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ABSTRACT

Knowledge graphs continuously evolve, making the prediction of future links a
crucial but challenging task. Current methods, whether based on dynamic graph
neural networks or static retrieval-augmented generation (RAG) for Large Lan-
guage Models (LLMs), struggle with generalization. They often fail to capture the
real-time, characteristic evolution of the graph during the testing phase, leading
to degraded performance from distribution shifts. To address this, we propose
a new training-free paradigm, termed Dynamic Cognition (DyCo), which posits
that effective link prediction hinges on an agent’s ability to continuously perceive
graph evolution and adapt its strategies in-situ. Inspired by this, we introduce a
novel framework DyCo-LLM, which enables an LLM to perform live adaptation
for temporal link prediction. At its core is a dynamic context engine that tailors
the LLM’s prompts on the fly. This engine features an adaptive multi-path recall
and scoring mechanism that adjusts its parameters based on the evolving node-
and graph-level features. Furthermore, the framework incorporates a dynamic
few-shot learner that generates corrective reasoning examples from prediction fail-
ures, allowing the LLM to learn from its mistakes in real-time without retraining.
Experimental results on two large-scale dynamic knowledge graphs demonstrate
that our approach achieves state-of-the-art performance in the link prediction task.
Ablations verify that each recall path is indispensable, and balanced weights are
critical to fuse structural–semantic signals and history–self similarity. In addi-
tion, the reflective few-shot routine provides consistent gains. The source code is
available at https://anonymous.4open.science/r/13htrueiwbgjkdsb/.

1 INTRODUCTION

A Temporal Knowledge Graph (TKG) is a dynamically evolving structured representation of knowl-
edge, where facts are encoded as timestamped edges between entities. A long line of parameter-trained
models formulates TKG forecasting as autoregressive or rule/path-based reasoning with learned
representations—e.g., recurrent or sequence models for future events (RE-NET), explainable sub-
graph expansion (xERTE), and temporal logical rules (TLogic) (Jin et al., 2019; Han et al., 2020;
Liu et al., 2022). These approaches achieve solid performance but typically require re-training or
careful fine-tuning to track distribution shift, can overfit to dataset idiosyncrasies, and often struggle
with inductive generalization or realistic evaluation under harder negatives (Poursafaei et al., 2022;
Gastinger et al., 2024).

In parallel, a second line of work enhances LLMs with specialized memory mechanisms for TKG
forecasting: using in-context learning directly for TKG (ICL, see Fig. 1), combining rule-guided
temporal retrieval with few-shot instruction tuning (GenTKG), or constructing historical contexts
via analogical replay (AnRe) (Lee et al., 2023; Liao et al., 2024; Tang et al., 2025). This direction
shows promising zero-/few-shot generalization (Zhao et al., 2023; Brown et al., 2020), but exposes
a deeper bottleneck: memory and retrieval remain static and weakly coupled to the graph’s live
dynamics—fixed windows or hierarchical paging cannot expand/update with event accumulation,
long-context recall amplifies noise (Packer et al., 2023; Jiang et al., 2024; Wu et al., 2025), and
write/eviction is not conditioned on query-time structure, semantics, or recency—leading to failures
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under tight input budgets and motivating an in-situ, diagnosis-driven adaptation of recall, scoring,
and prompting.
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Figure 1: Convert the temporal knowledge graph
into a textual structural context and use LLMs for
link prediction.

To address these challenges, we argue that effec-
tive temporal knowledge graph reasoning must
account for two crucial aspects of dynamic evo-
lution: the continuous accumulation of event
data, which demands a memory mechanism ca-
pable of efficient expansion and updates, and the
shifting relevance of historical information as
the graph evolves, which necessitates intelligent
selection of the most pertinent context under
limited input constraints.

Motivated by these requirements, we introduce
DyCo-LLM. DyCo-LLM treats the LLM as a
self-regulating reasoner that adapts at inference
time through a closed loop: Adaptive Param-
eters first diagnose the current query’s struc-
tural neighborhood, semantic associations, and
temporal recency, and produce a set of runtime
parameters that steer subsequent steps; Multi-
path Recall Process then retrieves candidates
along structural, semantic, and temporal paths in
parallel, with the diagnostic outputs adaptively
governing recall strength and complementarity;
Dynamic Score Calculation fuses multi-view
evidence together with history/self-similarity trade-offs to rank candidates and set thresholds, yielding
a compact, targeted context for the LLM; Self-diagnosis Reasoning analyzes failure cases, syn-
thesizes targeted few-shot exemplars, and feeds them into subsequent, similar queries to achieve
continual improvement. This closed loop enables the model to adapt in-situ without updating weights.

We conduct comprehensive evaluations on two standard TKG benchmarks (ICEWS and
GDELT) (Garcia-Duran et al., 2018; Leetaru & Schrodt, 2013). Baselines span both routes: parameter-
trained (JODIE, TGAT, DyGFormer, etc.) (Kumar et al., 2019; Trivedi et al., 2018; Xu et al., 2020;
Wang et al., 2022; 2021; Cong et al., 2023; Yu et al., 2023) and LLM-based (ICL, GAD, AnRe) (Lee
et al., 2023; Lei et al., 2025; Tang et al., 2025). Our main results use a Qwen3 (Yang et al., 2025) as
the core reasoner. The experimental results indicate that DyCo-LLM consistently surpasses repre-
sentative LLM-based methods and remains competitive with parameter-trained models, achieving
SOTA results under the inductive setting and demonstrates excellent generalization ability. Ablations
demonstrate that all three recall paths and the dynamic scoring are indispensable, while the adaptive
parameters exhibit stable interpretability.

Our contributions can be summarized as follows:

• We propose a training-free, test-time adaptive framework. DyCo-LLM performs query-level
adaptation via runtime diagnosis that jointly drives multi-path recall, dynamic scoring, and reflective
prompting—achieving in-situ adaptation without updating weights.

• We unify the paradigms of dynamic graph representation learning and large language model
memory research for knowledge graphs, proposing a unified model framework.

• Our method achieves state-of-the-art performance on knowledge graph link prediction tasks
without requiring any fine-tuning, even surpassing most approaches trained on dedicated datasets.

2 PRELIMINARIES

Temporal Knowledge Graph. A Temporal Knowledge Graph (TKG) is represented as a sequence
of timestamped facts, denoted as G = {e1, e2, . . . , eN}, where each fact ek is a quadruple (u, r, v, t).
Here, u, v ∈ E are the head and tail entities from a set of entities E , r ∈ R is the relation from
a set of relations R, and t ∈ T is the timestamp from a set of discrete timestamps T , indicating
when the interaction occurred. The facts are chronologically ordered, such that for any k < j, the
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Figure 2: Overview of DyCo-LLM. (1) Multi-path Recall Process: Retrieves a tailored candidate set
from multiple dimensions using the adaptive k-values. (2) Dynamic Score Calculation: Scores and
partitions candidates using adaptive weights to construct a context-rich prompt. (3) Self-diagnosis
Reasoning: Generates explanatory few-shot examples from incorrect predictions to dynamically
refine the model’s knowledge. (4) Adaptive Parameters Module: Generates in-situ hyperparameters
by diagnosing the query’s local context.

corresponding timestamps satisfy tk ≤ tj . The TKG can also be viewed as a stream of subgraphs
G = {G1,G2, . . . ,G|T |}, where each Gt contains all facts that occurred at timestamp t.

Link Prediction on TKG. The task of link prediction on a TKG is to forecast future interactions
based on historical facts. Given the graph G<tq = {(u, r, v, t) ∈ G|t < tq} containing all interactions
before a query time tq, the goal is to predict the missing tail entity for a query (uq, rq, ?, tq). The
model is tasked with ranking all candidate entities v ∈ E based on their likelihood of completing the
quadruple, and the primary objective is to assign the highest rank to the ground-truth entity vq .

