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Abstract
High-dimensional imagery consists of high-
resolution information required for end-user
decision-making. Due to computational con-
straints, current methods for image-level classifi-
cation are designed to train with image chunks
or down-sampled images rather than with the
full high-resolution context. While these meth-
ods achieve impressive classification performance,
they often lack visual grounding and, thus, the
post hoc capability to identify class-specific,
salient objects under weak supervision. In this
work, we (1) propose a formalized evaluation
framework to assess visual grounding in high-
dimensional image applications. To present a
challenging benchmark, we leverage a real-world
segmentation dataset for post hoc mask evalua-
tion. We use this framework to characterize vi-
sual grounding of various baseline methods across
multiple encoder classes, exploring multiple su-
pervision regimes and architectures (e.g., ResNet,
ViT). Finally, we (2) present prospector heads: a
novel class of adaptation architectures designed
to improve visual grounding. Prospectors lever-
age chunk heterogeneity to identify salient ob-
jects over long ranges and can interface with any
image encoder. We find that prospectors outper-
form baselines by upwards of +6 balanced ac-
curacy points and +30 precision points in a gi-
gapixel pathology setting. Through this experi-
mentation, we also show how prospectors can en-
able many classes of encoders to identify salient
objects without re-training and also demonstrate
their improved performance against classical ex-
planation techniques (e.g., Attention maps).
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1 Introduction

High-dimensional imagery (e.g., megapixel and gigapixel)
is common in multiple domains and necessitates new ca-
pabilities from the models we develop. The challenge of
dimensionality is particularly evident in domains spanning
pathology (Gurcan et al., 2009), autonomous driving (Yurt-
sever et al., 2020), remote sensing (Coffey, 2012), and cos-
mology (Pesenson et al., 2010). In these domains, models
are frequently trained and validated for image-level classi-
fication. However, domain expert decisions often rely on
important higher-order tasks, which are implicitly defined
but seldom explicitly validated. One such task is the iden-
tification of salient, class-specific objects, referred to as
weakly supervised salient object detection (SOD) (Choe
et al., 2020; Wang et al., 2021; Borji et al., 2019).

Figure 1: Salient objects in various vision domains. Ideally, vision
models can identify these objects in situ without explicit training.

SOD examines a model’s capability to make visually
grounded predictions, i.e., those that (A) accurately localize
salient objects in an image despite training on only image-
level labels and (B) attribute quantitative class-specific
scores to said objects. Visually grounded models are of
general importance to better interpret predictions, but are of
particular need in settings where:

i. data distributions between classes overlap greatly or
where class differences only manifest as small salient
objects (i.e., multiple instance assumption (Amores,
2013; Carbonneau et al., 2016));

ii. predictions are used in tandem with regions of interest
(created either by domain experts or model explana-
tions) to make decisions (e.g., medical diagnoses);

1



Prospectors: Leveraging Short Contexts to Mine Salient Objects in High-dimensional Imagery

iii. annotations are cost-prohibitive and only image-level
labels are generated;

iv. or salient objects are not fully known to domain experts
and necessitate concept discovery (e.g., biomarkers
in multiplexed pathology images (Echle et al., 2020;
Lewis et al., 2021)).

Current models for image-level classification are largely
incapable of processing images at full-context and struggle
to reliably identify salient objects. Current convolutional
neural networks (CNNs) (Simonyan & Zisserman, 2014;
He et al., 2015; Liu et al., 2022) struggle to process high-
dimensional inputs due to modern GPU memory constraints
while Vision Transformers (ViTs) (Dosovitskiy et al., 2020)
additionally experience quadratic time and space complexity
in sequence length (Keles et al., 2022). As a workaround,
these models are typically trained to classify images in a hi-
erarchical manner: input images are first commonly broken
down into chunks (i.e., patches) (Nazeri et al., 2018; Chen
et al., 2022; Campanella et al., 2019; Jean et al., 2019),
which are then respectively processed with an encoder’s
receptive fields or as constituent tokens (Figure 1). After
constructing chunk-level representations, those representa-
tions are used for image-level classification. SOD is then
typically performed with post hoc model explanations and
evaluated qualitatively. Despite achieving state of the art
classification performances, no model to our knowledge is
quantitatively evaluated for SOD capabilities in real-world,
high-dimensional settings. In synthetic settings (Machiraju
et al., 2022), chunk-based models without image-level con-
text have been shown to perform SOD with low precision,
where all or no chunks are predicted as salient.

To address the need for visually grounded models in high-
dimensional imagery, we make two main contributions.
First, we propose a prescriptive evaluation framework
that re-purposes real-world segmentation datasets for SOD
and tests a model’s visual grounding. We additionally use
this framework to evaluate baseline SOD approaches, in-
cluding Attention Maps. To expand evaluation from that of
previous studies (Machiraju et al., 2022), we propose new
metrics that holistically summarize SOD performance over
various binarization thresholds (a central post-processing
step). Secondly, we present prospector heads: a novel class
of adaptation approaches that leverages chunk heterogeneity
learned by upstream encoders (i.e., chunk-trained CNNs
or ViTs), finds class-differential motifs over the corpus of
image chunks, and localizes salient objects at an image-
level. We show that prospectors can be parameter-lite and
data-efficient, do not require encoder back-propagation or
retraining (i.e., is “plug-in ready” (Kim et al., 2019)), are
encoder-agnostic (i.e., agnostic to architecture, embedding
dimension, learning regime), and generalize to multiple
modalities. Finally, we compare prospectors to current ex-
planation methods to show that the coupling of encoder

inference and prospector adaptation can achieve higher qual-
ity SOD and offer increased stability to thresholding.

