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ABSTRACT

As one of the most severe privacy threats to machine learning models, the member-
ship inference attack (MIA) tries to infer whether a given sample is in the original
training set of a victim model by analyzing its outputs. Recent studies only use the
predicted hard labels to achieve impressive membership inference accuracy. How-
ever, such label-only MIA approach requires very high query budgets to evaluate
the distance of the target sample from the victim model’s decision boundary. We
propose YOQO, a novel label-only attack to overcome the above limitation. YOQO
aims at identifying a special area (called improvement area) around the target
sample and crafting a query sample, whose hard label from the victim model can
reliably reflect the target sample’s membership. YOQO can successfully reduce the
query budget from more than 1,000× to only ONCE. Experiments demonstrate
that YOQO is not only as effective as SOTA attack methods, but also performs
comparably or even more robustly against many sophisticated defenses. Our code
is available at https://github.com/WU-YU-TONG/YOQO.

1 INTRODUCTION

Recent years have witnessed the widespread applications of machine learning in our daily life. Train-
ing a high-quality model requires massive data, which may contain sensitive information. Prior stud-
ies (Choquette-Choo et al., 2021; Li & Zhang, 2021; Long et al., 2018; Salem et al., 2018; Shokri
et al., 2017) have proven that machine learning models are capable of memorizing most of the train-
ing data, leading to the possibility of membership inference attacks (MIAs), where an adversary can
infer whether a target data point is in the training set of the victim mode or not.

Most of the existing works (Carlini et al., 2022; Liu et al., 2022; Long et al., 2018; Salem
et al., 2018; Shokri et al., 2017; Yuan & Zhang, 2022) exploit loss functions or predic-
tion scores to conduct MIAs. The adversary feeds the target sample to the victim model
and obtains the outputs in the form of posteriors, which are subsequently processed by a
binary classifier to make membership decisions. Therefore, one effective defense against
these attacks is to simply mask the posteriors (Jia et al., 2019) or only return hard labels.
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Figure 1: Distributions of top-1 scores
of benign queries and malicious queries.

To break these defenses, researchers further proposed the
label-only MIA (e.g., boundary attack (Choquette-Choo
et al., 2021; Li & Zhang, 2021)), which requires only
hard labels to infer the membership of the target sam-
ple. This attack estimates the distance between the target
sample and its nearest decision boundaries by querying
the victim model iteratively, and then decides the mem-
bership by categorizing samples with longer distances as
members and shorter distances as non-members. It has
brought MIAs to a much more practical scenario, as many
Machine Learning as a Service (MLaaS) platforms only
return hard labels to users (Foundation, 2021).
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However, the boundary attack requires a high query budget, usually more than 1000× queries to
check each sample (Choquette-Choo et al., 2021; Li & Zhang, 2021). This leads to the following
limitations. (1) The attack is rather costly given that MLaaS normally charges users based on the
number of queries. (2) It is easier to detect this attack, due to the large number of anomalous queries.
Fig. 1 compares the distribution of the top-1 scores for a victim model under the boundary attack
and benign environment. Their distinct difference indicates that iterative queries put the boundary
attack in jeopardy of being detected and disturbed by statistics-based defenses like PRADA (Juuti
et al., 2019). (3) As the boundary attack requires accurate distance estimation, Rajabi et al. (2022)
proposed a defense called LDL against it. LDL creates a hyper-sphere around the samples in which
the decisions of the victim model will not alter. It successfully enervates the boundary attack as the
gap attack (Yeom et al., 2018), which has much lower inference accuracy.

To overcome the above limitations of the boundary attack (Choquette-Choo et al., 2021; Li & Zhang,
2021), we propose YOQO (“You Only Query Once”), a novel label-only MIA that only requires to
query the victim model once to identify the membership of each target sample. The key insight of
YOQO lies in the concept of the improvement area, which can precisely reflect the contribution of
the target sample to the victim model’s performance. Any sample inside the improvement area can
be used as the query sample to disclose the target sample’s membership. Based on this insight, we
further propose two approaches (online and offline attacks), which can generate such sample with
different efficiency and accuracy trade-offs.

We perform extensive experiments over different datasets (CIFAR10, GTSRB, Location, Texas),
and compare YOQO with different label-only MIAs. Evaluations indicate that YOQO can achieve
comparable inference accuracy to state-of-the-art attacks, with a much smaller query budget (once).
We also show that YOQO is more robust against various defense solutions to existing attacks.