In-context Learning. In-context Learning (ICL) is an emergent capability of Large Language
Models (LLMs) to perform tasks by conditioning on a structured textual prompt, without any
updates to the model’s parameters. A prompt P is constructed to provide the LLM with both task-
specific context and the query. Typically, P consists of a set of demonstrations (few-shot examples)
C = {(x1, y1), . . . , (xk, yk)} and a query xq. The modelM is expected to generate the answer yq
by inferring the underlying task from the examples, i.e., yq =M(C, xq).

3 METHODOLOGY

Principle. We pursue in-situ adaptation, treating the LLM as a cognitive agent that diagnoses
each query’s local context and adapts its prediction strategy accordingly. Concretely, the system
dynamically generates a small set of hyperparameters that govern candidate recall, evidence fusion,
and prompt-based reasoning, allowing the model to shift focus between structural and semantic
signals as needed.

Framework. As shown in Figure 2, the Adaptive Parameters module inspects the query node u
and produces five hyperparameters (kstr, ksem, ktime, α, β), which steer the downstream pipeline:
(i) Multi-path Recall Process retrieves a tailored candidate set using the adaptive k’s; (ii) Dynamic
Score Calculation ranks and partitions candidates under the adaptive weights α and β, yielding
a compact, informative prompt for the LLM; and (iii) Self-diagnosis Reasoning integrates error
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reflection dynamically into the reasoning process as few-shot examples to enhance subsequent queries.
Detailed components appear in §3.1, §3.2, §3.3, and §3.4.

3.1 MULTI-PATH RECALL PROCESS

To avoid prohibitive full-graph scans on large temporal KGs, we retrieve a compact, high-quality
candidate set C for query (u, r, ?, t) via three complementary strategies that reflect distinct facets of
graph evolution: (i) temporal activity, (ii) structural proximity, and (iii) semantic similarity. This
multi-view design yields candidates that are both comprehensive and context-aware. Formally, given
(u, r, ?, t), the module retrieves three subsets:

Structural Recall (Cstruc) captures local graph topology and community structure. Specifically, we
retrieves the kstruc nodes with the highest number of common neighbors with u, based on the graph
adjacency structure up to time t.

Semantic Recall (Csem) selects the ksem nodes whose textual descriptions (e.g., entity names or
attributes) are most semantically similar to that of u. We use a pre-trained sentence transformer to
encode entity texts and compute cosine similarities in the embedding space.

Temporal Recall (Ctime) identifies the ktime most recently active nodes in the graph prior to time t.
This is implemented by scanning historical events in reverse chronological order and selecting nodes
that interacted closest to t.

The final candidate set is the union of these three subsets: C = Ctime ∪ Cstruc ∪ Csem.

3.2 DYNAMIC SCORE CALCULATION

Given the candidate set C from multi-path recall, this module assigns each v ∈ C a scalar score
Sfinal(v) indicating the likelihood of forming a future link with u at time t. The scoring follows a
weighted fusion of two complementary signals: (i) similarity to u’s historical partners (historical
similarity) and (ii) self-similarity between u and v. This dual-view design leverages past interaction
patterns while preserving direct feature affinity. Algorithm 1 summarizes the procedure, which
proceeds as follows:

Step 1: Historical partner weights. Frequent and recent partners of u are stronger behavioral priors,
we therefore emphasize them when aggregating evidence: W (p) = Count(u, p) · exp

(
− λtime (t−

tlast(u, p))
)
, where Count(u, p) is the number of past interactions between u and partner p before t;

tlast(u, p) is their last interaction time; λtime > 0 is a fixed temporal decay rate; t is the query time.

Step 2: Similarities. Structure captures network topology while semantics captures textual/attribute
cues. We introduce a weighted blend reduces single-view bias:

Mtotal(v, p) = αSimstruc(v, p) + (1− α)Simsem(v, p),

where Simstruc and Simsem are cosine similarities in structural and semantic embedding spaces,
respectively; α ∈ [0, 1] adaptively balances structural vs. semantic evidence; estruc(·) comes from
the dynamic random projection module (see Appendix E), and esem(·) from a pre-trained sen-
tence/attribute encoder.

Step 3: Historical similarity. Candidates resembling weighted historical partners are more plausible
future links, reflecting repeated interaction patterns. Thus, we define the formula as follows:

Shist(v) =
∑

p∈P(u)

Mtotal(v, p)W (p),

where P(u) is the set of u’s partners before t; Mtotal(v, p) and W (p) are from Steps 1–2.

Step 4: Self-similarity. The self-similarity score directly measures the affinity between the can-
didate v and the query node u itself, again in both structural and semantic spaces: Sself(v) =
α · Simstruc(v, u) + (1− α) · Simsem(v, u).

Step 5: Final score and partition. The final score for candidate v is a weighted average of the
historical and self-similarity scores, controlled by the adaptive parameter β: Sfinal(v) = β · Shist(v) +
(1 − β) · Sself(v). We sort candidates by Sfinal and partition them into positives, ambiguous, and
negatives using thresholds (p, q).

4
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3.3 SELF-DIAGNOSIS REASONING

This module links statistical signals from the graph to the LLM’s symbolic reasoning by turning
link prediction into structured evidence-based inference. It builds an informative prompt from the
outputs of Dynamic Score Calculation and performs dynamic few-shot learning from errors, enabling
real-time, training-free improvement (in-situ adaptation).

Structured Prompt for Reasoning Using the template in Figure 9, the module converts ranked
candidates into a concise narrative that guides the LLM:

1. Golden Positives: verified past interactions (u, r, p, t) to establish behavioral context;
2. Potential Future Links: top-ranked, high-confidence candidates;
3. Ambiguous Links: mid-ranked, explicitly uncertain candidates to avoid over-reliance on weak

signals;
4. Unlikely Links: lowest-ranked candidates as negatives.

This structure grounds the LLM’s reasoning while preserving the relative strengths of retrieved
evidence.

Dynamic Few-shot Learning from Errors When the calibrated probability of the correct answer
is below a threshold (wrong/uncertain), and the example bank is not full, the module triggers a
diagnostic step: it asks the LLM to explain why the gold node vtrue is correct given the same context,
formats the generated rationale into a compact few-shot example, and prepends it to subsequent
prompts (Figure 10). This closed loop distills failures into reusable guidance, steadily improving
interpretation of similar graph contexts without any parameter updates.

3.4 ADAPTIVE PARAMETERS

One-size-fits-all settings are ill-suited to heterogeneous and evolving TKGs, in which the salience
of temporal activity, structural topology, and semantic affinity varies across nodes and over time.
We therefore generate, for each query (u, r, ?, t), five runtime hyperparameters—recall capacities
(kstruc, ksem, ktime) and scoring weights (α, β)—so the strategy specializes to u’s context at time t. The
adaptation is anchored by precomputed global statistics G summarizing the graph’s state, ensuring
query-level adjustments remain calibrated to the overall environment. The computation of each
parameter is detailed below.

Structural recall capacity (kstruc). We adapt the number of structurally retrieved nodes to the query
node’s degree: higher-degree nodes warrant broader search. We compute a scaling factor from the
node’s log-degree, ℓu = log(du + 1), normalized by the global mean µlogdeg ∈ G:

kstruc =
⌊
k(base)

struc · (1 + γstruc · (log(du + 1)− µlogdeg))
⌋
.

Here, γstruc is a sensitivity factor. The result is clamped within a reasonable range [kmin, 2 · k(base)
struc ] to

ensure stability.

Temporal recall capacity (ktime). We adapt the temporal window to recent activity: when events are
sparse, we narrow the look-back to emphasize the most recent nodes. Let ∆tk be the gap from t to
the k

(base)
time -th most recent event and let µ∆t∈G denote the global mean inter-event gap. We set

ktime =

⌊
k(base)

time ·
(
1− γtime · tanh

(
∆tk − µ∆t

µ∆t

))⌋
,

where γtime is the scaling factor for time recall. The tanh function ensures a smooth and bounded
adjustment.

