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Abstract
Reranking plays a crucial role in modern multi-stage recommender
systems by rearranging the initial ranking list. Due to the inherent
challenges of combinatorial search spaces, some current research
adopts an evaluator-generator paradigm, with a generator generat-
ing feasible sequences and an evaluator selecting the best sequence
based on the estimated list utility. However, these methods still face
two issues. Firstly, due to the goal inconsistency problem between
the evaluator and generator, the generator tends to fit the local
optimal solution of exposure distribution rather than combinato-
rial space optimization. Secondly, the strategy of generating target
items one by one is difficult to achieve optimality because it ignores
the information of subsequent items.

To address these issues, we propose a utilizing Neighbor Lists
model for Generative Reranking (NLGR), which aims to improve
the performance of the generator in the combinatorial space. NLGR
follows the evaluator-generator paradigm and improves the genera-
tor’s training and generating methods. Specifically, we use neighbor
lists in combination space to enhance the training process, making
the generator perceive the relative scores and find the optimization
direction. Furthermore, we propose a novel sampling-based non-
autoregressive generation method, which allows the generator to
jump flexibly from the current list to any neighbor list. Extensive
experiments on public and industrial datasets validate NLGR’s effec-
tiveness and we have successfully deployed NLGR on the Meituan
food delivery platform.
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1 Introduction
E-commerce platforms, such as Meituan and Taobao, need to pro-
vide users with personalized services from millions of items. To
improve recommendation efficiency, personalized recommendation
systems generally include three stages: matching, ranking, and
reranking. The ranking models (e.g.,Wide&Deep [10], DeepFM [14],
DIN [35]) evaluate the point-wise items respectively based on the
Click-Through Rate (CTR), but they ignore the crucial mutual in-
fluence among items [7, 27]. Research [1, 5, 6, 25] indicates that
optimizing a list-wise utility is a more advantageous strategy, as it
capitalizes on the mutual influences between items within the list
to enhance overall performance.

The key challenge of reranking is to explore the optimal list
in the huge combinatorial space [21, 28]. Initially, some list-wise
methods [2, 26, 36] re-evaluate and score items within lists by
modeling the context. These list-wise methods can obtain more
accurate scores than point-wise methods, then they use a greedy
strategy to reorder based on the list-wise score. However, these
methods face the evaluation-before-reranking problem [13, 32] and
cannot achieve optimization in combinatorial space. To resolve the
problem, a straightforward solution is to evaluate every possible
permutation, which is global-optimal but is too complex to meet
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the strict inference time constraint in industrial systems. Therefore,
most existing evaluator-based reranking framework uses a two-
stage architecture [12, 13, 20, 28, 32] which consists of a generator
and an evaluator. Within the generator-evaluator paradigm, the
generator plays a crucial role [28]. Some methods use heuristic
methods as generators, such as beam-search [24] and SimHash [9].
The generators of these methods do not utilize the information
of the evaluator, resulting in limited effectiveness. Recently, some
methods [13, 20, 28] utilize generative models as generators and
achieve better results than heuristic methods.

However, existing generative reranking methods face two sig-
nificant challenges. Firstly, due to the goal inconsistency problem,
the generator has difficulty finding the optimal list in the combi-
natorial space. While the evaluator is trained to fit list-wise scores
of items, the generator is tasked with transforming any candidate
list into the optimal one. This disparity in objectives between the
evaluator and the generator complicates the transfer of guidance,
often causing the generator to merely fit exposure distributions in
extreme cases. Secondly, the strategy of generating target items
sequentially, one by one, hinders the achievement of optimal results.
The sequential decoding process focuses solely on preceding items,
neglecting information from succeeding items. This limitation leads
to suboptimal performance as the model fails to fully leverage the
available context.

To address the aforementioned challenges, we propose a novel
Generative Reranking method that utilizes Neighbor Lists, named
NLGR. Our approach still follows the evaluator-generator paradigm,
with the evaluator solely assisting in the generator’s offline training.
Our improvements are twofold as follows. First, we introduce an
enhanced training process that utilizes neighbor lists, enabling
the generator to perceive relative scores within the combinatorial
space and identify the optimal direction. As depicted in Figure
1, by evaluating multiple neighboring lists and iterating several
times, the generator will converge to an optimal state. Second, we
propose a sampling-based non-autoregressive generation method.
This method first determines the position of the item that needs
to be replaced using the Position Decision Unit (PDU), and then
retrieves new replacement items from the candidate item set using
the Candidate Retrieval Unit (CRU), which allows for a more flexible
exploration of the combinatorial space to find the optimal list.

