
Under review as a conference paper at ICLR 2021

LEARNING LAGRANGIAN FLUID DYNAMICS
WITH GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a data-driven model for fluid simulation under Lagrangian representa-
tion. Our model uses graphs to describe the fluid field, where physical quantities
are encoded as node and edge features. Instead of directly predicting the accelera-
tion or position correction given the current state, we decompose the simulation
scheme into separate parts - advection, collision, and pressure projection. For these
different reasoning tasks, we propose two kinds of graph neural network structures,
node-focused networks, and edge-focused networks. By introducing physics prior
knowledge, our model can be efficient in terms of training and inference. Our tests
show that the learned model can produce accurate results and remain stable in
scenarios with a large number of particles and different geometries. Unlike many
previous works, further tests demonstrate that our model is able to retain many
important physical properties of incompressible fluids, such as minor divergence
and reasonable pressure distribution. Additionally, our model can adopt a range
of time step sizes different from ones using in the training set, which indicates its
robust generalization capability.

1 INTRODUCTION

For many science and engineering problems, fluids are an essential integral part. How to simulate fluid
dynamics accurately has long been studied by researchers and a large class of numerical models have
been developed. However, computing high-quality fluid simulation is still computationally expensive
despite the advances in computing power. Also, the time of calculation usually increases drastically
when the resolution of the simulating scene scales up. A common way to alleviate computing costs is
using a data-driven model. Recent progress in the machine learning domain opens up the possibility
of employing learning algorithms to learn and model fluid dynamics.

In this paper, we propose a graph-based data-driven fluid dynamics model (Fluid Graph Networks,
FGN), which consists of simple multi-layer perceptron and graph inductive architectures. Our
model predicts and integrates forward the movement of incompressible fluids based on observations.
Compared to previous works in this domain (Ummenhofer et al., 2020; Sanchez-Gonzalez et al., 2020),
our model enjoys traceability of physical properties of the system, like low velocity-divergence and
constant particle density, and it can predict reasonable pressure distribution. Experiments demonstrate
that our model can remain stable and accurate in long-term simulation. Although our model is
entailed and customized for fluid simulation, it can be extended to simulation of other dynamics
under the Lagrangian framework, as it takes universal features (positions, velocities, particle density)
under the Lagrangian framework as input.

2 RELATED WORKS

Our model is built upon the Lagrangian representation of fluid, where continuous fluids are discretized
and approximated by a set of particles. The most prominent advantage of the Lagrangian method is
that the particle boundary is the material interface, which makes boundary conditions easy to impose,
especially when the material interface is large and changing violently. A well-known Lagrangian
method is Smooth Particle Hydrodynamics (SPH)(Monaghan, 1988). SPH and its variants are widely
used in the numerical physic simulation, especially fluid dynamics under various environments.
Particle-based fluid simulation (Müller et al., 2003) introduces SPH model to simulate fluids and

1

Under review as a conference paper at ICLR 2021

generate realistic visual effects. Moving particle semi-implicit method (MPS) (Koshizuka and Oka,
1996) markedly improves the accuracy and stability of incompressible fluid simulation by introducing
a pressure projection procedure that emulates Eulerian grid-based methods. Weakly compressible
SPH (WSPH)(Becker and Teschner, 2007) introduces equation of state to model the pressure during
the simulation. Predictive-corrective incompressible SPH (Solenthaler and Pajarola, 2009) and
divergence-free SPH (Bender and Koschier, 2015) use iterative method to improve the accuracy of
pressure calculation in incompressible flow simulation.

Modeling fluid dynamics in a data-driven way has been explored and studied by many researchers.
With advances in machine learning algorithms, many data-driven models employing machine learning
algorithms have been built. Ladický et al. (2015) reformulate the Navier-Stokes equation as a
regression problem and build a regressor using random forest, which significantly improves the
calculation efficiency. Tompson et al. (2016), Xiao et al. (2020) learn the pressure projection under
the Eulerian framework with a convolutional neural network, which accelerates the fluid simulation.
Wiewel et al. (2018) bring significant speed-up by learning a reduced-order representation and
predicting the pressure field with an LSTM-based model. Morton et al. (2018) learn the dynamics
of airflow around a cylinder based on Koopman theory. de Avila Belbute-Peres et al. (2020) predict
fluid flow by combining grid-based method with graph convolutional neural networks.