Semantic recall capacity (ksem). We size the semantic pool by the concentration of similarities
around u. Let σu be the standard deviation of cosine similarities between u and its top-2k(base)

sem nearest
semantic neighbors. A large σu (steep drop-off) favors a smaller, more precise pool; a small σu (flat
tail) favors a larger pool. We adjust ksem relative to the global mean µσ ∈ G:

ksem =

⌊
k(base)

sem ·
(
1− γsem · tanh

(
σu − µσ

µσ

))⌋
.
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Here, k(base)
sem is the default size; σu measures local similarity spread; µσ provides global calibration;

γsem ∈ (0, 1] controls adjustment strength.

Scoring weight α. α balances the influence of structural vs. semantic evidence in the similarity
calculation, which is tuned based on the node’s structural connectivity. Well-connected nodes (high
log(du + 1)) provide more reliable structural signals, so α is increased to more strongly weigh
structural similarity:

α = CLAMP
(
α(base) + δα · tanh

(
log(du + 1)− µlogdeg

ϕα

)
, 0.05, 0.95

)
.

Here, δα controls the maximum adjustment range, and ϕα is a smoothing factor.

Scoring weight β. β balances the historical similarity score (Shist) against the self-similarity score
(Sself), which is adapted according to the maturity of the query node, defined by its number of
past interactions (nu). Nodes with extensive history provide more reliable data for the historical
partner score, so β is increased. For nodes with sparse history, the model should rely more on the
self-similarity:

β = CLAMP
(
β(base) + δβ · tanh

(
nu − µhist

ϕβ

)
, 0.05, 0.95

)
.

µhist ∈ G is the average number of historical interactions per node, δβ is the adjustment range, and
ϕβ is a smoothing factor.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate our proposed framework on two large-scale temporal knowledge graph
(TKG) datasets: ICEWS1819 and GDELT (Zhang et al., 2024) (detailed in Appendix C). ICEWS1819
integrates events from the Integrated Crisis Early Warning System between 2018 and 2019, while
GDELT is a massive dataset of global events based on news media. These datasets represent complex,
real-world dynamics and are widely adopted benchmarks for TKG reasoning. The statistics of the
processed datasets are summarized in Table 3.

Baselines We compare our method against two categories of strong baselines. For dynamic
graph neural networks, We include state-of-the-art models from the DTGB benchmark1 (Zhang
et al., 2024), namely JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), TGAT (Xu et al.,
2020), CAWN (Wang et al., 2022), TCL (Wang et al., 2021), GraphMixer (Cong et al., 2023),
and DyGFormer (Yu et al., 2023). For training-free LLM-based methods, we also reproduce three
inference-only LLM methods: ICL (Lee et al., 2023), GAD (Lei et al., 2025), and AnRe (Tang et al.,
2025). We provide the details of the above baselines in Appendix D.

Tasks & Evaluation Metrics We conduct experiments on two fundamental tasks within both
transductive and inductive settings. In the inductive setting, we focus on nodes that were not seen
during the training of parameter-trained models. For the future link prediction task, we report the
standard metrics: Area Under the ROC Curve (AUC-ROC) and Average Precision (AP) scores.

Implementation Details We implement our framework using PyTorch and the Transformers library.
The LLM backbone is Qwen3-8B2 (Yang et al., 2025), and the semantic text encoder is the all-mpnet-
base-v23 model from SentenceTransformers. Structural features are generated by Random Projection
Module (Lu et al., 2024) (detailed in Appendix E). The implementation details of parameter settings
and evaluation methods are described in Appendix F. All experiments are conducted on an NVIDIA
A100 Tensor Core GPU with 80GB of VRAM. Following common practice (Zhang et al., 2024), we
chronologically split the data into training (70%), validation (15%), and testing (15%) sets. All results
are averaged over three runs with different random seeds, reported as mean ± standard deviation.

1https://github.com/zjs123/DTGB
2https://huggingface.co/Qwen/Qwen3-8B
3https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Table 1: Under the global negative sampling strategy, the performance comparison of various models
on the link prediction task. ♣ represents trained dynamic graph models, and♢ represents LLM-based
methods without training. tr. means transductive setting, and in. means inductive setting. The best
performance within each model type is highlighted in bold.

Type Model
ICEWS1819 GDELT

tr. in. tr. in.

AP AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC

♣

JODIE 97.52 ± 0.37 97.41 ± 1.13 93.18 ± 0.39 92.85 ± 0.65 94.66 ± 0.32 95.33 ± 0.20 90.12 ± 0.22 90.87 ± 0.25
DyRep 96.76 ± 0.26 96.32 ± 0.27 90.65 ± 0.62 90.30 ± 0.97 94.16 ± 0.17 94.53 ± 0.18 87.65 ± 0.35 88.32 ± 0.39
TGAT 99.08 ± 0.32 99.04 ± 0.39 97.23 ± 0.38 97.06 ± 0.54 95.72 ± 0.29 95.95 ± 0.33 92.87 ± 0.25 93.51 ± 0.28
CAWN 98.86 ± 0.25 98.57 ± 0.18 97.91 ± 0.27 97.74 ± 0.39 95.82 ± 0.53 96.00 ± 0.61 93.59 ± 0.19 94.23 ± 0.21

TCL 99.27 ± 0.12 99.23 ± 0.12 97.95 ± 0.10 97.78 ± 0.12 96.01 ± 0.11 96.19 ± 0.08 93.74 ± 0.07 94.38 ± 0.08
GraphMixer 98.71 ± 0.34 98.63 ± 0.24 96.28 ± 0.64 96.05 ± 0.89 95.23 ± 0.20 95.52 ± 0.18 92.08 ± 0.38 92.74 ± 0.41
DyGFormer 99.01 ± 0.18 98.88 ± 0.15 96.32 ± 0.09 96.13 ± 0.10 96.53 ± 0.03 96.62 ± 0.03 92.61 ± 0.05 93.20 ± 0.06

♢
ICL 89.60 ± 0.04 88.63 ± 0.04 88.33 ± 0.06 87.26 ± 0.05 90.56 ± 0.06 90.33 ± 0.07 90.02 ± 0.01 89.76 ± 0.01

GAD 84.35 ± 1.03 82.48 ± 1.03 83.50 ± 0.02 81.59 ± 0.02 85.56 ± 0.64 84.71 ± 0.74 84.94 ± 2.25 84.12 ± 2.40
AnRe 90.98 ± 0.09 90.00 ± 0.08 90.47 ± 0.16 89.36 ± 0.19 83.71 ± 0.02 81.86 ± 0.01 80.78 ± 0.12 78.43 ± 0.05

DyCo-LLM 99.18 ± 0.03 99.15 ± 0.03 99.14 ± 0.06 99.13 ± 0.05 97.69 ± 0.08 97.73 ± 0.09 98.85 ± 0.04 98.83 ± 0.02
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Figure 3: Ablation study of the components in DyCo-LLM.

4.2 MAIN RESULTS

Table 1 reports performance on link prediction under global random negatives. Dynamic-graph
baselines are excerpted from DTGB (Zhang et al., 2024). Experiments show that DyCo-LLM is
competitive across configurations. While TCL is slightly better on ICEWS1819 (transductive),
DyCo-LLM surpasses all baselines in the remaining settings, with the largest gains in inductive
setting. Notably, in inductive evaluation DyCo-LLM improves over state of the art by ∼3.3% AP
and ∼3.1% ROC-AUC on average. Unlike training-heavy methods, DyCo-LLM is training-free and
adapts at test time, mitigating overfitting. Its multi-path retrieval plus few-shot self-diagnosis yields
query-tailored context and stable generalization. The strong margins suggest that adaptive inference
aligns better with the real-time dynamics of evolving TKGs.

4.3 ABLATION STUDY

We ablate DyCo-LLM on ICEWS1819 and GDELT to isolate the effect of each component (Fig. 3).