Figure 1: Generator optimization legend: reach the optimal
step by step under the guidance of the neighbor lists.

In summary, the contributions of this work are as follows:
• We propose a novel generative reranking method that utilizes
neighbor lists to address the goal inconsistency problem between

evaluators and generators. To the best of our knowledge, we are
the first to propose and attempt to solve this problem.

• We propose a novel sampling-based non-autoregressive genera-
tion method that generates the optimal list more flexibly in the
combination space.

• We have verified the superior performance of NLGR through
extensive experiments on both offline and online datasets. It
is notable that NLGR has been deployed in the Meituan food
delivery platform and has achieved significant improvement
under various metrics.

2 Related Work
2.1 Reranking Methods
Typical reranking methods can be divided into two categories [29].
The first category is the one-stage reranking methods, which only
generates one list as output by capturing the mutual influence
among items. Seq2slate [4] utilizes pointer-network and MIRNN
[37] utilizes GRU to determine the item order one-by-one. Methods
such as PRM [26] and DLCM [1] take the initial ranking list as
input, use RNN or self-attention to model the context-wise signal,
and output the predicted value of each item. Such methods bring an
evaluation-before-reranking problem [32] and lead to suboptimal.
Similarly, methods such as EXTR [8] estimate pCTR of each candi-
date item on each candidate position, which are substantially point-
wise models and thus limited in extracting exact context. MIR [33]
capturing the set2list interactions by a permutation-equivariant
module Another category is the two-stage reranking methods,
which tries to evaluate every possible permutation through a well-
designed context-wise model. This is a global-optimal method but is
too complex to meet the strict inference time constraint in industrial
systems. To reduce the complexity, PRS [12] adopts beam-search to
generate a few candidate permutations first, and score each permu-
tation through a permutation-wise rankingmodel. PIER [29] applies
SimHash to select top-K candidates from the full permutation.

2.2 Generative Reranking Solutions
In recent years, the generative reranking model [16, 18, 22] for
listwise recommendation has been a topic of discussion. To manage
the vast combinatorial output space of lists, the generative approach
directly models the distribution of recommended lists and employs
deep generative models to generate a list as a whole. For instance,
ListCVAE [18] utilizes conditional variational autoencoders (CVAE)
to capture the positional biases of items and the interdependencies
within the list distribution. But Pivot-CVAE [22] indicates that
ListCVAE suffers from a trade-off dilemma between accuracy and
diversity, and proposes an "elbow" performance to enhance the
accuracy-based evaluation.

GFN [21] uses a flow-matching paradigm that maps the list gen-
eration probability with its utility. Essentially it is still studying list
distributions rather than directly modeling the permutation space,
so it still has the challenge mentioned above. GRN [13] proposes
an evaluator-generator framework to replace the greedy strategy,
but it can’t avoid the evaluation-before-reranking problem [32]
because it takes the rank list as input to the generator. DCDR [20]
introduces diffusion models into the reranking stage and presents a
discrete conditional diffusion reranking framework. NAR4Rec [28]
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uses a non-autoregressive generative model to speed up sequence
generation. However, these methods still face the two problems
mentioned above.

3 Problem Definition
In the Meituan food delivery platform, we adhere to the match-
ing, ranking, and reranking recommendation paradigms to present
items to users in a list format. Initially, we define a user set𝑈 and
an item set 𝐼 . We utilize the session-level users’ historical inter-
acted lists 𝐵 and candidate set 𝐶 to represent the user’s features
𝑢 ∈ 𝑈 , which consistently holds in our reranking scenario 𝐶 ∈ 𝐼 ,
and ultimately select the list 𝐿 for users.

Reranking introduces a combination space with exponential size,
represented as O(𝐴𝑚𝑛 ), where 𝑛 represents the size of the candidate
set𝐶 and𝑚 represents the size of the output list 𝐿. Our optimization
objective is to learn a strategy 𝜋 : 𝐶 → 𝐿 by maximizing the
list score reward 𝑅(𝑢, 𝜋). The list score reward 𝑅(𝑢, 𝜋) takes into
account factors such as click-through rate (CTR) and conversion
rate (CVR).

