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ABSTRACT

Vision generative models have recently made significant advancements along two
primary paradigms: diffusion-style and language-style, both of which have demon-
strated excellent scaling laws. Quantization is crucial for efficiently deploying these
models, as it reduces memory and computation costs. In this work, we systemati-
cally investigate the impact of quantization on these two paradigms. Surprisingly,
despite achieving comparable performance in full precision, language-style models
consistently outperform diffusion-style models across various quantization settings.
This observation suggests that language-style models have superior bit-level scaling
laws, offering a better tradeoff between model quality and total bits. To dissect
this phenomenon, we conduct extensive experiments and find that the primary
reason is the discrete representation space of language-style models, which is more
tolerant of information loss during quantization. Furthermore, our analysis indi-
cates that improving the bit-level scaling law of quantized vision generative models
is challenging, with model distillation identified as a highly effective approach.
Specifically, we propose TopKLD to optimize the transfer of distilled knowledge
by balancing “implicit knowledge” and “explicit knowledge” during the distillation
process. This approach elevates the bit-level scaling laws by one level across both
integer and floating-point quantization settings.

1 INTRODUCTION

Visual generative models have recently progressed rapidly along two primary trajectories. On the one
hand, diffusion-style models (Ho et al., 2020; Dhariwal & Nichol, 2021; Sohl-Dickstein et al., 2015;
Song & Ermon, 2019) have achieved significant success in various applications, such as text-to-image
generation (Halgren et al., 2004; Ramesh et al., 2022), image editing (Kawar et al., 2023; Brooks
et al., 2023; Meng et al., 2021), and image-to-image translation (Choi et al., 2021; Zhang & Chen,
2022), demonstrating impressive scaling laws, as evidenced by models like DIT (Peebles & Xie,
2023). On the other hand, motivated by the potential of visual tokenizers (Van Den Oord et al., 2017)
and the success of large language models, language-style generative models have also seen substantial
advancements (Razavi et al., 2019b; Yu et al., 2021). Pioneering efforts such as VQGAN (Esser
et al., 2021b) and DALL-E (Ramesh et al., 2021) along with their successors, have demonstrated the
potential of language-style models in image generation. The recent development of VAR (Tian et al.,
2024) further underscores the effectiveness of this approach in exhibiting excellent scaling laws.

As visual generative models scale, the increasing number of parameters poses significant challenges
in terms of memory footprint and inference latency. To mitigate these challenges, quantization has
become a crucial technique, traditionally trading off accuracy for efficiency in a specific model
(Xiao et al., 2023; Li et al., 2024c; Liu et al., 2024b). However, with the emergence of models in
varying sizes, quantization must now optimize across different sizes and bit settings to maximize both
performance and efficiency with a series of models. For example, a 4-bit 6B model often outperforms
an 8-bit 3B model, even with the same total bit budget (Zeng et al., 2022). Bit-level scaling laws
(Dettmers & Zettlemoyer, 2023) have become critical in predicting model performance, helping
identify the best precision settings and quantization strategies to enhance accuracy while minimizing
resource usage. Thus, the goal of quantization is shifting toward improving bit-level scaling laws to
optimize the balance between efficiency and performance.
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A key question arises: Do diffusion-style and language-style models exhibit similar bit-level scaling
laws? To investigate this, we choose two representative model series, DiT and VAR for diffusion style
and language style respectively, to exhibit their corresponding scaling laws. Our study covers models
with parameters ranging from 300M to 7B and quantization levels from 3 to 16 bits. Furthermore, we
conduct experiments using both post-training quantization (PTQ) and quantization-aware training
(QAT) techniques (Nagel et al., 2021) under both weight-only and weight-activation quantization
settings.

Our results indicate that while both types of models achieve comparable accuracy at full precision,
language-style models consistently outperform diffusion-style models across various quantization
settings. Specifically, the language-style model demonstrates better bit-level scaling laws than full
precision, whereas diffusion style could even show worse scaling behaviors compared to full precision.
Reducing the weight precision of the language-style model from 16 bits to 4 bits and the activation
precision from 16 bits to 8 bits significantly enhances its generative performance compared to the
full-precision W16A16 model, given the same memory and computing cost constraints.

To reveal the reasons for these differences, we analyze the generation process of the two model
types. We contrast their tolerance to single-step and multi-step inference errors during quantization
in Section 3.2. The results suggest that the discrete representation space introduced by the codebook
in language-style generative models enhances their robustness to quantization, mitigating the impact
of quantization noise on the final image quality. Moreover, we analyze the distribution of activation
values across different layers during the inference process, as illustrated in Figure 4, the use of
a consistent codebook as input features over time helps to alleviate the issue of high variance in
activation features encountered in diffusion-style models, thereby providing a robust foundation for
improved bit-level scaling laws.

Further, we observe that the language-style model’s scaling behavior degrades when the weight
precision is reduced to 3 bits. To improve the bit-level scaling of language-style generative models,
we explored existing state-of-the-art quantization algorithms. Unfortunately, our observations indicate
that they offered limited enhancement, with distillation methods only partially recover the scaling
laws at lower bit precision, approximating the scaling behaviors of W4A16 and W8A8.

Based on our insights on the role of the codebook in representation space reconstruction, we propose
the TopKLD method, which builds upon the inherent top-k sampling mechanism of the codebook to
optimize knowledge transfer efficiency by balancing “implicit” and “explicit” knowledge, thereby
facilitating advanced bit-level scaling behaviors. Notably, in scenarios where only weights are
quantized, 3-bit models outperform those with 4-bit precision in terms of bit-level scaling behavior.
Furthermore, under weight-activation quantization conditions, this approach allows W4A8 models to
surpass the bit-level scaling performance of W8A8 models. We also examine the impact of data types
on model scaling behavior. While data type variations can enhance bit-level scaling laws to a certain
extent, they still exhibit similar trends to those seen in integer quantization. To further improve the
model’s bit-level scaling laws, we apply TopKLD distillation to floating-point quantization, which
results in a more significant enhancement of the model’s scaling performance.