Learning and reasoning particle dynamics under graph representation has the following benefits and
conveniences. First, particle-based methods model physics phenomena as interactions between parti-
cles within a local area. This imposes an inductive bias for learning under the Lagrangian framework:
dynamics have a strong locality. The locality of unstructured data under Lagrangian representation
can be captured by aggregation operation on graphs, such as GCN and other variants (Kipf and
Welling, 2016; Hamilton et al., 2017). Second, unlike Eulerian grid-based methods, Lagrangian
particle-based methods do not have explicit and structured grid, which makes standard Convolutional
Neural Network (CNN) cannot be directly applied to particles without feature processing (Wang
et al., 2018; Ummenhofer et al., 2020). Third, many dynamics are based on pairwise relation between
particles, like collision, which can be easily interpreted as edge attributes of a graph. Given these
factors, recently there have been a rich class of works that use graph neural networks (Scarselli et al.,
2009) to learn and reason about underlying physics of interacting objects and particles. (Battaglia
et al., 2016; Chang et al., 2016; Sanchez-Gonzalez et al., 2018; Li et al., 2018; Mrowca et al., 2018)

3 MODEL

3.1 FLUID DYNAMICS

The governing equation for incompressible fluids is the Navier-Stokes equation and the continuity
equation as follows (Batchelor, 2000):

Du

Dt
= −∇p

ρ
+ ν∇2u + g, (1)

∇ · u = 0. (2)

To describe the fluid field, there are two kinds of systems, Eulerian and Lagrangian ones. In this
work, we adopt a Lagrangian system. A common method to solve the Navier-Stokes equation and
discretize fluids under the Lagrangian framework is Smooth Particle Hydrodynamics (SPH) method
(Monaghan, 1988), where physical quantities at an arbitrary point in the space are approximated by
the states of nearby particles.

In SPH, an arbitrary scalar (or vector) field A (r) at location r can be represented by a convolution:

A (r) =

∫
A (r′)W (|r− r′| , h) dV (r′) , (3)

where W is weighting function or smooth kernel as defined in SPH, h is the smoothing length,
which defines the range of particles to be considered and V (r′) is the volume at r. Numerically, the
interpolation can be approximated by replacing the integration with a summation.

Based on this model, equation equation 1 and equation 2 can be discretized. The discrete equation
system is usually solved under a predictor-corrector scheme, prediction based on advection and
correction based on physical properties (such as divergence-free constraint).

2

Under review as a conference paper at ICLR 2021

Figure 1: (a) Schematic of our FGN model. Gadv applies the effect of body force and viscosity to the
fluids. Gpres predicts the pressure. Gcol handles collision between particles. (b) In a node-focused
network, input are represented as node features and then passed to a shared processor. Advection
and pressure impose influence on each particle separately, thus they can be interpreted as messages
lying on each node and predicted via node-focused networks. (c) In an edge-focused network, input
are represented as edge features of a directed graph, the edge features are then passed to a shared
processor. Collision is a pairwise effect, which can be easily represented as edge attributes between
each pair of particles. Hence we use the edge-focused network to predict collision.

3.2 MODEL

Fluids are time-dependent dynamical systems, where location of particles, r, is described by equation
of form: dr/dt = f(r). When building a data-driven model to learn and solve this system, we assume
the system is Markovian, that is, the state of the system at time step n+ 1 depends only on the state
of the previous time step n. The update mechanism in our model can be represented as:

{xn+1,vn+1} = Gθ ({xn,vn}) . (4)

Here {xn,vn} denotes the positional information and velocity of fluid field at time step n. Data-
driven model Gθ, parameterized by θ , maps the state of time step n to time step n+ 1.

In order to build a robust and accurate data-driven model, the structure of our model is physic-
informed, which enables the model to give interpretable output without losing many physical proper-
ties of the system. In general, our model mimics the predictor-corrector scheme and includes three
parts, advection net, collision net, and pressure net. They can be divided into two types of graph
networks (GN) according to the network structure (Battaglia et al., 2018). Specifically, advection
net and pressure net are node-focused graph networks, while collision net is edge-focused networks.
As each of these networks has a specific task and different output, they are trained on different data
separately.

Node-focused Graph Network Advection net is responsible for the prediction of advection effect
and pressure net is responsible for pressure projection. Considering a particle i, the node-focused
graph network first aggregates node features from neighbor particles {vj |∀j ∈ N (i)} and output
node embedding fi. The embedding fi will then be passed to a processor gR. gR will predict the
desirable physical quantities oi (i.e. acceleration a in advection net and pressure p in pressure net).

3

Under review as a conference paper at ICLR 2021

The whole message passing procedure can be defined as:

oi = gR (gA (Vi)) , Vi = {vj}∀j∈N (i). (5)

Edge-focused Graph Network To prevent particle penetration and increase model stability, we
propose a graph network model that is responsible for predicting the effect of collision. As the
relative position and relative velocity will have different signs with different observation perspective
(i.e. relative velocity vij = −vji), thus the graph in collision net is directed. In collision net, relative
features, eij (relative positions, relative velocities between particle i and j), are passed to processor
fR as edge features. The processor will output the edge embedding rij between each pair of nodes.
Lastly, edge embedding rij is aggregated via aggregator fA, to gather the influence from all nearby
particles and predict an overall effect oi on the center particle i. The whole process is defined as:

oi = fA (fR (Ei)) , Ei = {eij}∀j∈N (i). (6)

The advantage of using relative position and velocity instead of global ones as input features is that
this explicitly imposes a spatial invariance to the network, given that collision between two particles
is invariant to the global positions they are at.

