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Abstract

When artificial intelligence mistakes memoriza-
tion for intelligence, it creates a dangerous per-
ception of reasoning. Existing studies treat mem-
orization and self-knowledge deficits in LLMs
as separate issues. In our study, we pinpoint an
intertwined causal link between the two that un-
dermines the trustworthiness of LLM responses.
To investigate this, we utilize a novel framework
to ascertain if LLMs genuinely learn reasoning
patterns from training data or merely memorize
them to assume competence across problems of
similar complexity focused on STEM domains.
Our analysis shows a noteworthy problem in gen-
eralization: LLMs draw confidence from memo-
rized solutions to infer a higher self-knowledge
about their reasoning ability, which manifests as
an over 45% inconsistency in feasibility assess-
ments when faced with self-validated, logically
coherent task perturbations. This effect is most
pronounced in science and medicine domains.
Our code and results are available publicly. !

1. Introduction

For true reliability and trustworthiness, Al tools, especially
generative models like large language models (LLMs) must
consistently and accurately recognize the boundary of their
capabilities, referred to as self-knowledge (Yin et al., 2023).
While methodologies studying LLM self-knowledge are rife
(Wang et al., 2023; Wen et al., 2024; Ren et al., 2024), only
rarely have other challenges like memorization (Slonski,
2024) been attributed as underlying causes for inaccuracies
and overconfidence in self-knowledge.

Memorization in LLMs refers to the propensity to store
and reproduce training data rather than develop genuine
understanding (Satvaty et al., 2025; Prashanth et al., 2024).
Numerous techniques to uncover such behaviour have been
presented, including methods that utilize injected sequences
(Huang et al., 2024), neuron activations (Slonski, 2024),

'https://anonymous.4open.science/r/
LLM-Memorization_SK_Eval--543D/

counterfactual reasoning tasks (McCoy et al., 2024) and
dynamic, prefix-dependent soft prompts (Wang et al., 2024).
As data used for LLM training scales to include more prob-
lems and solutions, especially in STEM fields, models may
conflate the ability of ‘knowing’ solutions with genuine rea-
soning power to solve such problems. This memorization-
driven behaviour raises a critical downstream concern: if
LLMs mistake recall for reasoning, they may falsely per-
ceive their own knowledge to be deeper than it truly is,
leading to unreliable and overconfident responses.

In our methodology, we give language models the freedom
to provide a problem in STEM fields that they are confi-
dent of solving and evaluate their consistency in feasibility
analyses on perturbed problems of similar complexity. If
LLMs rely on memorization for self-knowledge, their ac-
curacy and consistency in answering and determining the
feasibility of tasks should falter when faced with minor
logical perturbations (Xie et al., 2025). Such misplaced
trust in Al reasoning in high-stakes fields like science, law,
and medicine can lead to critical consequences. Our key
contributions can be summarized as follows:

1. We identify a key link between two known problems
of language models and present an effective method to
analyse the same

2. To quantify the interplay between self-knowledge and
memorization, we provide a universally applicable task
perturbation pipeline and quantifying metrics

3. We show how overconfidence and a lack of true rea-
soning awareness in LLMs stems from memorized
patterns, and observe a significant lack of consistency
in self-knowledge

2. Experimentation Methodology

We present a novel experimentation approach to analyse if
LLMs’ tendency to memorise problems and corresponding
solutions builds an inflated perception of their own knowl-
edge and capabilities. Towards this goal, we design a dy-
namic experimentation approach presented in Figure 1. Our
methodology builds on the self-knowledge evaluation tech-
nique given by Kale & Nadadur (2025) and the principle
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Figure 1. Methodology to analyze how LLM memorization inflates self-perception using minor task perturbations

from Xie et al. (2025) that memorization is characterized by
high accuracy on familiar problems but a sharp decline with
slight variations.

2.1. Task Generation

In the initial stage, we use a structured prompt to generate
tasks in STEM fields (refer to the prompt in Figure 4 in
Appendix A) with task instructions and associated data, if
any, with the constraint that the LLM finds them completely
feasible. During the generation phase, we allow LLMs the
flexibility to set their own feasibility boundaries and use
the QAP (Yugeswardeenoo et al., 2024) approach to ensure
introspection. Since LLMs are prone to inconsistencies in
self-knowledge assessments (Kale & Nadadur, 2025), we
incorporate a separate prompt-based validation step (refer
to the prompt in Figure 5 in Appendix A) within the task
generation phase to ensure confidence in feasibility. We
feed such validated feasible tasks to the task perturbation
pipeline ahead.