The contributions of this paper are summarized as follows:

• We conducted a comprehensive analysis of existing visual generative models from bit-level
scaling laws and found that, despite achieving comparable performance at full precision,
language-style models consistently outperform diffusion-style models across various quanti-
zation settings.

• We uncover that the discrete representation space in language-style models significantly en-
hances their robustness to quantization. This robustness mitigates the effects of quantization
noise, leading to better bit-level scaling laws.

• We propose the TopKLD-based distillation method, which balances the ”implicit knowledge”
and ”explicit knowledge” derived from full-precision models, enhancing the bit-level scaling
behaviors of language-style models by one level.
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2 BACKGROUND

2.1 VISUAL GENERATIVE MODELS

Visual generative models are predominantly classified into two categories: diffusion-style models
and language-style models.

Diffusion-style generative models Diffusion-style models (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019) are regarded as the state-of-the-art in visual generation due to their high-quality image
(Saharia et al., 2022b; Rombach et al., 2022b) and video (Ho et al., 2022a; Saharia et al., 2022a;
Blattmann et al., 2023a;b) generation, generating images by iteratively refining noisy inputs through a
denoising process. The model learns a parameterized denoising function pθ(xt|xt+1) over the latent
space, which can be summarized as the following process:

pθ(xt|xt+1) = N (xt;
1

αt+1
(β̄t+1 − αt+1

√
β̄2
t − σ2

t+1)ϵθ(xt+1, t+ 1), σ2
t+1I) (1)

where xt represents the noisy data at timestep t, when σt =
β̄t−1βt

β̄t
, βt =

√
1− α2

t , it represents a
standard diffusion process (Ho et al., 2020), whereas when σt = 0, the diffusion process from xt

to xt−1 is a deterministic transformation (Song et al., 2020). However, regardless of the specific
diffusion process, diffusion-style models can generally be viewed as operating within a continuous
latent space. They start with pure Gaussian noise xT and iteratively refine it through a denoising
process to generate a high-quality image x0. Moreover, numerous recent works have established a
strong connection between diffusion models and the mathematical fields of stochastic differential
equations (SDEs) and ordinary differential equations (ODEs) to optimize the diffusion generation
process (Jolicoeur-Martineau et al., 2021; Liu et al., 2022; Lu et al., 2022a;b; Zheng et al., 2023).
Among these, DiT (Peebles & Xie, 2023) has demonstrated promising scaling results, outperforming
all prior diffusion models.

Language-style generative models Language-style models are conceptually derived from au-
toregressive approaches commonly used in natural language processing (NLP), where images are
generated by predicting each element in a sequence based on the tokens previously generated. Specif-
ically, motivated by the potential of visual tokenizer, language-style models utilize a visual tokenizer
f to transform visual inputs into sequences of discrete tokens. Given an image V (where T represents
the batchsize of samples, H is the height, and W is the width), the visual tokenizer generates a
discrete representation as follows:

X = f(V ) ∈ {1, 2, ...,K}B
′×H′×W ′

(2)

where K denotes the size of the codebook (vocabulary), and B′, H ′,W ′ are the dimensions of the
tokenized representation. The resulting discrete token representation X is then reshaped into a
sequence and input into a Transformer-based language model (LM) for generative modeling. In
models like DALL-E, MAGVIT, and Parti, the goal is to predict each token xi conditioned on the
preceding tokens and any additional context c by modeling the conditional distribution:

p(x1, x2, ..., xk) =

K∏
k=1

p(xk|x1, x2, ..., xk−1; c) (3)

During inference, language-style models, which are based on autoregressive methods, adopt various
decoding strategies. Models like ImageGPT (Chen et al., 2020), DALL-E (Ramesh et al., 2021), and
Parti (Yu et al., 2022) utilize a GPT-style autoregressive approach to sequentially generate tokens.
In contrast, models such as MaskGIT (Chang et al., 2022), MAGVIT (Yu et al., 2023a), Phenaki
(Villegas et al., 2022), and MUSE (Chang et al., 2023) follow a BERT-style masked regression
strategy (Yu et al., 2023b), generating tokens in parallel batches. While language-style models
have historically lagged behind diffusion models in visual generation tasks, recent advancements
have revitalized their potential. Among them, VAR (Tian et al., 2024) has demonstrated superior
performance and has exhibited impressive scaling laws as well.
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2.2 QUANTIZATION AND BIT-LEVEL SCALING LAWS

Quantization, a pivotal stage in model deployment, has often been scrutinized for its ability to reduce
memory footprints and inference latencies. Typically, its quantizer Q(X|b) is defined as follows:

Q(X|b) = clip(

⌊
X

s

⌉
+ z, 0, 2b − 1) (4)

Where s (scale) and z (zero-point) are quantization parameters determined by the lower bound l and
the upper bound u of X ,which are usually defined as follow:

l = min(X), u = max(X) (5)

s =
u− l

2b − 1
, z = clip(

⌊
− l

s

⌉
+ z, 0, 2b − 1) (6)

Bit-level scaling law is a strong predictor of model performance. It facilitates the optimization of
accuracy and efficiency by identifying optimal precision settings and quantization strategies within
constrained bit budgets. An effective bit-level scaling law can achieve optimal performance while
minimizing resource consumption. Early studies (Hestness et al., 2017; Rosenfeld et al., 2019; Kaplan
et al., 2020) on LLMs scaling highlighted the need to understand how different variables evolve with
scale, demonstrating that small block sizes and floating-point data types offer advantages in scaling
efficiency (Zeng et al., 2022; Dettmers & Zettlemoyer, 2023). These studies revealed that leveraging
unique scaling properties could maintain nearly identical performance even with low-bit quantization,
without requiring post-training adjustments. However, the exploration of bit-level scaling laws within
visual generative model quantization (Yuan et al., 2022; Li et al., 2022; 2023c;d) remains limited,
our study is an essential step towards understanding how various models and quantization methods
influence bit-level scaling behaviors.