Neighbor List. If the distance between two lists is 1, that is, the
two lists only differ by 1 item, we define the two lists as neighbor
lists. If we swap two items in a list, the new list will have a distance
of 2.

4 Proposed Method
In this section, we present a detailed introduction of NLGR. We first
introduce the evaluator (in Section 4.1) and generator (in Section
4.2) of NLGR, denoted as NLGR-E and NLGR-G respectively. Then,
we demonstrate the offline training process of NLGR in Section
4.3. The evaluator is only assisting in the offline training of the
generator, so NLGR is a fast inference method.

4.1 Evaluator Model
We use NLGR-E to evaluate a ranked sequence, such as the exposed
list which is displayed to the user, or the candidate lists generated
by NLGR-G. The structure of NLGR-E is shown on the left side of
Figure 2.

NLGR-E includes two inputs: the exposed list to be evaluated
and the user session-level behavior sequence, where each session
in the user session-level behavior sequence is the user’s historical
exposed list. The evaluation process of NLGR-E is as follows:

First, we use an embedding layer to get the embedding of the
original input, donated as X ∈ R𝑚×𝐹×𝐷 and M ∈ R𝐻×𝑚×𝐹×𝐷

respectively, where 𝐻 represents the number of history sessions,𝑚
represents the number of items in each list, 𝐹 represents the number
of feature fields for each item (i.g., ID, category, position index),
and 𝐷 represents the dimension of the embedding. Inspired by DIF
[34], to avoid feature interference, we propose the D-Attention unit
to decouple the feature context information. We first calculate the
attention score on 𝑖-th attribute X𝑖 ∈ R𝑚×𝐷 :

Att𝑖 = 𝜎

(
(X𝑖W𝑄

𝑖
) (X𝑖W𝐾

𝑖
)⊤

√
𝐷

)
,∀𝑖 ∈ [𝐹 ], (1)

where W𝑄

𝑖
andW𝐾

𝑖
∈ R𝐷×𝐷 denote the weight matrices.

Then we aggregate all attention matrices Att𝑖 ∈ R𝑚×𝑚 and get
the item-level attention score Attall ∈ R𝑚×𝑚 :

Attall =
1
𝐹

𝐹∑︁
𝑓 =1

Att𝑖 . (2)

Subsequently, we aggregate ID feature embeding X𝑖𝑑 ∈ R𝑚×𝐷

and obtain each exposed list’s representation e𝑙 ∈ R𝐷 :

e𝑙 = reduce_mean
(
Attall (X𝑖𝑑W𝑉 )

)
. (3)

Similarly, by performing the above operations on each session
in the user session-level behavior sequence, we can obtain the
representation e𝑠

𝑖
∈ R𝐷 of each session. Then we input e𝑠

𝑖
into

a Self-Attention layer (SA) [19, 30] to get the user representation
e𝑢 ∈ R𝐷 :

e𝑢 = SA(e𝑠1 | |e
𝑠
2 | |...| |e

𝑠
𝐻 ), (4)

where || represents concatenate operate.
Finally, the predicted Click-Through Rate (pCTR) of the 𝑗-th item

can be represented as:

𝑦 𝑗 = 𝜎 (Tiled_MLP(X𝑗 | |e𝑙 | |e𝑢 | |𝑃𝐸 𝑗 )), (5)

where 𝑃𝐸 𝑗 denotes 𝑗-th position embedding. Similarly, the pCVR
and other evaluations also follow the above process.

4.2 Generator model
We utilize NLGR-G to generate the optimal list in combinatorial
space. The structure of NLGR-G is shown on the middle side of
Figure 2.

Similar to NLGR-E, NLGR-G includes two inputs: the candidate
list to be reranked and the user session-level behavior sequence,
where each session in the user session-level behavior sequence is
the user’s historical exposed list. Theoretically, the candidate list
can be any in the combinatorial space, but generally, we use the
ranking list as the initial input. The generation process of NLGR-G
is as follows:

First, we obtain the user representation e𝑢 through Eq. 4. These
parameters are shared from NLGR-E to ensure that the remaining
parameters can be optimized more focused.

Then, we propose a sampling-based non-autoregressive genera-
tion method. It first determines the position of the item that needs
to be replaced through the Position Decision Unit (PDU), then re-
trieves new replacement items from the candidate item set through
the Candidate Retrieval Unit (CRU).