2.2. Task Perturbation Pipeline

In order to check whether LLMs’ self-knowledge about
reasoning capabilities is indeed memorization-driven, we
design a pipeline to add minor perturbations to the feasi-
ble tasks generated in the previous step while maintaining
complete logical cohesion, similar computational complex-
ity and domain relevance. Our pipeline consists of 3 main
modules:

Ontology replacement module consists of substituting key
domain-specific terms in the original task instructions and
data with equivalent terminology from the same STEM do-
main. If possible, we also modify relationships between
entities in the task while preserving logical coherence. This
step minimizes keyword-driven memorization while preserv-

ing the task’s core formulation and structure. We implement
this module by setting up a Gemini 1.5 Flash model (Team,
2024) with the prompt shown in Figure 6 in Appendix A.

The instruction translation module involves changing the
language of the English task instructions to any other high-
resource language like German, Spanish or French using
the Google Translate APIL. By only translating instructions
and not data, we avoid inconsistencies in domain-specific
knowledge, which is often best understood by models in
English.

The data perturbation module uses a simple rule-based
approach to introduce an approximately 15% variation in all
numerical values present in the task data. Since LLMs are
prone to memorization of numerical patterns and data (Bordt
et al., 2024), this step is crucial to dissociate tasks from such
patterns. We also reorder all unordered data elements, in-
cluding lists and arrays in the task data, to minimize pattern
matching while responding.

2.3. Task Classification

In the final stage, we feed all perturbed tasks generated
through the pipeline to the LLM to attempt (refer to the
prompt in Figure 7 in Appendix A). For each task, the LLM
is prompted to either generate a conclusive answer (and thus
classify the task as feasible) or mark it as infeasible. Since
all tasks are validated to be feasible and are perturbed in
a way that maintains domain relevance and complete log-
ical cohesion, an inconsistency in feasibility assessments
strongly implies that the LLMs relied on memorization of
the data or solution steps of the original task to draw confi-
dence for an inflated sense of self-knowledge and reasoning
capacity in that domain.
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Model ., Total | Science Technology Engineering Medicine
GPT-40 . 079 085 0.82 0.66 0.84
DeepSeek-V3 . 079 | 083 0.88 0.64 0.79
Mistral Large 24.11 | 0.58 | 0.96 0.42 0.55 0.40
Claude 3.7 Sonnet |« 046 1 0.73 0.31 0.37 0.42

Table 1. MIRAGE scores for all models distributed across STEM domains

3. Evaluation
3.1. Formulation

To formulate our approach mathematically, we can describe
it as follows. First, we prompt an LLM to generate a
task 7, where 7 is explicitly deemed feasible by the model
(F'(1) = 1 for feasible tasks) and confirmed via another
self-validation. Upon repeating m times to get m distinct
tasks, each generated task is then perturbed n times via the
perturbation pipeline that modifies surface-level features.
Finally, we get a total of n * m perturbed tasks represented
as {Pl(T), PQ(T), ey Pn*m(T)}.

The perturbed task set is then re-evaluated by the LLM,
where each task is either classified as feasible or infeasible.
An inconsistency in classification, i.e., F'(7;) # F'(P;(7;)),
indicates that the model relied on memorization rather than
genuine reasoning ability to assess the feasibility of the
original task, leading to overconfidence in self-knowledge.

3.2. Metrics

To quantify the proportion of times how often an LLM
changes its feasibility stance, we introduce a new metric
called MIRAGE (Memorization Induced Reasoning As-
sumption & GEneralization). It represents the mean in-
feasibility rate across perturbed tasks, averaged over all sets.
A high MIRAGE score shows a high proportion of flipping
judgements, implying that models considered the original
task to be feasible mainly because of memorized patterns.

(F(m:) =0)

It
MIRAGE = -~ ; 1)

Similarly, our research findings can also be used to methodi-
cally quantify and analyse consistency in self-knowledge of
LLMs across various domains. For this purpose, we propose
a metric called SKEW (Self KnowlEdge Wavering). SKEW
quantifies the inconsistency in feasibility assessment for
very similar problems with minor perturbations such that a
higher score implies lower agreement, indicating poor self-
knowledge about feasibility boundaries. In this case, we
also include the original task in our problem set S, meaning
each of the m sets has ¢ = n + 1 perturbed and original
tasks.