Multi-path recall. Utilizing any single path (time-active, structural, or semantic) substantially
degrades performance, showing that recency, topology, and content provide complementary evidence.
Adaptive retrieval. Fixing recall budgets (w/o Adapt) yields further drops, confirming the need
for query-time adjustment to track temporal shift. Balanced scoring. Forcing α=0 (structural-
only) or α=1 (semantic-only) consistently hurts accuracy, indicating that fusing both views is
necessary. Similarly, β=0 (no history) or β=1 (no self-similarity) reduces performance, verifying
the complementarity of historical aggregation and direct affinity. Reflective few-shot. Removing
dynamic few-shot learning (w/o few-shot) causes notable declines across datasets, evidencing the
gains from turning errors into corrective exemplars.
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Table 2: Under the recall-pool negative sampling strategy, the performance comparison of LLM-based
models on the link prediction task. tr. means transductive setting, and in. means inductive setting.
The best performance is highlighted in bold.

Model
ICEWS1819 GDELT

tr. in. tr. in.

AP AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC

ICL 86.48 ± 0.12 85.51 ± 0.07 85.32 ± 0.09 84.87 ± 0.06 74.62 ± 0.07 74.07 ± 0.06 74.58 ± 0.08 74.02 ± 0.05
GAD 83.53 ± 0.72 82.35 ± 0.81 83.41 ± 0.65 82.28 ± 0.75 71.45 ± 0.16 70.30 ± 0.11 71.38 ± 0.14 70.25 ± 0.09
AnRe 91.47 ± 0.34 91.26 ± 0.31 91.39 ± 0.28 91.19 ± 0.28 80.24 ± 0.02 79.90 ± 0.21 81.19 ± 0.04 80.15 ± 0.18

DyCo-LLM 94.19 ± 0.06 94.10 ± 0.05 94.14 ± 0.05 94.06 ± 0.04 87.24 ± 0.08 87.12 ± 0.04 87.97 ± 0.07 87.88 ± 0.03
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Figure 4: Under ICEWS1819 and GDELT, the adaptive changes of three recall quantities k as the test
progresses.

Overall, DyCo-LLM’s multi-path recall, adaptive retrieval, balanced scoring, and self-diagnosis
reasoning are all indispensable for effective performance on streaming temporal knowledge graphs,
enabling it to excel in dynamic environments with high predictive accuracy.

4.4 ANALYSIS AND DISCUSSION

Impact of Negative Sampling Strategies Based on the recall pool obtained from the multi-path
recall module, we propose a more challenging task formulation, which evaluates using Recall-
pool Negative Sampling (see Appendix F for details). Switching from global random negatives
to recall-pool negatives causes a sharp drop in AC/AUC for all methods (see Table 2), because
global sampling produces many trivially wrong distractors that LLMs can reject by surface cues,
whereas recall-pool sampling draws hard negatives from the candidate set retrieved around the
query—semantically/structurally plausible and thus much harder to disambiguate. Despite this
harder regime, DyCo-LLM remains the strongest LLM-based model on both datasets and settings,
and—crucially—its advantage persists in the inductive (in.) setting, indicating stable generalization.

Interpretability of adaptive parameters In Figure 4, we show the recall curves for three strategies
as the number of recalls k changes. Figure 8 illustrates the frequency distribution of alpha and beta
values. Across the ICEWS1819 and GDELT datasets, the structural budget kstruc exhibits the most
variation, while ktime remains stable and ksem fluctuates slightly. This indicates that structural factors,
such as degree bursts and community rewiring, are the main sources of non-stationarity, as event rates
are stable and semantic embeddings are well-calibrated. To accommodate these changes, the engine
expands kstruc for structural shifts while maintaining a consistent temporal window and fine-tuning
semantic recall as necessary. The heatmaps for parameters (α, β) peak around α ≈ 0.73–0.75 and
β ≈ 0.65, suggesting a preference for structural similarity and history aggregation. By emphasizing
structural factors, we can eliminate semantically plausible but structurally implausible distractors.
A moderately high β enhances decision stability by aggregating reliable historical partners without
losing the self-term for emerging nodes. Overall, the adaptations align with the data, reflecting
structure-dominated dynamics alongside steady activity and semantics.
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5 RELATED WORK

LLM for temporal knowledge graphs. Harnessing their deep semantic and reasoning capacities,
large language models (LLMs) have opened a new paradigm for temporal knowledge-graph (TKG)
forecasting. Early attempts (Peters et al., 2019; Han et al., 2023; Yang et al., 2024; Xu et al., 2024)
repurposed pre-trained LMs as “temporal encoders”: historical quadruples were linearized into token
sequences and fed to masked-language-modeling objectives to distill event embeddings, empirically
confirming the utility of textual priors for temporal inference. Follow-ups (Jiang et al., 2023; Tan
et al., 2023; Yuan et al., 2023) further unified temporal and structural signals by devising time-aware
positional encodings and relation-specific prompt templates, enabling LLMs to discriminate causal
chronologies even in zero-shot regimes. Among them, zrLLM (Ding et al., 2024) and LLM-DA
(Ye et al., 2024) introduced plug-and-play “temporal adapters” for domain adaptation, yet their
reliance on full-parameter fine-tuning incurs prohibitive computational overhead. Recent research
has pivoted toward lightweight prompting: Shi et al. (2023) and Zhang et al. (2025) recast link
prediction as autoregressive generation, exploiting ICL (Lee et al., 2023) to compress training costs;
GenTKG (Liao et al., 2024) activates cross-domain generalization via few-shot instruction tuning;
ONSEP (Yu et al., 2024) co-evolves an LLM with the TKG update stream for dynamic environment
adaptation; CoH (Xia et al., 2024) incorporates a higher-order history module that compresses multi-
hop paths into reusable semantic fragments, further elevating the expressive ceiling of graph models.
Despite these advances, the spotlight remains on quadruple-level event prediction, leaving the DyTAG
scenario—where edges and nodes carry rich textual descriptions—largely untouched. Moreover,
prevailing approaches adopt day-level or snapshot granularities, rendering them insufficient to portray
millisecond-grade interaction dynamics.

Dynamic graph neural networks. Confined to pure structural–temporal signals, dynamic graph
learning has crystallized into two dominant technical routes. The first, “snapshot-based” meth-
ods (Pareja et al., 2019; Sankar et al., 2019) , segment the evolving network into equally spaced
snapshots, apply standard GNN aggregation, and subsequently model temporal dependencies with
RNNs or Transformers. DySAT (Sankar et al., 2019) simultaneously updates structural and temporal
contexts via self-attention, attaining state-of-the-art dynamic link-prediction accuracy, yet is shackled
by snapshot granularity and memory explosion. The second, “continuous-time” paradigm (Kumar
et al., 2019; Trivedi et al., 2018), employs temporal point processes to parameterize edge-generation
intensities; TGAT (Xu et al., 2020) and TGN (Rossi et al., 2020) map continuous timestamps into
embedding space through time encoders and couple them with memory modules, achieving constant-
time complexity and superior scalability. To mitigate label scarcity, DyGLib (Yu et al., 2023) recently
unified 13 dynamic-graph datasets under robust evaluation protocols, fostering standardization. The
approaches mentioned above face significant limitations: they cannot adapt to new data during
inference due to their fixed parameters, and they are ineffective at integrating textual dynamics
with structural evolution. As a result, their performance degrades over time as the knowledge
graph expands and its distribution shifts. In contrast, our method overcomes this limitation via an
online-coupled pipeline of “dynamic memory parameter → adaptive memory retrieval strategies →
self-diagnosis reasoning,” which injects large-model semantics and continuous-time signals into the
same outer-loop optimization without requiring any training process.

6 CONCLUSION

This paper introduce a training-free Dynamic Cognition paradigm, DyCo-LLM, for temporal knowl-
edge graphs. DyCo-LLM performs in-situ test-time adaptation: an adaptive diagnoser sets runtime
hyperparameters from local context, multi-path recall gathers temporal, structural, and semantic evi-
dence, dynamic fusion balances history aggregation with self-similarity, and self-diagnosis converts
errors into compact, reusable exemplars. Without updating weights, the model tailors reasoning to
the evolving graph and keeps prompts concise yet informative. Experiments deliver state-of-the-art
results across benchmarks, with especially strong gains in the inductive regime—where prior methods
tend to overfit historical neighborhoods—underscoring the importance of live, in-situ adaptation over
static training or fixed . Future work will extend DyCo-LLM to support more temporal KGs and
dynamic (text-attributed) graph datasets, and refine the coupling between diagnostics and candidate
generation.
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Table 3: Statistics of the datasets.

