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ABSTRACT

Many language models now enhance their responses with retrieval capabilities,
leading to the widespread adoption of retrieval-augmented generation (RAG) sys-
tems. However, despite retrieval being a core component of RAG, much of the
research in this area overlooks the extensive body of work on fair ranking, neglect-
ing the importance of considering all stakeholders involved. This paper presents
the first systematic evaluation of RAG systems integrated with fair rankings. We
focus specifically on measuring the fair exposure of each relevant item across the
rankings utilized by RAG systems (i.e., item-side fairness), aiming to promote
equitable growth for relevant item providers. To gain a deep understanding of the
relationship between item-fairness, ranking quality, and generation quality in the
context of RAG, we analyze nine different RAG systems that incorporate fair rank-
ings across seven distinct datasets. Our findings indicate that RAG systems with
fair rankings can maintain a high level of generation quality and, in many cases,
even outperform traditional RAG systems, despite the general trend of a tradeoff
between ensuring fairness and maintaining system-effectiveness. We believe our
insights lay the groundwork for responsible and equitable RAG systems and open
new avenues for future research. We publicly release our codebase and dataset.

1 INTRODUCTION

In recent years, the concept of fair ranking has emerged as a critical concern in modern information
access systems (Ekstrand et al., 2022). However, despite its significance, fair ranking has yet to be
thoroughly examined in the context of retrieval-augmented generation (RAG) (Lewis et al., 2020;
Asai et al., 2024), a rapidly advancing trend in natural language processing (NLP) systems (Kim
et al., 2024). To understand why this is important, consider the RAG system in Figure 1, where a
user asks a question about running shoes. A classic retrieval system might return several documents
containing information from various running shoe companies. If the RAG system only selects the
top two documents, then information from the remaining two relevant companies will not be relayed
to the predictive model and will likely be omitted from its answer. The fair ranking literature refers
to this situation as unfair because some relevant companies (i.e., in documents at position 3 and 4)
receive less or no exposure compared to equally relevant company in the top position (Ekstrand et al.,
2022).

Understanding the effect of fair ranking in RAG is fundamental to ensuring responsible and equitable
NLP systems. Since retrieval results in RAG often underlie response attribution (Gao et al., 2023),
unfair exposure of content to the RAG system can result in incomplete evidence in responses (thus
compromising recall of potentially relevant information for users) or downstream representational
harms (thus creating or reinforcing biases across the set of relevant entities). In situations where
content providers are compensated for contributions to inference, there can be financial implications
for the unfairness (Balan et al., 2023; Lyu et al., 2023; Henderson et al., 2023). Indeed, the fair
ranking literature indicates that these are precisely the harms that emerge when people are searchers
(Ekstrand et al., 2022), much less RAG systems, where the searchers are machines. RAG complicates
these challenges since it often truncates rankings to much shorter lengths to fit the generator’s limited
context size (Bahri et al., 2020; Hofstätter et al., 2023; Kim et al., 2024), making equal exposure of
relevant items even harder.
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Figure 1: Fairness concerns in RAG. A simplified example of how RAG models can ignore equally
relevant items (d3 and d4) and always consume the fixed top-scoring items (d1 and d2) with the same
order of ranking over the multiple user requests. This is due to the deterministic nature of the retrieval
process and a short context-length of a language model that necessitates the top-k truncation of a
ranked list.

Moreover, the fact that machines are now the searchers necessitates a different notion of item-
worthiness (how deserving an item is to be included in a ranked list). Traditionally, ranking quality
has been assessed based on relevance labels, which are created according to how relevant an item is to
the user’s query (Saracevic, 2016). However, with RAG systems, where the consumer is a language
model, there is a growing shift towards evaluating ranking quality based on utility labels, which
are determined by the usefulness of an item in aiding the model’s task performance, rather than its
relevance to the query (Salemi & Zamani, 2024a; Zhang et al., 2024a).

This shift from relevance to utility in the concept of item-worthiness can significantly alter our
understanding of the relationship between fairness and ranking quality (Balagopalan et al., 2023)—
particularly the tradeoffs that are well-known in the fair ranking literature (Biega et al., 2018; Diaz
et al., 2020; Singh & Joachims, 2019). Since previous fair ranking studies were conducted based on
relevance judgments, they may need to be reexamined in light of utility-based judgments within the
context of RAG.

Our research aims to bridge the gap between traditional fair ranking studies and the emerging changes
posed by RAG systems, ultimately enhancing our understanding of the interplay between fairness,
ranking quality, and the effectiveness of RAG systems. We do this by evaluating RAG systems with a
fairness-aware retriever across seven different tasks, experimenting with varying levels of retrieval
fairness to observe changes in ranking quality and generation quality (utility).1

Our empirical results show that, in the context of machine users, there also exists an overall trend of
fairness-quality tradeoff with respect to both retrieval and generation quality. However, the magnitude
of this tradeoff is not particularly severe. In fact, we find that RAG models equipped with a fair
ranker can often preserve a significant level of retrieval and generation quality, and in some cases,
even surpass the quality achieved by the traditional RAG setup with a deterministic ranker that lacks
fairness considerations.

This surprising finding offers significant insight into the potential of RAG-based applications, sug-
gesting that fair treatment of individual content providers can be achieved without sacrificing much
of the high-quality service delivered to end-users. This challenges the conventional assumption of an
inevitable tradeoff between fairness and quality, opening new avenues for developing more equitable
and effective RAG systems.

2 BACKGROUND & RELATED WORK

Retrieval-Augmented Generation. RAG, a specific type of retrieval-enhanced machine learning
(REML) (Zamani et al., 2022; Kim et al., 2024), has been widely adopted in various domains,
including language modeling (Khandelwal et al., 2020), question-answering (Izacard et al., 2023),
personalization (Salemi et al., 2024b;a; Kumar et al., 2024; Neelakanteswara et al., 2024), and

1Throughout this paper, we use "utility" and "generation quality" interchangeably to refer to the downstream
effectiveness of RAG models, measured by arbitrary string utility metrics.
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Figure 2: Experimental design to investigate the impact of item-fairness on ranking and generation
quality in RAG. To evaluate system performance across multiple identical user requests, we sample
N rankings from a stochastic retriever. We then measure the fairness and quality of the sampled
rankings (Expected Exposure) and assess the system’s expected end-performance (Expected Utility).
The query and prompt generators are omitted in the figure for brevity. Details on implementing a
RAG system with fair rankings in a production environment can be found in Appendix E.

recommendation (Zeng et al., 2024). Studies on the evaluation of RAG models have primarily
focused on their effectiveness, including end-to-end performance (Izacard et al., 2023; Guu et al.,
2020; Lewis et al., 2020) and the assessment of individual components (Es et al., 2024; Saad-Falcon
et al., 2024; Salemi & Zamani, 2024a). However, little research has focused on evaluating fairness
in retrieval-enhanced generation models, with the exception of recent work (Shrestha et al., 2024),
which improved demographic diversity in human image generation by conditioning a generative
model with externally retrieved images that help debias the generation process.

Fairness in Ranking. Fair ranking has been approached through various definitions based on
normative concerns, primarily with distinctions made according to the stakeholders we prioritize.
These include consumer-side fairness (Mehrotra et al., 2017; Ekstrand et al., 2024), which focuses on
how fairly a system delivers satisfaction to users; provider-side fairness (Sapiezynski et al., 2019;
Jaenich et al., 2024), which addresses how fairly item providers receive monetary or reputational
rewards; and item-side fairness (Jiang et al., 2024), which examines how fairly items are treated in
terms of representation or exposure. The motivation of item-side fairness is closely linked to provider-
side fairness, as unfair treatment of items can lead to unfair compensation for providers. These
fairness concerns can be further categorized by the scope of stakeholders, encompassing individual
fairness—ensuring similar treatment for similar individuals—and group fairness—ensuring equitable
outcomes across different groups (Caton & Haas, 2020; Ekstrand et al., 2022). Previous studies
have focused on developing metrics to measure fairness (Raj & Ekstrand, 2020) and optimizing
fair retrievers within a single (Yang & Stoyanovich, 2017; Zehlike et al., 2017; Sapiezynski et al.,
2019) or multiple rankings (Diaz et al., 2020; Singh & Joachims, 2018; Biega et al., 2018; Singh
& Joachims, 2019). In the context of provider- and item-side fairness, ensuring equal exposure
of similar items across multiple rankings has gained significant attention (Ekstrand et al., 2022).
To achieve this, researchers have used stochastic rankers that return a distribution of rankings, in
contrast to deterministic rankers commonly found in areas like RAG, which produce a fixed ranking.
This approach ensures that, in expectation, similar items receive equal exposure across multiple
user requests, with the distributions typically based on the merit of the rankings, such as an item’s
relevance (Diaz et al., 2020; Singh & Joachims, 2019).

In this research, we employ a stochastic ranker in RAG to enhance individual item-side fairness,
aiming to ensure equal expected exposure for items that offer similar merits.

3 EXPERIMENTAL METHODOLOGY

In traditional RAG systems, a user input is used to query a retrieval system for recommended items
from some corpus, which are then used for generation. Given user input x, a query q generated
by the query generation function ϕq(x), and a corpus of documents C, a deterministic retriever
R(q,C) returns a fixed ranked list L every time q is seen. Retrieval is followed by a top k truncation
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which is passed to a prompt generation function ϕp(x, L1:k) that returns a final prompt x̄, which is
subsequently passed to the language model G(x̄). Because deterministic retrievers allocate exposure
to the same item over repeated samples, RAG systems with deterministic retrievers present a challenge
to ensuring equal exposure of relevant items to the generator.