4.2.1 Position Decision Unit (PDU). First, we use the embedding
layer to get the embedding of the candidate list, donated as X ∈
R𝑚×𝐹×𝐷 . Then, we flatten 𝑗-th item embedding X𝑗 ∈ R𝐹×𝐷 and
use a Fully Connected layer (FC) to calculate the selected logit of
the 𝑗-th position:

ℎ 𝑗 = FC1 (X𝑗 | |e𝑙 | |e𝑢 | |𝑃𝐸 𝑗 ). (6)

To solve the non-differentiable problem of the sampling distri-
bution, inspired by [15, 17, 23], we use the Gumbel-softmax trick
for sampling:

𝑟
𝑝

𝑗
= softmax

(
𝑙𝑜𝑔(ℎ 𝑗 ) + 𝑛

𝜏

)
,∀𝑗 ∈ [𝑚], (7)
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Figure 2: The overall architecture of NLGR.

where 𝜏 > 0 is a temperature parameter, 𝑛 = −log(−log(𝑢))) repre-
sents random noise sampled from the Gumbel distribution, 𝑢 is a
uniform distribution between [0, 1]. During backpropagation, the
gradient is calculated using Eq. 7. While during forward propaga-
tion, the replaced position is 𝑗 = argmax(𝑟𝑝

𝑗
).

4.2.2 Candidate Retrieval Unit (CRU). After determining the po-
sition 𝑗 to be replaced, we need to select a suitable one from 𝑛

candidate items and place it at position 𝑗 . Since this operation
will be repeated multiple times during the generation process, we
propose leveraging retrieval-based techniques to quickly achieve
this goal for efficiency. First, we mask the position 𝑗 of the candi-
date list, denoted as X𝑚𝑎𝑠𝑘

𝑗
∈ R𝑚×𝐹×𝐷 , and then extract the list

representation e𝑚𝑎𝑠𝑘
𝑗

∈ R𝐷 :

e𝑚𝑎𝑠𝑘𝑗 = SA(X𝑚𝑎𝑠𝑘𝑗 ). (8)

We then compute the representation of each candidate item at
position 𝑗 :

e𝑐
𝑘
= FC2 (flatten(X𝑐𝑘 ) | |𝑃𝐸 𝑗 ),∀𝑘 ∈ [𝑛], (9)

where X𝑐 ∈ R𝑛×𝐹×𝐷 denotes embedding of candidate set 𝐶 , and
X𝑐
𝑘
denotes 𝑘-th candidate item’s embedding.
Then we use an FC layer to calculate the selected logit of the

𝑗 = 𝑘-th candidate item:

𝑔𝑘 = FC3 (e𝑐𝑘 | |e
𝑚𝑎𝑠𝑘
𝑗 | |e𝑢 | |𝑃𝐸 𝑗 ). (10)

Similarly, to overcome non-differentiable problems, we use the
Gumbel-softmax trick for sampling:

𝑟𝑐
𝑘
= softmax

(
𝑙𝑜𝑔(𝑔𝑘 ) + 𝑛

𝜏

)
,∀𝑘 ∈ [𝑛], (11)

During backpropagation, the gradient is calculated using Eq. 10.
While during forward propagation, the newly inserted item is 𝑐 =
argmax(𝑟𝑐

𝑘
).

Stop condition. Note that the generation process may be re-
peated many times until the newly inserted item equals the replaced
item or the values of 𝑟𝑝

𝑗
and 𝑟𝑐

𝑘
are too low.

4.3 Utilizing Neighbor Lists Training
In this section, we elaborate on the offline training process of NLGR,
which includes the training procedures for NLGR-E and NLGR-
G. As mentioned before, the evaluator is trained to fit list-wise
scores of items, and the generator is tasked with transforming any
ranking list into the optimal one. This goal inconsistency between
the evaluator and the generator complicates the transfer of guidance.
We will introduce our solution in detail below.