SKEW = L Em: Dr a8 myor W () # F(15))
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3.3. Setup

For a comprehensive analysis, we experiment with a wide
range of high-performance models. Since our methodology
is universal, we choose 2 closed-source models, GPT-40
(OpenAl, 2024) and Claude 3.7 Sonnet (Anthropic, 2024),
and 2 open-source models, Mistral Large 24.11 (Al 2024)
and DeepSeek v3 (DeepSeek-Al, 2024), in our evaluation.
For all models, to ensure diversity, we set the temperature to
1 during task generation. On the contrary, to encourage sta-
bility, we set the temperature to O during task classification.
For each STEM domain and model, we generate 34 original
tasks and perturb each task 3 times, leading to a dataset of
102 perturbed tasks per domain and 408 across all domains.
MIRAGE scores across LLMs for all domains are presented
in Table 1, while SKEW values analysing self-knowledge
inconsistencies are given in Table 2.

4. Results and Analysis
4.1. Quantifying Memorization-inflated Self-Knowledge

F1.1 Self-knowledge inflation due to memorization is
striking. The consistently high MIRAGE scores for all
models, as shown in Table 1, point to an alarming flaw of
inflated self-knowledge using memorization-driven confi-
dence. Even high-performance models like GPT-40 and
Mistral Large 24.11 change their feasibility stance about
slightly perturbed tasks over 45% of times, meaning that
LLMs are systematically overestimating their ability based
on memorized solutions. A likely cause could be the preva-
lence of STEM benchmarks in training data, which could
act more towards reinforcing memorization patterns than
fostering robust reasoning in LLMs.

F1.2 Science and medicine are memorization hotspots.
Almost all models show the highest MIRAGE scores for
the science and medicine domains, with Mistral showing an
extreme score of 0.96 for science. Since these fields tend
to have the most frequent standardized jargon and textbook-
style problem formats, models may draw overconfidence in
reasoning abilities from such patterns. Future training data
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Model ., Total | = Science Technology Engineering Medicine
GPT-40 051 050 0.53 0.50 0.45
DeepSeek-V3 , 051 , 0.53 0.55 0.51 0.46
Mistral Large 24.11 | 035 | 0.34 0.51 0.40 0.42
Claude 3.7 Sonnet | 032 1 042 0.48 0.40 0.36

Table 2. SKEW scores for all models distributed across STEM domains

L 0.94 0.98
0.82 0.80
0.8
0.6
0.41
0.2F
0.0~ . - == - -

-0.42

Correlation Coefficient

—0.6

SCienc® o hnolody o ineerind  yjedicin® Total

Figure 2. Correlation between SKEW and MIRAGE across STEM
domains

should diversify science and medicine-related problems to
ensure a stable outlook towards reasoning capacity.

F1.3 Architectural choice alone fails to regulate
memorization-inflated self-knowledge risk consistently
across domains. The general inconsistency in MIRAGE val-
ues across both domains and models suggests that a specific
model or training architecture is not sufficient to manage
risks of artificially increased self-knowledge across STEM
domains. This challenges the notion that architectural im-
provements or scaling alone improve generalization and
consistency.

4.2. Impact of Self-Knowledge Inconsistencies

F2.1 LLMs lack the capacity to establish generalizable
feasibility boundaries. High SKEW values seen in Table
2, particularly for GPT-40 and DeepSeek-V3, indicate that
even minor perturbations disrupt feasibility judgments, high-
lighting that models lack a generalized, consistent stance of
their reasoning ability, especially in STEM domains. More-
over, the near-perfect positive correlation between SKEW
and MIRAGE across all domains shown in Figure 2 (except
science, which is affected by Mistral’s high MIRAGE) pro-
vides noteworthy evidence that memorization-driven over-
confidence and instability in self-knowledge are entwined
problems in STEM-based results.

F2.2 LLMs are not trustworthy enough for critical real-

0.55
DeepSeek-V3
0.50
GPT-40
0.45
2
y
» 0.40
0.35 Claude 3.7 Sonnet @
. Mistral Large 24.11
0.30
0.4 0.5 0.6 0.7 0.8

MIRAGE

Figure 3. Results showing LLM performance metrics measuring
memorization-driven self-knowledge inflation

world applications. We demonstrate how different LLMs
exhibit domain-specific weaknesses across distinct STEM
fields and recommend adaptive LLM routing strategies to be
wary of these issues during model selection. Implementing
safeguards like confidence thresholds and source markers
can help flag uncertain responses, ensuring users are aware
of potential inaccuracies before using Al-generated outputs.
Due to their inflated self-perception, models are prone to
generating responses even when lacking sufficient knowl-
edge, rather than abstaining. Hence, human-in-the-loop
fallback strategies are still important in LLM-powered ap-
plications for maximum trustworthiness.