2 Related Work

Chunk-based modeling for vision: The community has
proposed a variety of CNN and ViT encoders to perform
chunk-based modeling for high-dimensional vision appli-
cations. Weakly supervised learning (WSL) approaches
predict a chunk’s class membership typically by using fuzzy
labels — e.g., its source image’s class label (Machiraju
et al., 2022; Halicek et al., 2019; Roy et al., 2019; Hou et al.,
2015; Campanella et al., 2019; Nazeri et al., 2018). Despite
independent chunk predictions, such models have seen state
of the art image classification performance. However, few
works have explored WSL-based SOD (Machiraju et al.,
2022). On the other hand, unsupervised learning (USL) ap-
proaches like tile2vec (Jean et al., 2019) have been proposed
to encode distributional semantics. While USL methods can
encode spatial dependencies, they are currently unable to
perform SOD due to their lack of a classification heads.
Newer modeling strategies have prioritized learning longer
contexts in a hierarchical manner: where upstream encoders
feed chunk-level embeddings to downstream encoders for
image-level predictions. Examples include WSL-based en-
coders with downstream transfer learning (Campanella et al.,
2019) or self-supervised learning (SSL) with WSL-based
fine-tuning of a classifier head (Chen et al., 2022). However,
to our knowledge, these approaches have not been tested for
their SOD capabilities.

Figure 2: Taxonomy of SOD methods, where (a)-(c) are existing
methods categories. A flame icon denotes trainable parameters.

Model explanation & evaluation: Traditionally, post hoc
model explanations have been used to detect salient objects
for qualitative assessment and model debugging. Explana-
tions usually take the form of input-specific explanation
maps in vision applications, generated using (Figure 2):
(a) model-specific, gradient-based attribution methods (e.g.,
Saliency (Simonyan et al., 2013), Class Activation (Sel-
varaju et al., 2016), and Attention maps (Jetley et al., 2018))
or (b) model-agnostic Explainers (e.g., SHAP (Lundberg &
Lee, 2017), LIME (Ribeiro et al., 2016)) that typically use
perturbation-based attribution. However, due to poor visual
grounding, the community has recently shifted its language
to describe gradient-based attribution methods — away from
“explanatory” to “exploratory” (Atrey et al., 2019) or rather
as correlational “trends in how predictions are related to
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features” (Rudin, 2019). In particular, saliency maps suf-
fer from visual noisiness (e.g., when non-salient objects
contain positive pre-activation values (Kim et al., 2019))
and have been qualitatively shown to reflect a classifier’s
reliance on spurious correlations and shortcuts (DeGrave
et al., 2021). Quantitative evaluations of gradient-based at-
tribution have also been conducted using segmentation-like
metrics. However, multiple methods have been found to
beirreproducible and unrepeatable (Arun et al., 2020), have
SOD performance highly correlated with image classifica-
tion performance (Saporta et al., 2022), and suffer from
an inability to accurately localize objects compared to hu-
man annotators (Arun et al., 2020; Saporta et al., 2022),
especially with small salient objects (Saporta et al., 2022).
Furthermore, multiple methods drastically degrade in SOD
performance with the removal of image features (Hooker
et al., 2019). Attention maps, in particular, have also been
suggested as unfaithful to a model’s reasoning processes
(Jain & Wallace, 2019) and untrustworthy and unreliable
via human study experiments (Akula & Zhu, 2022). While
there have been techniques to improve SOD localization
(e.g., using explanation maps as training guides (Asgari
et al., 2022), optimization constraints (Ross et al., 2017),
or post-processing techniques (Adebayo et al., 2018)), few
works enforce meaningful class-indicative scoring for de-
tected salient objects (Samek et al., 2017).

Explanations for high-dimensional imagery: In high-
dimensional settings, explanations are typically generated
by concatenating the outputs of (a) gradient-based attribu-
tion methods applied each image chunk (Campanella et al.,
2019; Machiraju et al., 2022; Chen et al., 2022). In addition
to gradient-based methods, (c) prediction probabilities for
each chunk have been concatenated and used as explanations
(Figure 2c) (Campanella et al., 2019; Halicek et al., 2019;
Machiraju et al., 2022). However, these approaches do not
capture long-range dependencies between image chunks,
and can result in low-precision SOD, i.e., with either low
recall or low specificity (Machiraju et al., 2022).

3 Methods

3.1 Salient object desiderata & the SOD task

We first define our desiderata for predicted salient objects:
A. Localized — correct (e.g., precise) and contiguous
B. Class-indicative — carry scores that indicate class in

some way, e.g., ⊕ values for class-1 and ⊖ values for
class-0

These desired properties can be assessed with weakly super-
vised salient object detection (SOD), the task of identifying
salient (i.e., class-specific) objects within a datum. SOD
is typically implicit to some explicit task (e.g., classifica-
tion) and can be conceptualized as the zero-shot capability

to perform segmentation. For example, in the context of
imagery, the SOD task is to detect salient superpixels with
image-level classification labels. By withholding ground
truth annotations until inference-time, we evaluate a model’s
grounding capabilities under weak (i.e., coarse) supervision.
We refer to a model as visually grounded if it can perform
the SOD task. While the following presentation of methods
is tailored to high-dimensional imagery, it can be general-
ized to any unstructured data modality.

Figure 3: SOD pipeline & proposed evaluation. Categories of
SOD methods are depicted in Figure 2.

Task setup & encoder training: Given some image input
X ∈ RH×W×D, class label y, and associated ground truth
annotations Y ∈ {0, 1}H×W , a chunk encoder fθ is trained
to map a data chunk x ∈ Rϵ×ϵ to an embedding z⃗ ∈ Rd.
Specifically in the WSL regime, fθ is attached to a classifier
head gβ : z⃗ 7→ y, where both are jointly trained to construct
a mapping fθ ◦ gβ : x 7→ y. Ground truth Y is used only
for a post hoc evaluation at inference-time.