4 IMPLEMENTATION

We adopt the numerical model in SPH to evaluate the physical quantities like particle density and
differential operators like gradient. To construct graph representation for particles, we establish edges
between particles within the control radius.

4.1 UPDATE SCHEME

In general, given the state (position xn and velocity vn) of the current time step n, we derive the
state of next time step n + 1 by passing the state information through advection net, collision net,
and pressure net sequentially. The input features to advection net are positions and velocities of
particles, [xn,vn], along with g, which indicates the external body force per mass of fluid, and
viscosity parameter ν, which denotes the magnitude of fluid viscosity. The advection net predicts
acceleration of particles:

aadv = Gadv (xn,vn,g, ν) , (7)

and updates the state of fluid particles to an intermediate state [x∗,v∗].

v∗ = vn + aadv∆t, (8)
x∗ = xn + v∗∆t. (9)

Where aadv = [aadv
1 , ...,aadv

N], xn = [xn1 , ...,v
n
N], vn = [vn1 , ...,v

n
N] for particles i ∈ {1, .., N}. We

will use the same notation throughout illustration.

The collision net takes relative positions and velocities between particles, [x∗i −x∗j ,v
∗
i −v∗j] as input,

and predicts correction to the velocity,

∆v = Gcol(x
∗
r ,v
∗
r), (10)

where [x∗r ,v
∗
r] denotes the relative position and velocity in intermediate state. The velocity is then

updated with predicted correction:
v∗∗ = v∗ + ∆v. (11)

The updated intermediate position and velocity are taken as input by the pressure net, along with
particle number density ρ.

p̂ = Gpres(x
∗,v∗∗,ρ). (12)

The state of fluid field is then updated to next time step n+ 1,

vn+1 = v∗∗ − ∇p̂
ρc

∆t, (13)

xn+1 = x∗ + vn+1∆t. (14)

4

Under review as a conference paper at ICLR 2021

Where p̂ = [p̂1, ..., p̂N], ρ = [ρ1, ..., ρN], ρc is the density parameter of fluid. Predicting pressure of
fluid field using particle density and velocity is based on the observation that advection will incur a
temporary compression on fluid body, which means fluid density has changed. Therefore the goal of
pressure net is to impose a pressure projection to mitigate these deviations.

During the above calculation, the global positional information is only used to construct graph on
fluid particles and will not be passed into aggregator and processor as features. The relative position
and particle density are normalized before input.

4.2 NETWORK ARCHITECTURES

For node-focused graph network, to derive a smooth response of the field with respect to spatial
location, the aggregation from layer l − 1 to l is defined as:

a
(l)
i =

∑
f

(l−1)
j W (|ri − rj | , h)∑
W (|ri − rj | , h)

+ f
(l−1)
i ,∀j ∈ N (i), (15)

f
(l)
i = σ

(
W · a(l)

i

)
, (16)

where the aggregator sums up the features f (l−1)
j from neighbor vertices {vj |j ∈ N (i)} using smooth

kernel as weight function, and here self-connection is added to every vertex. Linear transformation
W and non-linear transformation σ are then applied to the aggregated features. In practice we found
that two layer of aggregations is enough for the model to produce reasonably accurate output (Adding
more aggregation layers does not bring in significant improvements).

As for the edge-focused network, the aggregation is simply defined as:

ai =
∑

j∈N (i)

W · rji, (17)

where rji is edge feature processed by processor, W is a linear transformation matrix. The aggrega-
tion in the edge-focused network is at the last layer, so no non-linearity is included here.

The processors in both networks are implemented as shared MLP, where they are shared among nodes
or edges depending on network types (e.g. in the node-focused network, the processor is an MLP
shared among each node). In a node-focused network, the processor has three hidden layers, with
the input node embedding f of size 128. In an edge-focused network, the processor has four hidden
layers, with input edge attributes [xr,vr] of size 6.

5 EXPERIMENTS

5.1 TRAINING

Dataset We use the Moving Particle Semi-implicit method (MPS) (Koshizuka and Oka, 1996)
with an improved pressure solver (Lee et al., 2011) to generate high-fidelity simulation data of
incompressible flow. MPS is a numerical method based on SPH which prioritizes accuracy over
calculation speed. It enforces the incompressibility of the fluid field by solving the pressure Poisson
equation. We created 20 scenes by randomly placing fluid blocks, solid obstacles, initializing
fluid particles with random velocity (See A.2 for full detail of training dataset settings and training
strategy).

Loss Function and Optimization We train three networks, advection net, collision net, and pres-
sure net separately. Each network is trained in a supervised way by optimizing the mean squared
error between prediction ŷ and ground truth y.