To address the issue of unfairness in the rankings passed to the generator, we can convert a determin-
istic retriever into a stochastic retriever, which can, in expectation, provide fair rankings (Diaz et al.,
2020). By sampling a ranking based on its quality to users—in this case generators—the expected
exposure of different relevant items becomes similar and, therefore, fairer (Appendix E). Because
decisions are stochastic, the fairness and quality of stochastic retrieval is evaluated based on a sample
of rankings. Similarly, since a sampled ranking is processed by a generator, we also compute the
expected generator effectiveness over sampled rankings. The complete evaluation pipeline of a RAG
system with a stochastic retriever is illustrated in Figure 2.

The following sections describe how we construct a test collection with utility labels (§3.1), how we
stochastically sample multiple rankings (§3.2), and how we evaluate the fairness and ranking quality
of the sampled rankings (§3.3.1) and measure the effectiveness of a RAG system given multiple
rankings (§3.3.2).

3.1 CONSTRUCTION OF A TEST COLLECTION WITH UTILITY LABELS

Setting an appropriate proxy for measuring item-worthiness is crucial in the evaluation of fairness
(Balagopalan et al., 2023). Drawing on the insight that utility-based judgments are more suitable
than relevance judgments in the context of RAG (Zhang et al., 2024a; Salemi & Zamani, 2024a), we
annotate item-level utility labels for all items in the corpus.

We define an item’s worthiness by the marginal gain in utility (utility-gain) it provides to a language
model (specifically, the generator in a RAG system) when used to solve a specific task as part of the
augmentation process. To assess this utility-gain, each item in the corpus is individually supplied
to the generator along with an input question. The utility-gain is then calculated as the difference
between the utility of the augmented generator and that of a baseline language model without any
information about the item. Formally, let ui denote the baseline string utility score from the vanilla
language model prompted only with the input question, and let uj represent the utility score from the
language model with a prompt augmented by the j’th item dj in the corpus. The item dj is considered
useful if the utility-gain δj = uj − ui is positive, and not useful otherwise (see Appendix B).

Therefore, the item-level utility labels are designed to be both task- and generator-dependent, as the
utility of each item varies depending on the task and the language model used. This labeling process
also aligns with the principles of task-based information retrieval, where, in the context of human
searchers, document utility may vary on how the user expects to use the document (Kelly et al., 2013).

3.2 FAIRNESS-AWARE STOCHASTIC RETRIEVER

Stochastic retrievers have been used for various purposes, such as optimization of retrieval models
(Bruch et al., 2020; Zamani & Bendersky, 2024; Guiver & Snelson, 2009; Oosterhuis, 2021), as well
as ensuring equitable exposure of items (Oosterhuis, 2022; Diaz et al., 2020; Oosterhuis, 2021). Many
of these studies use Plackett-Luce sampling (Plackett, 1975) to achieve the stochasticity of retrieval.
We follow the line of research and formally define how we derive a fairness-aware stochastic retriever
through Plackett-Luce sampling. To enhance sampling efficiency, we adopt the methodology of
Oosterhuis (2021), and for controllable randomization, we utilize the approach proposed by Diaz
et al. (2020).

Given n items in a corpus C, a vector of retrieval scores s ∈ Rn can be obtained fromR(q,C), which
can be used to generate a ranked list L. We then min-max normalize retrieval scores to be in [0, 1] in
order to construct a multinomial distribution over items (Biega et al., 2018). The probability of an
item d being selected as the i’th item in a new ranking π through Plackett-Luce sampling is given by

p(d|L1:i−1) =
exp(s̄d)1[d /∈ L1:i−1]∑

d′∈C\L1:i−1
exp(s̄d′)

(1)

where L1:i−1 is the partial ranking up to position i− 1, s̄ represents the normalized retrieval score
vector, and s̄d is the normalized score of item d. Using this probability, we iteratively sample an
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item, set its probability to 0, renormalize the distribution, and repeat the process. The probability of
generating a complete ranking is then given by the product of the placement probabilities for each
item, i.e., p(π|q) = ∏n

i=1 p(πi|π1:i−1).

This repeated sampling and renormalization process can be efficiently managed using the Gumbel-
Softmax trick (Gumbel, 1954; Maddison et al., 2017), which enables the sampling of rankings to
be performed at the speed of sorting (Oosterhuis, 2021). To do so, for each sampling iteration, we
draw Ui ∼ Uniform(0, 1), followed by generating a Gumbel noise Gi = − log(− log(Ui)). The
probability of each sampled ranking is then obtained by sorting the items based on their perturbed
scores s̃di

= s̄di
+Gi.

3.2.1 CONTROLLING THE LEVEL OF FAIRNESS

Adjusting the level of randomization directly controls the degree of item-fairness, aligning with our
goal to observe how varying levels of fairness in rankings affect the ranking and generation quality
of a RAG model. To obtain the controllability, we follow the work of Diaz et al. (2020) and use
a temperature parameter α. We apply the scalar α to each value in the normalized score vector s̄
by raising each value to the power of α.2 This process is done before the scores are passed to the
sampling policy. Therefore, the modified sampling distribution is thus defined as:

p(d|L1:i−1) =
exp(s̄αd )1[d /∈ L1:i−1]∑

d′∈C\L1:i−1
exp(s̄αd′)

(2)

This implies that the sharpness of the sampling distribution is controlled by the α. A higher α
amplifies the probability of items with higher retrieval scores being sampled. Therefore, if multiple
rankings are sampled by the stochastic retriever with high α, it results in high disparity (i.e., item-side
unfairness) of sampled rankings. At extreme, with considerably high α, the procedure results in the
identical rankings which is the behavior of a deterministic ranker (i.e., maximum item-unfairness). On
the other hand, a lower α reduces the disparity of sampled rankings, making the exposure distribution
fairer. At extreme, when α = 0, the sampling procedure becomes uniformly random and achieves the
lowest disparity (i.e., maximum item-fairness) in the sampled rankings.

3.3 EVALUATION

As mentioned in Section 3, because we are dealing with stochastic retrievers, we need to measure
the expected behavior of the system. Let S(s, N, k) be the stochastic sampler that samples a set of
N rankings σ = {π}, given the retrieval scores s, where each ranking π is truncated to the size of
k. From each ranking, we can get an output ŷ = G(ϕp(x, π)). With an arbitrary fairness metric
µf (σ) and a ranking quality metric µr(σ) that takes a set of rankings as an input, we can measure the
degree of fairness and ranking quality of the sampled rankings. Similarly, an arbitrary string utility
metric µu(y, ŷ), such as ROUGE, can be used to assess an expected effectiveness of a RAG system
by calculating the average of the N metric scores.

In this paper, based on the empirical investigation done by Raj & Ekstrand (2020), we use expected
exposure disparity (EE-D) and expected exposure relevance (EE-R) (Diaz et al., 2020) as µf and µr,
respectively (§3.3.1). For µu, we select the metric depending on the task, and we get the expectation
of the utility of a RAG model which we call an expected utility (EU) (§3.3.2).

3.3.1 EXPECTED EXPOSURE IN THE CONTEXT OF MACHINE USERS

Expected Exposure (EE) (Diaz et al., 2020) works by estimating the exposure of items across rankings
(e.g., σ) created by a subject model, and comparing them with an optimal set of rankings that always
satisfy the item-fairness. To represent the attention over n items given by the consumer (generator
in RAG), an n× 1 system exposure vector ϵ is created. This is then compared with an n× 1 target
exposure vector ϵ∗, where it represents the exposure of items allocated by an oracle retriever that
always rank useful items above non-useful ones (Diaz et al., 2020).

2We normalized the values to the range of [1, 2] instead of [0, 1]. The addition of 1 effectively serves the
same purpose as adjusting a real-numbered α. We chose this range to allow for an integer-valued α.
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With the system and target exposure vector ϵ ∈ Rn and ϵ∗ ∈ Rn, we can get the difference between
the two by the squared l2 distance:

∥ϵ− ϵ∗∥22 = ∥ϵ∥22 − 2⟨ϵ, ϵ∗⟩+ ∥ϵ∗∥22 (3)

This difference yields two metrics useful for fairness and ranking quality evaluation. ∥ϵ∥22 can be a
measure for disparity of rankings (EE-D), and ⟨ϵ, ϵ∗⟩ can be a measure of ranking quality (EE-R)
by calculating the degree of alignment of system exposure to the target exposure (i.e., how much of
the exposure is on useful items). Therefore, the higher the value of EE-D, the more unfair the set
of rankings are, and the higher the value of EE-R, the closer the set of system rankings are to the
optimal set of rankings with respect to the ranking quality.

The exposure of an item is calculated by modeling users’ (e.g., generators in RAG) attention to each
item in a ranking. For example, one can assume that the user is affected by position bias and gives
attention following an exponential decay (Moffat & Zobel, 2008). However, these browsing models
were developed for human-users not for machine-users, so we need a different user behavior model
for generators in RAG. For simplicity, we assume that the machine-user can consume the items by
giving equal attention to all the items that were passed to the context, but pays 0 attention to the items
placed after the k’th position due to the top-k truncation. This makes the user browsing model a step
function parameterized by k. In this work, a relevance-independent machine-user model (MU) is set
to the step function that reflects the behavior of top-k truncation of RAG:

MU(i) =

{
1 if i ≤ k

0 otherwise
= 1[i ≤ k] (4)

Given this machine user browsing model and a mapping from item index to its rank denoted as π̄d, a
system exposure for each item d is calculated as

ϵd =
∑
π∈Sn

p(π|q)MU(π̄d) (5)

and target exposures for a useful item d and a unuseful item d− are calculated as

ϵ∗d =
1

m

m∑
i=1

MU(i) =

{
1 if m ≤ k
k
m otherwise

ϵ∗d− =

{
k−m
n−m if m ≤ k

0 otherwise
(6)

3.3.2 EXPECTED UTILITY

Given the set of N sampled rankings σ, we individually augment the generator with each ranking
π ∈ σ, resulting in N outputs from the generator. The utility of these outputs is then measured
using an arbitrary string utility metric µu. To determine the anticipated utility of a RAG model with
fair rankings—represented by the tuple of a stochastic ranking sampler S and a generator G—we
calculate the expected utility (EU) of the RAG system given an instance x.