4.3.1 Training of NLGR-E. To accurately evaluate the return
of the exposure list and estimate the listwise pCTR value of the
exposure list, we train NLGR-E using real data collected from online
logs. The input is the features of the recommended advertisement
sequences exposed in reality online, and the advertising return situ-
ation, including exposure, click, conversion, and other performance
indicators, is used as the label to supervise the training of NLGR-E,
enabling it to accurately evaluate the return of the recommended
sequence. The loss of NLGR-E is calculated as follows:

L𝐸 =

𝑚∑︁
𝑗=1

(
−𝑦 𝑗 log(𝑦 𝑗 ) − (1 − 𝑦 𝑗 ) log (1 − 𝑦 𝑗 )

)
, (12)

where 𝑦 𝑗 represents the real label, 𝑦 𝑗 represents the predicted value
of NLGR-E, and the evaluation is carried out for the𝑚 items in the
exposure list in turn.
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4.3.2 Training ofNLGR-G. To address the problem of goal incon-
sistency mentioned before, we use neighbor lists to guide NLGR-G
within the counterfactual space. For each list generated by NLGR-
G, NLGR-E simulates human feedback and provides a reward 𝑅 to
guide NLGR-G training.

Figure 3 shows an example of the NLGR-G training process. First,
for each candidate list 𝐿𝑜 = [𝑖𝑜1 , 𝑖

𝑜
2 , ..., 𝑖

𝑜
𝑚], we sample a replacement

item 𝑖∗ from the candidate set 𝐶 = [𝑖1, 𝑖2, ..., 𝑖𝑛], replace the 𝑗-th
item 𝐿𝑜 ’s, and construct a neighbor list 𝐿∗

𝑗
= [𝑖𝑜1 , 𝑖

𝑜
2 , ...𝑖

∗
𝑗
, ..., 𝑖𝑜𝑚].

Repeating and replacing each position, we can get a set of neighbor
lists 𝐿∗ = [𝐿∗1, 𝐿

∗
2, ..., 𝐿

∗
𝑚].

Figure 3: The training process of NLGR-G for a candidate list
of length 3.

Then, we use the trained NLGR-E to evaluate the candidate list
𝐿𝑜 and the neighbor list 𝐿∗, and indicators such as pCTR and pCVR
will be estimated. We convert the estimated value into list reward
based on business indicators as follows:

𝑟 =


𝑒𝑤−1 − 1 if𝑤 > 1
0 if𝑤 = 1
1 − 𝑒1−𝑤 if𝑤 < 1

, (13)

𝑤 = 𝑘1 · 𝐿𝑐𝑡𝑟 + 𝑘2 · 𝐿𝑐𝑡𝑟 · 𝐿𝑐𝑣𝑟 , (14)
where 𝐿𝑐𝑡𝑟 and 𝐿𝑐𝑣𝑟 represent the list total pCTR and pCVR which
are evaluated by NLGC-E, respectively. The parameters 𝑘1 and 𝑘2
are business parameters that depend on the click bid and conversion
price in the specific business.

Through Eq. 13, we can get the rewards of the neighbor lists 𝐿∗
and the original candidate list 𝐿𝑜 , denoted as 𝑟 = [𝑟1, 𝑟2, ..., 𝑟𝑚] and
𝑟𝑜 respectively. NLGR-G is tasked to iterate from the candidate list
to a more optimal list, so we calculate the relative reward for each
position 𝑗 :

𝑟 𝑗 = 𝑟 𝑗 − 𝑟𝑜 ,∀𝑗 ∈ [𝑚] . (15)
The authentic evaluation 𝑅 for the candidate list 𝐿𝑜 is obtained

by aggregating the relative rewards of all positions. And we define
the counterfactual loss of NLGR-G as −𝑅:

L𝐺1 = −𝑅 = −
𝑚∑︁
𝑗=1

𝑟 𝑗 . (16)

Furthermore, to increase the stability of the NLGR-G’s generation
process, we propose using the position reward 𝑟 𝑗 to provide addi-
tional guidance to the Position Decision Unit (PDU). Specifically,
we introduce cross-entropy loss as an auxiliary loss to measure the

distribution difference of position sampling 𝑟𝑝 and position reward
𝑟 𝑗 :

L𝐺2 = −
𝑚∑︁
𝑗=1

Norm(𝑟 𝑗 ) · log𝑟𝑝𝑗 , (17)

where Norm(𝑟 𝑗 ) =
𝑟 𝑗∑
𝑟 𝑗
.

The final loss of NLGR-G in each batch is:

L𝐺 =
1
|𝐵 |

∑︁
𝐵

(L𝐺1 + 𝛼 · L𝐺2 ), (18)

where 𝛼 is a coefficient to balance the two losses.

