 32.7 ±4.9
F3I 28.2 ±0.2 110.6 ±28.2
TRANSCRIPT
KNN 8.7 ±0.2 26.8 ±2.4
Mean 6.7 ±0.0 0.1 ±0.0
MissForest - -
not-MIWAE - -
Optimal Transport 14.7 ±0.1 14.8 ±1.0
F3I 8.6 ±0.2 129.3 ±52.9

H.3 Imputation of mixed-type variables

A naive approach to extend readily F3I to mixed-type data–that is, with both categorical and continuous
data. First, we replace Chebychev distance by Gower’s distance (Gower, 1971) in the imputation model (see
Algorithm 2). This allows F3I to compute the K nearest neighbors even when the point features categorical
variables. Given two F -dimensional points points x and y, Gower’s distance between those two points is

dGower(x, y) := 1
F

∑
f≤F

distf (xf , yf) ,

64

Under review as submission to TMLR

where the distance function for a categorical variable f is distf (x, y) = δ(x ̸= y) and δ is the Kronecker
symbol, whereas the distance function for a continuous variable g is distg(x, y) = |x− y|.

Second, the kNN imputation approach for continuous variables–where missing values are estimated as
weighted averages of the nearest neighbors–can naturally extend to categorical variables by adopting a
consensus procedure. For each categorical value for a given variable in a given point, the weights of the K
nearest neighbors to the point featuring that value are summed. Then, the categorical value with highest
weight sum is selected as the imputed value for the considered variable and point. Third, the kernel density
estimator (which is currently a Gaussian kernel) might also be adapted to distributions on discrete sets,
see for instance Rajagopalan & Lall (1995). However, the analysis of this mixed-type version of F3I is not
straightforward, as the corresponding objective function G is no longer continuous due to the categorical
imputation.

We implemented this extension of F3I, and applied it on the Titanic data set (Harrell, 2011) with the following
categorical variables: ’Survived’, ’Pclass’, ’Sex’; continuous variables: ’Age’, ’SibSp’, ’Fare’. , using the Python
packages kdtree (Kögl, 2013) and gower (Yan, 2019) to implement a KD Tree compatible with Gower’s
distance. Table 18 reports the average and standard deviations of Gower’s distance (the smaller, the better)
computed between the imputed data set and the complete Titanic data set across 10 iterations. Missing
values were added with an MCAR mechanism with frequency pmiss = 30%.

Algorithm Gower’s distance
F3I 0.30 ±0.15
HyperImpute 0.51 ±0.11

Table 18: Average and standard deviation of Gower’s distance between the inputed data set and the complete
Titanic dataset across 10 iterations.

On this data set, F3I achieves a significant improvement over HyperImpute, which was the top baseline in
our experiments and can natively handle heterogeneous data.

I Experiments complementary to the main text

We report here tables of numerical results related to experiments described in the main text in Section 6.

I.1 Imputation-only task

We study the imputation quality–without any downstream task. We resorted to the framework HyperIm-
pute (Jarrett et al., 2022) to implement and run the benchmark for an imputation task across different
performance metrics on the four standard data sets BreastCancer (Wolberg et al., 1993), Diabetes (from
scikit-learn (Pedregosa et al., 2011)), HeartDisease (Janosi et al., 1989), Ionosphere (selva86, 2024), including
only the top baselines based on Table 1.

First, we obtained more robust estimates of the performance, by averaging metrics over 100 runs instead of
10 runs as in the main text. We considered again the scenario MNAR in the framework HyperImpute to add
missing values. We report in Table 19 the corresponding numerical results across 100 runs with different
random seeds. Additionally, we also recorded the mean RMSE scores and runtime for 10 different seeds by
running F3I and the top-3 baselines across the three different missingness mechanisms (corresponding to
Assumptions B.2-B.4) on five different datasets, the results of which are reported in Table 20.

As written in the main text, those results on a larger set of runs confirm our observations mentioned in the
main text, and show that F3I is competitive imputation-wise while being dramatically faster than baselines.