2 PRELIMINARY

2.1 MEMBERSHIP INFERENCE ATTACK

MIA (Shokri et al., 2017) has drawn great attention since it reflects the memorization ability of
machine learning models over their sensitive training data. The adversary tries to infer if a target
sample belongs to the training setD of a victim model fD. He solves this binary classification prob-
lem by building an algorithm A for an arbitrary sample x: A(fD, x) = I(x ∈ D)), where I(X) is
the indicator function that equals 1 if X is true and 0 otherwise. There are two main categories of
MIA approaches based on the adversary’s knowledge.
Posterior-based MIA. Numerous works (Carlini et al., 2022; Hayes et al., 2017; Hu & Pang, 2023;
Liu et al., 2022; Sablayrolles et al., 2019; Salem et al., 2018; Shokri et al., 2017; Song et al., 2019;
Yeom et al., 2018; Yuan & Zhang, 2022; Wen et al., 2022) exploit posteriors (e.g., prediction scores
or output logits) to infer the membership of the target sample. There are two strategies to build the
algorithm A. The first strategy is to implement a DNN-based binary classifier (Hayes et al., 2017;
Liu et al., 2022; Shokri et al., 2017; Yuan & Zhang, 2022). The adversary first prepares a set of
shadow datasets Ds, which follow the same distribution as the victim model’s training set D. Some
of the shadow datasets contain the target sample x while others do not. Then he trains a surrogate
model fs on each shadow dataset. Based on these surrogate models, he can construct a membership
dataset: Dmem = {(fs(w), I(w ∈ Ds))}, The adversary then trains a binary classifier g on Dmem.
In the attack phase, he queries the victim model with x and retrieves the outputs, which are then fed
to g to infer the membership: A(fD, x) = g(fD(x)).
The second strategy relies on statistic-based approaches to learn a threshold τ to divide the mani-
fold into two classes (Carlini et al., 2022; Hu & Pang, 2023; Sablayrolles et al., 2019; Salem et al.,
2018; Song et al., 2019; Yeom et al., 2018). Specifically, the adversary also trains surrogate models
on the subsets of a shadow dataset. He then uses the training loss or some specially designed loss
functions F to gain a score for each output given by fD. The threshold τ is subsequently learned
by studying the correlation between the memberships and the scores. Thereby, for these works:
A(fD, x) = I(F (fD(x)) > τ). To get the posterior from the victim model, most works directly use
the original target samples, while some works like (Wen et al. (2022)) proposed to query the target
model with adversarial examples to further enlarge the variance in the logits between the IN and
OUT models to achieve better performance. In this paper, we share the similar thoughts to craft a
label-level membership-sensitive query sample.
Label-only MIA. The above attacks require the adversary to have the posteriors of the query sam-
ple, which is not possible in some MLaaS platforms (Foundation, 2021). To address this issue,
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researchers proposed label-only attacks, where the adversary only needs the prediction labels.
There are mainly three state-of-the-art label-only attacks. (1) Gap attack (Yeom et al., 2018) lever-
ages the overfitting phenomenon to infer the membership. The adversary simply takes samples that
are misclassified by the victim model as non-members and the rest as members. (2) Boundary attack
(Choquette-Choo et al., 2021; Li & Zhang, 2021) follows the intuition that non-member samples are
closer to the decision boundary of the victim model. The adversary generates an adversarial example
from the target sample using decision-based adversarial attack algorithms like (Chen et al., 2020;
Li et al., 2020; Bai et al., 2020), and calculates the distance between them, which will be used as
the estimation of the distance between the target sample and its nearest decision boundary. He then
trains a bunch of surrogate models and casts the attack on them to learn a threshold τ to distinguish
member and non-member samples. (3) Data augmentation attack (Choquette-Choo et al., 2021)
exploits the observation that machine learning models are likely to overfit augmented samples. The
adversary first creates additional data points from the target sample x with different augmentation
strategies. Then he feeds all these samples to a shadow model ĥ following the target model’s archi-
tecture and training data distribution. He compares the returned labels (l0, ..., ln) with the ground
truth ltrue, and uses the comparison results bi = I(ltrue = (li)) as features to train the algorithm A
for membership inference. This approach requires the strong assumption that the adversary knows
the augmentation strategies for training the victim model, which may not be practical in reality.
2.2 DEFENSES AGAINST MIAS