5 Experiments
To validate the superior performance of NLGR, we conducted ex-
tensive offline experiments on the Meituan dataset and verified
the superiority of NLGR in online A/B tests. In this section, we
first introduce the experimental setup, including the dataset and
baseline. Then, in Section 5.2, we present the results and analysis
of various reranking methods in both offline and online A/B tests.

5.1 Experimental Setup
5.1.1 Dataset. In order to verify the effectiveness of NLGR, we
conduct sufficient experiments on both public dataset and industrial
dataset. For public dataset, we choose Taobao Ad dataset1. For the
industrial dataset, we use real-world data collected from Meituan
food delivery platform.
• Taobao Ad. It is a public dataset collected from the display ad-
vertising system of Taobao. This dataset contains more than 26
million interaction records of 1.14 million users within 8 days.
Each sample comprises five features: user ID, timestamp, behavior
type, item brand ID, and category ID.

• Meituan. It is an industrial dataset collected from the Meituan
food delivery platform during October 2023, which contains 1.3
billion interaction records of 130million users within 30 days. The
dataset includes 239 features, two labels: click and conversion,
and collects all items on the same page as one record. We divide
the dataset into training and test sets with a proportion of 9:1.
Table 1 gives a brief introduction to the datasets.

Table 1: Statistics of datasets

Dataset #Users #Items #Records
Taobao Ad 1,141,729 99,815 26,557,961
Meituan 130,648,310 14,054,691 1,331,247,488

5.1.2 Baseline. The following six baselines are chosen for compar-
ative experiments and divided into three groups. We select DNN
and DeepFM as point-wise baselines (Group I), PRM and MIR as
list-wise baselines (Group II), and GRN and DCDR as generative
baselines (Group III). A brief introduction of these methods is as
follows:
• DNN[11] is a basic deep learning method for CTR prediction,
which applies MLP for high-order feature interaction.

1 https://tianchi.aliyun.com/dataset/56
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Table 2: Performance comparison. The best result and the second-best result in each column are in bold and underlined

Dataset Metric Group I Group II Group III NLGRDNN DeepFM PRM MIR GRN DCDR

Taobao Ad

AUC 0.5869 0.5871 0.6052 0.6047 0.6101 0.6217 0.6344 ± 0.5‰
LogLoss 0.1878 0.1866 0.1842 0.1853 0.1820 0.1792 0.1749 ± 0.1‰
NDCG@10 0.1527 0.1548 0.1805 0.1769 0.1896 0.2038 0.2323 ± 0.2‰
NDCG@5 0.1092 0.1110 0.1206 0.1193 0.1273 0.1453 0.1830 ± 0.1‰

Meituan

AUC 0.7034 0.7070 0.8096 0.8031 0.8034 0.8181 0.8349 ± 0.4‰
LogLoss 0.1162 0.1162 0.1096 0.1102 0.1102 0.1087 0.1039 ± 0.1‰
NDCG@10 0.2015 0.2019 0.2743 0.2742 0.2744 0.2793 0.2857 ± 0.2‰
NDCG@5 0.1569 0.1580 0.2378 0.2365 0.2353 0.2400 0.2431 ± 0.2‰

Table 3: Hit ratio comparison. The best result and the second-
best result in each column are in bold and underlined

Model Taobao Ad Meituan
HR@10% HR@1% HR@10% HR@1%

PRM 0.1125 0.0794 0.5702 0.4412
GRN 0.2160 0.0829 0.7386 0.5783
DCDR 0.2159 0.0835 0.7573 0.5802
NLGR 0.4091 0.3220 0.8369 0.7523

• DeepFM[14] is a general deepmodel for recommendation, which
combines a factorization machine component and a deep neural
network component.

• PRM[26] adjusts an initial list by applying the self-attention
mechanism to capture the mutual influence between items.

• MIR[33] learns permutation-equivariant representations for the
inputted items via self-attention. mechanism to capture the mu-
tual influence between items.

• GRN[13] is a generative reranking model which consists of the
evaluator for predicting interaction probabilities and the genera-
tor for generating reranking results.

• DCDR[20] presents a discrete conditional diffusion reranking
framework.

5.1.3 Evaluation Metrics. We adopt several metrics, i.e., AUC
(Area Under ROC Curve), Logloss and NDCG (normalized dis-
counted cumulative gain) to evaluate NLGR-E in offline experi-
ments. A larger AUC and NDCG indicate better recommendation
performance, while Logloss performs the opposite.