L =
1

N

N∑
i=1

||yi − ŷi||22 (18)

We normalize particle density before inputting into the pressure net, which accelerates and stabilizes
training. In the processor, we add LayerNorm (Ba et al., 2016) after activation to each layer (except

5

Under review as a conference paper at ICLR 2021

Case Model Density error Velocity divergence
Average Chamfer

distance (mm)
Mean Max Mean Max Mean Max

Dam
Collapse

FGN (this work) 0.0461 0.0900 0.0195 0.0280 24.2 30.1
GNS 0.0898 0.3387 0.0210 0.0311 26.1 33.1
CConv 0.1811 0.2947 0.0338 0.1700 31.4 44.0
Ground Truth 0.0380 0.0710 0.0190 0.0268 - -

Water
Fall

FGN (this work) 0.0541 0.1350 0.0207 0.0431 24.8 29.6
GNS 0.1035 0.3512 0.0223 0.0399 25.6 31.8
CConv 0.2783 0.4121 0.0668 0.2882 40.4 61.5
Ground Truth 0.0429 0.0966 0.0196 0.0398 - -

Table 1: Quantitative accuracy analysis. For resolution, the dam collapse case contains about 10k
particles and water fall case contains about 80k particles. We report the mean and maximum value of
density error and velocity divergence over the whole simulation sequence. We also report the average
Chamfer distance between the results of each model and ground truth data.

for the output layer). The parameters of the model are optimized with Adam (Kingma and Ba, 2014)
optimizer. We implement the model in PyTorch. All the training and experiments are mainly carried
out on NVIDIA GTX 1080Ti GPU.

5.2 EVALUATION

Baselines Besides the comparison against ground truth data, we also compare our model to two
recent works that use data-driven approaches to simulate fluids under the Lagrangian framework.
Ummenhofer et al. (2020) use the continuous convolutional kernel to learn fluid dynamics and they
reported that their model has outperformed other works in this domain. Sanchez-Gonzalez et al.
(2020) propose a graph network-based simulator (GNS) as a general-purpose physic simulator under
Lagrangian representation. Our model and GNS both transform and pass messages of fluid field via
graph structures, but GNS consists of a far larger and deeper network with multiple sub-blocks and
thus contains much more parameters than ours. For all baseline models, we adopt the same training
strategy from original papers but train them on our dataset (See A.5 for full detail).

Metrics To conduct quantitative analysis, we evaluate model performance based on several metrics.
We report the asymmetric version of Chamfer Distance between the simulated results of different
models and ground truth sequence. The asymmetric Chamfer distance for two collections of particles
X,Y (from X to Y) is defined as:

L (X,Y) =
1

N

∑
x∈X

min
y∈Y

d (x,y) , (19)

where N is the total particle number of point cloud collection X , and distance function d(x,y) is
evaluated using L2-norm ‖x−y‖2. We investigate two essential physical quantities for incompressible
fluid simulation - velocity divergence and particle density deviation of fluid field. In addition, we use
normalized mean absolute error (MAE) and relative tolerance to evaluate the error of advection net
and pressure net on single frame inference respectively. The normalized MAE from prediction ŷ to
ground truth y is defined as:

LMAE =
1

N

∑ |ŷ − y|
|y|

. (20)

The relative tolerance of the numerical solution x̂ to a linear system Ax = b can be defined as:

tol =
||Ax̂− b||2
||b||2

. (21)

6 RESULTS

Performance In order to measure the performance of our FGN model as a physic simulator, we
performed simulations on several different test cases. In the first two cases, dam collapse and water

6

Under review as a conference paper at ICLR 2021

Figure 2: Qualitative analysis on: (a) Dam collapse. (b) Water fall. In CConv and GNS, we can
observe oscillation on the free surface of fluids, while the results generated from our model maintains
a much more compact and smoother shape. After long time steps, CConv’s result fails to maintain
smooth and compact fluid distributions and GNS’ prediction is significantly slower than ground truth,
while our model’s prediction has minor difference from the ground truth.

Figure 3: Pressure distribution contour. Our model can learn to generate reasonable pressure
distribution. The distribution agreed with ground truth, which captures the shape of shifting high
pressure and low pressure region.

7

Under review as a conference paper at ICLR 2021

Figure 4: Qualitative comparison of model using different time step sizes. We use different time step
size to simulate with our model. Despite the training set is generated with a time step size of 0.002s,
our model can be generalized to a larger time step size with a neglectable increase in error. Other
models diverge immediately when extrapolate to time step size different from training data.

Figure 5: Generalization to complex geometries. Top: A fluid block drop on Stanford bunny. Bottom:
A fluid emitter is placed at the front of Grand Canyon 3D model and emitted fluids gradually fill
up reservoir at downstream. Although the training data only has basic geometries such as cube and
cylinder, our FGN model can be generalized to complex geometries which are beyond the distribution
of training data.