EU(⟨S,G⟩|x) = Eπ∼S [µu(y, ŷπ)] =
∑
π∈Sn

p(π|q)µu(y, ŷπ) ≈
1

N

∑
π∈σ

µu(y, ŷπ) (7)

where ŷπ is the prediction of a system given the ranking π, Sn is the symmetric group of a ranked list
L from the deterministic retrieverR, and

∑
π∈Sn

p(π|q) = 1.

3.3.3 NORMALIZATION OF METRICS

From Equation 3, we decompose the metric into EE-D and EE-R. Since the bounds of these metrics
depend on the number of useful items, normalization must be applied per query. Both metrics are
min-max normalized based on their theoretical lower and upper bounds. We denote the normalized
EE-D and EE-R as EE-Dq and EE-Rq , respectively.

However, theoretically determining the bounds of the expected utility (EU) of a RAG model is
challenging. To address this, we normalized the EU by the model’s empirical upper bound, the
maximum observed utility across all runs of the experiment with the same generators. To approach
the true upper bound, these runs include RAG models with an oracle retriever that consistently ranks
useful items (i.e., those with positive utility labels) above non-useful ones, stochastically returning
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one of the m!(n −m)! different rankings, where m represents the number of useful items in the
corpus. We denote the normalized EU as EUq , which can be interpreted as the distance to the optimal
utility. From this section onwards, we omit the symbol q from the normalized metrics for brevity.
Proofs and details on how each metric is normalized by its lower and upper bounds can be found in
the Appendix. C.

4 EXPERIMENT SETUP

We choose the LaMP benchmark (Salemi et al., 2024b) for our dataset. It assesses the personalization
capability of language models through retrieval-augmentation of users’ interaction history in a
platform. LaMP includes various prediction tasks, such as classification, regression, and generation,
and is well-suited for tasks where multiple items can be relevant/useful, unlike QA tasks with typically
one or two provenance items. The retrieval items in LaMP have clear providers and consumers,
aligning with our goal to ensure fairness for individual item providers. For example, in LaMP-1,
retrieval items are academic papers, where exposure can increase citation counts for authors. In
LaMP-4, retrieval items are news articles, where exposure can lead to monetary compensation for
journalists. Due to the absence of a test set, we constructed a test collection as described in §3.1,
using the first thousand entries of a user-based development set. Then, we discarded entries that have
only one useful item in the corpus, as it is unnecessary to concern item-fairness in that case. We
release the test collection, and the dataset statistics can be found in the Appendix J.

1 2 4 8
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0.8
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LaMP-4 Contriever+FlanT5Base

Figure 3: Effect of a temperature param-
eter α on the disparity of rankings, in
the LaMP task 4, a text generation task.
The RAG model is configured with the
Contriever and Flan-T5-Base. Each data
point represents the normalized EE-D
of each run of the experiment (i.e., one
query –>N sampled rankings –> EE-D
of the N rankings).

We use BM25 (lexical retriever) (Robertson et al., 1995),
SPLADE (learned sparse retriever), and Contriever (bi-
encoder dense retriever) (Izacard et al., 2022) as deter-
ministic retrievers providing retrieval scores to base the
sampling on. These models represent commonly used re-
trievers in the RAG literature (Kim et al., 2024). We use a
sampling size of N = 100 and a truncation size of k = 5.

For generation models, we use Flan-T5-Small, Flan-T5-
Base, and Flan-T5-XXL (Chung et al., 2022). For de-
coding strategy, beam size is set to 4, and no sampling
strategy is used. This is to ensure that stochasticity is only
introduced to the retriever for controlled experiments. Full
implementation details can be found in Appendix K. With
the three base retrievers and three generators, we configure
nine different RAG models and evaluate them on the seven
LaMP tasks. Utility measurement of the generated strings
followed the metrics used in the LaMP paper.

We repeat the experiments with four different temperature
parameters α = 1, 2, 4, 8, which allows us to assess the
utility of the RAG models with different levels of item-
fairness. From Figure 3, we observe how effectively α, described in the Equation 2, controls the
disparity of rankings. For example, when α is set to 4, we usually obtain a set of sampled rankings
with EE-D mostly in the range of [0.5, 0.8], and when α is set to 8, we often get a set of sampled
rankings with EE-D = 1. Refer to Appendix D to see the full description of the effect of α on the
other metrics.

5 RESULTS

RQ1: Is there a tradeoff between ensuring item-fairness in rankings and maintaining high ranking
quality when utility labels are used for evaluation?

By gathering all four repeated runs of the experiments with different α values, we can plot the trend
of ranking quality (EE-R) against item fairness (EE-D), as shown in Figure 4.

As shown in previous studies (Singh & Joachims, 2019; Diaz et al., 2020), there is a well-known
tradeoff between fairness and ranking quality for human users. Similarly, we observe a general
tradeoff for machine users. However, unlike past findings, this tradeoff is not always strict. For
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instance, in Figure 4, both SPLADE and Contriever maintain consistently high ranking quality while
being considerably fairer, and for BM25, ranking quality even improves as fairness increases, up to a
certain point.
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LaMP-4 FlanT5Base

BM25; AUC=0.3812
SPLADE; AUC=0.4236
Contriever; AUC=0.4303

Figure 4: Relationship between item-
fairness and the quality of rankings.

At the rightmost side of the lines, where EE-D = 1 (rep-
resenting the performance of deterministic rankers), we
observe that these rankers do not always deliver the high-
est ranking quality. This suggests that commonly used
deterministic rankers in RAG systems may be suboptimal,
and that ranking quality can be improved while ensuring
item fairness. This becomes even clearer when examining
the impact of fair ranking on the downstream performance
of a RAG system.

The leftmost side of the lines, where EE-D = 0, represents
the performance of a uniformly random ranking policy. At
this point, the measured ranking quality should approx-
imate the proportion of positively labeled items in the
corpus, which is 31% based on data statistics (Appendix
J). This is notably higher than in non-RAG (human-user) settings, where the percentage of relevant
documents is typically much smaller, resulting in a EE-R value near 0 (Diaz et al., 2020).

To quantify the performance of fair rankers, we calculate the area under the disparity-ranking quality
curve (Figure 4), with higher values indicating stronger ranking quality. We also measure the tradeoff
by fitting a linear line to the experiment results, where a steeper slope reflects a stronger tradeoff
between fairness and ranking quality. Based on these metrics, we observe that Contriever-based
models exhibit the highest tradeoff, while BM25-based models show the lowest, despite their poor
retrieval quality. Overall, SPLADE-based models achieve high retrieval quality while maintaining a
relatively low tradeoff. For detailed plots and quantifications, refer to Appendix F.
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(a) Ranking Quality Vs. Utility
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Figure 5: (a) Strong correlation between ranking quality and generation quality. (b) Fairness-
generation quality tradeoff. Full plots and quantifications are provided in Appendix G and H.

Fairness Intervals

Model (baseline utility) [0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

LaMP-1
BM25+FlanT5Small (0.308) -0.12 -0.13 -0.18 -0.02 -0.15
BM25+FlanT5Base (0.670) -0.20 -0.04 -0.08 -0.05 -0.02
BM25+FlanT5XXL (0.531) -0.07 +0.03 +0.02 +0.06 +0.11

SPLADE+FlanT5Small (0.241) -0.03 -0.22 +0.19 -0.04 +0.14
SPLADE+FlanT5Base (0.646) -0.15 +0.06 +0.08 0.00 +0.03
SPLADE+FlanT5XXL (0.671) -0.18 -0.16 +0.05 +0.02 +0.01

Contriever+FlanT5Small (0.286) -0.08 -0.29 -0.06 +0.03 -0.14
Contriever+FlanT5Base (0.637) -0.16 +0.05 -0.06 +0.03 0.00
Contriever+FlanT5XXL (0.651) -0.19 -0.04 -0.11 +0.03 0.00

Fairness Intervals

Model (baseline utility) [0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

LaMP-4
BM25+FlanT5Small (0.217) -0.06 0.00 +0.02 +0.01 0.00
BM25+FlanT5Base (0.223) -0.06 0.00 +0.03 +0.01 +0.02
BM25+FlanT5XXL (0.322) -0.05 +0.11 +0.03 +0.03 +0.05

SPLADE+FlanT5Small (0.235) -0.07 -0.01 +0.02 +0.03 +0.02
SPLADE+FlanT5Base (0.268) -0.10 -0.03 +0.02 0.00 +0.02
SPLADE+FlanT5XXL (0.342) -0.06 +0.09 +0.05 +0.03 +0.04

Contriever+FlanT5Small (0.254) -0.09 -0.02 0.00 +0.01 0.00
Contriever+FlanT5Base (0.268) -0.10 -0.02 +0.01 0.00 +0.01
Contriever+FlanT5XXL (0.367) -0.09 +0.06 +0.01 +0.01 +0.03

Table 1: Each value in the table is the difference between the utility of a baseline (deterministic)
RAG model and the average utility of a fairer RAG model at a specific fairness interval. Nonnegative
differences are highlighted. Full results are listed in Appendix I.
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RQ2: Is there a tradeoff between ensuring item-fairness in ranking and maintaining high generation
quality of a RAG model?