Multiple solutions are proposed to mitigate MIAs, which can be summarized into four categories.
Fine-tuning the model. In Adversarial Regularization (ADV) (Nasr et al., 2018), the defender first
trains an attack model to infer the membership. Then he fine-tunes the target model by minimiz-
ing the loss on the training set while maximizing the classification loss of the attack model. PPB
(Yuan & Zhang, 2022) tries to narrow the prediction gaps between members and non-members to
make them indistinguishable. It fine-tunes the target model by minimizing both the KL divergence
between the ranked output posterior and classification loss on the training set.
Perturbing the inputs. LDL (Rajabi et al., 2022) constructs a hyper-sphere around the target sam-
ple by adding noise ni ∼ N (0, σ) to make the decisions of the model unchanged for all samples in
the sphere. Samples inside the hyper-sphere are fed into the victim model, and all the outputs are
merged by average to get the final prediction.
Modifying the posteriors. MemGuard (Jia et al., 2019) injects adversarial perturbations to the
confidence to mislead the adversary’s membership classifier. One-hot encoding (Yang et al., 2020)
encodes the prediction confidence into a one-hot code, making it almost impossible to achieve MIAs
just based on the posteriors.
Differential privacy (Abadi et al., 2016; Zou et al., 2020). DP-SGD is proven to be effective in pre-
venting privacy leakage (Rahimian et al., 2021; Truex et al., 2019; Zou et al., 2020). It modifies the
gradient in the training process by clipping and then adding Gaussian noise to it. As the noise follows
the distribution N (0, σ), the standard deviation δ should be in the order of Ω(q

√
T log (1/δ)/ϵ).

3 METHODOLOGY

Threat Model. We follow the same threat model from (Choquette-Choo et al., 2021; Li & Zhang,
2021). Specifically, we consider a victim model fD trained from a training set D. It accepts query
data from users and only returns the corresponding hard labels. This is a practical setting in many
MLaaS platforms (Foundation, 2021). An adversary tries to perform the MIA over fD: for an
arbitrary sample x, he wants to check whether it belongs to the training set D. The adversary has
clue about the tasks of the victim model. We further assume the adversary can collect data samples
that follow a similar distribution as the training samples of the victim model. He is also capable of
training shadow models by himself. However, he does not have the knowledge of either the network
architecture or parameters of the victim model.

3.1 KEY INSIGHT

To reduce the attack cost and risk of being detected, we further restrict the attack budget to querying
fD once. Therefore, instead of directly sending the target sample x to fD, we aim to craft a new
query data x′ from x, which can better reflect the membership of x. Assuming the ground-truth
label of x is l, then x′ should satisfy the following two properties:
• Specificity: for any model fout whose training set does not include x (dubbed out-model), it

predicts a different label for x′ from l.
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• Sensitivity: for any model fin whose training set includes x (dubbed in-model), it predicts the
same label l for x′.

Training samples New boundary Old boundary

Improvement area Attack sample Added samples

Figure 2: Illustration of improve-
ment area and query samples.

With such properties, we can tell the membership of x based
on the returned label of x′. To identify x′, we introduce the
concept of improvement area, which is the set of all qualified
query samples x′. This is based on the phenomenon that the
performance of a machine learning model on certain classes in-
creases when new samples are added to the training set (Salem
et al., 2018; Liu et al., 2022). Basically, each newly added sam-
ple can provide special features for the model to learn, which
will change the model’s decision boundary. Fig. 2 visualizes
this process. A new sample (blue rhombus) added to the train-
ing set can drive the boundary farther from it locally, resulting
in a green zone, which is the improvement area. All the data
points within the improvement area are originally assigned to
the orange class and switched to the blue class due to the new
sample. Therefore, the adversary’s goal is to discover a data point from this area to query the remote
model for membership inference.

Although samples in the improvement area can effectively disclose the membership of the target
sample x, it is non-trivial to identify such area. When only x is added to the training set, its influence
on the prediction accuracy is minor, leading to a very small improvement area. Below we propose
two approaches to generate query samples.

3.2 ONLINE ATTACK

The adversary first prepares N training sets, denoted as Di
out for i ∈ [1, N ]. These datasets are

composed of data samples whose membership is not interesting to the adversary. He then trains N
out-models from these training sets: f i

out. These out-models can be consistently used to check the
membership status of all other samples.

For a target sample x with the ground-truth label l, to generate the corresponding query sample x′

that satisfies the specificity property, the adversary needs to enforce l ̸= f i
out(x

′) for i ∈ [1, N ]. This
can be realized with the following optimization objective, where CE stands for the cross entropy:

x′ = argmax
a

N∑
i=1

CE(f i
out(a), l) (1)

To meet the sensitivity property for x′, the adversary needs to construct N training sets Di
in =

Di
out ∪ {x}, and trains the corresponding in-models f i

in. Then he expects x′ to be classified as the
ground-truth label l, which is converted to the following objective:

x′ = argmin
a

N∑
i=1

CE(f i
in(a), l) (2)

Based on the two requirements, we formulate the following loss function for optimizing x′:

x′ = argmin
a

N∑
i=1

(
CE(f i

in(a), l)− CE(f i
out(a), l)

)
= argmin

a

N∑
i=1

CE
( f i

in(a)

f i
out(a)

, l
)

(3)