Model Dynamical system Model Output Evaluation metric Error
Advection Net u̇ = g + ν∇2u prediction of u̇ Normalized MAE 12.4%± 5.6%

Pressure Net ∇2p = 1
∆t∇ · u

∗ prediction of p Relative tolerance 8.3%± 1.1%

Table 2: Quantitative analysis of advection net and pressure net. We evaluate advection net’s
performance as solver for a forward problem. We generate ten sequences with different set of material
parameters as test data for advection net. The gravity g for test data ranges from 1.0 to 100.0 and
viscosity parameter ν ranges from 0.1 to 0.0001. For pressure net, we report its error as solver for a
linear equation system. The test data for pressure net is generated using dam collapse, water fall, and
Stanford bunny sequences.

fall, we qualitatively measure the results of different models via visualization1 of fluids in Figure
4. We report the physical property of simulation results and its Chamfer distance to ground truth
data. Quantitative results over the whole simulation sequence are listed in Table 1 (See Figure 9
in A.3 for error trend figures). The results show that our model FGN gives the best accuracy in
retaining physical properties and position prediction. In addition, we study the performance of
each sub-network in our model as stand-alone solvers for sub-dynamical systems and report their
relative error in Table 2. For the advection net, we challenge it by applying a different set of material
parameters (i.e. different gravity and viscosity parameters). We report the normalized mean absolute
error (MAE) between prediction and ground truth. For pressure net, we evaluate the relative tolerance
of its predicted solution p̂ to the discretized pressure poisson equation (i.e. Ap = b). The relative
low error demonstrates the capability of our sub-networks in learning and predicting physics.

1Video link: https://sites.google.com/view/fluid-graph-network-video/home

8

https://sites.google.com/view/fluid-graph-network-video/home

Under review as a conference paper at ICLR 2021

Model Parameters Model inference time (ms) NNS time (ms)
FGN (this work) 41996 5.7 206.4

GNS 1406272 44.6 153.2
CConv 692902 28.9∗ 24.7∗

MPS (ground truth) - 520.4 221.7

Table 3: Runtime analysis of different model. The test was carried out on a dam collapse scene
containing approximately 40k fluid particles. We report the total trainable parameters for each deep
learning model, averaged model inference time and nearest neighbor searching time. For ground
truth solver, MPS, we report the time it used to calculate advection and pressure projection as model
inference time. The pressure solver in MPS is a preconditioned conjugate gradient (PCG) solver
implemented in Pytorch. Note that in CConv, the network and neighbor searching method are based
on Tensorflow and Open3D (denoted with *). Besides CConv, all other model are implemented in
Pytorch and use spatial hashing on GPU for neighbor searching. Our model has the smallest size and
fastest inference time.

Generalization To test out the model’s capability of generalization. We apply our model to test
cases with conditions that are beyond training distributions. In the first case, we study how our model
will predict the pressure distribution of circular flow around a cylinder. This scene contains an inflow
on the left side which keeps emitting particles during the simulation and an outflow on the right
side. We challenge our model’s robustness by applying different time step sizes to it. Figure 4 shows
qualitative comparison of model output under different time step sizes. In addition, we simulate
on two scenes which contain much more complex geometries. Visualizations of two test scenarios
containing complex geometries are shown in Figure 5. Although our model is trained with only
a fairly small dataset, it remains accurate under several different conditions. This demonstrates it
capability of generalization and robustness. (More details on quantitative analysis are in A.3. Figure
10 shows position error trend under different time step sizes. Figure 11 shows position error trend
under complex scenes.)

Ablation Study We test the performance of different types of aggregators used in pressure net, as
pressure net has the largest impact on overall prediction accuracy. 2 We compare our aggregator
against graph convolution networks (GCN) from Kipf and Welling (2016), Hamilton et al. (2017)’s
graph SAGE using mean aggregator , and MLP w/o any graph aggregation operation. In general,
all aggregators give a similar performance on overall position prediction (similar Chamfer distance
error), yet our model significantly improves the quality of predictions in terms of maintaining a
constant density (See Table 4 in A.4 for full detail).

In addition, we report the model size (parameter number) and runtime benchmark in Table 3. Our
model is very efficient in terms of training and inference, as it has far less trainable parameters than
others.

7 CONCLUSION

In this paper, we present a data-driven Lagrangian fluid model for incompressible fluid simulation
by decomposing simulation scheme as separate reasoning tasks based on Navier-Stokes equation. It
can preserve many essential physical properties of the fluid field such as low volume compression,
and predict reasonable pressure distribution. Our model also has generalization capability, where it
can remain stable when extrapolating to a wide range of different geometries and adopting different
time step sizes. In general, our work is an advance in learning on unstructured data with graph neural
networks, and enriches the paradigm of combining learning-based methods with physical models as
well.

2During the preliminary experiment, we find that aggregators in advection net do not have significant impact
on overall model performance when viscosity parameter of fluids is small, therefore ablation results on it are not
listed here; Aggregator in collision net is just summing up all the predicted edge attributes and conducting linear
transformation. Using more advanced structure does not bring in further improvement.

9

Under review as a conference paper at ICLR 2021

REFERENCES

B. Ummenhofer, L. Prantl, N. Thuerey, and V. Koltun, “Lagrangian fluid simulation with continuous
convolutions,” in International Conference on Learning Representations, 2020.

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia, “Learning to
simulate complex physics with graph networks,” 2020.