Dataset # Node # Edge Edge Categories # Timestamp Domain Text Attributes
ICEWS1819 31,796 1,100,071 266 730 Knowledge graph Node & Edge

GDELT 6,786 1,339,245 237 2,591 Knowledge graph Node & Edge

A ALGORITHM

Algorithm 1 Dynamic Score Calculation
Require: Query node u and timestamp t
Require: Candidate set C
Require: Node historyH
Require: Semantic embeddings Esem
Require: Structural embeddings Estruc
Require: Time decay rate λtime
Require: Adaptive weights α, β
Ensure: Final scores Sfinal for all v ∈ C

1: P ← GetHistoricalPartners(u, t,H)
2: W← ∅
3: for p ∈ P do
4: fup ← CountInteractions(u, p, t,H)
5: tlast ← GetLastInteractionTime(u, p, t,H)
6: ∆t← t− tlast
7: wp ← fup · exp(−λtime ·∆t)
8: W←W ∪ wp

9: end for
10: W← Normalize(W)
11: for v ∈ C do
12: Shist ← 0
13: for j = 0 to |P| − 1 do
14: p← P[j]
15: ssem ← CosineSimilarity(Esem[v],Esem[p])
16: sstruc ← CosineSimilarity(Estruc[v],Estruc[p])
17: stotal ← α · sstruc + (1− α) · ssem
18: Shist ← Shist + stotal ·W[j]
19: end for
20: s

(self)
sem ← CosineSimilarity(Esem[v],Esem[u])

21: s
(self)
struc ← CosineSimilarity(Estruc[v],Estruc[u])

22: Sself ← α · s(self)struc + (1− α) · s(self)sem
23: Sfinal[v]← β · Shist + (1− β) · Sself
24: end for

return Sfinal

B THEORETICAL ANALYSIS

We formalize when and why DyCo-LLM improves test-time link prediction on temporal knowledge
graphs (TKGs). Let G<t denote the history up to time t. For a query (u, r, ?, t), let the (unknown)
Bayes-optimal tail be v⋆ ∈ argmax

v∈E
Pr

(
(u, r, v, t) ∈ G

∣∣G<t

)
. Our dynamic context engine

constructs a candidate set C ⊆ E via multi-path recall and computes a score Sfinal(v) = βShist(v) +

(1−β)Sself(v) with Shist(v) =
∑

p∈P (u)

[
α simstr(v, p)+(1−α) simsem(v, p)

]
W (p) and Sself(v) =

α simstr(v, u) + (1 − α) simsem(v, u). Weights W (p) ∝ Count(u, p) exp{−λtime(t − tlast(u, p))}
emphasize frequent and recent partners.
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Assumptions. We adopt mild regularity conditions commonly used in nonparametric estimation on
dynamic graphs:

(A1) Recall coverage. For any query, with probability at least 1− δ, the true tail is recalled: Pr
(
v⋆ ∈

C
∣∣G<t

)
≥ 1− δ.

(A2) Score–probability monotonicity (local). There exist ghist, gself such that E[Shist(v) | G<t] =
ghist

(
Pr(v |G<t)

)
, E[Sself(v) | G<t] = gself

(
Pr(v |G<t)

)
, and both g· are strictly increasing on

the support of Pr(v |G<t).
(A3) Bounded noise. The zero-mean deviations εhist(v) = Shist(v) − E[Shist(v) | G<t], εself(v) =

Sself(v)−E[Sself(v) | G<t] are sub-Gaussian with proxy variance at most σ2, independent across
v conditional on G<t.

Proposition 1 (Top-1 consistency under coverage and monotonicity). Under (A1)–(A3), let v(1) =
argmaxv∈C Sfinal(v). Then

Pr
(
v(1) = v⋆

)
≥ (1− δ) ·

(
1− 2 exp

{
− ∆2

8σ2

})
,

where ∆ = minv∈C\{v⋆}
(
µfinal(v

⋆) − µfinal(v)
)

and µfinal(v) = β E[Shist(v) | G<t] + (1 −
β)E[Sself(v) | G<t].

Sketch. On the event v⋆ ∈ C, sub-Gaussian concentration and a union bound imply that the empirical
score ranking matches the mean-score ranking with probability at least 1−2 exp{−∆2/(8σ2)}. Since
mean scores are strictly increasing transforms of the true tail probability by (A2), the Bayes-optimal
element attains the largest mean score. Multiplying by (1− δ) from (A1) yields the claim.
Remark 1 (Why in-situ adaptation helps). The adaptive budgets kstruc, ksem, ktime directly control
the coverage term 1 − δ: in sparse/quiet temporal regimes, increasing ktime (or shifting weight to
structural/semantic paths) raises the chance that v⋆ is recalled; in dense/active regimes, smaller
budgets reduce distractors and shrink σ2. Similarly, adjusting α, β modifies the signal gap ∆ by
emphasizing the more reliable channel (history vs. self) for the current node maturity and degree.
Both effects tighten the bound in Proposition 1.
Proposition 2 (Connection to kernel intensity estimation). If events follow a self-exciting pro-
cess where the conditional link intensity admits a separable form λu→v(t) ∝

∑
p∈P (u) κτ (t −

tup)ϕstr(v, p)
αϕsem(v, p)

1−α, then Shist(v) is a Monte-Carlo estimator of λu→v(t) with kernel
κτ (∆t) = exp(−λtime∆t). Consequently, ranking by Shist is Fisher-consistent for ranking by
λ.

Sketch. Replace Count(u, p) by discrete sampling from past partners and interpret the exponential
time decay as a positive kernel. The similarity fusion provides a plug-in estimator of the mark-
dependent similarity ϕ. Up to a normalization constant, Shist approximates λ.
Proposition 3 (Bias reduction via position calibration). Let Z ∈ {A,B} denote the displayed position
of v⋆ in a binary prompt. Suppose the LLM’s reported probability obeys Pr(choose A | Z=A) = π+b
and Pr(choose B | Z=B) = π−b, where π is the true preference for v⋆ and b is an additive position
bias. The calibrated estimator π̂ = 1

2

(
P1(A) + P2(B)

)
is unbiased: E[π̂] = π, and has variance

Var(π̂) = 1
2Var(P1)− 1

4

(
E[P1]− E[P2]

)2
.

Sketch. Direct calculation shows the opposite-sign bias terms cancel after the role-swap; the variance
follows from independence of the two passes conditioned on the context.

Takeaway. Under mild coverage/monotonicity/noise conditions, DyCo-LLM’s adaptive recall and
scoring tighten a PAC-style success bound by increasing the signal gap and lowering noise, while the
calibration and reflective few-shot reduce systematic bias and improve effective signal-to-noise over
time.

C DETAILS OF DATASETS

GDELT4 is constructed from the Global Database of Events, Language, and Tone (GDELT) project,
which monitors political events and activities across the world in near real-time. Nodes corre-

4https://www.gdeltproject.org/
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spond to political actors (e.g., United States, Kim Jong Un) and are represented by their names.
Edges denote types of interaction or relationship between these actors (e.g., MAKE STATEMENT,
ENGAGE IN DIPLOMACY). The textual attributes of edges are derived from the verbal descrip-
tions of these relation types. Each event is timestamped with 15-minute granularity, resulting in a
high-resolution temporal graph that captures rapidly evolving political dynamics.

ICEWS18195 is built from the Integrated Crisis Early Warning System (ICEWS), covering events
from January 1, 2018, to December 31, 2019. Nodes represent political entities and are annotated
with composite textual features including name, sector, and nationality. Relations capture discrete
political or military actions, with edge text formed from the semantic description of each event
type. Events are ordered at a daily granularity. Key distinctions from GDELT include: (1) a coarser
temporal resolution (24-hour intervals), and (2) a significantly larger node set (approximately 4× that
of GDELT), reflecting a sparser and more diversified interaction network.