Before examining the relationship between fairness and RAG utility, Figure 5a shows an auxiliary
result confirming a strong correlation between utility-based ranking quality and the effectiveness
of RAG models. This is unsurprising, as item-worthiness judgments were based on the utility-
gain provided by the generator. However, this correlation suggests that the tradeoff observed in the
disparity-ranking quality curve (Figure 4) is likely to manifest similarly due to this strong relationship.

In fact, as observed from the disparity-utility curve (Figure 5b), we see a global trend of a non-strict
tradeoff (i.e., RAG models maintain high generation quality while being considerably fair, and often
even achieve higher quality).

However, a closer look at the local trend offers a significant insight: RAG systems with fair ranking can
often achieve higher system-effectiveness compared to models with deterministic rankers. In Table 1,
we divided the fairness levels into five intervals based on the normalized EE-D. As shown in the table
and Appendix I, improving fairness to the level of EE-D ∈ [0.8, 1.0), and even EE-D ∈ [0.6, 0.8),
can often enhance the utility of many RAG models across most LaMP tasks. For example, having
EE-D in the range of [0.8, 1.0) outperforms the baseline for all models in LaMP-2 and for seven out
of nine models in LaMP tasks 4, 5, and 6.

6 DISCUSSION AND CONCLUSION

Why do we often see higher system utility in fairer RAG models? Although there is a general
trend of a fairness-utility tradeoff, we observe that certain levels of fairness can actually improve
the utility of a baseline RAG model. Recent line of research have uncovered relevant findings: 1)
generators are not robust to changes in the position of useful information (Liu et al., 2024); 2) items
with high retrieval scores often include distracting content that can reduce the system-effectiveness
(Cuconasu et al., 2024; Ru et al., 2024); and 3) introducing some random documents can significantly
boost the utility of RAG (Cuconasu et al., 2024).

Building on these existing results, we find that perturbing the initial ranking through stochastic
sampling often can impact the performance of certain inference decisions and lead to changes in
the system’s expected end-performance. In our experiments, we observe that the expected utility
generally increases within the fairness interval of [0.8, 1.0). This suggests that a fixed ranking from
a deterministic ranker may be suboptimal for the generator, and that perturbing the ranking, along
with the repositioning of items, not only improves expected end-performance but also enhances the
fairness of the rankings.

Moreover, in fairness intervals where the system’s expected utility improves, it is possible that either
fewer distracting items were included in the ranking passed to the generator or useful, previously
overlooked items (which may have been considered random) were introduced due to the ranking
perturbation. However, while higher utility paired with increased item-fairness (even within fairness
intervals as low as [0.4, 0.6)) may seem advantageous, practitioners should exercise caution. This
could result in compensating providers of items irrelevant to user requests, particularly in scenarios
where content providers are rewarded for contributing to inference outcomes.

Machine-user browsing model. Developing more sophisticated machine-user browsing models
will result in more consistent and accurate evaluations of item-side fairness in RAG models, as the
exposure of each item is influenced by the attention allocated by the machine-user. Initial research
can draw inspiration from Liu et al. (2024), who found that LLMs tend to allocate more attention to
the beginning and end of a context, with less focus on the middle. This line of inquiry aligns with
the broader effort to create search engines tailored for machine-users (Salemi & Zamani, 2024b),
specifically focusing on fairer search engines in this context. It should involve studying how LMs
attend to each retrieved result within a context, analogous to how traditional search engine research
models human browsing behavior (Dupret & Piwowarski, 2008).

Measurement of string utility. In line with the recent call for evaluating various valid output strings
(Zhang et al., 2024b), we recognize the need for a similar approach to better measure system utility
across different rankings given. Recall that our experiments were designed to provide the generator
with different rankings for the same query, leading to varied outputs. This approach is motivated by
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the idea that items not appearing in the top positions of deterministic rankings may still hold value
and should be fairly considered by the system. In this context, the diverse outputs generated from
different rankings may still be valid. However, we currently rely on a single target output string for
comparison with predictions. Future work could focus on calculating the utility of diffuse predictions,
enabling a more nuanced evaluation.

Limitations. We acknowledge that the evaluation cost of fair RAG systems can be high due to
repeated sampling and inference steps. However, in production, only a single ranking is sampled,
minimizing the impact on system latency (Appendix E). Also, a limitation in our utility labeling
is that it considers single items, while multiple items may yield contrasting utility gains. Despite
this, the strong correlation between ranking quality and system effectiveness suggests this approach
reasonably approximates item-worthiness for evaluating the impact of fair ranking on RAG systems.

Conclusion. This study highlights the impact of fair rankings on both the ranking and generation
quality of RAG systems. Through the extensive analysis, we show that fairer RAG systems not only
maintain high generation quality but can also outperform traditional RAG models, challenging the
notion of a strict tradeoff between fairness and effectiveness. Our findings provide valuable insights
for developing responsible and equitable RAG systems and pave the way for future research in fair
ranking and retrieval-augmented generation. In future work, we hope to extend this framework to
consider graded or missing judgments and exploring the different notions of fairness in RAG systems,
ultimately advancing the field of trustworthy RAG systems research.

ETHICS STATEMENT

This study does not involve human subjects, harmful insights, or methodologies that raise ethical
concerns. Additionally, there are no privacy, security, or legal issues associated with this work.
Instead, this research follows existing work on fair ranking (Ekstrand et al., 2022) that aims to
promote equity while acknowledging the potential limitations of technical opertaionalizations of
fairness.

REPRODUCIBILITY STATEMENT

The authors have made significant efforts to ensure the reproducibility of this research.
A well-documented anonymized code repository containing all necessary materials to
reproduce the experiments is available at https://anonymous.4open.science/r/
fair-rag-iclr-anonymous-9C09. This repository describes a clear dataset source, a com-
plete data generation pipeline using the LaMP benchmark (as detailed in §3.1 and Appendix B), and
scripts for running the experiments. The code repository covers all stages of the research, including
deterministic retrieval computation, stochastic retrieval, RAG model implementation, Expected Expo-
sure and Expected Utility evaluation, and normalization of metric values following the theoretical
proofs in Appendix C. For the part where the randomization is included a random seed is set to 42
across all experiments, and no sampling is used for language model decoding (as described in §4).
This approach was implemented not only to ensure reproducibility but also to limit the introduction
of stochasticity to the retrieval process, ensuring more reliable experiments. Implementations of nine
RAG models were based on the publicly available retrievers and generators which are referenced in
Appendix K.

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2024.

Dara Bahri, Yi Tay, Che Zheng, Donald Metzler, and Andrew Tomkins. Choppy: Cut transformer for
ranked list truncation. Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2020.

10

https://anonymous.4open.science/r/fair-rag-iclr-anonymous-9C09
https://anonymous.4open.science/r/fair-rag-iclr-anonymous-9C09


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Aparna Balagopalan, Abigail Z. Jacobs, and Asia J. Biega. The role of relevance in fair ranking. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’23, pp. 2650–2660. Association for Computing Machinery, 2023.

K. Balan, S. Agarwal, S. Jenni, A. Parsons, A. Gilbert, and J. Collomosse. Ekila: Synthetic media
provenance and attribution for generative art. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 913–922. IEEE Computer Society, jun 2023.

Asia J Biega, Krishna P Gummadi, and Gerhard Weikum. Equity of attention: Amortizing individual
fairness in rankings. In The 41st international acm sigir conference on research & development in
information retrieval, pp. 405–414, 2018.

Sebastian Bruch, Shuguang Han, Michael Bendersky, and Marc Najork. A Stochastic Treatment of
Learning to Rank Scoring Functions. In Proceedings of the 13th International Conference on Web
Search and Data Mining, WSDM ’20, pp. 61–69. Association for Computing Machinery, 2020.

Simon Caton and Christian Haas. Fairness in machine learning: A survey. ACM Computing Surveys,
2020.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun
Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin
Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang,
Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny
Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models, 2022.

Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campagnano,
Yoelle Maarek, Nicola Tonellotto, and Fabrizio Silvestri. The power of noise: Redefining retrieval
for rag systems. In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’24, pp. 719–729. Association for Computing
Machinery, 2024.

Fernando Diaz, Bhaskar Mitra, Michael D. Ekstrand, Asia J. Biega, and Ben Carterette. Evaluating
Stochastic Rankings with Expected Exposure. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, CIKM ’20, pp. 275–284. Association for
Computing Machinery, 2020.

Georges E. Dupret and Benjamin Piwowarski. A user browsing model to predict search engine
click data from past observations. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’08, pp. 331–338.
Association for Computing Machinery, 2008. doi: 10.1145/1390334.1390392.

Michael D Ekstrand, Anubrata Das, Robin Burke, and Fernando Diaz. Fairness in information access
systems. Foundations and Trends® in Information Retrieval, 16(1-2):1–177, 2022.

Michael D. Ekstrand, Lex Beattie, Maria Soledad Pera, and Henriette Cramer. Not just algorithms:
Strategically addressing consumer impacts in information retrieval. In Advances in Information
Retrieval, pp. 314–335. Springer Nature Switzerland, 2024.

Shahul Es, Jithin James, Luis Espinosa Anke, and Steven Schockaert. RAGAs: Automated evaluation
of retrieval augmented generation. In Nikolaos Aletras and Orphee De Clercq (eds.), Proceedings
of the 18th Conference of the European Chapter of the Association for Computational Linguistics:
System Demonstrations, pp. 150–158. Association for Computational Linguistics, 2024.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. Enabling large language models to generate
text with citations. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 6465–6488. Association
for Computational Linguistics, 2023. doi: 10.18653/v1/2023.emnlp-main.398.