3 EXPERIMENTAL & ANALYSIS

In our experimental study, we evaluate the VAR and DiT models on the ImageNet 256×256 (Deng
et al., 2009) conditional generation benchmarks. The VAR series models include sizes of 310M,
600M, 1B, and 2B, while the DiT series models comprise 458M, 675M, 3B, and 7B. We investigate
two quantization settings: weight-only quantization and weight-activation quantization, analyzing the
scaling behaviors under fixed total model bits MT and total compute bits CT conditions.

Total model bits refer to the bit memory occupied by all weight parameters, reflecting the impact of
weight memory in memory-bound scenarios, whereas total compute bits account for quantization
effects on matrix computations, defined as the total bit memory of weights and activations involved.
for a 7B model under W8A8 quantization, MT ∝ 8 (calculated as 8×7×109), CT ∝ 82 (calculated
as 82×7×109). The quantization precision for weights is varied from 8 bits to 3 bits, while activation
precision is varied from 16 bits to 8 bits, including configurations such as W3A16, W4A16, W8A16,
W4A8, and W8A8.

Through our analysis, we observed that the Fréchet Inception Distance (FID) scores of the generative
models followed a distinct bivariate power function with respect to both the number of parameters
and the bit-precision levels. Notably, different bit-precisions exhibited nearly parallel scaling trends,
thereby validating our decision to employ power laws to characterize these scaling behaviors.

3.1 WHICH TYPE OF VISUAL GENERATIVE MODELS DEMONSTRATE SUPERIOR BIT-LEVEL
SCALING PROPERTIES?

We conducted an analysis of both model types using standard PTQ and QAT methods, with the
results shown in Figure 1. Our findings reveal that, irrespective of the quantization method employed
or whether only weights or both weights and activations are quantized, language-style models
demonstrate superior bit-level scaling behavior. Furthermore, it is evident that within language-style
models, the optimal bit-level scaling behavior is achieved with a 4-bit weight quantization when
solely quantizing weights. Conversely, when both weights and activations are quantized, the W8A8
configuration provides the best scaling performance. Reducing the weight precision to 4-bit in this
scenario results in a degradation of the model’s scaling capabilities.

4
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Figure 1: Investigation of bit-level scaling laws for VAR (left) and DiT (right) models using standard
PTQ and QAT. Left: Quantited VAR exhibits better bit-level scaling laws than full-precision VAR (a
shift towards the lower-left region). Right: Quantized DiT shows ”almost” no improvement compared
to full precision.

3.2 WHY DO LANGUAGE-STYLE GENERATIVE MODELS HAVE BETTER BIT-LEVEL SCALING
LAWS?

Both types of generative models require multiple inference steps to produce the final image. To
uncover the observed differences, we abstracted the inference processes of these models into two
primary phases: model feature extraction and representation space reconstruction. This generative
process is illustrated in Figure.2a.

5
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We separately analyzed the errors after each stage. The representation reconstruction error directly
reflects the generation quality of the models. Therefore, reducing error propagation during the
generation process significantly improves the final output quality. As shown in Figure 2, our analysis
reveals that language-style models exhibit higher fault tolerance in representation space reconstruction.
We believe this is mainly because, compared to the continuous space of diffusion-style models, the
reconstruction process of language-style models occurs in a discrete space, which can significantly
absorb minor errors caused by quantization, resulting in greater resistance to interference.

DiT

QDiT

C

C

VAR

QVAR

D

D

D

C

DiT

QDiT

VAR

QVAR

Error Error

Error Error

Continuous space reconstruction

Discrete space reconstruction

(a) (b) (c)

Figure 2: (a) denotes the generation process of visual generative models. A comparison of time-
varying errors in quantized DiT (b) and VAR (c) indicates that, despite the errors introduced by
quantization during the feature extraction phase in VAR, reconstruction significantly reduces these
errors. Conversely, DiT fails to mitigate its errors and experiences an increase, adversely affecting
the quality of the final output.

The above experiment qualitatively demonstrates that discrete spaces are more tolerant of information
loss during quantization. To quantitatively validate this, we simulated the impact of quantization on
feature extraction results by controlling Gaussian noise intensity via SNR (Box, 1988) and examined
its effect during representation reconstruction. We designed two experiments to study both single-step
quantization error and multi-step error accumulation.

Tolerance to single-step quantization errors We incrementally increased single-step noise in-
tensity and compared the final generation quality to the original results. As illustrated in Figure
3a, the VAR model’s loss exhibited a clear step-like progression, highlighting its discrete space’s
fault tolerance. In contrast, the correlation coefficient (Sedgwick, 2014) between loss and noise
intensity for DiT (0.99) was significantly higher than for VAR (0.86), indicating DiT’s continuous
representation space is more sensitive to errors.

(a) (b)

Figure 3: Analysis of Fault Tolerance in Representation Space Reconstruction Errors. (A lower SNR
indicates a higher noise component).