D DETAILS OF BASELINES

D.1 TEMPORAL GRAPH MODELS

JODIE (Kumar et al., 2019) employs two interconnected recurrent networks to model the temporal
evolution of entity representations. It incorporates a projection mechanism that forecasts the future
trajectory of node embeddings, enabling predictions about both entity states and their potential future
interactions.

DyRep (Trivedi et al., 2019) introduces a recurrent architecture that updates node representations
following each interaction event. It implements a temporal point process framework to capture
underlying dynamics of network evolution, enhanced by a temporal-attentive mechanism that encodes
time-varying structural patterns into node embeddings to drive the dynamic evolution of the graph.

TGAT (Xu et al., 2020) Utilizing self-attention as its core component, this method effectively
aggregates temporal-topological neighborhood features while modeling complex time-feature inter-
actions. It incorporates a functional time encoding technique grounded in Bochner’s theorem from
harmonic analysis to capture rich temporal patterns in dynamic graphs.

CAWN (Wang et al., 2022) employs an anonymization strategy through sampled temporal walks
to investigate causal relationships in network dynamics and generate inductive node identifiers. These
sampled walks are subsequently encoded and aggregated through neural networks to produce final
node representations.

TCL (Wang et al., 2021) is a dual-stream encoder architecture that processes temporal neigh-
borhoods of interacting nodes separately. It introduces a graph-topology-aware Transformer that
integrates both structural topology and temporal information, supplemented with cross-attention
mechanisms to capture relevance between target nodes.

GraphMixer (Cong et al., 2023) Demonstrating the efficacy of fixed-time encoding functions, this
architecture comprises three key components: a link encoder that summarizes temporal interaction
information, a node encoder that aggregates node features, and a link prediction classifier that operates
on the encoded representations.

DyGFormer (Yu et al., 2023) learns node representations from historical first-hop interactions
using a neighbor co-occurrence encoding scheme that captures correlations between nodes based on
their interaction sequences. It introduces a patching technique that segments long sequences into
manageable patches, enabling effective utilization of extended historical context.

D.2 LLM-BASED METHODS

All LLM-based methods in our experiments employed Qwen3-8B as the base model. Qwen3 is a new
generation of open-source large language model series by Alibaba, launched in April 2025. Its core

5https://dataverse.harvard.edu/dataverse/icews
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innovation lies in the adoption of a ’Mixture of Experts’ (MoE) architecture and a ’Mixture Inference’
mode, which can dynamically switch between deep reasoning in ’thinking mode’ and quick response
in ’non-thinking mode’ based on task complexity, thereby balancing high performance and efficiency.

ICL (Lee et al., 2023) formulates temporal knowledge graph forecasting as an in-context learning
problem for LLMs, entirely avoiding task-specific training. It operates through a three-stage pipeline:
retrieving relevant historical facts conditioned on the query, converting these facts and the query into
a structured textual prompt, and decoding the LLM’s output token probabilities into a ranked list of
candidate entities.

GAD (Lei et al., 2025) proposes a multi-agent system that leverages collaborative LLMs to
address predictive tasks on dynamic text-attributed graphs. It incorporates global and local summary
agents to generate domain-specific and node-specific knowledge, enhancing transferability across
diverse domains. A knowledge reflection mechanism is also introduced to enable adaptive updates,
maintaining a unified and self-consistent architecture without dataset-specific training.

AnRe (Tang et al., 2025) proposes a training-free reasoning method for temporal knowledge graph
forecasting that leverages semantic-driven clustering and dual history extraction. It retrieves similar
historical events through entity clustering and constructs comprehensive contexts by integrating
both long-term and short-term event chains. By using large language models to generate analogical
reasoning examples from these contexts, AnRe enables few-shot learning of historical patterns for
accurate prediction of future events without dataset-specific training.

E RANDOM PROJECTION

The Random Projection Module is responsible for generating dynamic structural node embeddings
without training (Lu et al., 2024). It maintains a set of trainable parameters P(l) ∈ RN×d for each
layer l (where N is the number of nodes and d is the projection dimension). The module is updated
incrementally with each new batch of events (ui, vi, ti).

For a new interaction (u, v, t), the update for the higher-order projections (l ≥ 1) applies a time-
decayed message passing step:

P(l)[u]← P(l)[u] + exp(−λ · (t− tprev)) ·P(l−1)[v]

P(l)[v]← P(l)[v] + exp(−λ · (t− tprev)) ·P(l−1)[u]

where λ is a time decay factor and tprev is the time of the last update. The final structural embedding
for a node is the concatenation of its projections across all layers: estruc = ∥Ll=0P

(l)[u]. In the
experimental setup, the structural vector dimension factor is set to 10, the maximum hop count for
random walks is set to 3, and the time decay weight is 1e− 7.

F ADDITIONAL IMPLEMENTATION DETAILS

Parameter Setting To ensure the lower limit of the adaptive capacity of our dynamic parameter
module, we determine a baseline value for each parameter through preliminary experiments and
experience as the starting point for changes. In the experimental setup, the baseline quantities for
recall in three dimensions are 55, and the baseline value of α, β is 0.5. Additionally, the time
decay rate for historical partner weights is set to 0.01. The future positive sample ratio, based on
sample scores, is 0.15, and the negative sample ratio is 0.5. To balance the length of context and the
completeness of historical interaction information, we set the number of golden positive samples to
100 and provide 3-shot examples in the few-shot construction module as context input for the LLM.

Negative Sampling Strategy For the final prediction, the LLM is presented with a binary choice
between the ground-truth node vtrue and a carefully sampled negative node vneg. To ensure a chal-
lenging and informative comparison, we employ different negative sampling strategies tailored to
the task: (1) Global Sampling: vneg is sampled randomly from all nodes in the graph, excluding u
and vtrue; (2) Recall-pool Sampling (Proposed): vneg is sampled from the full recall candidate set C,
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Figure 5: Hyperparameter sensitivity analysis under ICEWS1819.

which contains nodes deemed relevant by at least one recall strategy. This ensures vneg is a plausible
but incorrect alternative, making the LLM’s choice more discriminative and educationally valuable
for the few-shot learner.

Position Bias Calibration Instead of relying solely on the model’s generated text output, which
can be brittle and inconsistent, we precisely measure its confidence by analyzing the probability
distribution over the choice tokens. For each binary choice presented to the LLM, we obtain the logits
for the tokens ’A’ and ’B’ from the final output position. We then apply a softmax function to these
logits to obtain a normalized probability distribution, representing the model’s confidence in each
option. To mitigate positional bias, we perform two inference passes: (1) Pass 1: Present the choice
as ’A: vtrue, B: vneg’; (2) Pass 2: Present the choice as ’A: vneg, B: vtrue’.

Let P1(A) be the probability of choosing A from the first pass (i.e., the probability for vtrue), and
P2(B) be the probability of choosing B from the second pass (i.e., also the probability for vtrue). The
final calibrated probability for vtrue is calculated as:

Pfinal(vtrue) =
P1(A) + P2(B)

2
.

This calibrated score provides a more robust and unbiased estimate of the model’s confidence in the
true link.

G HYPERPARAMETER SENSITIVITY ANALYSIS

As shown in Figure 5, we investigate how the five sensitivity/smoothing factors affect DyCo-LLM’s
adaptive recall and scoring. Recall that the final score for a candidate v is Sfinal(v) = β Shist(v)+(1−
β)Sself(v), where Shist aggregates structural/semantic similarities to the query’s historical partners
with an exponential time decay, and Sself measures the direct structural/semantic similarity to the
query node. The three adaptive recall budgets kstruc, ksem, ktime are modulated by node degree and
local inter-event sparsity. We report AP/AUC as each factor varies while fixing others at their default.