Model inference & SOD: At inference-time, frozen mod-
els are used to generate dense prediction maps for salient
objects, Ŷ. If using traditional explanation maps for SOD
(e.g., prediction probabilities, gradient-based attribution, Ex-
plainers), chunk-level explanations must be concatenated to
form Ŷ. Due to storage constraints, each chunk’s average
Saliency or Attention score is used to summarize the chunk’s
importance as performed by Machiraju et al. (2022). Be-
fore evaluation, maps are then post-processed with a variety
of thresholding and normalization techniques. We outline
these choices in §3.2.1, §3.2.2, and §3.2.3.

3.2 SOD evaluation framework

Our proposed evaluation framework is similar to the one
described by Machiraju et al. (2022), but is customized for
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real-world datasets with ground truth annotations. Instead
of centering SOD correctness evaluation around adaptive
thresholding (§3.2.1), our framework proposes several forms
of evaluation including correctness evaluation over multiple
thresholds (§3.2.2) and structural evaluation (§3.2.3). Be-
cause the combination of concatenated explanation maps
and adaptive thresholding have been associated with po-
tentially low-precision SOD (Machiraju et al., 2022), we
believe our additional evaluations can reveal a broader pic-
ture of performance.

Ground truth preparation: Given the height-width com-
pression performed by encoders, we down-sample ground
truth annotations Y (via inter-area interpolation) to match
the h×w dimensions of the dense predictions Ŷ. This level
of granularity makes evaluation computationally feasible.

3.2.1 CORRECTNESS EVALUATION VIA ADAPTIVE
THRESHOLDING

Adaptive thresholding is a common output-specific tech-
nique to binarize explanation maps prior to qualitative or
quantitative evaluation (Borji et al., 2019; Machiraju et al.,
2022; Adebayo et al., 2018). A popular threshold is double
the mean Attention or Saliency score, i.e., t∗ = 2

n

∑n
i Ŷi,

where n is the number of evaluable points. Given a resized
ground truth annotation Y ∈ {0, 1}h×w, we evaluate bina-
rized outputs Ŷ > t∗ and Ŷ < t∗ of class-1 test-set images
using some metric m(·) to get an average score s̄t∗ :

s̄t∗ =
1

N

∑[
m(Ŷ > t∗,Y)

]
,

and similarly for the other inequality direction. We use
metrics such as balanced accuracy, Matthews correlation
coefficient (MCC), and precision given the rarity of salient
objects within class-1 images.

3.2.2 CORRECTNESS EVALUATION VIA
MULTI-THRESHOLDING

While adaptive thresholding is popular, it can be sensitive to
outlier values. To test Ŷ’s performance more holistically, we
conduct multi-thresholding as an additional inexpensive set
of evaluations for SOD. This evaluation approach calculates
test-set scores over a small number of thresholds, and then
averages them per threshold s̄t. We choose thresholds t ∈
[0, 0.1, . . . , 1], yielding a coarse trajectory of performance
and thus allowing us to evaluate an output’s stability to
thresholding. For a given encoder-SOD pipeline, we define
stability as:

∆s = max({s̄t ∀t})−min({s̄t ∀t}).

We also support the use of near-continuous multi-
thresholding (Borji et al., 2019), often for AUROC and

AUPRC computation, as a comprehensive evaluation for
SOD correctness. This evaluation is carried out for each
feature-scale normalized dense prediction Ŷ against its cor-
responding ground truth Y to yield average scores over the
class-1 examples in the test-set. For Attention maps, we
perform feature-scale normalization over the absolute value
of Attention scores.

3.2.3 CONTIGUITY EVALUATION

To help identify failure modes, we also propose a simple
metric to quantitatively measure the contiguity and dispersal
of predicted salient objects in Ŷ. We define the mean
object dispersal (MOD) as the average object size divided
by the number of detected objects. In practice for the image
modality, we detect objects as connected components (with
8-way connectivity) (Bolelli et al., 2020) and use bounding
box areas to approximate object size. Our implementation
of MOD thus takes on values in [0, h× w].

3.3 A new approach to SOD: prospector heads

To address the need for visual grounding and both (A) lo-
calized and (B) class-indicative SOD, we present prospec-
tor heads: a trainable class of adapters that leverage
chunk embeddings and long-range information to pre-
dict salient objects with only coarse supervision (Fig-
ure 2d). Because high-dimensional datasets typically con-
tain only a few hundred or thousand labeled examples,
prospectors in these settings should be parameter-lite to
prevent overfitting. To this effect, we present a simple,
statistically-driven prospector called K2 — a parameter-lite,
data-efficient, computationally efficient, encoder-agnostic,
and threshold-stable method for finding salient objects. K2
is modality-generalizable given its use of graphical data
structures and is presented as such.

K2 prospectors: At a high-level, K2 draws from two main
algorithmic inspirations. Firstly, it draws from methods that
mine shapelets, the discriminative sub-sequences in time-
series (Ye & Keogh, 2009; Grabocka et al., 2014; Guillaume
et al., 2021). Secondly, K2 draws from the self-Attention
mechanism and its ability to attribute importance to inputs
as it learns to solve a downstream task (Vaswani et al.,
2017). However, to realize parameter-lite modeling, K2
draws on mathematical and statistical machinery to com-
pute chunk importance and attribution — including vector
quantization, clustering, graphs, skip-grams, and linear mod-
els. K2 is named after its hashing data structure, Kk, a
self-complete graph with k vertices. First, we define some
preliminary concepts:
Definition 3.1 (Map Graph). A map graphG(V,E) is a col-
lection of vertices V and edges E connecting neighboring
vertices in real-space. Each vertex v(i) ∈ V has features
f⃗ (i) and an edge e(i↔j) ∈ E connects vertices v(i) to v(j).
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Figure 4: K2 prospector circuit diagram with intermediate data structures. A flame icon denotes trainable parameters. Boldface indicates
algorithmic step.