Tolerance to accumulated quantization errors across multiple steps Since both diffusion-style
and language-style models rely on multiple inference steps to generate final results, we analyzed the
error accumulation from quantization during the reconstruction process. Specifically, equal-intensity
noise is introduced in the initial 10% of inference steps, while the remaining 90% are noise-free.
As shown in Figure 3b. Our findings reveal that the diffusion-style model displayed significant
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error accumulation during the reconstruction process, whereas the language-style model showed a
fluctuating increase in error. This behavior can be attributed to the fault tolerance inherent in the
discrete representation space of language-style models, which mitigates the impact of quantization
errors introduced during the early stages of inference.

Activation distribution Finally, we analyzed the activations of both models, with the visualization
results shown in the Figure 4. It is observed that the variance of activations over time in the VAR
model did not exhibit the same pronounced fluctuations as in the DiT model. This significantly
reduces the difficulty associated with quantizing activations.

(a) (b) (c)

Figure 4: Visualization of activation values in the 5th, 15th transformer blocks for VAR (top) and
DiT (bottom), focusing on the FC1, QKV, and FC2 layers. For additional visualization results, please
refer to the appendix B.

3.3 HOW TO IMPROVE THE BIT-LEVEL SCALING LAWS OF GENERATIVE MODELS?

Given the observed differences in scaling results between language-style models and diffusion-style
models, and the demonstrated advantages of language-style models, an important follow-up motiva-
tion is to enhance the bit-level scaling of language-style models. To this end, we conduct extensive
experiments to investigate the impact of various recently studied advancements in quantization
precision on the bit-level scaling laws of language-style models.

Figure 5: Comparison of bit-level scaling laws across various existing superior PTQ methods. Results
show these methods exhibit only marginal improvements at W8A8 and W4A16, and performance
significantly deteriorates at lower bit settings, suggesting that existing PTQ fail to substantially
enhance bit-level scaling laws.

No substantial scaling improvement with existing methods We evaluated existing quantization
methods and find that while they improve the scaling behavior of models at W3A16 and W4A8, the
best bit-level scaling behavior is still observed at W8A8 and W4A16 settings. The main reason for this
seems to be that the models retain sufficient precision at these precision levels, resulting in minimal
degradation compared to full-precision models, and hence, there is not a significant enhancement in
bit-level scaling, as shown in Figure 5. Lower bit precision often presents more promising scaling
trends. Therefore, to improve the bit-level scaling laws, we aim to enhance the scaling behavior of
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models specifically at W3A16 and W4A8. If you would like to further experimental results, please
refer to Appendix A.

Distillation for restoring the scaling at low bits To further enhance the model’s scaling behavior
at low bits, we apply knowledge distillation in Quantization-Aware Training (QAT), where the full-
precision model serves as the teacher and its quantized variant as the student, learning the token-level
probability distributions to more closely approximate the behavior of its full-precision counterpart. As
shown in Figure 6, the model still exhibits optimal bit-level behavior at W4A6 and W8A8 precision.
However, at lower bit levels, the scaling behavior closely approaches this optimal state, demonstrating
that knowledge from the full-precision model, introduced through distillation, plays a crucial role in
recovering scaling laws at lower bit precisions.

Figure 6: Visualization of bit-level scaling laws with distillation applied to QAT under VAR. With
the use of distillation, the model’s scaling behavior at lower bit precisions is restored to the level of
higher bit precisions. Specifically, at W3A16, the scaling behavior nearly reaches that of W4A16.
When both weights and activations are quantized, the scaling behavior at W4A8 closely approaches
that observed at W8A8.

Distillation with TopKLD for improving the scaling The choice of knowledge for distillation
is crucial (Hinton, 2015; Zhu et al., 2023). (Agarwal et al., 2023) found that the mode-seeking
behavior encouraged by the Reverse KL divergence (Gu et al., 2024) results in better fitting of
”explicit knowledge” compared to the Forward KL divergence for instruction tuning tasks (Chung
et al., 2024). However, (Zhao et al., 2022) reveals that the classic KD loss is a highly coupled form
where non-target logits contain significant ”implicit knowledge”. The Reverse KL divergence
exacerbates the disregard for this knowledge, which is not preferable since the more confident
the teacher model is in a training sample, the more severe the neglect of implicit knowledge
becomes. Conversely, this implicit knowledge is more reliable and valuable. For language-style
models, top-k sampling is often employed to enhance generation quality (Ramesh et al., 2021; Tian
et al., 2024). Therefore, we propose a customized approach that combines topk mode-seeking with
others mode-covering techniques to balance the ”implicit knowledge” and ”explicit knowledge”,
called as TopKLD. In order to achieve this, we decompose the probability vector P as follows, based
on top-K sampling: P = [Ms.Mc]. Here, Ms contains the probabilities of the top-K categories,
which we aim to fit using mode-seeking techniques. Mc includes the probabilities of the remaining
categories, which we fit using mode-covering techniques. The proposed TopKLD can be represented
by the following equation:

TopKLD(PT ||PS) =

T∑
t=1,y′∈Ms

PS(y
′|x, y<t)log

PS(y
′|x, y<t)

PT (y′|x, y<t)
+

T∑
t=1,y′∈Mc

PT (y
′|x, y<t)log

PT (y
′|x, y<t)

PS(y′|x, y<t)

(7)
Where, PT and PS denote the full-precision and quantized model, respectively. Figure 7 demonstrates
the differences between Forward KLD, Reverse KLD, and TopKLD when a Gaussian distribution
attempts to fit a Gaussian Mixture, along with their respective scaling behavior results under the
W3A16 setting. It is evident that TopKLD effectively balances between ”implicit knowledge” and
”explicit knowledge”, allowing for better utilization of the full-precision model’s information. Figure
7 illustrates the bit-level scaling laws of the model using TopKLD under weight-only and weight-
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activation quantization settings. It can be observed that the model exhibits improved scaling laws
under W3A16 and W4A8 settings, further enhancing the scaling behavior of the model.