Impact of γstruc. γstruc controls how aggressively the structural recall budget kstruc scales with the
(centered) log-degree of the query node. When γstruc is very small, kstruc is nearly fixed; the recall for
high-degree nodes is slightly under-provisioned, while low-degree nodes may be over-provisioned
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with weak structural neighbors. As γstruc increases from this regime, the first effect dominates and
AP/AUC decrease: we reduce recall on some low-degree queries (removing a few helpful neighbors)
before we have granted enough budget to high-degree cases. After this transient, the curve becomes
flat because the allocation approaches a balance between high- and low-degree nodes. Pushing
γstruc further finally benefits high-degree queries—where structural evidence is abundant—so the
metrics rise again. In short, the trajectory “drop→ plateau→ rise” reflects (i) early misallocation for
low-degree nodes, (ii) a compensated middle zone, and (iii) late-stage gains on high-degree queries
where structural recall is most informative.

Impact of γsem. γsem adjusts the semantic recall budget ksem with degree-sensitive scaling. If γsem
is too small, semantic recall is conservative and fails to surface enough conceptually related but
structurally distant candidates—hurting cold/low-degree queries where semantics is the primary
signal in both Shist and Sself. If it is too large, we recall many semantically similar but structurally
irrelevant distractors, which inflates the candidate pool entropy and weakens the signal gap ∆ between
the correct answer and its competitors in Proposition1, degrading AP/AUC. A mid-range γsem trades
off coverage and noise, giving the best scores.

Impact of γtime. γtime governs how ktime reacts to local inter-event sparsity via a squashed (e.g.,
tanh) mapping. At small values, recent-activity recall underfits burstiness and misses fresh targets; at
moderate values, ktime expands during bursts and contracts in quiet periods, maximizing the chance
that the true tail v⋆ is covered while avoiding excessive distractors—hence a peak in AP/AUC. When
γtime grows further, the system becomes over-reactive to short-term fluctuations: the candidate set
oscillates across timestamps, and the induced variance in Shist (through changing partner overlaps)
yields metric fluctuations and a slight decline beyond the optimum.

Impact of ϕα. ϕα controls how the mixing weight α (structure vs. semantics inside both Shist and
Sself) is smoothed as a function of degree. At very small ϕα, α is close to a global constant; beginning
to increase ϕα nudges α away from its well-tuned baseline and initially reduces AP/AUC. As ϕα

continues to grow, α better adapts to node regimes (more structural for high-degree, more semantic
for low-degree), which restores and improves accuracy. If ϕα is pushed too high, the adaptation
over-amplifies regime differences and becomes brittle to noise in degree statistics, causing another
drop. This explains the “decrease→ increase→ decrease” pattern.

Impact of ϕβ. ϕβ regulates how the fusion weight β (history vs. self) depends on node maturity
(the amount and recency of past interactions). When ϕβ starts increasing from a small value, the
estimator relies more aggressively on imperfect maturity signals; with few past events, maturity is
noisy and the learned β fluctuates, leading to oscillatory performance. As ϕβ becomes larger, the
smoothing stabilizes β and consistently privileges Shist for truly mature nodes while keeping sufficient
Sself for immature ones; the adaptation hence delivers a steady improvement in AP/AUC in the later
range.

H CASE STUDY: SELF-DIAGNOSIS REASONING IN DYCO-LLM

In Figure 6, we analyze the self-diagnosis reasoning module on concrete test cases from our case-
study figure, focusing on how the module corrects errors without any entity semantics (all entities are
numeric IDs).6 The binary query uses the standardized form “Which node is more likely to link with
node u? A: vtrue; B: vneg,” and the reflective step constructs a diagnostic rationale when the model
answers incorrectly or with low confidence; the generated rationale is stored as a few-shot example
for subsequent queries.

Case 1 (error→ correction by structure-aware rationale). For query node u=4910 (choices 66
vs. 4408), the model first answers “B” (i.e., 4408). The self-diagnosis module then produces a concise
analysis pointing to repeated historical interactions between 4910 and 66 (via the relation “Accuse”
at timestamp 616) and the absence of any evidence for 4408 in the provided context. This rationale is
appended to the few-shot bank and helps flip similar future decisions toward the history-consistent
choice.

6At inference time the prompt explicitly presents entities as IDs; no names or textual descriptions are given.
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Answer: 4408

Analysis: 
Node 66 is more likely to link with node 
4910 because there is a clear historical 
pattern of interaction between them. In the 
golden positive examples, node 4910 has 
interacted with node 66 on multiple 
occasions, specifically through the 
"Accuse" relationship at timestamp 616. 
This repeated interaction suggests a strong 
and established connection between the two 
nodes. In contrast, node 4408 does not 
appear in any of the provided examples, 
indicating no prior interaction or 
relationship, making it less likely to connect 
with node 4910 in the future.
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Question: Which node is more 
likely to link with node 29567?
  A: 183
  B: 30294
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Answer: 30294

Analysis: 
Node 183 appears in the "Ambiguous or 
Neutral Links" category, which suggests it 
has some level of potential interaction with 
node 29567, though the likelihood is not as 
high as in the "High-Confidence 
Candidates" group. Importantly, node 183 
is not listed in the "Unlikely Links" group, 
which means it is not categorically ruled out. 
In contrast, node 30294 is not mentioned in 
any of the provided categories, indicating 
no prior analysis or evidence supporting its 
likelihood of interaction with node 29567. 
Therefore, based on the available data, node 
183 is more likely to link with node 29567 
than node 30294.
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Case 1 Case 2 Case 3

Question: Which node is more 
likely to link with node 178?
  A: 531
  B: 12829

Answer: 531

Potential Links:
2933, 3632, 1480...
Neutral Links:
13326, 20350, 531...
Unlikely Links:
525, 69, 1057...

Analysis: 
Based on the provided examples, node 266 
has a history of interacting with a variety of 
nodes through different types of 
relationships, including diplomatic 
cooperation, negotiations, formal 
agreements, and visits. However, the 
examples do not include any direct 
interaction between node 266 and node 265. 
In contrast, node 18557 is not listed in the 
high-confidence or ambiguous categories, 
and it is not mentioned in the context of any 
interaction with node 266. Therefore, based 
on the absence of evidence for node 265 in 
the interaction history and the presence of 
node 18557 in the unlikely category, node 
265 is more likely to link with node 266 
due to the lack of negative evidence and the 
possibility of future interaction.

Figure 6: Case study for self-diagnosis reasoning. To prevent the LLM from having seen the test
data during the training phase, we replace all entity names with unique identifiers. This process uses
3-shot examples, which demonstrate the LLM’s process of discovering errors → error reflection →
case-based reasoning during testing.

Case 2 (using score-based tiers as explicit evidence). For query node u=29567 (choices 183 vs.
30294), the model’s reflective analysis cites our score-based partitioning shown in the prompt: node
183 appears in the Ambiguous/Neutral tier (hence not ruled out), while 30294 is absent from all tiers,
indicating no supporting evidence; thus 183 is deemed more likely.7 This illustrates how the module
converts numerical scores into human-readable, verifiable cues that the LLM can reuse.

Why it works with ID-only entities. Even without textual semantics, the dynamic prompt exposes
(i) structural/historical regularities through Golden Positive and time-stamped traces, and (ii)
uncertainty structure through the three-way partition that surfaces high-confidence, ambiguous,
and unlikely candidates. The reflective prompt then asks the model to explain why the correct
node was favored by the evidence, and the resulting explanation is cached as a few-shot example
(capacity-limited) and prepended for future queries—yielding a closed-loop improvement cycle at
test time.

Outlook. Since the two cases above succeed purely from structural evidence and score-tier cues,
we anticipate further gains by adding lightweight textual descriptors (entity names/types), which
would sharpen self-similarity terms and reduce ambiguity within the Ambiguous/Neutral tier, while
keeping the self-diagnosis mechanism unchanged.

I COMPLEXITY AND RUNTIME ANALYSIS

Complexity of DyCo-LLM. Let du be the degree of the query node, P = |P (u)| the number
of historical partners, K = |C| the final candidate pool size after multi-path recall, and dsem, dstr
the embedding dimensions. Per query, adaptive hyperparameter computation uses constant-time
statistics (e.g., log du, ∆tk), hence O(1). Multi-path recall costs O(ktime) for the time-active scan
(implemented as a bounded backward sweep), O(k̃struc) for structural recall using adjacency sketches
or precomputed co-neighbor indices (k̃struc≤ kstruc after deduplication), and O(ksem) for semantic
recall with top-k ANN over fixed entity embeddings. Thus recall is O(ktime+k̃struc+ksem)=O(K).