However, since scalars in both f i
in(a) and f i

out(a) are in [0, 1], the optimization process is lopsided
towards the specificity term (Eq. 1) regardless of the sensitivity property (Eq. 2). To address this
issue, we can covert Eq. 1 to a minimization problem. Specifically, we choose l′i, which is the
predicted label of f i

out(x) with the highest confidence score other than the ground-truth label l:
l′i = argmaxa f

i
out(x)a s.t. a ̸= l. Then we aim to achieve l′i = f i

out(x
′) for i ∈ [1, N ]. We

choose the label l′ because the generated x′ will be closer to x. Since the decision boundary closer
to x is more probable to be changed by the addition of x, it is also easier to find qualified query
samples whose labels predicted by the out-model f i

out is l′. The optimization objective is
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x′ = argmin
a

(
α ·

N∑
i=1

CE(f i
out(a), l

′
i) +

N∑
i=1

CE(f i
in(a), l)

)
(4)

where α is a hyper-parameter to balance the two terms. Algorithm 1 describes the details of our
online attack. In our implementation, we use stochastic gradient descent to generate x′.

Algorithm 1: Online attack
input : target sample x and corresponding ground-truth label l, victim model f , N out-dataset

Di
out and corresponding out-models f i

out
output: membership of x

1 for i := 1 to N do
2 Di

in ← Di
out ∪ {x}

3 f i
in ← TRAINWITH(Di

in) ▷ Shadow training
4 l′i ← argmaxk f

i
out(x)k, s.t. li ̸= l

5 end
6 Generate x′ by optimizing Eq. 4
7 l′ ← f(x′) ▷ Querying victim model
8 if l′ = l then
9 return ’Member’

10 else
11 return ’Non-member’
12 end

3.3 OFFLINE ATTACK

In our online attack, the N out-datasetsDi
out and out-models f i

out can be reused for any data sample
not in these datasets. However, for each target sample x, the adversary has to generate the corre-
sponding in-datasets Di

in and in-models f i
in, which is costly for training models. To address the

efficiency issue, we propose an offline attack which only requires the out-datasets and out-models
to infer the membership. This is inspired by (Elliott et al., 2021) which generates a counterfactual
explanation for a sample x.

We still use the out-models to enforce the specificity property. For sensitivity, instead of using the
in-models, we adopt a simple normalization term to restrict the distance between x and x′. Then the
generated x′ has a higher chance to be assigned with the same label as x by any in-model. The final
optimization goal is as follows:

x′ = argmin
a

( N∑
i=1

CE(f i
out(a), l

′
i) + γ ·MSE(a, x)

)
(5)

where MSE(·, ·) stands for mean square error, and γ is a hyper-parameter to balance the two terms.
The adversary only needs to remove the operations in Lines 2 and 3 in Algorithm 1 (which are
costly), and replace Eq. 4 with Eq. 5 in Line 6 to conduct the efficient offline attack.

4 EVALUATION

We evaluate our online and offline attacks under various settings to prove their effectiveness and
efficiency. We compare our attacks with SOTA MIAs to show our superiority.
Datasets. YOQO is general to different tasks. Without loss of generality, we follow (Choquette-Choo
et al., 2021; Carlini et al., 2022; Li & Zhang, 2021) to test YOQO on several classical visual tasks
such as CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), GTSRB, SVHN (Netzer et al., 2011) and
Tiny-ImageNet. We also test YOQO on two tabular datasets: Location (Yang et al., 2015) and Texas.
Model architectures. Following prior works (Carlini et al., 2022; Choquette-Choo et al., 2021;
Li & Zhang, 2021), we use CNN7, ResNet18, ResNet34, DenseNet121, Inceptionv3 and VGG16
for image datasets. For tabular datasets, we follow (Yuan & Zhang, 2022) to use a fully connected
network consisting of two hidden layers, with the size of 256 and 128, respectively.
Baseline attacks. We consider three label-only MIAs discussed in Section 2.1: gap attack (Yeom
et al., 2018), boundary attack (Choquette-Choo et al., 2021; Li & Zhang, 2021), and data augmen-
tation attack (Choquette-Choo et al., 2021). We follow the settings in (Choquette-Choo et al., 2021)
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to implement the gap attack and data augmentation attack. For the later, we use the rotation and
translation strategies to craft the augmented queries. For the boundary attack, we train 16 pairs of
shadow models to select the best thresholds so as to conduct a fair comparison. To craft the shadow
models, we randomly split the dataset to be inferred into two halves, and blend one of them with
the training set before we train the shadow models. Then we conduct the boundary attack on these
models, and determine the best threshold that can achieve the best performance.

Attack Queries
Boundary attack 20,000+
Data augmentation attack 10+
Gap attack 1
YOQO 1

Table 1: Query budget comparisons
between different label-only MIAs.