John Guiver and Edward Snelson. Bayesian inference for Plackett-Luce ranking models. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp. 377–384. ACM,
2009.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series of
lectures, volume 33. US Government Printing Office, 1954.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A. Lemley, and Percy Liang.
Foundation models and fair use. Journal of Machine Learning Research, 24(400):1–79, 2023.

Sebastian Hofstätter, Jiecao Chen, Karthik Raman, and Hamed Zamani. Fid-light: Efficient and
effective retrieval-augmented text generation. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1437–1447, 2023.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
Transactions on Machine Learning Research, 2022. ISSN 2835-8856.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. Journal of Machine Learning Research, 24(251):1–43,
2023.

Thomas Jaenich, Graham McDonald, and Iadh Ounis. Fairness-aware exposure allocation via adaptive
reranking. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’24, pp. 1504–1513. Association for Computing
Machinery, 2024.

Meng Jiang, Keqin Bao, Jizhi Zhang, Wenjie Wang, Zhengyi Yang, Fuli Feng, and Xiangnan He.
Item-side fairness of large language model-based recommendation system. In Proceedings of the
ACM on Web Conference 2024, WWW ’24, pp. 4717–4726. Association for Computing Machinery,
2024.

Diane Kelly, Jaime Arguello, and Robert Capra. Nsf workshop on task-based information search
systems. SIGIR Forum, 47(2):116–127, 2013. ISSN 0163-5840.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2020.

To Eun Kim, Alireza Salemi, Andrew Drozdov, Fernando Diaz, and Hamed Zamani. Retrieval-
enhanced machine learning: Synthesis and opportunities. arXiv preprint arXiv:2407.12982, 2024.

Ishita Kumar, Snigdha Viswanathan, Sushrita Yerra, Alireza Salemi, Ryan A. Rossi, Franck Dernon-
court, Hanieh Deilamsalehy, Xiang Chen, Ruiyi Zhang, Shubham Agarwal, Nedim Lipka, and
Hamed Zamani. Longlamp: A benchmark for personalized long-form text generation, 2024.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Lingjuan Lyu, C Chen, and J Fu. A pathway towards responsible ai generated content. In IJCAI, pp.
7033–7038, 2023.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning Representations,
2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rishabh Mehrotra, Ashton Anderson, Fernando Diaz, Amit Sharma, Hanna Wallach, and Emine
Yilmaz. Auditing search engines for differential satisfaction across demographics. In Proceedings
of the 26th International Conference on World Wide Web Companion, WWW ’17 Companion, pp.
626–633. International World Wide Web Conferences Steering Committee, 2017.

Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of retrieval effectiveness.
ACM Transactions on Information Systems (TOIS), 27(1):1–27, 2008.

Abhiman Neelakanteswara, Shreyas Chaudhari, and Hamed Zamani. Rags to style: Personalizing
llms with style embeddings. In Proceedings of the 1st Workshop on Personalization of Generative
AI Systems (PERSONALIZE 2024), pp. 119–123, 2024.

Harrie Oosterhuis. Computationally efficient optimization of plackett-luce ranking models for
relevance and fairness. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1023–1032, 2021.

Harrie Oosterhuis. Learning-to-rank at the speed of sampling: Plackett-luce gradient estimation
with minimal computational complexity. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2266–2271, 2022.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193–202, 1975.

Amifa Raj and Michael D Ekstrand. Comparing fair ranking metrics. arXiv preprint
arXiv:2009.01311, 2020.

Stephen Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford. Okapi at trec-3.
In Proceedings of the Third Text REtrieval Conference, TREC-3, pp. 109–126. Gaithersburg, MD:
NIST, 1995.

Dongyu Ru, Lin Qiu, Xiangkun Hu, Tianhang Zhang, Peng Shi, Shuaichen Chang, Jiayang Cheng,
Cunxiang Wang, Shichao Sun, Huanyu Li, et al. Ragchecker: A fine-grained framework for
diagnosing retrieval-augmented generation. arXiv preprint arXiv:2408.08067, 2024.

Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. ARES: An automated
evaluation framework for retrieval-augmented generation systems. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 338–354. Association for Computational Linguistics, 2024.

Alireza Salemi and Hamed Zamani. Evaluating retrieval quality in retrieval-augmented generation.
In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 2395–2400, 2024a.

Alireza Salemi and Hamed Zamani. Towards a search engine for machines: Unified ranking for
multiple retrieval-augmented large language models. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’24, pp.
741–751. Association for Computing Machinery, 2024b. doi: 10.1145/3626772.3657733.

Alireza Salemi, Surya Kallumadi, and Hamed Zamani. Optimization methods for personalizing
large language models through retrieval augmentation. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’24, pp.
752–762. Association for Computing Machinery, 2024a. doi: 10.1145/3626772.3657783.

Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. LaMP: When large
language models meet personalization. In Proceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 7370–7392. Association for
Computational Linguistics, 2024b.

Piotr Sapiezynski, Wesley Zeng, Ronald E Robertson, Alan Mislove, and Christo Wilson. Quantifying
the impact of user attentionon fair group representation in ranked lists. In Companion Proceedings
of The 2019 World Wide Web Conference, WWW ’19, pp. 553–562. Association for Computing
Machinery, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tefko Saracevic. The Notion of Relevance in Information Science: Everybody knows what relevance
is. But, what is it really? Morgan & Claypool Publishers, 2016.

Robik Shrestha, Yang Zou, Qiuyu Chen, Zhiheng Li, Yusheng Xie, and Siqi Deng. Fairrag: Fair
human generation via fair retrieval augmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 11996–12005, 2024.

Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2219–2228,
2018.

Ashudeep Singh and Thorsten Joachims. Policy learning for fairness in ranking. In Proceedings of
the 33rd International Conference on Neural Information Processing Systems, number 487, pp.
5426–5436. Curran Associates Inc., 2019.

Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. In Proceedings of the 29th
international conference on scientific and statistical database management, pp. 1–6, 2017.

Hamed Zamani and Michael Bendersky. Stochastic rag: End-to-end retrieval-augmented generation
through expected utility maximization. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’24, pp. 2641–2646.
Association for Computing Machinery, 2024. doi: 10.1145/3626772.3657923.

Hamed Zamani, Fernando Diaz, Mostafa Dehghani, Donald Metzler, and Michael Bendersky.
Retrieval-enhanced machine learning. In Proceedings of the 45th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2022.

Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed, and Ricardo
Baeza-Yates. Fa* ir: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, pp. 1569–1578, 2017.

Huimin Zeng, Zhenrui Yue, Qian Jiang, and Dong Wang. Federated recommendation via hybrid
retrieval augmented generation, 2024.

Hengran Zhang, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Yixing Fan, and Xueqi Cheng.
Are large language models good at utility judgments? In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’24, pp.
1941–1951. Association for Computing Machinery, 2024a.

Yiming Zhang, Avi Schwarzschild, Nicholas Carlini, Zico Kolter, and Daphne Ippolito. Forcing
diffuse distributions out of language models. arXiv preprint arXiv:2404.10859, 2024b.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A NOTATION

Notation Description

x input instance
y output target
ϕq(x) query generation function
q query returned by ϕq(x)
d retrieval item (document)
C stored retrievable items (corpus)
n the number of d’s in C
m the number of useful items in C

R(q,C) deterministic retriever
L ranked list returned byR(q,C)
s ∈ Rn retrieval scores returned byR(q,C)
N sampling size for stochastic sampling
k the number of d’s to retrieve per ranking
S(s, N, k) stochastic ranking sampler
σ set of N sampled rankings returned by S(s, N, k)
π sampled ranking ∈ σ
ϕp(x, π) prompt generation function
x prompt returned by ϕp(x, π)
G(x) language model
ŷ predicted output from G(x)

wor(d|x) worthiness of an item d given an input x
µf (σ) fairness metric of rankings
µr(σ) relevance metric of rankings
µu(y, ŷ) string utility metric
ϵ ∈ Rn expected exposure of all items in C
ϵ∗ ∈ Rn target exposure of all items in C

Table 2: Notation.
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B LABELING PROCEDURE

Algorithm 1 Labeling Procedure of Binary Utility Labels

1: D = {(x1, y1), (x2, y2), · · · , (xT , yT )} ▷ dataset of size T
2: for (xi, yi) ∈ D do
3: ui ← µu(yi,G(xi)) ▷ string utility of a baseline model without augmentation
4: for dj ∈ C do
5: ŷj ← G(ϕp(xi, dj))
6: uj ← µu(yi, ŷj) ▷ string utility of a generator augmented with one item
7: δj ← (uj − ui) ▷ marginal utility gained from the augmentation
8: wor(dj |xi)← 0
9: if δj > 0 then ▷ binary decision of item-worthiness by the utility-gain

10: wor(dj |xi)← 1
11: end if
12: end for
13: end for
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C NORMALIZATION OF METRICS

C.1 NORMALIZATION OF EE-D

The disparity measure EE-D should be normalized by its true upper and lower bound.

Theorem 1. ∥ϵ∥22 ∈ [0, ∥ϵ̄∥22], where ϵ̄ is an exposure vector derived from any deterministic ranking.