Additionally, floating-point (FP) quantization has become a promising alternative to integer quanti-
zation because of its capability to manage long-tail distributions and its greater flexibility (Kuzmin
et al., 2022). We applied TopKLD distillation to FP quantization, demonstrating its applicability
in floating-point settings and further improving the model’s bit-level scaling behavior compared to
integer quantization.

Explicit Implicit
(a)

(c) (d)

(b)

Figure 7: (a) Comparison of Reverse KL, Forward KL, and TopKLD when a Gaussian distribution
attempts to fit a Gaussian mixture (Teacher). (b) Comparison of different KL divergences under
W3A16, showing that TopKLD achieves the best performance, outperforming the optimal scaling
behavior (4 bits) with ForwardKLD. (c-d) Visualization of bit-level scaling laws under TopKLD.
Additionally, under floating-point datatype, TopKLD can further improve the scaling behavior.

4 RELATED WORK

Large language model quantization. As model scaling capabilities improve and the number of
parameters increases, the most closely related work is on large language model (LLM) quantization
for models with over a billion parameters. Compared to smaller models, larger models quantization
poses some unique challenges, such as emergent outliers (Chee et al., 2024; Lin et al., 2024) and the
need for optimized low-bit inference (Tseng et al., 2024; Dettmers et al., 2024). To address these
issues, previous studies have proposed solutions like outlier processing and first- or second-order
optimization. Methods such as SmoothQuant (Xiao et al., 2023), Outlier Suppression (Wei et al.,
2022), and Outlier Suppression+ (Wei et al., 2023) focus on managing activation outliers, achieving
promising results in W8A8 precision. GPTQ (Frantar et al., 2022) leverages second-order Hessian
matrix optimization to adjust model weights, obtaining high accuracy in W4A16. Furthermore,
techniques like OmniQuant (Shao et al., 2023) and QLLM (Liu et al., 2023) apply first-order gradient-
based optimization for quantizing parameters, yielding strong results in models using 4-bit or higher
precision settings.

Visual model quantization In visual model quantization, optimization has not advanced in line
with the scaling capabilities of models. Instead, efforts have focused more on addressing the specific
distribution characteristics of individual layers and the multi-timestep inference features of generative
models. For example, FQ-ViT (Lin et al., 2021) introduces Powers-of-Two Scale and Log-Int-
Softmax techniques to quantize LayerNorm and Softmax operations, enabling fully quantized models.
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PTQ4ViT (Yuan et al., 2022) employs twin uniform quantization to manage unbalanced post-Softmax
and post-GELU activation distributions, using a Hessian-guided metric for optimal quantization
scales. PTQ4DM (Shang et al., 2023) and Q-diffusion (Li et al., 2023b) introduce tailored calibration
samples designed to account for activation distribution variance across timesteps. HQ-DiT (Liu
& Zhang, 2024) adaptively selects the optimal floating-point format based on the data distribution.
PTQ4DiT (Wu et al., 2024) proposes a channel-wise salience balance between weight and activation,
placing greater emphasis on enhancing complementarity across timesteps.

5 RECOMMENDATIONS & FUTURE WORK

A well-optimized bit-level scaling behavior could offer substantial benefits by enabling the fine-tuning
of models to achieve higher efficiency and accuracy under constrained resource conditions. Our study
underscores the significant potential of quantization in optimizing the bit-level scaling laws of visual
generative models, particularly in language-style models. The results indicate that achieving optimal
bit-level scaling behavior requires a synergistic interaction between model design and quantization
algorithms. Our study is an essential step towards understanding how various models and quantization
methods influence bit-level scaling behavior, and it also provides the following recommendations for
future work.

Exploration of Advanced Quantization Techniques Our results demonstrate that while existing
quantization methods provide a foundation for enhancing bit-level scaling, they fall short of fully
optimizing the scaling behaviors at extremely low bit precisions (e.g.3 bits). This indicates that
there is significant room for improvement, particularly in advancing the scaling performance of
models operating under strict bit constraints. Future research should focus on developing advanced
quantization techniques tailored to the unique characteristics of language-style and diffusion-style
models. This could involve creating novel quantization strategies that specifically address the
challenges associated with lower-bit scaling behavior.

Optimization of Knowledge Distillation Techniques Our experiments reveal that distillation is
an excellent method for restoring bit-level scaling behavior. In this context, our proposed TopKLD
method shows promise in balancing ”implicit knowledge” and ”explicit knowledge” to improve
bit-level scaling. In the future, we will optimize this method further, potentially by integrating it with
other knowledge distillation frameworks or exploring its effectiveness across different quantization
settings and model architectures. The goal would be to develop a robust distillation strategy that
consistently enhances bit-level scaling across a wide range of models.

Investigating More Comprehensive Model Scaling Laws Our work primarily focuses on
diffusion-style and language-style models, particularly those that have clearly exhibited scaling
laws, such as DIT and VAR. Expanding this research to encompass a wider array of visual generative
models could offer a more comprehensive understanding of bit-level scaling laws. Furthermore,
recent studies (Tschannen et al., 2023; Li et al., 2024a) have concentrated on continuous-valued
tokens in sequence models. Exploring the applicability of our findings to these generative paradigms
could provide valuable insights into the generalizability of these scaling laws.