J. Monaghan, “An introduction to sph,” Computer Physics Communications, vol. 48, no. 1, pp. 89 – 96,
1988. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0010465588900264

M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simulation for interactive applications,”
in Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
ser. SCA ’03. Goslar, DEU: Eurographics Association, 2003, p. 154–159.

S. Koshizuka and Y. Oka, “Moving-particle semi-implicit method for fragmentation of incompressible
fluid,” Nuclear Science and Engineering, vol. 123, no. 3, pp. 421–434, 1996. [Online]. Available:
https://doi.org/10.13182/NSE96-A24205

M. Becker and M. Teschner, “Weakly compressible sph for free surface flows,” in Proceedings of the
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA ’07. Goslar,
DEU: Eurographics Association, 2007, p. 209–217.

B. Solenthaler and R. Pajarola, “Predictive-corrective incompressible sph,” in ACM SIGGRAPH 2009
Papers, ser. SIGGRAPH ’09. New York, NY, USA: Association for Computing Machinery, 2009.
[Online]. Available: https://doi.org/10.1145/1576246.1531346

J. Bender and D. Koschier, “Divergence-free smoothed particle hydrodynamics,” in Proceedings of
the 2015 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 2015.

L. Ladický, S. Jeong, B. Solenthaler, M. Pollefeys, and M. Gross, “Data-driven fluid simulations
using regression forests,” ACM Trans. Graph., vol. 34, no. 6, Oct. 2015. [Online]. Available:
https://doi.org/10.1145/2816795.2818129

J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating eulerian fluid
simulation with convolutional networks,” CoRR, vol. abs/1607.03597, 2016. [Online]. Available:
http://arxiv.org/abs/1607.03597

X. Xiao, Y. Zhou, H. Wang, and X. Yang, “A novel cnn-based poisson solver for fluid simulation,”
IEEE Transactions on Visualization Computer Graphics, vol. 26, no. 03, pp. 1454–1465, mar
2020.

S. Wiewel, M. Becher, and N. Thuerey, “Latent-space physics: Towards learning the
temporal evolution of fluid flow,” CoRR, vol. abs/1802.10123, 2018. [Online]. Available:
http://arxiv.org/abs/1802.10123

J. Morton, A. Jameson, M. J. Kochenderfer, and F. Witherden, “Deep dynamical modeling
and control of unsteady fluid flows,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 9258–9268. [Online]. Available: http:
//papers.nips.cc/paper/8138-deep-dynamical-modeling-and-control-of-unsteady-fluid-flows.pdf

F. de Avila Belbute-Peres, T. D. Economon, and J. Z. Kolter, “Combining differentiable pde solvers
and graph neural networks for fluid flow prediction,” 2020.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
CoRR, vol. abs/1609.02907, 2016. [Online]. Available: http://arxiv.org/abs/1609.02907

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” 2017.

S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun, “Deep parametric continuous convolu-
tional neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

10

http://www.sciencedirect.com/science/article/pii/0010465588900264
https://doi.org/10.13182/NSE96-A24205
https://doi.org/10.1145/1576246.1531346
https://doi.org/10.1145/2816795.2818129
http://arxiv.org/abs/1607.03597
http://arxiv.org/abs/1802.10123
http://papers.nips.cc/paper/8138-deep-dynamical-modeling-and-control-of-unsteady-fluid-flows.pdf
http://papers.nips.cc/paper/8138-deep-dynamical-modeling-and-control-of-unsteady-fluid-flows.pdf
http://arxiv.org/abs/1609.02907

Under review as a conference paper at ICLR 2021

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network
model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009.

P. W. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. Kavukcuoglu, “Interaction networks
for learning about objects, relations and physics,” CoRR, vol. abs/1612.00222, 2016. [Online].
Available: http://arxiv.org/abs/1612.00222

M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum, “A compositional object-based
approach to learning physical dynamics,” CoRR, vol. abs/1612.00341, 2016. [Online]. Available:
http://arxiv.org/abs/1612.00341

A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. A. Riedmiller, R. Hadsell, and P. W.
Battaglia, “Graph networks as learnable physics engines for inference and control,” CoRR, vol.
abs/1806.01242, 2018. [Online]. Available: http://arxiv.org/abs/1806.01242

Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning particle dynamics for
manipulating rigid bodies, deformable objects, and fluids,” CoRR, vol. abs/1810.01566, 2018.
[Online]. Available: http://arxiv.org/abs/1810.01566

D. Mrowca, C. Zhuang, E. Wang, N. Haber, L. F. Fei-Fei, J. Tenenbaum, and D. L. Yamins,
“Flexible neural representation for physics prediction,” in Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 8799–8810. [Online]. Available:
http://papers.nips.cc/paper/8096-flexible-neural-representation-for-physics-prediction.pdf