We use HR (Hit Ratio) [3] to evaluate NLGR-G in offline experi-
ments. It is worth noting that only one list produced by reranking
algorithms can be presented to the user. As a result, the generator
cannot be fully and fairly evaluated. A practical workaround is
to employ the evaluator to assess the performance of the genera-
tor. For each data, we evaluate all candidate lists using NLGR-E.
HR@10% is 1 only when the rerank list produced by NLGR-G is
ranked within the top 10% as sorted by NLGR-E. The HR metrics
are only meaningful with evaluator-based reranking methods. The
results of HR can be seen in Table 3.

It is worth noting that AUC and HR can measure the evaluator
and generator respectively. AUC measures the model’s ability to

evaluate an ordered list, while HR measures the consistency be-
tween the evaluator and generator. A decrease in any indicator will
reduce the recommendation effect.

In online experiments, we adopt CTR and GMV (Gross Merchan-
dise Volume) as evaluation metrics.

5.1.4 Implementation Details. We implement all the deep learning
baselines and NLGR with TensorFlow 1.15.0 using NVIDIA A100-
SXM4-80GB. For all comparison models and our NLGR model, we
adopt Adam as the optimizer with the learning rate fixed to 0.001
and initialize the model parameters with normal distribution by
setting the mean and standard deviation to 0 and 0.01, respectively.
The batch size is 1024, the embedding size is 8, the 𝛼 is 0.2. The
hidden layer sizes of tiled MLP are (1024, 256, 128). For the Taobao
Ad dataset, the length of the ranking list and reranking list are both
5, thus the length of full permutation is 120. For Metuan dataset, we
select 4 items from the initial ranking list which contains 12 items,
thus the length of full permutation is𝐴4

12 = 11, 880. All experiments
are repeated five times and the averaged results are reported.

5.2 Experimental Results
5.2.1 Performance Comparison. Table 2 and Table 4 summarize the
results of offline experiments. We have the following observations
from the experimental results:

i) PRM in Group II outperforms all models in Group I, which
verifies the impact of the mutual influence among contextual
items. DCDR in Group III outperforms all the other models in
Groups I and II, which verifies the effectiveness of generative
methods.

ii) DCDR indeed exhibits robust generative capabilities, thanks
to the incorporation of the diffusion model, and achieves the
second-best result. Nevertheless, DCDR overlooks the signifi-
cance of full sight and falls short of leveraging the evaluator’s
potential to its fullest, which limits its effect. Our proposed
NLGR significantly and consistently outperforms the state-of-
the-art approaches in all metrics on both datasets. As presented
in Table 2, our proposed NLGR brings 0.8349/0.6344 absolute
AUC, 0.2857/0.2323 absolute NDCG@10, 0.2431/0.1830 absolute
NDCG@5 on Metuan/Ad dataset, gains significant improve-
ment in industrial recommendation system. NLGR has greater
improvements on Meituan dataset because Meituan dataset has
more realistic reranking scenarios and richer features.
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iii) Our proposed NLGR brings 0.8369/0.4091 absolute HR@10% on
Metuan/Ad dataset. This demonstrates our generator achieves
extreme improvements via counterfactual evaluation. Com-
pared with GRN and PRM, there is a huge improvement. As a
typical greedy reranking algorithm, PRM only has 0.5702/0.1125
absolute HR@10% on Metuan/Ad dataset. This conclusively
shows that effective rearrangement cannot be attained by re-
lying solely on a greedy strategy. As a generative reranking
model, DCDR lacks full sight, which is why its HR@10% is not
optimal.

5.2.2 Ablation Study. To verify the impact of different units, we
study three ablated variants of NLGR on Meituan dataset.
• NLGR without relative reward 𝑟 . To verify the effectiveness of
the neighbor list training method in addressing the goal inconsis-
tency problem, this variant removes the relative reward defined
in Eq. 16 and replaces it with the predicted value returned by the
evaluator directly.

• NLGRwith autoregressive generation (AG). To verify the sampling-
based non-autoregressive generation method in NLGR-G, we
replaced it with pointer network [31], which is a sequence gen-
eration method widely used in reranking models [4, 13].