Definition 3.2 (Complete Graph). A complete graph
Kk(V,E) is a collection of k vertices V and k(k − 1)/2
edges E. Every pair of distinct vertices v(i) to v(j) are con-
nected by a unique edge e(i↔j), making it fully connected.
Definition 3.3 (Self-complete Graph). A complete graph
Kk(V,E) is also a self-complete graph if it also contains all
self-edges that map from any one vertex v(i) to itself with
edge e(i↔i). Thus, self-complete graphs contain k vertices
and k + k(k − 1)/2 edges.

Problem setup: First, we set up the problem scenario
offered by upstream encoders. Suppose we have chunk
embeddings z⃗(i) ∀i for a datum. We can then represent any
datum as a map graph G where each vertex v(i) represents
a chunk embedding with features f⃗ (i) := z⃗(i) ∈ Rd. In the
context of imagery, our datum is an image X. Each image
is broken into chunks, where each chunk x(i) is encoded
as an embedding z⃗(i) by an encoder fθ : x(i) 7→ z⃗(i). In
the imagery setting, G specifically resembles a map graph
known as a king’s graph (depicted in top row of Figure 4)
— i.e., where vertex coordinates follow a Cartesian grid and
all neighbors are connected.

I. Motif discovery & motif graph instantiation: This
step first takes a population-level perspective by taking a
random sampling of chunk embeddings and then creating
a representative embedding space. This embedding space
is then partitioned into k sub-spaces using some clustering
method ψ (e.g., k-means). Each subspace then represents
one of k motifs found in the population. K2 then constructs
motif graph Kk (Figure 4), a self-complete graph that that
reflects the k motifs (i.e., sub-spaces) as its nodes. The
edges of Kk represent the combinatorial space of motif-
motif spatial associations that may occur within the data, as
explained further in proceeding steps.

II. Embedding quantization: Next, K2 assigns motif IDs
to each of G’s vertices to reduce dimensionality. Namely, ψ

is used to quantize each feature vector z⃗(i) such that z⃗ 7→ s,
where s ∈ S = {1, . . . , k}, i.e., ψ : Rd → S (Figure 4).
This new map graph G̃ has vertices v(i) has a single feature
s(i) for all i. For convenience, we refer to G̃ as a data sprite
given its relatively small dimensionality compared to its
source gigapixel image (i.e., data compression ratio on the
order of 109) and discrete set of k possible values (Figure 4).
For intuition, heterogeneity of the sprite is parameterized by
the choice of k in Step I.

III. Motif graph hashing: Next, K2 performs motif graph
hashing — the process of encoding a sprite-level or class-
level representation for G̃. At its core, K2 constructs
weighted motif graphs, where each node and edge weight
is respectively a normalized frequency of a motif or motif-
motif pair. This computation is performed by scanning a
data sprite G̃’s vertices with a local neighborhood search.
Given a window size (i.e., a receptive field) r, K2 gathers
the frequencies of all motifs and motif-motif pairs (i.e., r-
skip-2-grams) within a window. Vertices v(i), edges e(i↔j),
and self-edges e(i↔i) are thus respectively weighted with
the frequencies of the k motifs, the k(k − 1)/2 motif-motif
pairs of distinct motifs, the k motif-motif pairs for a shared
motif. A bagged datum representation B⃗ is constructed by
concatenating the vertex, self-edge, edge weights (Figure 4).
The formalization of this step can be found in Algorithm 1.

IV. Importance computation: This next step computes
the global importance of each motif or motif-motif pair
using the bagged representation B⃗. Multiple models can
be used — for example, we can train a linear classifier
gβ : B⃗ 7→ y to learn over the dataset’s bagged representa-
tions and use its learned coefficients β as motif and motif-
motif importance. Another example includes computing
mean bagged representations per class (i.e., B⃗0 and B⃗1)
and instead conducting differential expression analysis (An-
ders & Huber, 2010), i.e., a hypothesis test for independent
means and significant fold-changes β. Either variant is
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parameter-lite and thus data-efficient: the former only con-
tains 2k+ k(k− 1)/2 learnable parameters, while the latter
is parameter-free.

V. Importance attribution for prospect maps: After
computing importance β, we spatially attribute them us-
ing the same sliding skip-gram search used in Step III. We
first define a prospect map, a map graph Ġ with the same
topology as G̃ and scalar features initialized at zero for all
vertices. For a given neighborhood of size r centered on ver-
tex v(i), we add the constituent importance scores for each
occurrence of a motif or motif-motif pair. In this manner,
we build in class-specific meaning via the ⊕ or ⊖ signage
of summed scores. For intuition, r parameterizes the level
of smoothing over the K2 map by modulating the number of
chunks used for attribution. In the context of imagery, Ġ’s
vertex coordinates map directly to form the elements of an
array Ŷ. A formalization is provided in Algorithm 2.

Computational efficiency: Because K2 only relies on
forward passes from fθ, our approach to SOD is 3-4×
more computationally efficient than gradient-based attribu-
tion methods. Our analysis is based on empirical results
from computing Floating Point Operations (FLOPs) for
model inference (i.e., using forward passes only). Since
K2’s FLOPs can be considered negligible, this efficiency
boost is approximated by the forward-backward pass FLOP
ratio of 1:2 to 1:3 (Zhou et al., 2021; Baydin et al., 2017).
This efficiency is especially relevant for multi-billion pa-
rameter Foundation Models (Bommasani et al., 2021) that
could be used as upstream encoders.

4 Experiments & Results

Dataset: We center this work on Camelyon16, a bench-
mark dataset of 400 gigapixel pathology images (270 train,
130 test) of breast cancer metastases in sentinel lymph nodes
(Ehteshami Bejnordi et al., 2017). The goal of this dataset is
to identify the metastases as salient superpixels. All images
were chunked (size ϵ = 224) and filtered for foreground
tissue regions (as opposed to the glass background). This
process resulted in more than 200K unique chunks without
augmentation. Dataset characteristics are described further
in §A.2 and Figure A.1.