G. K. Batchelor, An Introduction to Fluid Dynamics, ser. Cambridge Mathematical Library. Cam-
bridge University Press, 2000.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Ç. Gülçehre, H. F. Song, A. J. Ballard,
J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, “Relational inductive
biases, deep learning, and graph networks,” CoRR, vol. abs/1806.01261, 2018. [Online]. Available:
http://arxiv.org/abs/1806.01261

B.-H. Lee, J.-C. Park, M.-H. Kim, and S.-C. Hwang, “Step-by-step improvement of mps method
in simulating violent free-surface motions and impact-loads,” Computer Methods in Applied
Mechanics and Engineering, vol. 200, no. 9, pp. 1113 – 1125, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0045782510003464

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

11

http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1612.00341
http://arxiv.org/abs/1806.01242
http://arxiv.org/abs/1810.01566
http://papers.nips.cc/paper/8096-flexible-neural-representation-for-physics-prediction.pdf
http://arxiv.org/abs/1806.01261
http://www.sciencedirect.com/science/article/pii/S0045782510003464

Under review as a conference paper at ICLR 2021

APPENDIX A

A.1 IMPLEMENTATION DETAILS

Graph construction We build the graph by establishing edges between particles within limit radius.
We perform the neighborhood searching on GPU by using cell sort algorithm. All the edge attributes
are stored in sparse matrices. Although the limit radius does not have significant impact on training
loss and larger limit radius will increase the computing cost drastically, we found that small limit
radius can influence the long-term stability of the model. For advection net and pressure projection
net, we select the limit radius to be three times the particle diameter D (D = 0.050m), and 0.9D for
collision net.

Numerical model In general, we calculate all the gradient operators and smooth kernel based on
numerical model of SPH.

In SPH model, particle density is defined as:

ni =
∑
i 6=j

W (|ri − rj | , h),∀j ∈ N (i). (22)

For scalar quantity φi at location ri, we approximate its gradient by:

∇φi =
d

n∗

∑
j

(φj − φi)∇Wij , (23)

where n∗ is the constant particle number density derived by calculating the maximum particle number
density at the initial frame, d is the dimension of the problem, Wij denotes the smooth kernel function
value between particle i and j. Similarly velocity divergence is defined as:

∇ · vi =
d

n∗

∑
j

(vj − vi) · ∇Wij , (24)

We adopt the same smooth kernel function from Koshizuka and Oka (1996), which is very simple to
evaluate.

Wij =

{
h

||ri−rj ||2 − 1 if ||ri − rj ||2 < h

0 if ||ri − rj ||2 ≥ h
(25)

A.2 TRAINING

Dataset Generation We place one or two of the following basic obstacles (as shown in Figure
6) in training scenes. In addition to obstacles, each scene is a cubic box (80x80x40) containing a
fluid block (25x25x10) (as shown in Figure 7). We place the fluid block at random place in the box
and initialize its velocity of one direction by uniformly sampling from U (0, 0.1). We generated 20
scenes adopting above settings and simulate each training scene to 1000 time steps with step size
dt = 0.002.

Strategy In each time step of the ground truth simulator, there are mainly three steps. First, advect
fluids with body force and viscosity:

v∗ = vn + aadv∆t, (26)
x∗ = xn + v∗∆t, (27)

and then solve the pressure poisson equation,

∇2p =
1

∆t
∇ · v∗, (28)

lastly,

vn+1 = v∗ − ∇p
ρc

∆t, (29)

xn+1 = x∗ + vn+1∆t. (30)

12

Under review as a conference paper at ICLR 2021

Here, we use [x∗,v∗,g, ν] as the training features and a∗ (i.e. (v∗ − vn)/∆t) as the training label
for advection net. [x∗,v∗] and particle density ρ (evaluated based on x∗) are the training features
for pressure net, with pressure p as label. To train collision net, we simulate another particle system
that is updated only based on elastic collision rule and applies no other dynamics. We use relative
velocity and position before collision as inputs, and use velocity difference (i.e. ∆v) as output target.

We train each network for 100,000 iterations of gradient updates and decay learning rate from 0.001
to 0.0000625. For the training of three sub-networks (advection net, collision net, pressure net), the
batch size of each network is 16, 4 and 32 respectively. To allow the mini-batching of different graph,
we mini-batch the adjacency matrix of different scenes by creating a large sparse matrix and stacking
adjacency matrix on the diagonals.

Figure 6: Three kinds of obstacles: Square pillar(width:10, length:10, height:40), cylinder(radius:4,
height:40) and cube(15x15x15)

Figure 7: Fluid block and box

(a) Dam Collapse (b) Water Fall (c) Flow around Cylinder

Figure 8: Visualizations of initial condition settings in evaluation scenarios

13

Under review as a conference paper at ICLR 2021

Figure 9: Error trend with respect to time. The density deviation of our model remain close to zero
despite some oscillation at first. Although GNS also maintains a low density deviation, its average
density oscillates more severely. This is consistent with the qualitative comparison, in which the fluid
surface from GNS is oscillating and less compact. CConv fails to maintain constant density and its
density increases significantly after collision to the wall boundary. Both our model and GNS can
predict a low divergence velocity field while CConv fails to capture this property. This somehow
explains why CConv struggles to maintain constant density.The average Chamfer distance to the
ground truth data accumulates at first and stabilizes after system is in equilibrium. CConv has larger
average Chamfer distance while graph-based model’s distances are smaller.