Table 1 shows the query budgets of the three label-only at-
tacks and YOQO. We can see YOQO is much more efficient
than the boundary attack. The data augmentation attack re-
quires more information about the victim, which is not prac-
tical and is beyond the scope of our threat model. The gap
attack also just needs 1 query, but the inference accuracy is
much lower than YOQO (see Section 4.1).

MIA Defenses. Five state-of-the-art defense strategies are implemented to test the robustness of our
attacks: ADV, PPB, DP-SGD, LDL, and MemGuard (Section 2.2). For ADV and PPB, we pre-train
the victim model to have up to 64.3% accuracy on the validation set and then fine-tune the model for
50 epochs. For LDL, we set the sample times for each query as 200. We set all the hyper-parameters
in these defenses following (Yuan & Zhang, 2022).

Implementations. We train all the networks until they achieve more than 98% accuracy on the
training set. We use Adam as the optimizer with all the hyper-parameters default in its PyTorch
implementation. To conduct the online attack, we train 16 in-out model pairs and set α = 2. For
the offline attack, we only use 16 out-models with γ = 5. The gradient descent algorithm is used to
optimize x′. For the two attacks, we set the stop threshold to 4 and 8, and the maximum number of
iterations to 30 and 35 respectively.
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Figure 3: Membership inference accuracy of
label-only MIAs on CIFAR-10.

Metrics. We use the membership inference accu-
racy as our metric to evaluate the performance of
all referred MIAs. It equals the accuracy of the bi-
nary classification task that tells non-members from
members. We also use Precision and Recall for more
detailed investigations. We use 500 data points for
all the evaluations, in which 250 samples are mem-
bers and the other 250 are non-members. The result
is mainly the average accuracy of five repeated ex-
periments.

Note that we do not use the metric proposed in (Car-
lini et al., 2022), which measures the true postive
rate (TPR) of MIAs at a low false positive rate (FPR). Unlike other MIAs whose TPR and FPR
can be easily controlled by choosing the threshold, YOQO only has one hard label as the output and
cannot adjust TPR/FPR, making this metric inapplicable.

4.1 ATTACK EFFECTIVENESS

Comparisons with prior attacks. Fig. 3 shows the membership inference accuracy of different
attacks on CIFAR-10. We use CNN7 as both shadow and victim models and change the size of
their training set to see its impact on the attack performance. We observe that our online attack
achieves almost the same inference accuracy as the boundary attack, while the latter requires over
20,000 queries per sample. Despite the offline attack being less powerful, it still surpasses the gap
attack by approximately 10% in terms of inference accuracy. Our two attacks can also beat the data
augmentation attack. We also notice that the inference accuracy of all the attacks dwindles when the
size of victim model’s training set increases. This is because the model trained on a bigger training
set tends to be less overfitting, and has less membership privacy leakage.

Impact of model architectures. We test the performance of YOQO on different architectures for the
shadow model and victim model, and the results are in Fig. 4. All the victim models are trained on
subsets consisting of 2,500 training data from CIFAR-10. Here “Assembly” means to use the models
of all the tested architectures, including CNN7, VGG18, ResNet18, DenseNet121, Inceptionv3, and
SeResNet18, to form a model ensemble for the generation of the query sample x′. We train four
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in-out pairs for each architecture, leading to a total of 40 models in the ensemble (20 in-models
and 20 out-models). Intuitively, the membership inference accuracy should be the highest when
the shadow model is of the same structure as the victim one. However, as the performance of
different model architectures is diverse, their overfitting degree on the datasets varies. This gives
the counter-intuitive results in Fig. 4: the inference accuracy of some architectures is constantly
higher than others. For example, the inference accuracy of SeResNet18 is higher than other models
in most cases, while the accuracy of DenseNet121 is always the lowest. Table 2 further compares
the inference accuracy of YOQO with the gap attack and boundary attack (l0, l1, l2, l∞ stand for
different norms to represent the distance). The training set of the victim model contains 2,500
training samples and the shadow models are trained on the shadow training set of the same size. The
results show that our attacks tend to have stably higher attack accuracy than the other two attacks.
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Figure 4: Membership inference accuracy of YOQO on CIFAR-10 against different victim models.

Victim Model CNN7 VGG16 ResNet18 DenseNet121 Inceptionv3 SeResNet18
Gap Attack 67.85 62.7 72.71 66.50 60.15 72.2

Boundary (l0) 69.56 73.06 74.25 68.13 71.65 73.06
Boundary (l1) 81.25 63.81 83.38 68.14 60.75 74.37
Boundary (l2) 81.38 63.82 83.88 68.19 61.06 76.50
Boundary (l∞) 81.50 67.44 83.88 73.19 68.12 86.00
YOQO Online 81.65 76.20 78.50 75.00 77.56 81.87
YOQO Offline 79.19 76.69 79.31 73.75 75.06 81.68

Table 2: Membership inference accuracy of MIAs with various model structures. The experiment is
conducted on CNN7 models with the CIFAR-10 dataset of 2,500 samples.