Encoders: To demonstrate K2’s utility, we paired it with
multiple encoders described in Table 1. We train two en-
coders from scratch (USL-trained tile2vec (Jean et al., 2019)
and a WSL-trained ViT) and also use generalist and domain-
specific vision-language models operating on image chunks:
CLIP (Radford et al., 2021) and a pathology fine-tuned ver-
sion of CLIP called PLIP (Huang et al., 2023). More details
can be found in §A.3. To provide SOD baselines when pos-
sible, we generate stitched probability maps (SPMs) and
stitched Attention maps (SAMs) — i.e., the concatenation

of chunk prediction probabilities or mean attention scores
(Figure 2b,c). SPMs for CLIP and PLIP were generated
with the queried text-encoded labels: “normal lymph node”
for class-0 and “lymph node metastasis” for class-1.

Encoder
Alias

Architecture Learning
Regime

Training
Epochs

Embed
Size (d)

tile2vec ResNet-18 USL 20 128
ViT ViT/16 WSL 30 1024

CLIP ViT-B/32 SSL ✗ 512
PLIP ViT-B/32 SSL ✗ 512

Table 1: Experimented encoders. Pre-training denoted by ✗.

4.1 K2 grid search & multi-thresholding results

To test K2’s SOD performance over multiple configurations,
we conducted an extensive grid search over hyperparameters
(e.g., k, r) to train and evaluate 325 prospectors per encoder
(i.e., 1300 in total). Further details are outlined in §A.3.
For each of these prospectors, we use multi-thresholding
(§3.2.2) to conduct evaluation with greater granularity than
adaptive thresholding but without the computational over-
head of near-continuous thresholding. Results are summa-
rized in Table 2 and reflect the best metric performance
over sampled thresholds, along with stability (§3.2.2) in
parentheses. These results are also depicted pictorially in
§A.5. Reported numbers in the bottom half reflect the best
performances over all 325 K2 configurations per encoder.

Our results first verify the need for correctness metrics that
are imbalance-aware. Standard metrics are relatively unin-
formative because of the small salient objects in our test-set.
For example, accuracy is generally high due the rarity of
salient chunks. Secondly, we confirm that current SOD
baselines (top half of Table 2) have relatively high recall
and low precision when compared to K2 — where the latter
sees gains as large as +30 points in precision and +6 points
in balanced accuracy. The preference toward precision in
the precision-recall trade-off is further contextualized by the
MCC metric. While K2’s detected objects achieve some
element-by-element correlation with ground truth, baseline
MCC scores reflect zero correlation. This lack of corre-
lation, coupled with high recall, indicates that baselines
have a tendency to indiscriminately flag objects as salient
(as seen in the top right of Figure 6). Thirdly, we observe
K2’s superior threshold-stability over numerous encoders
and metrics — often seeing only a fraction of the change in
scores over the sampled thresholds.

4.2 Image classification vs SOD

To further probe K2’s constructed representations, we as-
sess the relationship between image classification and SOD.
K2 prospectors classify images based on their underlying
model for importance computation (Step IV in §3.3) — as
suggested, we implemented both linear model and differen-
tial expression prospector variants. For simplicity, differen-
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Standard Metrics Metrics for Imbalance

Encoder
-SOD

Accuracy Dice Precision Recall Balanced
Accuracy MCC

ViT-SAM 0.829 (0.703) 0.179 (0.179) 0.144 (0.144) 0.691 (0.691) 0.5 (0.162) 0.0 (0.413)
ViT-SPM 0.829 (0.704) 0.191 (0.191) 0.161 (0.161) 0.691 (0.691) 0.5 (0.154) 0.0 (0.408)

CLIP-SPM 0.829 (0.699) 0.179 (0.179) 0.144 (0.144) 0.690 (0.690) 0.5 (0.152) 0.0 (0.343)
PLIP-SPM 0.829 (0.699) 0.179 (0.179) 0.152 (0.152) 0.690 (0.690) 0.5 (0.152) 0.0 (0.343)

tile2vec-K2 0.840 (0.185) 0.167 (0.078) 0.226 (0.102) 0.448 (0.187) 0.504 (0.048) 0.014 (0.058)
ViT-K2 0.840 (0.195) 0.161 (0.069) 0.213 (0.082) 0.450 (0.188) 0.510 (0.052) 0.023 (0.070)

CLIP-K2 0.863 (0.093) 0.196 (0.111) 0.431 (0.217) 0.410 (0.157) 0.543 (0.033) 0.115 (0.062)
PLIP-K2 0.879 (0.097) 0.196 (0.122) 0.408 (0.256) 0.431 (0.162) 0.559 (0.036) 0.134 (0.073)

Table 2: Results of multi-thresholding correctness evaluation (§3.2.2). Parentheses contain score stability ∆s for each metric. Top half
are baseline methods. Key: Dark green indicates a top score, light green indicates a second best score. Higher is better for all metrics.

tial expression variants apply two decision rules directly on
feature-scale normalized K2 maps: (i) the maximum value
after Gaussian smoothing and (ii) the mean of the top-five
chunk values, both followed by thresholding at 0.5. Linear
model variants apply these same two decision rules and also
run inference using their trained parameters. For each K2
configuration, we report maximum achieved classification
AUROC and AUPRC and plot these metrics alongside SOD
precision and balanced accuracy in §A.7.

Figure 5: Scatter plots of 325 prospector configurations and their
performance on image classification (AUROC) vs SOD (preci-
sion). Left-to-right then top-to-bottom: tile2vec, ViT, CLIP, PLIP.
Importance computation is denoted by marker type: differential
expression as ◦, linear model as ×. Hyperparameter k is denoted
by marker color and r is reflected by marker size.