A.3 METRICS EVALUATION DETAILS

We show the error trend of dam collapse and water fall scene under different evaluation metrics in
Figure 9. The position loss analysis of different time step sizes is shown in Figure 10. Position error
of complex scenarios is shown in Figure 11.

A.4 ABLATION STUDY DETAILS

Performance of different graph message aggregate structures is listed in Table 4.

A.5 BASELINES IMPLEMENTATION

Continuous Convolution We use the open-source implementation from Ummenhofer et al. (2020)
3. To give a fair benchmark result we train their network with our dataset. Note our training dataset
is much smaller than theirs and does not include complex geometries. As in our work, we model

3https://github.com/intel-isl/DeepLagrangianFluids

14

Under review as a conference paper at ICLR 2021

Figure 10: Average Chamfer distance to the ground truth data of FGN model under different time
step sizes. FGN can generalized to different time scale with minor difference in performance. The
training data uses a time step size of dt = 0.002s, and FGN converges for all dt < 0.005s.

Figure 11: Average Chamfer distance to the ground truth data of complex scenes. For both scenes, at
first, position error accumulates quickly as system evolves. At some point, the error starts to decrease
until reaching an equilibrium.

Case Model Density error Velocity divergence
Average Chamfer

distance (mm)
Mean Max Mean Max Mean Max

Dam
Collapse

FGN (this work) 0.0461 0.0900 0.0195 0.0280 24.2 30.1
GCN 0.0939 0.3832 0.0196 0.0293 27.7 31.6
SAGE 0.0935 0.3597 0.0196 0.0289 26.4 31.3
MLP 0.0963 0.3624 0.0196 0.0289 28.5 32.8
Ground Truth 0.0380 0.0710 0.0190 0.0268 - -

Water
Fall

FGN (this work) 0.0541 0.1350 0.0207 0.0431 24.8 29.6
GCN 0.0794 0.3373 0.0210 0.0433 25.5 31.7
SAGE 0.0769 0.3254 0.0209 0.0432 25.3 31.4
MLP 0.0830 0.2967 0.0209 0.0433 26.3 32.4
Ground Truth 0.0429 0.0966 0.0196 0.0398 - -

Table 4: Quantitative ablation study. We compare our aggregator against graph convolution networks
(GCN) from Kipf and Welling (2016), Hamilton et al. (2017)’s graph SAGE using mean aggregator
and MLP w/o any graph aggregation operation. All aggregators have two layers.

15

Under review as a conference paper at ICLR 2021

solid obstacles and wall as virtual particles, so we transform these virtual particles into surface and
corresponding normals before inputting them into CConv network. The original CConv uses a time
step size of 0.02s, but given such a large time step size, the qualitative results can be distinct from
ground truth and other model with smaller time step size. Hence during training and comparison we
adopt a time step size of 0.002s for CConv model.

Graph Network-based Simulator We implemented GNS following the description in Sanchez-
Gonzalez et al. (2020). We build GNS with 10 unshared GN blocks, conditioned on 5 previous
velocities and input relative positions as edge features. We chose the connectivity radius to be 2.1D,
so that the number of neighbors is around 20. Sanchez-Gonzalez et al. (2020) use finite difference
to calculate acceleration and velocity, but in our implementation we explicitly maintain an array
to store the velocities of all particles. Additionally, we do not use learned embedding but simple
zero and one to indicate particle material type, as in our testing domain there are only two kinds of
particles - solid and fluid. The loss function and training procedure are implemented as described in
Sanchez-Gonzalez et al. (2020), including noise injection and similar normalization techniques.

For the implementation of GN block, as Sanchez-Gonzalez et al. (2020) states "We use GNs without
global features or global updates (similar to an interaction network)", so we implement the GN block
update mechanism following the description in Battaglia et al. (2018).

e′k = φe(ek,vrk ,vsk ,u) (31)

v′i = φv(ê′k,vi,u) (32)

ê′i = ρe→v (E′i) (33)

where φ is the update function and implemented as MLP here, ρ is aggregation function which
aggregates all the edge attributes to its center vertex, u is the global feature and here we append them
to the nodal features as input feature, rk denotes receiver vertices and sk denotes sender vertices.

In the testing stage, as authors did not state how to set initial velocities, so we just warm start the
simulation by calculating the first 5 frames using MPS method and apply GNS to the rest frames.

16

	Introduction
	Related Works
	Model
	Fluid Dynamics
	Model

	Implementation
	Update Scheme
	Network Architectures

	Experiments
	Training
	Evaluation

	Results
	Conclusion
	Appendix
	Implementation Details
	Training
	Metrics Evaluation Details
	Ablation Study Details
	Baselines Implementation