Proof. The lower bound is achieved by a uniform random policy. Each item d will have exposure
of 1

n . However, it is reasonable to assume that it is approximately 0, since the size of most of the
retrieval corpus is very large. Also, it is common that the corpus consists of majority of non-relevant
items. The implication is that, for the optimal exposure, since the n −m non-relevant items are
shuffled amongst themselves, each will have an expected exposure of close to 0. Thus, assuming
large n and relatively small m,

1

n
<

1

n−m
≈ 0 (8)

For upper bound, recall that the ϵ is computed based on samples of rankings from a stochastic policy.
For relevance-independent browsing models (e.g., MU), all rankings π ∈ Sn have identical exposure
norms ∥ϵπ∥22, where ϵπ is the exposure of items for ranking π sampled from the stochastic policy.
Then,

∥ϵ∥22 = ∥Eπ[ϵ
π]∥22 (9)

≤ Eπ[∥ϵπ∥22] (10)

= Eπ[∥ϵ̄∥22] = ∥ϵ̄∥
2
2 (11)

Corollary 1. For machine user browsing model with top-k consumption and equal attention to the
top items, ∥ϵ∥22 ∈ [0, k]

With MU, the upper bound of EE-D, ∥ϵ̄∥22 becomes
∑n

i=1 MU(i)
2
= k. Therefore, per query q, we

calculate a normalized EE-D
EE-Dq = ∥ϵ∥22/k ∈ [0, 1] (12)

C.2 NORMALIZATION OF EE-R

The ranking quality measure EE-R should be normalized by its true upper and lower bound.

Theorem 2. ⟨ϵ, ϵ∗⟩ ∈ [0, ∥ϵ∗∥22]

Proof. The lower bound is achieved when ϵ becomes ϵ−, which is an exposure vector of the worst
case ranking π− (permutations that rank all non-relevant items above relevant items). Given the
assumption made from equation 8 and, C+ and C−, which are set of indices of relevant and non-
relevant items, respectively,

⟨ϵ−, ϵ∗⟩ =
n∑

i=1

ϵ−i ϵ
∗
i (13)

≈
∑
i∈C+

0ϵ∗i +
∑
i∈C−

ϵ−i 0 = 0 (from 8) (14)

Intuitively, the upper bound is achieved when ϵ becomes ϵ∗, thus ⟨ϵ∗, ϵ∗⟩ = ∥ϵ∗∥22. Alternatively, we
can show that any convex combination of optimal rankings will have a ⟨ϵ, ϵ∗⟩ = ∥ϵ∗∥22.
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Let ϵ∗d be the exposure of a relevant items, S∗
n be the set of all optimal rankings, wπ′ be the weight on

π ∈ S∗
n such that

∑
π∈S∗

n
wπ′ = 1, and ϵ′ be the exposure vector associated with π′.

⟨ϵ, ϵ∗⟩ =
n∑

i=1

ϵiϵ
∗
i =

∑
i∈C+

ϵiϵ
∗
i (from 8) (15)

= ϵ∗d
∑
i∈C+

ϵi (equal exposure principle) (16)

= ϵ∗d
∑
i∈C+

∑
π′∈S∗

n

wπ′ϵ′i (17)

= ϵ∗d
∑

π′∈S∗
n

wπ′

∑
i∈C+

ϵ′i (18)

≤ ϵ∗d
∑

π′∈S∗
n

wπ′(mϵ∗d) (since ϵ′ is optimal) (19)

= ϵ∗d(mϵ∗d) (since
∑
π∈S∗

n

wπ′ = 1) (20)

=
∑
i∈C+

ϵ∗i ϵ
∗
i = ∥ϵ∗∥22 (21)

Corollary 2. For machine user browsing model with top-k consumption and equal attention to
the top items, the bound depends on m and k. If m ≤ k, ⟨ϵ, ϵ∗⟩ ∈ [0,m + (k−m)2

n−m ]. If m > k,

⟨ϵ, ϵ∗⟩ ∈ [0, k2

m ]

With MU, the upper bound of EE-R can be calculated by equation 6.
If m ≤ k, ∥ϵ∗∥22 becomes ∑

i=C+

12 +
∑
i=C−

(
k −m

n−m
)2 = m+

(k −m)2

n−m
(22)

If m > k, ∥ϵ∗∥22 becomes ∑
i=C+

(
k

m
)2 +

∑
i=C−

02 =
k2

m
(23)

Therefore, depending on m and k, per query q, we calculate a normalized EE-R

EE-Rq =

{
⟨ϵ, ϵ∗⟩/(m+ (k−m)2

n−m ) (m ≤ k)
⟨ϵ, ϵ∗⟩/(k2

m ) (m > k)
∈ [0, 1] (24)

C.3 NORMALIZATION OF EU

Theoretically obtaining a true upper bound of a utility of a RAG model is challenging. Therefore, we
approximate the true upper bound by the maximum of the empirically obtained utilities given a fixed
RAG model ⟨S,G⟩ with a stochastic ranking sampler.

Recall that the string utility uπ = µu(y,G(ϕp(x, π))) is a utility of a RAG model with a sampled
ranking π ∈ σ. Let σα denote a sample of rankings with temperature parameter set to α. Also, let σ∗

denote the set of sampled permutations (rankings) from the oracle stochastic retriever, a policy that
always places relevant items above non-relevant items; thus the oracle generates m!(n−m)! number
of unique optimal permutations.

To obtain an approximated upper bound of the utility umax, when the runs of the experiments were
run with α = (1, 2, 4, 8), we take the maximum over all samples,

umax = max ({uπ}π∈σ1
∪ {uπ}π∈σ2

∪ {uπ}π∈σ4
∪ {uπ}π∈σ8

∪ {uπ}π∈σ∗) (25)
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With umax, we max-normalize the EU. Since 1
N

∑
π∈σ

uπ

umax
is the same as ( 1

N

∑
π∈σ uπ)/umax,

per query q, we get a normalized EU

EUq =
EUq

umax
∈ [0, 1] (26)

Normalization of EU is done to get the percentage of closeness to the optimal utility as all the utility
values are scaled relative to the maximum value. In other words, the normalized EU value indicates
how close the EU is to the maximum utility that the RAG system can get to.

This is straightforward for higher-the-better metrics, such as ROUGE and Accuracy. However, for
lower-the-better metrics such as MAE, we convert the scores to higher-the-better by subtracting the
scores from the true metric upper bound. This allows us to perform the same normalization operation
and have the same interpretation of the normalized metric.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D EFFECT OF α ON METRICS

(a) α Vs. EE-D
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(b) α Vs. EE-R
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(c) α Vs. EU
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Figure 6: Effect of a temperature parameter α on the (a) disparity of rankings, (b) ranking quality, and
(c) generation quality of RAG. The left column is the results on the LaMP task 1 and the right column
is on the LaMP task 4, each corresponding to a classification and text generation task, respectively.
RAG model is configured with Contriever and Flan-T5-Base for all six figures. Each data point
represents the value of the associated metric for one query.

When the three types of plots are observed together, we can infer some interesting observations. In
general, we see positive relationships between increasing α and both ranking quality and utility. This
implies that we can generally expect a tradeoff between both fairness and ranking quality, as well as
between fairness and utility.

However, we can expect some edge cases. For instance, in LaMP-1 (left column of the figure),
difference in EU when α = 4 and α = 8 is not large, and we can see that even the lower quartile of
the utility is increased when α is set to 4 (Figure 6c). This can possibly mean that in LaMP-1, the
RAG model can maintain considerable utility when the disparity is roughly in the range of [0.6, 0.8].
Similar observation can be made for the LaMP-4 (right column of the figure), except that the EE-R is
higher when α = 4 than when α = 8 (Figure 6b). This indicates that the deterministic retriever does
not always provide the maximum ranking quality, and the retriever can sometimes provide higher
ranking quality by being more fair, ultimately maintaining considerable or higher utility (similar EU
when α=4 and when α=8) at the same time.

With this preliminary observations in mind, we could delve deeper into the relationships between
fairness, ranking quality, and utility, by visualizing and quantifying the combined results from all the
runs (α = 1, 2, 4, 8).
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E INTEGRATING FAIR RANKINGS INTO A RAG SYSTEM IN A PRODUCTION
ENVIRONMENT
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Figure 7: Designing a RAG system that incorporates stochastic fair rankings involves using stochastic
sampling, where N can be set to 1 to provide a single ranking to the language model. This can result
in a different ranking compared to the one in Figure 1, exposing d1 and d3 to the language model.
This paper is focusing on the evaluation of this system as depicted in the Figure 2. The query and
prompt generators are omitted in the figure for brevity.
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F FAIRNESS VS. RANKING QUALITY

F.1 VISUALIZATION OF EE-D VS. EE-R OF FLANT5SMALL
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Figure 8: LaMP 1
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Figure 9: LaMP 2

0.0 0.2 0.4 0.6 0.8 1.0
Normalized EE-D

0.36

0.38

0.40

0.42

No
rm

al
ize

d 
EE

-R

LaMP-3 FlanT5Small

BM25; AUC=0.382
SPLADE; AUC=0.397
Contriever; AUC=0.3911

Figure 10: LaMP 3
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Figure 11: LaMP 4
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Figure 12: LaMP 5
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Figure 13: LaMP 6
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Figure 14: LaMP 7
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F.2 VISUALIZATION OF EE-D VS. EE-R OF FLANT5BASE
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Figure 15: LaMP 1
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Figure 16: LaMP 2
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Figure 17: LaMP 3
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Figure 18: LaMP 4
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Figure 19: LaMP 5
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Figure 20: LaMP 6
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Figure 21: LaMP 7
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F.3 VISUALIZATION OF EE-D VS. EE-R OF FLANT5XXL
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Figure 22: LaMP 1
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Figure 23: LaMP 2
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Figure 24: LaMP 3
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Figure 25: LaMP 4
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Figure 26: LaMP 5
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Figure 27: LaMP 6
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Figure 28: LaMP 7
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F.4 QUANTIFICATION OF FAIRNESS-RANKING QUALITY TRADEOFF

slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑
Task FlanT5Small FlanT5Base FlanT5XXL