7The prompt is organized into Golden Positive, Potential Future, Ambiguous/Neutral, and Unlikely blocks,
which the LLM can reference during reflection.
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Figure 7: Comparison between model performance and per-item runtime.

Scoring forms similarities to P partners in two spaces and aggregates with W (·): the matrix–vector
accumulation is

O
(
KP (dsem+dstr)

)
+ O

(
K(dsem+dstr)

)
for history and self terms, respectively; thresholding and partitioning are O(K logK) (or O(K) with
selection). Therefore, the dominant per-query complexity is

O
(
KP (dsem+dstr) +K logK

)
,

and the overall wall-clock is linear in the processed test events since updates are streaming. In-situ
updates of the Random Projection (RP) module for a new event (x, y, t) cost O(L ·dstr) (time-decayed
L-hop projection with constant fan-out), and adjacency/history maintenance is O(1). The reflective
few-shot step is triggered sparsely (only on errors/low confidence); its amortized cost is bounded by
a constant factor on top of the base LLM decoding because the few-shot buffer size is capped (e.g.,
3 shots). In practice, K and P are adaptively bounded by (ktime, kstruc, ksem) and the time-decayed
history, so the effective compute scales sublinearly with the ambient graph size |E|. This explains the
favorable runtime we observe while preserving high recall and strong accuracy.

Runtime–Accuracy Trade-off. As shown in Figure 7, we further compare the per-item runtime
against accuracy (AP) across test-time methods. Our DyCo-LLM attains the highest AP of 99.18 at
4.66 s/it. Although DyCo-LLM is slower than lightweight LLM baselines on a per-item basis, the
absolute gain in AP (+9.58% over ICL and +8.20% over the strongest baseline AnRe) places the
method at a favorable point on the runtime–accuracy frontier. Importantly, DyCo-LLM is training-free:
it avoids any offline parameter learning or epoch-wise optimization required by graph neural models,
whose wall-clock cost is dominated by multi-epoch backpropagation over temporal minibatches.
In contrast, DyCo-LLM only performs bounded candidate recall and similarity aggregation at test
time, with streaming state updates and a capped few-shot memory. Consequently, while our per-item
inference is moderately heavier than prompt-only LLM variants, the total compute to deploy a
high-accuracy system is substantially lower than training-based DGNN pipelines—no pretraining, no
fine-tuning, and no re-training when the test distribution drifts. This property is critical for dynamic
KGs where rapid adaptation outweighs amortized training efficiency.

J USE OF LLMS

This article employed LLMs to refine certain aspects of writing logic and grammatical accuracy. In
the experimental code section, some portions of the code were generated with the assistance of LLMs.
However, LLMs were not involved in the formulation of the core ideas or the overall structure of the
manuscript.
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Figure 8: The relative frequency distribution of (α, β) on ICEWS1819 and GDELT.

Table 4: The formal definition of notations used throughout the paper.

Symbol Description
E ,R, T Entity / relation / timestamp sets
G = {(u, r, v, t)} Temporal knowledge graph as a set of timestamped facts
G<t History up to (but excluding) time t
(u, r, ?, t) Query quadruple (head u, relation r, unknown tail at time t)
P (u) Historical partners of u before t
C Candidate set returned by multi-path recall
Cstruc, Csem, Ctime Structural / semantic / temporal recall subsets
kstruc, ksem, ktime Adaptive recall budgets for the three paths
α, β Adaptive mixing weights (structure vs. semantics; history vs. self)
Esem(·),Estruc(·) Semantic / structural embeddings
simsem, simstr Cosine similarity in semantic / structural space
W(p) Historical partner weight for p: frequency × time-decay
λtime Time-decay rate in W(p)
Shist(v), Sself(v) Historical similarity and self-similarity scores for v
Sfinal(v) Final score used for ranking candidates
p, q Thresholds (or quantiles) for partitioning C into pos/amb/neg sets
du, nu Degree and number of past interactions of node u
µlog deg, µ∆t, µσ Global statistics: avg. log-degree, inter-event gap, similarity std
∆tk Gap to the k-th most recent event before t
L Max hop (projection depth) in Random Projection module
dsem, dstr Dimensions of semantic / structural embeddings
K = |C| Total number of recalled candidates
AP,AUC,MRR,Hits@K Evaluation metrics used in experiments
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Section Template
Preamble You are a link prediction expert in a dynamic graph. Based on the examples of 

past interactions, determine which of the two new nodes is more likely to 
connect with the query node. In the following quadruple ‘(u, r, v, 
t)‘ examples, ‘u‘ is the source node ID, ‘r‘ is the text describing the link 
type, ‘v‘ is the destination node ID, and ‘t‘ is the timestamp of the 
interaction.

Expert Reasoning Examples Here are some previous cases with expert analysis. Learn from them:
--- Example Start ---
Prompt Context:
{failed_prompt_template}
Expert Analysis:
{reasoning_text}
--- Example End ---
...

Golden Positive Examples ### Golden Positive Examples (Confirmed Past Interactions)
These links have definitely happened:
({u_id}, {r_his}, {v_his}, {t_his}) ... (one per line)

Potential Future Links ### Potential Future Links (High-Confidence Candidates)
Based on analysis, these links are highly likely to happen in the future:
({u_id}, might interact with, {v_future}, {t_query}) ...

Ambiguous / Neutral Links ### Ambiguous or Neutral Links (Uncertain Candidates)
Based on analysis, the likelihood of these links happening is uncertain:
({u_id}, might interact with, {v_neutral}, {t_query}) ...

Unlikely Links ### Unlikely Links (Low-Confidence Candidates)
Based on analysis, these links are very unlikely to happen:
({u_id}, interact with, {v_unlikely}, {t_query}) ...

Instruction & Question Now, based on all the examples above, analyze the examples and answer the 
following question. The correct answer could be either A or B. You must only 
output the letter of the correct option A or B.
Question: Which node is more likely to link with node {u_id}?
A: {v_true}
B: {v_neg}
Answer:

Figure 9: The prompt template for structured reasoning.

Section Template
Preamble You are a link prediction expert in a dynamic graph. Based on the examples of 

past interactions, determine which of the two new nodes is more likely to 
connect with the query node. In the following quadruple ‘(u, r, v, t)‘ examples, 
‘u‘ is the source node ID, ‘r‘ is the text describing the link type, ‘v‘ is the 
destination node ID, and ‘t‘ is the timestamp of the interaction.

Golden Positive Examples ### Golden Positive Examples (Confirmed Past Interactions)
These links have definitely happened:
({u_id}, {r_his}, {v_his}, {t_his}) ... (one per line)

Potential Future Links ### Potential Future Links (High-Confidence Candidates)
Based on analysis, these links are highly likely to happen in the future:
({u_id}, might interact with, {v_future}, {t_query}) ...

Ambiguous / Neutral Links ### Ambiguous or Neutral Links (Uncertain Candidates)
Based on analysis, the likelihood of these links happening is uncertain:
({u_id}, might interact with, {v_neutral}, {t_query}) ...

Unlikely Links ### Unlikely Links (Low-Confidence Candidates)
Based on analysis, these links are very unlikely to happen:
({u_id}, interact with, {v_unlikely}, {t_query}) ...

Original Question Now, based on all the examples above, analyze the examples and answer the 
following question. The correct answer could be either A or B. You must only 
output the letter of the correct option A or B.
Question: Which node is more likely to link with node {u_id}?
A: {v_true}
B: {v_neg}

Case Analysis The correct answer was A: {v_true}. Based on the context provided in the prompt, 
please provide a brief analysis explaining why node {v_true} was the more likely 
connection.
Reasoning: 

Figure 10: The prompt template for few-shot example construction.
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