Figure 5 hones in on classification AUROC and SOD preci-
sion and reveals how differently all experimented encoders
behave. First, looking at SOD precision alone (y-axis), we
observe that parameter-free differential expression prospec-
tor variants (marker style ◦) are consistently the most precise
among CLIP and PLIP encoders, while linear model vari-

ants (marker style ×) are more precise for tile2vec and ViT
encoders. This suggests that the former two encoders can
perform long-range tasks nearly for free, as they require
less sophisticated embedding adaptation to localize salient
objects. Secondly, looking at both axes together, we observe
various relationships between classification AUROC and
SOD precision among the encoders. For tile2vec and ViT
encoders, we qualitatively observe a trade-off between axes,
suggesting a Pareto Frontier. This behavior may suggest that
these two encoder-SOD pipelines are not precluded from
relying on spurious correlations or shortcuts as depicted in
Figure 6 and §A.6. In contrast, the vision-language encoders
do not experience as strong of a trade-off between axes and
even suggest some correlation for the CLIP encoder — sup-
porting more advanced reasoning processes.

Turning to hyperparameters, we also see divergent impacts
based on encoder choice. CLIP and PLIP generally expe-
rience highest SOD precision with small window sizes r
(denoted by marker size), while classification AUROC expe-
riences less of a direct relationship with window size. This
same phenomenon does not hold for tile2vec and ViT en-
coders, as larger window sizes achieve the highest SOD pre-
cision in both cases, perhaps implying lower heterogeneity
in their data sprites (Figure 6) and a need for more context.
Overall, the top-right corner of each encoder’s scatter plot
suggests that small r and smaller k do achieve the optimal
choices for both SOD precision and classification AUROC.

4.3 Prospector selection for additional evaluation

Using the grid search results, we selected top-performing
K2 prospectors per metric in Table 2 to perform both adap-
tive thresholding (§3.2.1) and near-continuous thresholding
(§3.2.2) for correctness evaluation, as well as structural
evaluation (§3.2.3). Example K2 and baseline maps are
displayed in Figure 6 and in §A.6, reiterating how K2 is
able to localize tumor metastases to high degrees of cor-
rectness, while baselines either suffer from extremely low
precision (e.g., ViT-SAM) or even seem to systematically
make reversed predictions in certain test-set images (e.g.,
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Figure 6: K2 maps from highest precision configurations via
multi-thresholding. In row-descending order for first four columns:
tile2vec, ViT, CLIP, PLIP. Under the baseline column (right), we
show unprocessed ViT-SAM, ViT-SPM, CLIP-SPM, PLIP-SPM.

PLIP-SPM). Looking at Table 3, we first observe that adap-
tive thresholding (left-hand side) allows for improved preci-
sion for baselines, but decreased precision, balanced accu-
racy, and MCC for K2 when comparing against the multi-
thresholding results in Table 2. This may suggest that the
drastically different construction of K2 prospect maps are
not as amenable to standard adaptive thresholding. Despite
this dip in performance, K2 still achieves superior SOD cor-
rectness in all three metrics compared to baselines. Looking
at near-continuous thresholding, K2 achieves dominant AU-
ROCs and AUPRCs, where even the tile2vec encoder with
K2 is able to outperform SPMs generated by CLIP and PLIP.
Finally, in structural evaluation, K2 demonstrates an ability
to construct contiguous (i.e., low-dispersion) SOD predic-
tions, where baselines all achieve MOD scores of zero —
thus, implying the identification of many non-contiguous
salient chunks. In particular, tile2vec is able to construct
salient object predictions with significantly more contiguity,
likely due to the spatial awareness offered by its loss func-
tion. Because only a small subset of 24 prospectors were
used in this stage of analysis, these results can be considered
conservative estimates of optimal performance.

5 Discussion & Conclusion

In this work, we present a SOD evaluation framework and
prospector heads, a new class of methods that can perform
SOD in high-dimensional imagery with state of the art per-
formance. Our proposed prospector, K2, is parameter-lite,
data-efficient, and modality-generalizable. Despite its sim-
plicity, K2 outperforms baselines over a suite of evaluations
and advances encoders’ abilities to predict salient objects
in a (A) localized (i.e., precise and contiguous) and (B)
class-indicative manner. Furthermore, we show that K2 is

threshold-stable and encoder-agnostic with consistent gains
in SOD performance over baselines. This simple class of
prospectors even provides the SOD capability to unsuper-
vised models. We contextualize our findings below:

Foundation Models and prospectors can identify salience
in high-dimensional data. Both the general-purpose and
domain-specific vision-language models (CLIP and PLIP,
respectively) very clearly benefit from boosted performance
with K2 — potentially due to their rich, heterogeneous em-
bedding spaces. In addition, we observed that the vision-
language models experienced less stark of a trade-off be-
tween image classification and SOD performance when
compared to tile2vec and ViT (Figure 5, §A.7). These find-
ings support the utility of short-context, prospector-enabled
Foundation Models for long-range tasks like SOD in high-
dimensional data. Furthermore, the computational efficiency
of prospectors will enable SOD at scale.

Where do prospectors and SOD fit into explainable AI?
We show that prospectors can perform SOD and that SOD
helps us formalize the task of aligning the user’s and model’s
concepts of salience. However, prospectors cannot be con-
sidered model explanations in the strictest sense due to their
adaptation of intermediate embeddings — and thus, prospect
maps are unfaithful (Ross et al., 2017; Jacovi & Goldberg,
2020) to the upstream encoder’s reasoning process. K2’s
hybridized approach should be noted, however: it makes use
of global explanations to make local, input-specific (Adadi
& Berrada, 2018; Das & Rad, 2020; Ras et al., 2020) SOD
predictions. Given these clarifications, we can conclude that
K2 provides plausible (Jacovi & Goldberg, 2020) salient
objects and potential interpretability (Ross et al., 2017) by
relying on the semantic understanding of an encoder’s em-
bedding space. Hopefully this potential for informativeness
(Lipton, 2016) via plausible SOD and human interpretation
inspire new forms of prospector heads.