6 CONCLUSION

Our study provides a comprehensive analysis of the distinct bit-level scaling behaviors in visual gener-
ative models, revealing key differences in their scaling performance. We found that the representation
space reconstruction in language-style models offers a more stable foundation for scaling at low bit
precision. Moreover, we introduced the TopKLD method, which enhances knowledge transfer from
full-precision models by effectively balancing explicit and implicit knowledge, thereby improving
the bit-level scaling performance of language-style models. Overall, our study offers new insights
into the design of future quantization and visual model strategies that can optimize both memory
efficiency and model accuracy.
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A DETAILS OF THE IMPACT OF EXISTING PTQ METHODS ON THE BIT-LEVEL
SCALING LAWS OF VISUAL GENERATIVE MODELS.

These sections provide a comprehensive analysis of the effects of various superior PTQ methods on
language-style vision generative models. We categorize past PTQ algorithms into three main types:
first-order gradient optimization, second-order Hessian matrix optimization, and vector quantization.
We select representative methods from each category to explore their influence on the bit-level scaling
laws of visual generative models.

A.1 DETAILED EXAMINATION OF FIRST-ORDER GRADIENT OPTIMIZATION IN
POST-TRAINING QUANTIZATION

Figure 8: Bit-Level scaling laws based on first-order gradient optimization (Omniquant) in PTQ

PTQ methods based on first-order gradient optimization aim to minimize quantization error while
adapting to both data and task-specific losses. In this framework, the objective is to optimize both
quantization step sizes and zero points. This can be formulated as follows:

argmin
S,Z

E(T (W,X), T (Q(W ), Q(X)) (8)

where S,Z represent the step sizes and zero points for activation and weight quantization, respectively.
E(·) measures the reconstruction error between the quantized and full-precision model, and Q(·)
denotes a uniform quantizer. This formulation allows for the optimization of both step sizes and
zero points across layers or blocks in models. Previous PTQ methods utilizing gradient optimization,
such as AdaRound (Nagel et al., 2020) and BRECQ (Li et al., 2021), build upon this foundation.
However, as the number of model parameters increases, it has been found that these methods cannot
be effectively applied to models with billions of parameters due to the challenges in optimizing within
the vast solution space. To address this issue, OmniQuant (Shao et al., 2023) introduces a novel
optimization pipeline that minimizes block-wise quantization error, allowing additional quantization
parameters to be optimized in a differentiable manner. We formulate the optimization goal as follows:

arg min
γ,β,s

||F(W,X)−F
(
Qw(W; γ, β), Qa(X, s, δ)

)
|| (9)

where F represents the mapping function for a transformer block in the model, Qw(·) and Qa(·)
represent weight and activation quantizer, respectively, γ, β, s, δ are quantization parameters in
learnable weight clipping and learnable equivalent transformation, which are defined as follows:

Wq = clamp(⌊W
h

⌉+ z, 0, 2N − 1),where h =
γmax(W)− βmin(W)

2N − 1
, z = −⌊βmin(W)

h
⌉

(10)
Y = XW +B = [(X− δ)⊘ s︸ ︷︷ ︸

X̃

] · [s⊙W︸ ︷︷ ︸
W̃

] + [B+W︸ ︷︷ ︸
B̃

] (11)

Thus, we experiment with both weight-only and weight-activation quantization to assess their impact
on bit-level scaling behavior. The results are as Figure 8 in the Appendix A.
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Figure 9: Bit-Level scaling laws based on second-order hessian matrix optimization (GPTQ) in PTQ

A.2 DETAILED EXAMINATION OF SECOND-ORDER HESSIAN MATRIX OPTIMIZATION IN
POST-TRAINING QUANTIZATION

To reduce the impact of quantization noise on model accuracy, Optimal Brain Quantization (OBQ)
(Frantar & Alistarh, 2022) extends the Optimal Brain Surgeon (OBS) (LeCun et al., 1989) framework
by incorporating second-order Hessian information to minimize quantization errors. The goal is to
minimize the Hessian-weighted error introduced by quantizing weights W(ℓ):

E =
∑
q

|Eq|22; Eq =
W:,q − quant(W:,q)[

H−1
]
qq

. (12)

However, its cubic runtime makes OBQ impractical for large models with scaling characteristics.
Specifically, for a drow × dcol matrix W, the runtime scales as O(drow · d3col). To address these
scalability issues, GPTQ (Frantar et al., 2022) improves on OBQ by quantizing all weights in a
column simultaneously using a shared Hessian H(ℓ) across rows of wight W(ℓ). After quantizing a
column q, the remaining columns q′ > q are updated using a Hessian-based rule δ to account for the
quantization error in column q, which is given by:

δ = −W:,q − quant(W:,q)[
H−1

]
qq

H:,(q+1): (13)

To improve efficiency, GPTQ applies these updates in blocks of size B, reducing the amount of data
transfer. The error Eq in Equation 12 is accumulated while columns in block B are processed and
applied to the remaining columns afterward. Additionally, GPTQ uses a Cholesky decomposition
of the inverse Hessian H−1, providing a more stable and efficient alternative to OBQ’s Hessian
updates. These modifications make GPTQ significantly faster and more scalable for large models
while maintaining accuracy in low-bit quantization. We also tested its impact on the model’s bit-level
scaling laws under weight-only quantization, with the results shown in the Figure.9 of the Appendix
A.