Attack effectiveness on various tasks. We examine the adaptability of our attacks to different
tasks and datasets. Table 3 shows the results. Generally, our attacks are more effective than the gap
attack on all the investigated tasks. However, YOQO performs relatively poorer on tabular data than
image ones. We hypothesize it is because the tabular data are of much lower dimensions than the
images. While YOQO is able to generate more fine-grained membership query data on visual tasks,
the tabular data may have more restrictions on it, leading to worse results. Another possible reason
is that the model architectures may also have an impact on privacy leakage, making our methods
less suitable for full-connected neural networks.

Task Name CIFAR10 CIFAR100 GTSRB SVHN Tiny-ImageNet* Tiny-ImageNet Location Purchase100
Model Arch CNN7 CNN7 CNN7 CNN7 ResNet34 ResNet34 ColumnFC ColumnFC

Size of Training Set 2,500 9,000 1,000 3,500 75,000 75,000 1,000 6,000
Boundary Attack 81.38 87.59 59.90 71.83 73.21 81.03 82.27 74.17

Gap Attack 67.85 79.75 54.12 63.09 65.20 75.70 70.94 63.89
YOQO Online 81.65 86.10 67.16 73.94 73.15 80.94 77.50 68.28
YOQO Offline 79.19 84.75 67.15 71.75 70.47 77.65 83.25 70.00

Table 3: Membership inference accuracy of MIAs on various tasks. ‘*’ means the models are pre-
trained on ImageNet.

Conclusion. From the above experiments, we conclude that YOQO is as effective as boundary attack
and much better than data augmentation attack on models with different overfitting levels. It only
requires to query once and does not need extra information about victim’s training details. YOQO is
also adaptive to different tasks and network architectures for both the victim and shadow models.

4.2 ABLATION STUDY

We perform ablation studies to disclose the influence of different factors. We use CIFAR10 for all
the evaluations and train CNN7 as shadow models to generate membership query samples. The size
of the training datasets is 2,500 by default.
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Size of the shadow training sets. Fig. 5 shows the attack results with different sizes of the victim
model’s training set (x-axis) and shadow training set (y-axis). Intuitively, we expect to find the best
performance on the diagonal, as the adversary has more information about the victim model. For
the online attack (Fig. 5(a)), the results are aligned with this intuition when the victim models are
trained on datasets of 1,500, 5,000, and 10,000 samples. Yet the facts contradict when it comes to
2,500, 3,500, and 7,500 samples. This shows the size of the shadow training set has little impact on
the online attack performance. For the offline attack (Fig. 5(b)), generally the left bottom corner has
higher accuracy than the right top, revealing that the offline attack performs better when the shadow
models are trained on bigger shadow sets. This is because the adversary can only generate the
query sample x′ according to the gradient of the out-models, which cannot guarantee the sensitivity
requirement. When the training set is smaller, it is likely to be more unbalanced, resulting in a more
inaccurate direction for the adversary to optimize x′, so the attack performance is degraded.
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Figure 5: Membership inference accuracy of YOQO with varied sizes of shadow/victim training sets.

Hyper-parameter in loss functions. We now investigate the hyper-parameters in the attack’s loss
functions, i.e., α in Eq. 4 and γ in Eq. 5, which scale the specificity and sensitivity terms. Fig. 6(a)
shows the online attack performance trend with α. With a larger α, the precision increases as there
are fewer false positive samples, whereas the recall decreases because the influence of the sensitivity
term is enervated, leading to more false negatives. Fig. 6(b) shows the offline attack performance.
When increasing γ, the recall increases and the precision decreases, indicating more false negatives
and fewer true positives. However, both α and γ have a small influence on the inference accuracy
when they fall in most parts of the given intervals.
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Figure 6: Performance of YOQO as α/γ changes.
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Figure 7: Membership inference accuracy of
YOQO versus the number of in-out pairs.

Number of in-out model pairs. We use different
numbers of in-out pairs to generate the query sam-
ple x′, and the corresponding inference accuracy is
shown in Fig. 7. The accuracy of both online and
offline attacks increase when we use more models
in the generation process. When there are more in-
out pairs, x′ can better meet the two requirements in
Section 3.1, which leads to stronger transferability
according to (Liu et al., 2016). Note that the attack
accuracy increases marginally with more than 16 in-
out model pairs. So we set this hyper-parameter as
16 to trade-off the efficiency and performance.