Healthcare implications of this work are centered
around fostering model interpretability and the capability
for models to instruct users to identify salient regions within
biomedical data despite coarse supervision. As seen in this
work, one specific application is in accelerating computer-
assisted diagnostics with improved interpretability behind
whole slide classification in gigapixel pathology. In ad-
dition, this work can be used in settings without ground
truth (e.g., multiplexed imagery) to enable the discovery of
novel prognostic biomarkers (Echle et al., 2020; Lewis et al.,
2021). Finally, our method’s modality-generalizable formu-
lation will also spur generalized implementation for future
modalities, wherever chunk-based encoders are common:
large-scale text (Reimers & Gurevych, 2019), graphs (Derry
& Altman, 2022), and time-series (Ju et al., 2021; Wang
& Xu, 2022). These modalities open up many possible ap-
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Adaptive Near-continuous Structural

Encoder
-SOD

Precision Balanced
Accuracy MCC AUROC AUPRC AP MOD

ViT-SAM 0.171∗ 0.5 0.0 0.348 0.152 0.161 0.0
ViT-SPM 0.171∗ 0.5 0.0 0.396 0.185 0.195 0.0

CLIP-SPM 0.171∗ 0.5 0.0 0.296 0.146 0.156 0.0
PLIP-SPM 0.171∗ 0.5 0.0 0.293 0.149 0.158 0.0

tile2vec-K2 0.167∗ 0.501 0.004 0.439 0.255 0.183 4.061
ViT-K2 0.167∗ 0.502∗ 0.005∗ 0.490 0.274 0.190 0.103

CLIP-K2 0.244 0.523 0.075 0.544 0.333 0.243 1.669
PLIP-K2 0.251 0.522 0.077 0.559 0.481 0.238 1.788

Table 3: Results of adaptive thresholding correctness (§3.2.1), near-continuous thresholding correctness (§3.2.2), and structural evaluation.
An asterisk (*) indicates a higher score achieved by backward thresholding. Key: Dark green indicates a top score, light green indicates a
second best score. Higher is better for all metrics.

plications: identifying salient sentences in large corpora of
biomedical literature, binding pockets in protein structures,
or even clinically relevant anomalies in electroencephalog-
raphy signals, respectively.

Future work includes expanding K2’s functionality, un-
derstanding K2’s behavior, implementing additional base-
lines, and applying K2 to other image datasets and even
other modalities. Regarding K2’s functionality, we plan
to explore 3-mer hashing (i.e., r-skip-3-grams). To un-
derstand K2 behavior, we will mathematically character-
ize different encoders’ embedding spaces (Figure A.2) to
identify correlations with performance. Further, we will
study the relationship between image classification and SOD
and add to the debate on the relationship between predic-
tive performance and interpretability (Rudin, 2019; Rudin
et al., 2021). Regarding vision baselines, we plan to in-
clude additional text queries for vision-language SPMs and
also plan to compare K2 with parameter-heavy prospec-
tors (e.g., Attention-based). Finally, we plan to shift our
current imagery-centered implementation to a modality-
generalizable implementation to enable a wide range of
applications.

Limitations of this work include those around hyperpa-
rameter selection. Future work will study effect on chunk
size ϵ over all encoders, as SOD and image classification per-
formance will likely exhibit interesting behavior depending
on this choice. Future work will also employ a validation
set for hyperparameter tuning to allow for more definitive
test-set comparisons.

Code access: Our code is publicly available at https:
//github.com/gmachiraju/lofi.
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A Supplementary Material

A.1 Algorithms behind K2

The pseudo-code here reflects implementations specifically for image data, as reflected in the codebase. Namely, data sprites
(described as map graphs G̃) are instead represented as arrays S.

Algorithm 1 Motif Graph Hashing (MGH)

Require: Sprite S ∈ {0, 1, . . . , k}h×w

Require: window size r
1: Per-category count vector F⃗ where

F⃗c =
∑H

i=1

∑W
j=1 1[Sij = c] ∀c ∈ {1, . . . , k}

2: Initialize co-occurrence count matrix: L← 0k×k

3: for 1 ≤ i ≤ h do
4: for 1 ≤ j ≤ w do
5: if Sij == 0 then
6: continue
7: end if
8: is ← max(1, i− r), ie ← min(h, i+ r)
9: js ← max(1, j − r), je ← min(h, j + r)

10: for 1 ≤ c′ ≤ K do
11: LSijc′ ← LSijc′ +∑ie

i′=is

∑je
j′=js

1[c′ = Si′j′ ]

12: end for
13: LSijSij ← LSijSij − 1
14: end for
15: end for
16: Initialize order-agnostic co-occurrence vector:

L⃗ = [Lij + Lji ∀i ∈ 1, . . . , k, j ∈ i+ 1, . . . , k]
17: Concatenate the per-class vector and co-occurrences:

B⃗ = F⃗⊕ diag(L)⊕ L⃗

18: Normalize the counts: B⃗← B⃗/
∑|B⃗i|

i B⃗i

19: return B⃗

Algorithm 2 Importance Attribution (IA)

Require: Sprite S ∈ {0, 1, . . . , k}h×w

Require: Feature Importance for categories βF ∈ Rk
+

Require: Co-occurrences βL ∈ Rk×k
+

1: Initialize mask Y ← 0h×w

2: for 1 ≤ i ≤ h do
3: for 1 ≤ j ≤ w do
4: if Sij == 0 then
5: continue {# background chunk}
6: end if
7: Yij ← Yij + βF