A.3 DETAILED EXAMINATION OF VECTOR QUANTIZATION IN POST-TRAINING
QUANTIZATION

Scalar quantization as presented in the previous section, is efficient but limited to equidistant spacing
of representable points. A more flexible quantization approach is Vector quantization using higher-
dimensional codebooks quantization. In vector quantization (VQ), each centroid in the codebook C
represents d values, and each d-dimensional vector in x is indexed into Cd, where Cd is a codebook
with d-dimensional entries (Gersho & Gray, 2012). Product quantization involves splitting a D-
dimensional vector into multiple d-dimensional sub-vectors. GPTVQ (van Baalen et al., 2024)
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extends GPTQ to vector quantization by quantizing d columns at a time. Instead of rounding to the
nearest centroid, GPTVQ selects the optimal centroid by minimizing:

j = argmin
m

(
x − c(m)

)T

H(i)
(

x − c(m)
)
. (14)

Equation 14 is used for choosing the optimal assignment j for data point x(i) and the corresponding
inverse sub-Hessian H(i). After quantizing d columns, GPTVQ updates the remaining weights and
applies the accumulated update in a single operation. To further reduce quantization error, multiple
codebooks are used per layer, each assigned to a group of weights. the detailed scaling laws shown in
the Figure.10 of the Appendix A.

Figure 10: Bit-Level scaling laws based on Vector quantization (GPTVQ) in PTQ

B COMPARISON OF ACTIVATION VALUE DISTRIBUTIONS VISUALIZATION

VAR-fc1

Figure 11: The visualization for the activation value distributions in the fc1 layers of VAR across the
specified blocks (3rd, 6th, 9th, 13th, 16th, 19th).
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DiT-fc1

Figure 12: The visualization for the activation value distributions in the fc1 layers of DiT across the
specified blocks (3rd, 6th, 9th, 13th, 16th, 19th).

VAR-fc2

Figure 13: The visualization for the activation value distributions in the fc2 layers of VAR across the
specified blocks (3rd, 6th, 7th, 9th, 11th, 19th).
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DiT-fc2

Figure 14: The visualization for the activation value distributions in the fc2 layers of DiT across the
specified blocks (3rd, 6th, 7th, 9th, 11th, 19th).

VAR-qkv

Figure 15: The visualization for the activation value distributions in the qkv layers of VAR across the
specified blocks (3rd, 6th, 9th, 13th, 16th, 19th).

C SUPPLEMENT MATERIALS FOR REBUTTAL

C.1 OVERVIEW OF VISUAL GENERATION MODELS

In the current landscape of vision generation models, there are two main development paths based on
their generation mechanisms and representation spaces: language-style models and diffusion-style
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DiT-qkv

Figure 16: The visualization for the activation value distributions in the qkv layers of DiT across the
specified blocks (3rd, 6th, 9th, 13th, 16th, 19th).

models, as well as models operating in discrete and continuous spaces. To systematically reveal the
scaling laws, we present the following comparative table 1.

C.2 EMPIRICAL VALIDATION THROUGH ADDITIONAL MODELS

To validate the generality of our findings in Section 3 regarding the experiments and conclusions on
VAR and DIT, we conducted experiments using standard PTQ on two additional models that exhibit
scaling laws: MAR (Li et al., 2024b) and LlamaGen (Sun et al., 2024)

MAR represents a continuous language-style model, aligning with the characteristics of DIT. Llama-
Gen is a discrete language model, similar to VAR in terms of its discrete representation space. The
results, as shown in the figure 17, reveal the following key observations:

MAR fails to exhibit superior bit-level scaling laws, consistent with our conclusion in Section 3.2.
This can be attributed to its use of a continuous representation space, which is more sensitive to
quantization effects.

LlamaGen demonstrates exceptional bit-level scaling laws. This aligns with our conclusion in Section
3.1, further confirming that discrete representation spaces provide significant advantages for bit-level
scaling laws compared to continuous representation spaces.

These findings validate the broader applicability of our conclusions, reinforcing the importance of
representation space choice in determining the scaling behavior of visual generation models.

Additionally, we also explored the effect of Top KLD on LlamaGen. Our experiments reveal that
incorporating TopKLD significantly enhances the model’s bit-level scaling laws, providing a more
stable performance across various bit precisions,as shown in fig.18.

C.3 COMPARISON OF TOP KLD WITH MAINSTREAM QUANTIZATION METHODS

To further highlight the advantages of Top KLD, we compared its performance with several main-
stream quantization techniques, including Smoothquant (Xiao et al., 2023), Omniquant (Shao et al.,
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Table 1: Scaling Laws and Characteristics of Vision Generation Models, where D-style and L-style
represent Diffusion-style and Language-style vision generation models,respectively.

Model Type Discrete/Continuous Model #para FID IS Dates Scaling ability

D-style

Continuous ADM (Dhariwal & Nichol, 2021) 554M 10.94 101 2021.07 ×
Continuous CDM (Ho et al., 2022b) - 4.88 158.7 2021.12 ×
Continuous LDM-8 (Rombach et al., 2022a) 258M 7.76 209.5 2022.04 ×
Continuous LDM-4 (Rombach et al., 2022a) 400M 3.6 247.7 ×

Continuous DiT (Peebles & Xie, 2023)

458M 5.02 167.2

2023.03 ✓
675M 2.27 278.2

3B 2.1 304.4
7B 2.28 316.2

Continuous MDT (Gao et al., 2023) 676M 1.58 314.7 2024.02 ×
Continuous DiMR (Liu et al., 2024a) 505M 1.7 289 2024.07 ×

Discrete VQ-diffusion (Gu et al., 2022) 370M 11.89 - 2022.03 ×
Discrete VQ-diffusion-V2 (Tang et al., 2022) 370M 7.65 - 2023.02 ×