65

Under review as submission to TMLR

Table 19: Average and standard deviation values of imputation quality metrics (rounded to the closest second
decimal place) and runtime across 100 different random seeds. HeartDisease has native missing values, which
is why the Wasserstein distance cannot be computed. RMSE: root mean square error. MAE: mean average
error. WD: Wasserstein distance. Runtime is in seconds. TDM failed on the Gottlieb data set. Bold type
is the top performer, underline denotes the second best (and corresponding percentage of deterioration of
performance across metrics compared to the top performer).

Data set RMSE ↓ MAE ↓ WD ↓ Runtime ↓
BreastCancer
F3I (ours) 0.08 ±0.03 0.03 ±0.01 0.07 ±0.02 0.18 ±0.06
GAIN 0.27 ±0.03 0.10 ±0.02 0.24 ±0.05 45 ±27
HyperImpute (+213%) 0.26 ±0.03 0.09 ±0.02 0.22 ±0.05 32 ±13
MIRACLE 4.44 ±0.48 4.32 ±0.44 10.4 ±1.51 189 ±39
NewImp 415 ±172 300 ±152 726 ±386 1,323 ±245
Diabetes
F3I (ours) (+10%) 0.34 ±0.05 0.28 ±0.04 0.64 ±0.15 0.12 ±0.03
GAIN 0.54 ±0.07 0.45 ±0.07 0.87 ±0.18 26 ±13
HyperImpute 0.32 ±0.05 0.25 ±0.04 0.57 ±0.15 43 ±25
MIRACLE 5.61 ±0.56 5.49 ±0.55 13.22 ±2.15 149 ±42
NewImp 2.56 ±0.71 1.83 ±0.54 4.30 ±1.19 1,016 ±204
HeartDisease
F3I (ours) 0.14 ±0.05 0.07 ±0.03 - 0.13 ±0.04
GAIN 0.30 ±0.07 0.18 ±0.05 - 15.89 ±4.47
HyperImpute (+79%) 0.24 ±0.07 0.13 ±0.04 - 35 ±27
MIRACLE 5.04 ±0.74 4.84 ±0.64 - 101 ±28
NewImp 361 ±174 239 ±139 - 914 ±223
Ionosphere
F3I (ours) (+11%) 0.23 ±0.05 0.16 ±0.04 0.31 ±0.09 0.20 ±0.04
GAIN 0.47 ±0.05 0.35 ±0.05 0.53 ±0.12 22 ±13
HyperImpute 0.22 ±0.07 0.14 ±0.04 0.27 ±0.07 110 ±92
MIRACLE 5.30 ±0.48 5.21 ±0.46 12.6 ±1.65 100 ±6
NewImp 0.61 ±0.37 0.47 ±0.22 1.02 ±0.54 1,126 ±63

66

Under review as submission to TMLR

Table 20: Average runtime (in seconds) and RMSE score across 10 iterations across the three missingness
mechanisms, for a missing rate of 30% when applicable (MCAR and MAR settings). RMSE values are
rounded to the closest second decimal place.

Data set Algorithm MNAR MCAR MAR
RMSE Time RMSE Time RMSE Time

BreastCancer F3I (ours) 0.10 ±0.03 0.14 0.05 ± 0.02 0.20 0.09 ± 0.02 0.20
GAIN 0.27 ±0.01 34 0.13 ±0.03 34 0.34 ±0.01 43
HyperImpute 0.26 ±0.02 7 0.10 ±0.04 8 0.33 ±0.02 10
kNN 0.28 ±0.01 0.10 0.14 ±0.05 0.10 0.39 ±0.02 0.10
Remasker 0.26 ±0.02 393 0.11 ±0.03 69 0.34 ±0.02 77

Diabetes F3I (ours) 0.34 ± 0.05 0.10 0.33 ±0.04 0.10 0.32 ±0.06 0.10
GAIN 0.52 ±0.07 41 0.55 ±0.06 20 0.56 ±0.07 17
HyperImpute 0.32 ±0.05 19 0.31 ±0.04 9 0.29 ± 0.06 9
kNN 0.33 ±0.05 0.10 0.33 ±0.04 0.10 0.31 ±0.05 0.10
Remasker 0.42 ±0.04 39 0.33 ±0.02 344 0.34 ±0.02 60