BM25 SPLADE Contriever BM25 SPLADE Contriever BM25 SPLADE Contriever
LaMP-1 0.2113 / 0.2546 0.2396 / 0.3147 0.2358 / 0.2102 0.1546 / 0.3574 0.2252 / 0.4043 0.1834 / 0.3594 0.1358 / 0.3390 0.2409 / 0.4130 0.1945 / 0.4009
LaMP-2 0.1599 / 0.3079 0.1863 / 0.3330 0.2072 / 0.3372 0.1665 / 0.3699 0.1899 / 0.3918 0.2269 / 0.4098 0.1651 / 0.4161 0.1834 / 0.4222 0.2029 / 0.4328
LaMP-3 0.0309 / 0.3820 0.0353 / 0.3970 0.0501 / 0.3911 0.0403 / 0.4731 0.0290 / 0.4760 0.0555 / 0.4745 0.0798 / 0.3169 0.1010 / 0.3483 0.1338 / 0.3502
LaMP-4 0.1271 / 0.3425 0.1702 / 0.3741 0.1858 / 0.3793 0.1054 / 0.3812 0.1715 / 0.4236 0.1837 / 0.4303 0.0882 / 0.3669 0.1286 / 0.3973 0.1363 / 0.4035
LaMP-5 0.1058 / 0.3396 0.1014 / 0.3386 0.1031 / 0.3356 0.0946 / 0.3477 0.1144 / 0.3597 0.1157 / 0.3533 0.2072 / 0.4026 0.2071 / 0.4100 0.2086 / 0.4040
LaMP-6 0.1194 / 0.4507 0.1036 / 0.4477 0.1090 / 0.4491 0.1456 / 0.4880 0.1264 / 0.4967 0.1438 / 0.4942 0.1615 / 0.5685 0.1554 / 0.5813 0.1467 / 0.5747
LaMP-7 0.0962 / 0.4984 0.1178 / 0.4976 0.0979 / 0.4894 0.0744 / 0.3811 0.1173 / 0.3908 0.0924 / 0.3926 0.1174 / 0.4800 0.0216 / 0.4784 0.0627 / 0.4885

Table 3: Values on the left are the gradient of a linear line fit to the data points where x-axis is EE-D
and y-axis is EE-R. Higher the value, stronger the tradeoff between fairness and ranking quality.
Values on the right are the DR-AUC on the disparity-ranking quality (EE-D Vs. EE-R) curve. Higher
the value, stronger the ranking quality, given consistent tradeoff between fairness and relevance.
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G RANKING QUALITY VS. UTILITY OF RAG MODELS

G.1 VISUALIZATION OF THE EE-R VS. EU
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Figure 29: LaMP 1
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Figure 30: LaMP 2
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Figure 31: LaMP 3
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Figure 32: LaMP 4
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Figure 33: LaMP 5
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Figure 34: LaMP 6
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Figure 35: LaMP 7

G.2 QUANTIFICATION OF THE RELATIONSHIP BETWEEN RANKING QUALITY AND UTILITY

slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑
Task BM25 SPLADE Contriever

FlanT5Small FlanT5Base FlanT5XXL FlanT5Small FlanT5Base FlanT5XXL FlanT5Small FlanT5Base FlanT5XXL
LaMP-1 0.3813 / 0.3705 0.8250 / 0.7491 0.7612 / 0.7044 0.1434 / 0.3760 0.7783 / 0.7382 0.7454 / 0.7330 0.1864 / 0.3514 0.7661 / 0.7304 0.7089 / 0.7166
LaMP-2 0.5543 / 0.4130 0.2858 / 0.3218 0.2646 / 0.4495 0.5539 / 0.3941 0.3310 / 0.3407 0.1979 / 0.4787 0.6908 / 0.4567 0.2325 / 0.3600 0.3342 / 0.4772
LaMP-3 0.2500 / 0.9153 0.2134 / 0.9204 0.1633 / 0.8974 0.2544 / 0.9124 0.2061 / 0.9203 0.1737 / 0.9009 0.2538 / 0.9125 0.2025 / 0.9205 0.1568 / 0.8977
LaMP-4 0.2708 / 0.2711 0.2881 / 0.2679 0.1947 / 0.3720 0.2638 / 0.2817 0.3272 / 0.2942 0.2193 / 0.3961 0.2264 / 0.2751 0.2986 / 0.2887 0.2190 / 0.3926
LaMP-5 -0.0125 / 0.3723 -0.0307 / 0.4888 0.1673 / 0.5591 -0.0035 / 0.3849 -0.0160 / 0.4773 0.2044 / 0.5570 0.0090 / 0.3823 -0.0474 / 0.4746 0.1590 / 0.5387
LaMP-6 0.2575 / 0.3883 0.2690 / 0.3953 0.3078 / 0.5445 0.2522 / 0.3737 0.2735 / 0.3960 0.2780 / 0.5372 0.2790 / 0.3783 0.2620 / 0.3891 0.3053 / 0.5356
LaMP-7 0.3229 / 0.5240 0.0889 / 0.6391 0.0157 / 0.6082 0.2781 / 0.5177 0.2029 / 0.6435 -0.0623 / 0.5601 0.2713 / 0.5101 0.0788 / 0.6266 -0.0466 / 0.5723

Table 4: Values on the left are the gradient of a linear line fit to the data points where x-axis is EE-R
and y-axis is EU. Higher the value, stronger the tradeoff between retrieval quality and generation
quality. Values on the right are the RU-AUC on the ranking quality-utility (EE-RVs. EU) curve.
Higher the value, stronger the general end-performance of a RAG model when every level of relevance
is considered.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

H ITEM-FAIRNESS VS. UTILITY OF RAG MODELS

H.1 VISUALIZATION OF EE-D VS. EU
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Figure 36: LaMP 1
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Figure 37: LaMP 2
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Figure 38: LaMP 3
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Figure 39: LaMP 4
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Figure 40: LaMP 5
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Figure 41: LaMP 6
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Figure 42: LaMP 7

H.2 QUANTIFICATION OF FAIRNESS-UTILITY TRADEOFF

slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑ slope↓ / AUC↑
Task BM25 SPLADE Contriever

FlanT5Small FlanT5Base FlanT5XXL FlanT5Small FlanT5Base FlanT5XXL FlanT5Small FlanT5Base FlanT5XXL
LaMP-1 0.0693 / 0.1994 0.2254 / 0.6110 0.1673 / 0.5688 0.0851 / 0.2519 0.1998 / 0.6644 0.2385 / 0.6362 0.0456 / 0.1866 0.2016 / 0.6248 0.2413 / 0.6061
LaMP-2 0.1295 / 0.2561 0.0740 / 0.2717 0.0600 / 0.4294 0.1119 / 0.2722 0.0637 / 0.2786 0.0626 / 0.4582 0.1683 / 0.3082 0.0870 / 0.3139 0.1002 / 0.4338
LaMP-3 0.0259 / 0.8738 -0.0012 / 0.8964 0.0101 / 0.8706 0.0118 / 0.8744 0.0014 / 0.9003 0.0280 / 0.8786 0.0198 / 0.8685 0.0063 / 0.9022 0.0264 / 0.8765
LaMP-4 0.0606 / 0.2178 0.0789 / 0.2282 0.0734 / 0.3622 0.0937 / 0.2408 0.1245 / 0.2594 0.0895 / 0.3802 0.1016 / 0.2429 0.1209 / 0.2595 0.1051 / 0.3784
LaMP-5 0.0293 / 0.3995 0.0445 / 0.4857 0.0363 / 0.5453 0.0437 / 0.3989 0.0266 / 0.4763 0.0320 / 0.5466 0.0533 / 0.3930 0.0300 / 0.4943 0.0432 / 0.5495
LaMP-6 0.1177 / 0.3698 0.0753 / 0.3861 0.0521 / 0.5535 0.0806 / 0.3629 0.0623 / 0.3888 0.0561 / 0.5558 0.0823 / 0.3580 0.0597 / 0.3849 0.0616 / 0.5468
LaMP-7 0.0215 / 0.4928 0.0392 / 0.6212 0.0854 / 0.6068 0.0718 / 0.4901 0.0256 / 0.6094 -0.0668 / 0.5714 0.0324 / 0.4839 -0.0151 / 0.6101 -0.0114 / 0.5809

Table 5: Values on the left are the gradient of a linear line fit to the data points where x-axis is EE-D
and y-axis is EU. Higher the value, stronger the tradeoff between item-fairness and generation quality.
Values on the right are the DU-AUC on the disparity-utility (EE-D Vs. EU) curve. Higher the value,
stronger the general end-performance of a RAG model when every level of fairness is considered.
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I PERFORMANCE OF RAG MODELS WITH VARYING FAIRNESS LEVELS

Fairness Intervals

Model (baseline utility) [0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

BM25+FlanT5Small (0.308) -0.12 -0.13 -0.18 -0.02 -0.15
BM25+FlanT5Base (0.670) -0.20 -0.04 -0.08 -0.05 -0.02
BM25+FlanT5XXL (0.531) -0.07 +0.03 +0.02 +0.06 +0.11

SPLADE+FlanT5Small (0.241) -0.03 -0.22 +0.19 -0.04 +0.14
SPLADE+FlanT5Base (0.646) -0.15 +0.06 +0.08 0.00 +0.03
SPLADE+FlanT5XXL (0.671) -0.18 -0.16 +0.05 +0.02 +0.01