Selection of l′i. In Section 3.2, we select the nearest
class as l′i for the specificity term. Table 4 compares
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the attack performance with this selection, and randomly choosing a label. The attacks are evaluated
over CIFAR10. It is obvious that selecting the nearest class can better facilitate the attack than
selecting a random label for l′i. This is aligned with the hypothesis in (Nasr et al., 2018). As the
models tend to give relatively high and stable prediction scores to members (Liu et al., 2022; Yeom
et al., 2018; Yuan & Zhang, 2022), a significant impact of converting a non-member sample to the
member is the plummet of the second biggest prediction score, as the prediction logits are scaled by
the softmax layer and always sum up to 1. In other words, the decision boundary is mostly changed
between the class with the second biggest confidence and the ground-truth class. The boundary of
a random class other than that may remain the same, leading to a smaller improvement area. This
makes it harder to search for a query sample.

4.3 ROBUSTNESS AGAINST DIFFERENT DEFENSES

Attacks Choose randomly Choose the nearest
Gap Attack 67.85 67.85
YOQO Online 75.15 81.65
YOQO Offline 73.42 79.19

Table 4: Membership inference accuracy of
YOQO using different ways to choose l′i.

We evaluate the robustness of YOQO against vari-
ous state-of-the-art MIA defenses. All the attacks
are conducted on CIFAR10 and CNN7, with 2,500
samples in the training set. Fig. 8 presents the vic-
tim model’s clean accuracy (y-axix) and adversary’s
inference accuracy (x-axis) when we vary the hyper-
parameter values in these defenses. Ideally, a good
defense can reduce the inference accuracy while pre-
serving the model’s clean accuracy. We observe that some defenses (e.g., PPB and ADV) can have
effects on our attacks, but cannot satisfactorily mitigate them while keeping the functionality of the
victim model simultaneously. Other defenses like MemGuard have negligible effects on YOQO, as
they are mainly targeting the posterior-based attacks.
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Figure 8: Membership inference accuracy against different defenses.

LDL is a defense solution specifically designed for label-only MIAs. From the evaluation, we
observe that LDL can significantly reduce the inference accuracy of the boundary and gap attacks
in most cases. In contrast, the accuracy of our two YOQO attacks remain high and stable. We
hypothesize that this is because YOQO is less dependent on the concrete distances than the other
attacks, so LDL can hardly influence the improvement area.

5 CONCLUSION

We propose YOQO, a novel label-only membership inference attack to reduce the heavy query bud-
get. We demonstrate that privacy leakage can still take place when the adversary is allowed to query
the model just once. We introduce the concept of improvement area to analyze the label-only MIAs
and design two novel techniques to effectively generate the query sample and accurately make the
membership decision. Evaluations demonstrate that YOQO can achieve comparable inference ac-
curacy as the state-of-the-art boundary attack, which requires more than 1000× queries. Besides,
YOQO is more robust against different MIA defenses compared to the boundary attack.
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A APPENDIX

A.1 THE TRAINING RECIPES OF THE MODELS EVALUATED

In Table A.1 we provide the training recipes of the models tested in § 4. The training settings
basically follow such recipe unless specially referred.

Dataset Model Learning Rate Optimizer Batch Size Training Epoch

CIFAR10/CIFAR100/gtsrb/svhn

CNN7 0.001 Adam 128 30
VGG16 0.001 Adam 64 50

ResNet18 0.001 Adam 64 20
DenseNet121 0.001 Adam 128 30
InceptionV3 0.001 Adam 128 25
SeResNet18 0.001 Adam 128 20

Purchase100/location ColumnFC 0.001 Adam 32 30

Table A.1: Training recipes for models evaluated.

A.2 WORST-CASE STUDY

We further perform the worst-case study to show the feasibility of YOQO. Specifically, we use the
distance of a sample from the decision boundary yielded by the boundary attack Choquette-Choo
et al. (2021) as criterion, and select the samples with 10% longest distance in terms of l0, l1, l2,
and l∞ respectively from the test set as the target samples evenly from all the out and in samples.
This makes the set of the target samples be composed of 200 samples (100 out samples and 100 in
samples). We evaluate the distance of each sample on 5 victim models, and use the average distance
as the criterion. The models being tested are CNN7 model trained on CIFAR10 of 2,500 samples.
In Table A.2 we show the results:

Norm l0 l1 l2 l∞
Boundary Attack 52.7% 54.0% 54.1% 53.3%

Gap Attack 50.0% 50.0% 50.0% 50.0%
YOQO Online 65.3% 61.0% 61.22% 61.5%
YOQO Offline 60.0% 57.7% 56.5% 59.5%

Table A.2: Worst-case study

We observe that our methods tend to have better performance than the boundary attack. This indi-
cates that YOQO can be more effective to infer the membership of the worst-case samples which
the boundary attack is hard to deal with.