• NLGR with L𝐺2 . To further verify the effectiveness of the neigh-
bor list training method, we remove L𝐺2 in Eq. 18, which means
that PDU will lack direct guidance from NLGR-E.
The result is shown in Table 4. From the experimental results,

we have the following findings: i) The HR of NLGR w/o 𝑟 drops
the most (8%/17.2%), indicating that neighbor list training is the
most important part of NLGR. ii) The HR of NLGR w/ AG dropped
significantly (2.2%/4.8%), indicating that the sampling-based non-
autoregressive generation method in NLGR-G can significantly
improve the generation effect. iii) The HR of NLGR w/o L𝐺2 also
decreases (1.1%/3.2%), indicating that auxiliary loss can enhance
the generation ability of NLGR-G.

Table 4: HR of different methods on Meituan

method HR@10% HR@1%
NLGR 0.8369 0.7523

NLGR w/o 𝑟 0.7562 0.5809
NLGR w/ AG 0.8142 0.7047
NLGR w/o L𝐺2 0.8255 0.7198

5.3 Hyperparameter Analysis
We analyze the sensitivity of two hyperparameters: 𝛼 and 𝛽 , corre-
sponding to the generation process and training process of NLGR.
Among them, 𝛼 is the weight of NLGR-G loss in Eq. 18, and 𝛽 is
the sampling ratio at each position when constructing the neighbor
list 𝐿∗. By default 𝛽 = 1 means that each position is sampled 1
time. The result is shown in Table 5, showing the same trend on
the public dataset and industrial dataset and we have the following
findings:
i) Hyperparameter𝛼 significantly affects the generator’s HR@10%

metric. When 𝛼 = 0, NLGR is equivalent to the method of Group

III, which means the generator has no full sight. As 𝛼 increases,
HR@10% first increases and then decreases.

ii) We tested several values for 𝛽 . When 𝛽 < 1, we randomly
select 𝛽𝑚 positions in𝑚 positions to construct rewards. When
𝛽 > 1, we construct 𝛽 neighbor lists at each position. Increasing
𝛽 within a certain range can quickly improve the HR@10%
performance. As 𝛽 continues to increase, HR@10% remains
stable but increases offline training time. The results show that
counterfactual rewards considering all positions are important.

Table 5: HR@10% result of ablation experiment on NLGR

𝛼=0 𝛼=0.01 𝛼=0.2 𝛼=0.5 𝛼=1.0
Meituan 0.7562 0.8274 0.8369 0.8301 0.8295
Taobao Ad 0.2192 0.3530 0.4091 0.3973 0.3912

𝛽=0.1 𝛽=0.5 𝛽=1 𝛽=2 𝛽=5
Meituan 0.7763 0.8031 0.8369 0.8369 0.8367
Taobao Ad 0.2814 0.3566 0.4091 0.4091 0.4091

5.4 Online A/B test
We deployed NLGR in Meituan App, where Figure 4 shows the
online serving system architecture. It is worth noting that although
we involve the evaluator guiding the generator multiple times dur-
ing offline training, we only need to use the generator when serving
online. In this way, we ensure that its model complexity is compa-
rable to the online model without adding additional calculations to
the online service.

Figure 4: Architecture of the online deployment with NLGR.

We conducted online experiments in an A/B test framework over
five weeks from Dec.2023 to Jan.2024. Table 6 shows the online
performance of NLGR. Compared to the baseline model (a variant
of PRM), NLGR has increased the CTR by 3.25% and the GMV by
3.07%. Moreover, since only NLGR-G is deployed online during
online inference, the time-out rate online has no increase, which
is acceptable to the recommendation system. Note that NLGR-E
is not deployed online which is only utilized for offline guidance
of NLGR-G. Now, NLGR has been deployed in the Meituan food
delivery platform and serves hundreds of millions of users.
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Table 6: Online A/B test result

method CTR GMV Cost (ms) Time-out
Baseline (PRM) 0.0% 0.0% 0.0 0.0%

NLGR 3.25% 3.07% 1.6 0.0%

6 Conclusion
In this paper, we make the first attempt to solve the goal inconsis-
tency problem in reranking systems. We propose a novel frame-
work called Neighbor List Generative Reranking (NLGR), which
uses the relative scores of candidate list and neighboring lists to
guide the generator. Furthermore, we propose a sampling-based
non-autoregressive generator that can flexibly jump from the cur-
rent list to any neighbor list. Both offline experiments and online
A/B tests show that NLGR significantly outperformed other existing
reranking baselines, and we have deployed NLGR on the Meituan
food delivery platform.
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