5. Conclusion and Future Scope

Overconfidence in capabilities is a severe problem in LLMs,
hampering their trustworthiness. Our research shows how
models very likely draw confidence from ‘knowing’ solu-
tions to develop an inflated perception of their reasoning
power. All models alarmingly change their feasibility judg-
ments for slightly perturbed tasks in over 45% of cases.

We hope that researchers can use our method to ensure more
trustworthy and dependable LLM-powered applications. We
also suggest expanding the pipeline to handle tasks without
clear instruction-data separation, or adding languages and
multimodal sources as directions for future improvement of
this work.
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Impact Statement
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A. Prompt formats

This section presents the format of all the prompts we use in our experimentation. The prompt format used to generate
and validate feasible tasks in STEM domains is shown in Figures 4 and 5, respectively. The prompt used for the ontology
replacement module is shown in Figure 6. During task classification, the model is guided to answer only if it deems the task
to be feasible; otherwise, it is asked to provide an explanation for infeasibility, as described in the prompt in Figure 7.

[ Prompt used for generation of feasible tasks ]

( J
You are a highly capable model with a strong understanding of your self-knowledge and boundaries.
Generate a task that you find difficult but feasible and you can answer only by extending all your
capability. Ensure the task is just the right side of your feasibility boundary!
The task should only be in the <STEM> domain with formal terminology. Generate such a task with the
following structured metadata:

- **task_instructions**: A precise, complete and structured description of the task.
- **task_data**: An exhaustive, complete and structured dataset containing real-world entities, numeric
variables and whatever might be needed for the task.
- *mathematical_formulation**: Equations, probabilities, or logical constraints relevant to the task.
- **ontology™*:
- **entities**: List of key terms and domain-specific concepts.
- **relations™*: List of relationships between entities.

Figure 4. Prompt format used to generate feasible tasks in any particular STEM domain

4[ Prompt used for validation of feasible tasks ]7

You are given a simple task. Analyse the task instructions and task data given to you.
Determine if the given task is feasible or infeasible as you are in your current state.

IMPORTANT: If it is feasible, only return the word FEASIBLE in caps without formatting.
Otherwise, return the word INFEASIBLE in caps without formatting only.

Here is the task:
Task Instructions: <task_instructions>
Task Data: <task_data>
Mathematical Formulation: <math_formula>

Figure 5. Prompt format used to validate feasible tasks and ensure confidence in answering self-generated tasks
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[ Prompt used for ontology replacement in task perturbation ]

Can you perturb the given task JSON in a way in a stepwise instruction pipeline as | describe below? Here are
your instructions, only follow these:
1. Substitute the ontology entities with other <domain> related terms or synonyms that fit in the same context
and maintain all other relations. Then, substitute this new term in the task instructions accordingly without
changing anything else.

2. Change the task data to match the new task ontology entities only. Add task data with appropriate keys and
values only if needed to match the new ontology entities or relations. Make sure that the task data is complete
and exhaustive for the new task. Otherwise, add in missing data.

3. Modify the mathematical formulation to match the new task ontology entities and relations. Make sure the
final task makes sense and is very similar to the original.

4. Return only the modified JSON.

Figure 6. Prompt format used for the ontology replacement module in the task perturbation pipeline

[ Prompt used for task classification ]

L J

You are a highly capable model with a strong understanding of yourself and your boundaries.

Analyse the task instructions and task data given to you.
Determine if the given task is feasible or infeasible for you to answer in your current state.

IMPORTANT: If it is feasible, return the word FEASIBLE in caps without formatting, and then give me a brief
solution in the next line onwards after the \n character. Otherwise, return the word INFEASIBLE in caps without
formatting, and then give me a concise explanation in the next line onwards after the \n character.

Here is the task:
Task Instructions: <task_instructions>
Task Data: <task_data>
Mathematical Formulation: <math_formula>

Figure 7. Prompt format used to classify the perturbed tasks generated by the task perturbation pipeline