Sij

8: is ← max(1, i− r), ie ← min(h, i+ r)
9: js ← max(1, j − r), je ← min(h, j + r)

10: Yij ← Yij +
∑K

c′=1

∑ie
i′=is

∑je
j′=js

βL
SijSi′j′

1[c′ = Si′j′ ]

11: Yij ← Yij − βL
SijSij

12: end for
13: end for
14: return Y

Algorithm 3 K2 Training & Inference
Require: Training set of images Xtrain
Require: Window size r, cluster number k
Require: Test image X∗

Require: Encoder fθ
1: Zsample ← {fθ(x) for randomly sampled xs from Xtrain}
2: ψ ← train-ψ (k,Ztrain)
3: for X in Xtrain do
4: Z← concat ({fθ(x) ∀x ∈ X})
5: S← concat ({ψ(⃗z) ∀z⃗ ∈ Z})
6: B⃗← MGH(S, r) {# Alg. 1}
7: β ← train gβ(B⃗)
8: end for
9: Z∗ ← concat ({fθ(x) ∀x ∈ X∗})

10: S∗ ← concat ({ψ(⃗z) ∀z⃗ ∈ Z∗})
11: B⃗← MGH(S∗, r)
12: Y ← IA(S∗, β) {# Alg. 2}
13: return Y
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A.2 Dataset statistics

Figure A.1: Test dataset statistics.

A.3 Implementation & experimental details

Tile2vec encoder training Our USL encoder is tile2vec, a ResNet-18 architecture (He et al., 2015) trained for 20 epochs
on a single NVIDIA T4 GPU. For training, the training set of 200K chunks were formed into nearly 100K triplets with a
sampling scheme similar to that of Jean et al. (2019). These triplets were then used to train tile2vec with the triplet loss
function (Jean et al., 2019).

ViT encoder training We trained a custom ViT for trained for 30 epochs on a single NVIDIA T4 GPU. It was trained
using independent chunk predictions and fuzzy labeling via image-level labels.

Embedding quantization To quantize embeddings, we use k-means clustering over a training dataset-wide random
sample ( 4500) of chunk embeddings in order to assign constituent pseudo-labels to data sprites.

K2 : motif graph hashing We note that the dimensionality of the bagged representation B⃗ is in actuality piece-wise with
respect to r and k:

#B⃗ :=

{
k r = 0 (unigrams)
(2k + k(k − 1)/2 r > 0 (bigrams)

but introduced the bigrams case in the body of the text for simplicity.

After motif graph hashing and formation into bagged representations, we perform TF-IDF normalization (Karen, 1972) on
our computed motif and motif-motif frequencies.

K2 : importance computation Importance computation models gβ are implemented as either linear models or differential
expression. For linear model variants, we specifically use a LASSO classifier and conduct training over the bagged
representations for 3000 iterations.

On the other hand, differential expression variants are parameter-free. These variants instead compute feature importance via
class-level differences — specifically by constructing class-level bagged representations (i.e., averaged vectors), computing
logarithmic fold-changes (i.e., ratios) between class representations, and testing each feature for significance via a Mann-
Whitney U hypothesis test. For filtration after hypothesis testing, we use common thresholds that act as additional
hyperparameters: significance threshold α and log2-fold change threshold τ . Prior to filtration, we adjust our chosen
significance threshold using the commonly used Bonferroni correction: our original α threshold is divided by the number
of motifs and motif-motif pairs, i.e., α∗ = α/#B⃗. Finally, to perform filtration, we use ±τ to filter out sufficiently small
fold changes (e.g., ±1, which indicates a requirement for doubling in log2-scale) and use α∗ to filter out non-significant
differences.
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Grid search details To determine the best-performing prospectors, we performed an extensive grid search over all
hyperparameters k, r, α, τ (with the latter two only associated with differential expression). Selected values include
K ∈ {10, 15, 20, 25, 30}, r ∈ {0, 1, 2, 4, 8}, α ∈ {0.01, 0.025, 0.05, 1}, and τ ∈ {0, 1, 2}. This search results 25 linear
model prospector variants and 300 differential expression variants.

A.4 Embedding space t-SNE plots

To argue against modeling in a manner without larger image contexts, i.e., with an assumption of independent and identically
distributed (IID) chunks, we visualize the embedding spaces of our encoders. The lack of separation of class-1 chunks from
class-0 chunks also intuitively depicts the difficulty of using modeling approaches like anomaly detection [c].

Figure A.2: tSNE plots, left-to-right then top-to-bottom: tile2vec, ViT, CLIP, PLIP. Marker color denotes motif label, marker type denotes
ground truth annotation for a chunk: ◦ for class-0 (non-salient), × for class-1 non-salient, and the much larger××× for class-1 salient.

A.5 Multi-thresholding trajectory plots

Multi-thresholding trajectory plots for each metric. Blue lines track SPM scores and orange lines track SAM scores. Going
from left-to-right then top-to-bottom, we display: tile2vec, ViT, CLIP, PLIP.
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Figure A.3: Accuracy. Figure A.4: Dice.

Figure A.5: Precision. Figure A.6: Recall.
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Figure A.7: Balanced accuracy. Figure A.8: MCC.

A.6 Additional K2 prospect maps

Example K2 maps from the highest scoring configurations determined with multi-thresholding. In row-descending order, we
display: tile2vec, ViT, CLIP, PLIP.

Figure A.9: Highest accuracy configurations. Figure A.10: Highest Dice configurations.
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Figure A.11: Highest recall configurations. Figure A.12: Highest balanced accuracy configurations.

Figure A.13: Highest MCC configurations.
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A.7 Additional scatter plots for image classification vs SOD

Figure A.14 Figure A.15

Figure A.16 Figure A.17
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