L-style

Discrete MaskGIT (Chang et al., 2022) 177M 6.18 182.1 2022.02 ×
Discrete RCG(cond.) (Li et al., 2023a) 502M 3.49 215.5 2023.12 ×
Discrete MAGVIT-v2 (Yu et al., 2023b) 307M 1.78 319.4 2023.04 ×
Discrete TiTok (Yu et al., 2024) 287M 1.97 281.8 2024.07 ×
Discrete MaskBit (Weber et al., 2024) 305M 1.52 328.6 2024.09 ×
Discrete VQVAE (Razavi et al., 2019a) 13.5B 31.11 45 2019.06 ×
Discrete VQGAN (Esser et al., 2021a) 1.4B 5.2 175.1 2021.07 ×
Discrete RQTran (Lee et al., 2022) 3.8B 3.8 323.7 2022.03 ×
Discrete VITVQ (Yu et al., 2021) 1.7B 3.04 227.4 2022.07 ×

Discrete VAR (Tian et al., 2024)

310M 3.3 274.4

2024.04 ✓
600M 2.57 302.6

1B 2.09 312.9
2B 1.92 323.1

Discrete LlamaGen (Sun et al., 2024)

343M 3.07 256.06

2024.07 ✓
775M 2.62 244.1
1.4B 2.34 253.9
3.1B 2.18 263.3

Continuous MAR (Li et al., 2024b)
208M 2.31 281.7

2024.07 ✓479M 1.78 296
943M 1.55 303.7

2023), GPTQ (Frantar et al., 2022), GPTVQ (van Baalen et al., 2024). Our analysis shows that Top
KLD consistently achieves the SOTA results across various bit settings.

Table 2: Comparison of Top KLD with Mainstream Quantization Methods under weight-only
quantization

#bit Method d16 d20 d24 d30
W16A16 FP16 3.3 2.57 2.19 1.92

W8A16

GPTQ 3.41 2.66 2.12 1.97
GPTVQ 3.40 2.637 2.398 2.11
OmniQ 3.62 2.72 2.2098 2.0636

Forward-KLD 3.41 2.636 2.40 2.05
Reverse-KLD 3.41 2.636 2.41 2.04

TopKLD 3.40 2.634 2.394 2.01

W4A16

GPTQ 4.64 3.247 2.572 2.277
GPTVQ 3.92 2.96 2.634 2.226
OmniQ 4.08 3.17 2.56 2.55

Forward-KLD 3.95 3.06 2.63 2.21
Reverse-KLD 3.89 3.05 2.59 2.18

TopKLD 3.82 2.95 2.53 2.12

W3A16

GPTQ 27.75 16.11 15.45 13.48
GPTVQ 12.69 9.01 6.29 5.52
OmniQ 18.18 10.67 6.15 3.93

Forward-KLD 4.27 3.45 2.96 2.55
Reverse-KLD 4.02 3.25 2.91 2.55

TopKLD 3.85 3.17 2.66 2.25
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Figure 17: Investigation of bit-level scaling laws for MAR (left) and LlamaGen (right) models using
standard PTQ. right: Quantited LlamaGen exhibits better bit-level scaling laws than full-precision
LlamaGen.

Figure 18: TopKLD provides a stable enhancement to the bit-level scaling ability of LlamaGen,
particularly in the low-bit settings of W3A16 and W4A8.

C.4 THE ABLATION OF TOPKLD

To further investigate the effectiveness of Top KLD, we conducted an ablation study to assess the
impact of different components of the method on model performance,as shown in table 4 and 5

To understand the impact of Top-K sampling on the model’s bit-level scaling, we conducted an
ablation study with different values of K. The results shown in the table below reveal the following:
(1) While the choice of K can influence the final generation quality to some extent, it does not affect
the overall trend of the bit-level scaling laws. (2) The best performance occurs when the value of K
matches the Top-K sampling used by the model during image generation.
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Table 3: Comparison of Top KLD with Mainstream Quantization Methods under weight-activation
quantization

#bits Method d16 d20 d24 d30
W16A16 FP 3.3 2.57 2.19 1.92

W8A8

SmoothQ 3.81 2.68 2.23 2.01
OmniQ 3.75 2.75 2.18 2.08

ForwardKLD 3.8 2.72 2.16 2.10
TopKLD 2.75 2.7 2.18 1.98

W4A8

SmoothQ 7.21 4.32 3.21 2.65
OmniQ 6.92 4.35 3.11 2.69

ForwardKLD 6.62 3.95 3.01 2.35
TopKLD 5.89 3.62 2.81 2.15

Table 4: Ablation of TopKLD

#bits Method d16 d20 d24 d30
W16A16 FP 3.3 2.57 2.19 1.92

W3A16

TopKLD (K = 400) 3.95 3.21 2.77 2.29
TopKLD (K = 500) 3.91 3.24 2.71 2.24
TopKLD (K = 600) 3.85 3.17 2.66 2.25
TopKLD (K = 700) 3.92 3.19 2.72 2.25
TopKLD (K = 800) 3.96 3.19 2.73 2.29

Table 5: Ablation of TopKLD

#Bits Method d16 d20 d24 d30
W16A16 FP16 3.3 2.57 2.19 1.92

W8A16

MSE 3.55 2.71 2.35 2.05
JS Divergence 3.50 2.69 2.22 2.05
Forward-KLD 3.41 2.636 2.40 2.05
Reverse-KLD 3.41 2.636 2.41 2.04

TopKLD 3.40 2.634 2.394 2.01

W4A16

MSE 3.97 3.12 2.69 2.25
JS Divergence 3.92 3.01 2.65 2.23
Forward-KLD 3.95 3.06 2.63 2.21
Reverse-KLD 3.89 3.05 2.59 2.18

TopKLD 3.82 2.95 2.53 2.12

W3A16

MSE 4.56 3.89 3.54 3.01
JS Divergence 4.45 3.72 3.25 2.51
Forward-KLD 4.27 3.45 2.96 2.55
Reverse-KLD 4.02 3.25 2.91 2.55

TopKLD 3.85 3.17 2.66 2.25
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