A.3 INFLUENCE OF L2 REGULATIONS WHILE TRAINING THE VICTIM MODELS.

To demonstrate the effectiveness of YOQO on less overfitting models, we further perform evalua-
tions on models trained with stronger L2 regulations. Specifically, we use CNN7 as both the shadow
and victim model, over 2,500 CIFAR-10 images as the training set. The results are shown below. As
λ increases, the effect of the L2 regulations get stronger, resulting in performance degradations in
all attacks. Nevertheless, YOQO still keeps comparable performance as the Boundary attack. Ad-
ditionally we also notice that strong L2 regulation makes the training very unstable, and also causes
performance degradations on the test accuracy.

A.4 ADDITIONAL RESULTS ON BIGGER DATASETS AND PRETRAINED MODELS

We turn to use larger dataset or models pre-trained on large dataset to further strenthen the utility of
the attack. Particularly, 1) we use larger training datasets with higher resolutions and more samples
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Regulation Param λ Gap Atk YOQO Online YOQO Offline Boundary Atk
0.01 60.10% 72.34%% 69.91% 71.75%
0.02 54.13% 68.70% 66.47% 70.03%
0.04 52.32% 57.71% 55.70% 55.65%

Table A.3: Studies on varying the weight decay of L2 regulations to minimize the overfitting.

(75k Tiny-ImageNet, 25k CIFAR-10); 2) we consider both training from scratch and fine-tuning a
public model pre-trained on ImageNet. The inference accuracy of different attacks are shown in
the Table A.4. We can observe that our attacks maintain comparable accuracy as SOTA attacks, but
much more efficient (only query once). This conclusion is consistent with the previous evaluations
in § 4, demonstrating the practicality and utility of our attacks in a wider set of configurations.

Dataset Model Dataset Size Gap Boundary Online Offline
CIFAR10 CNN7 from Scratch 25k 61.62% 74.34% 75.03% 73.88%
CIFAR10 ResNet34 Pretrained on Imagenet 25k 56.2% 63.01% 62.27% 60.34%

Tiny-Imagenet ResNet 34 Pretrained on Imagenet 75k 65.2% 73.21% 73.13% 70.47%
Tiny-Imagenet ResNet 34 From Scratch 75k 75.7% 81.03% 80.94% 77.65%

Table A.4: Membership inference accuracy of MIAs on bigger datasets and fine-tuned models.

A.5 ADDITIONAL EXPERIMENTS ON TRANSFERABILITY

We conduct experiments using victim models trained with various settings that are different from
the shadow models. Specifically, we test different optimizers, batch sizes, and learning rate. All the
experiments are conducted using the same setting in the ablation studies. The results are shown in
Table A.5.

Optimizer of shadow models Optimizer of target models Batch Size Learning Rate Gap Atk Online Atk Offline Atk
Adam SGD 128 0.01 68.70% 80.97% 78.35%
Adam SGD 64 0.005 69.50% 79.22% 77.59%
Adam AdamW 128 0.01 67.50% 80.01% 77.43%
Adam AdamW 64 0.005 68.38% 80.94% 76.92%

Table A.5: Transferability between different training settings.

We observe that the different training details such as batch size and optimizer have slight impacts on
the effectiveness of our methods. The crafted query samples from YOQO have high transferability.

A.6 COMPARISON TO METHOD IN WEN ET AL. (2022)

We noticed that our work shares a similar idea to that in (Wen et al. (2022)). Here we discuss the
differences between our work and (Wen et al. (2022)) to justify our contribution.

The method proposed in (Wen et al. (2022)) is to work in the circumstances where the attacker is
able to obtain the logits of the model, whereas our method is exclusively designed for the label-only
situations. The difference in the threat model leads to the difference in the loss function design.

To further see the differences, we migrate the method in (Wen et al. (2022)) to the hard label sce-
nario, and measure the attack effectiveness. We adopt the method in (Wen et al. (2022)) for the
query-sample-generation (Algorithm 1 in our paper), while the rest parts are the same. We perform
evaluations on CIFAR10 (2,500 samples) using CNN7. The rest of the settings are the same as the
experiments in § 4. The results are shown in Table A.6 . It is clear that our methods are much more
effective than (Wen et al. (2022)) in terms of label-only MIA.
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Loss term Inference Accuracy
YOQO Online 81.65%
Canary Online 73.27%
YOQO Offline 79.19%
Canary Offline 71.54%

Table A.6: Comparison between Canary and YOQO.
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