Gottlieb F3I (ours) 0.04 ±0.03 2 0.04 ±0.00 3 0.04 ±0.00 3
GAIN 0.04 ±0.00 103 0.04 ±0.00 64 0.04 ±0.00 119
HyperImpute 0.02 ±0.00 44 0.03±0.00 12 0.03 ±0.00 10
kNN 0.04 ±0.00 0.23 0.04 ±0.00 0.24 0.04 ±0.00 0.18
Remasker 0.17 ±0.02 3,016 0.14 ±0.012 24.189 0.14 ±0.02 184

HeartDisease F3I (ours) 0.14 ±0.03 0.10 0.10 ±0.01 0.10 0.18 ±0.03 0.10
GAIN 0.30 ±0.04 34 0.24 ±0.04 8 0.36 ±0.05 9
HyperImpute 0.24 ±0.04 17 0.13 ±0.03 8 0.29 ±0.06 7
kNN 0.36 ±0.05 0.10 0.23 ±0.04 0.10 0.45 ±0.08 0.10
Remasker 0.25 ±0.04 32 0.15 ±0.03 70 0.30 ±0.06 76

Ionosphere F3I (ours) 0.21 ±0.04 0.19 0.22 ±0.03 0.37 0.25 ±0.07 0.67
GAIN 0.48 ±0.03 50 0.48 ±0.03 45 0.47 ±0.05 42
HyperImpute 0.20 ±0.04 99 0.23 ±0.04 22 0.25 ±0.08 36
kNN 0.22 ±0.06 0.05 0.21 ±0.06 0.06 0.21 ±0.07 0.10
Remasker 0.34 ±0.03 77 0.33 ±0.04 974 0.36 ±0.05 118

67

Under review as submission to TMLR

Table 21: Average and standard deviation Area Under the Curve (AUC) values on a held-out testing set
across runs on the joint imputation-classification task (MCAR scenario, pmiss = 0.5). β is the weight of the
classification task in PCGradF3I. Bold type is the top performer, underline denotes the second best. Results
for the BreastCancer data set are computed over 100 runs, over 60 runs for the Ionosphere data set.

Data set / β 0.14 0.25 0.50 0.75
PCGradF3I (Ionosphere) 0.778 ±0.174 0.785 ±0.174 0.785 ±0.176 0.783 ±0.174
PCGradF3I (BreastCancer) 0.699 ±0.142 0.700 ±0.143 0.700 ±0.142 0.700 ±0.142

I.2 Joint imputation-binary classification task

We also looked at the trend in performance in PCGradF3I on the BreastCancer and Ionosphere data sets
for increasing values of β, related to the importance of the classification task, in Table 21. As expected,
increasing values of β improve the performance of the classifier, reaching a plateau in the average AUC value.

68

	Introduction
	Related work
	Contributions
	Notation

	The Fast Iterative Improvement for Imputation (F3I) algorithm
	Theoretical assumptions
	A novel objective function for optimizing the preservation of the initial data distribution
	A fast procedure to maximize the objective function

	Theoretical guarantees of F3I
	Jointly training the imputation model and a model for a downstream task
	Experimental study
	Imputation-only task
	Joint imputation-binary classification task

	Limitations
	Discussion
	Other related works and comments on F3I
	Theoretical assumptions
	Properties of the objective function G
	Bounds on the mean squared error
	Regret analysis of F3I
	Joint training on a downstream task
	Technical lemmas
	Experimental study
	Synthetic Gaussian data sets
	Validation of theoretical results (single imputation task)
	Empirical performance (single imputation task)
	Validation of theoretical results (joint imputation-classification task)
	Empirical performance (joint imputation-classification task)

	Real-life data sets (drug repurposing & handritten-digit recognition)
	Imputation quality and runtimes (drug repurposing task)
	Classification quality (handwritten-digit recognition task)
	Classification quality (drug repurposing task)

	Imputation of mixed-type variables

	Experiments complementary to the main text
	Imputation-only task
	Joint imputation-binary classification task