Contriever+FlanT5Small (0.286) -0.08 -0.29 -0.06 +0.03 -0.14
Contriever+FlanT5Base (0.637) -0.16 +0.05 -0.06 +0.03 0.00
Contriever+FlanT5XXL (0.651) -0.19 -0.04 -0.11 +0.03 0.00

Table 6: LaMP-1

Fairness Intervals

Model (baseline utility) [0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

BM25+FlanT5Small (0.274) -0.13 +0.02 -0.04 -0.04 +0.03
BM25+FlanT5Base (0.223) -0.01 +0.05 +0.04 +0.03 +0.13
BM25+FlanT5XXL (0.310) +0.05 +0.02 +0.24 +0.13 +0.18

SPLADE+FlanT5Small (0.209) -0.06 +0.10 +0.06 +0.05 +0.14
SPLADE+FlanT5Base (0.238) -0.02 +0.04 +0.04 +0.05 +0.09
SPLADE+FlanT5XXL (0.472) -0.05 -0.14 +0.12 0.00 -0.02

Contriever+FlanT5Small (0.318) -0.15 +0.05 -0.05 -0.04 +0.06
Contriever+FlanT5Base (0.302) -0.07 +0.02 +0.01 +0.02 +0.05
Contriever+FlanT5XXL (0.356) 0.00 0.00 +0.12 +0.12 +0.15

Table 7: LaMP-2

Fairness Intervals

Model (baseline utility) [0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

BM25+FlanT5Small (0.886) -0.03 +0.01 -0.01 -0.03 -0.01
BM25+FlanT5Base (0.907) -0.02 +0.01 0.00 -0.01 -0.04
BM25+FlanT5XXL (0.859) -0.02 +0.07 +0.01 +0.01 -0.02

SPLADE+FlanT5Small (0.847) +0.01 +0.05 +0.03 +0.01 +0.04
SPLADE+FlanT5Base (0.902) -0.01 +0.03 0.00 -0.01 -0.02
SPLADE+FlanT5XXL (0.864) -0.02 +0.08 0.00 +0.01 0.00

Contriever+FlanT5Small (0.876) -0.02 0.00 -0.02 0.00 -0.01
Contriever+FlanT5Base (0.894) 0.00 +0.03 0.00 +0.02 0.00
Contriever+FlanT5XXL (0.865) -0.02 +0.07 +0.01 -0.02 +0.01

Table 8: LaMP-3
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Fairness Intervals

Model (baseline utility) [0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

BM25+FlanT5Small (0.217) -0.06 0.00 +0.02 +0.01 0.00
BM25+FlanT5Base (0.223) -0.06 0.00 +0.03 +0.01 +0.02
BM25+FlanT5XXL (0.322) -0.05 +0.11 +0.03 +0.03 +0.05

SPLADE+FlanT5Small (0.235) -0.07 -0.01 +0.02 +0.03 +0.02
SPLADE+FlanT5Base (0.268) -0.10 -0.03 +0.02 0.00 +0.02
SPLADE+FlanT5XXL (0.342) -0.06 +0.09 +0.05 +0.03 +0.04

Contriever+FlanT5Small (0.254) -0.09 -0.02 0.00 +0.01 0.00
Contriever+FlanT5Base (0.268) -0.10 -0.02 +0.01 0.00 +0.01
Contriever+FlanT5XXL (0.367) -0.09 +0.06 +0.01 +0.01 +0.03

Table 9: LaMP-4

Fairness Intervals

Model (baseline utility) [0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

BM25+FlanT5Small (0.343) +0.01 +0.12 +0.06 +0.04 +0.06
BM25+FlanT5Base (0.507) -0.04 -0.04 -0.01 -0.02 -0.01
BM25+FlanT5XXL (0.508) -0.03 +0.16 +0.02 +0.02 0.00

SPLADE+FlanT5Small (0.378) -0.03 +0.05 +0.03 +0.01 +0.02
SPLADE+FlanT5Base (0.470) -0.01 -0.01 +0.01 0.00 +0.03
SPLADE+FlanT5XXL (0.495) -0.02 +0.14 +0.09 +0.03 +0.01

Contriever+FlanT5Small (0.377) -0.03 +0.07 0.00 0.00 +0.03
Contriever+FlanT5Base (0.478) -0.02 +0.03 +0.06 -0.02 +0.03
Contriever+FlanT5XXL (0.496) -0.02 +0.18 +0.04 +0.02 +0.04

Table 10: LaMP-5

Fairness Intervals

Model (baseline utility) [0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

BM25+FlanT5Small (0.425) -0.12 -0.07 -0.04 -0.07 -0.03
BM25+FlanT5Base (0.421) -0.09 -0.03 -0.03 -0.04 -0.03
BM25+FlanT5XXL (0.536) -0.03 +0.03 +0.04 -0.01 +0.05

SPLADE+FlanT5Small (0.362) -0.06 -0.02 +0.03 +0.02 +0.01
SPLADE+FlanT5Base (0.361) -0.02 +0.02 +0.03 +0.04 +0.05
SPLADE+FlanT5XXL (0.527) -0.02 +0.03 +0.03 +0.03 +0.05

Contriever+FlanT5Small (0.351) -0.05 -0.02 +0.03 +0.01 +0.04
Contriever+FlanT5Base (0.373) -0.04 +0.01 0.00 +0.04 +0.03
Contriever+FlanT5XXL (0.526) -0.02 +0.01 +0.02 +0.02 +0.06

Table 11: LaMP-6

Fairness Intervals

Model (baseline utility) [0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

BM25+FlanT5Small (0.490) -0.02 -0.01 +0.01 +0.03 0.00
BM25+FlanT5Base (0.673) -0.04 -0.04 -0.11 -0.03 -0.05
BM25+FlanT5XXL (0.626) +0.02 -0.05 -0.05 -0.04 +0.03

SPLADE+FlanT5Small (0.525) -0.05 -0.07 -0.04 -0.01 -0.03
SPLADE+FlanT5Base (0.659) -0.03 -0.06 -0.06 -0.10 -0.02
SPLADE+FlanT5XXL (0.518) +0.07 +0.06 +0.09 +0.04 +0.05

Contriever+FlanT5Small (0.440) +0.02 +0.03 +0.05 +0.06 +0.08
Contriever+FlanT5Base (0.580) +0.06 +0.04 0.00 +0.02 +0.06
Contriever+FlanT5XXL (0.607) -0.01 -0.02 -0.03 -0.04 -0.04

Table 12: LaMP-7
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J DATA STATISTICS

J.1 LAMP DATA STATISTICS FOR FLAN-T5-SMALL

Dataset #queries Avg # Docs (Std) Avg # Pos Labels
(Std)

Avg % Pos
Labels

LaMP-1 51 123.51 (82.66) 9.08 (11.63) 9.53
LaMP-2 192 52.81 (46.21) 7.98 (9.64) 22.53
LaMP-3 311 189.82 (134.33) 65.88 (95.77) 34.28
LaMP-4 833 192.19 (195.28) 40.72 (61.82) 27.1
LaMP-5 826 106.06 (71.47) 26.18 (31.1) 24.83
LaMP-6 760 86.0 (52.66) 27.78 (29.22) 35.92
LaMP-7 365 19.36 (18.4) 8.23 (10.38) 45.48

Table 13: LaMP data statistics for Flan-T5-Small after filtering for fairness evaluation.

J.2 LAMP DATA STATISTICS FOR FLAN-T5-BASE

Dataset #queries Avg # Docs (Std) Avg # Pos Labels
(Std)

Avg % Pos
Labels

LaMP-1 232 102.86 (61.88) 20.07 (22.78) 22.49
LaMP-2 280 45.58 (42.0) 10.45 (12.56) 29.87
LaMP-3 378 185.32 (128.43) 73.82 (85.44) 41.19
LaMP-4 827 186.98 (193.52) 49.79 (68.91) 31.57
LaMP-5 759 105.62 (69.56) 26.09 (31.21) 25.71
LaMP-6 783 86.18 (52.97) 30.11 (31.28) 38.65
LaMP-7 211 21.72 (16.09) 6.96 (10.62) 33.02

Table 14: LaMP data statistics for Flan-T5-Base after filtering for fairness evaluation.

J.3 LAMP DATA STATISTICS FOR FLAN-T5-XXL

Dataset #queries Avg # Docs (Std) Avg # Pos Labels
(Std)

Avg % Pos
Labels

LaMP-1 264 111.66 (69.45) 25.12 (33.96) 23.35
LaMP-2 105 44.66 (42.82) 11.32 (15.61) 36.74
LaMP-3 182 198.06 (151.09) 41.86 (59.52) 22.19
LaMP-4 842 198.0 (200.82) 54.07 (73.34) 30.96
LaMP-5 511 104.18 (68.73) 23.1 (38.3) 23.39
LaMP-6 730 85.93 (52.46) 34.89 (35.54) 43.88
LaMP-7 151 20.6 (16.39) 8.58 (12.01) 42.7

Table 15: LaMP data statistics for Flan-T5-XXL after filtering for fairness evaluation.
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K IMPLEMENTATION DETAILS

BM25:

• Adapted from: https://github.com/dorianbrown/rank_bm25/tree/
master

SPLADE:

• https://huggingface.co/naver/splade_v2_max

Contriever:

• https://huggingface.co/facebook/contriever

Flan-T5 Family:

• https://huggingface.co/google/flan-t5-small

• https://huggingface.co/google/flan-t5-base

• https://huggingface.co/google/flan-t5-xxl

The RAG model inferences were performed on NVIDIA A6000 GPUs with 48GB of VRAM.
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