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ABSTRACT

Low-Rank Adaptation (LoRA) is the bread and butter of Large Language Model
(LLM) finetuning. LoRA learns an additive low-rank perturbation of a pretrained
matrix parameter to align the model to a new task or dataset. We identify three
core limitations to LoRA for finetuning—with only a limited amount of training
steps. First, it employs Dropout as a means to prevent overfitting. We prove that
Dropout is only suitable for long training episodes but fails to reliably regularize
training for short training episodes, e.g., finetuning. Second, LoRA’s parameters
initialization is at 0 makes the optimization landscape poorly conditioned dur-
ing the first steps of training. That poor conditioning combined with the need to
move away from 0 lead to slow training dynamics. Third, the scaling factor that
multiply each LoRA additive perturbation create “short-sighted” interactions be-
tween the LoRA modules of different layers. Motivated by principled analysis of
those limitations, we find an elegant solution: a Dropout-free, scaling-free, LoORA
with Adaptive Learning rate—coined ALLoRA. By scaling the per sample and per
parameter gradients with a coefficient inversely proportional to parameters’ {5
norm, ALLoRA alleviates those three limitations. As a by-product, ALLoRA re-
moves two hyper-parameters from LoRA: the scaling factor and the dropout rate.
Empirical results show that ALLoRA admits better accuracy than LoRA on vari-
ous settings, including against recent LoRA variants such as Weight-Decomposed
Low-Rank Adaptation (DoRA). Ablation studies show our solution is the optimal
in a family of weight-dependent / output-dependent approaches.

1 INTRODUCTION

Large Language Models (LLMs) Hoffmann et al.| (2022); Touvron et al.| (2023); Jiang et al.| (2023))
are Deep Neural Networks (DNNs)—commonly built from Transformer with self-attention—built for
sequence processing, e.g., Natural Language Processing (NLP). LLMs have radically changed the
way we approach NLP|Chowdhary|(2020) by removing the need for handcrafted feature engineering
such as bags of words [Zhang et al.| (2010). Instead, current solutions directly operate on the input
data—or a lossless compression known as tokens |Shibata et al.|(1999). Because we now have access
to humongous amount of text data, the standard training pipeline for LLMs take the following form.
First, the LLM is pretrained a large text corpus through next-token prediction. That autoregressive
pretext-task enables the LLM to learn the underlying dynamic of the language. Commonly, RLHF
is also employed after pretraining to make the model’s behavior shift from autoregressive to agentic.
Then, the LLM is fine-tuned on a more specific downstream task or dataset. That fine-tuning is
user-specific and plays a fundamental role in making LLMs practically useful but relies on much
more limited datasets, as we formalize below.

Premise: The training regime involved in pretraining and fine-tuning are drastically different.
The former takes places on large “industrial” computational clusters with limitless data and
training steps. The latter takes place on small user-owned computational resources with limited
data and training steps.

That premise is now widely accepted upon as the latest state-of-the-art LLM solutions stem from
the numerous open-source industry groups such as Meta’s Llama [Dubey et al| (2024), Google’s
Gemma (Team et al.| (2024), Apple’s OpenELM Mehta et al.[| (2024), or Cohere’s Aya. Hence, as
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LLM practitioners, most of the attention is now turning into deriving fine-tuning strategies that meet
the very particular needs of fine-tuning LLMs.

To tackle that paradigm shift introduced by the pretraining-finetuning strategy, specialized meth-
ods have been developed, such as the eponymous Low-Rank Adaption (LoRA). LoRA has fueled
countless deployment of LLMs—-as it took a gigantic leap in accommodating for the fine-tuning
regime. In short, LoRA proposes to fine-tune a LLM by learning an additive low-rank matrix per-
turbation to some of the LLM’s internal parameter matrices. Core to its design, LoRA leverages
(i) Dropout [Srivastava et al.| (2014} as a mean to prevent overfitting to the fine-tuning task, and (ii)
zero-initialization to ensure that training starts from the LLM’s pretrained mapping, and (iii) a scal-
ing factor that rescales the LoRA’s matrix factorization. While the impact of LoRA is ubiquitous,
we nonetheless believe that LoRA could be further improved based on three observations.

LoRA’s three fatal flaws for finetuning: First, Dropout—a stochastic regularizer—whose ben-
efits quickly vanish when considering fine-tuning, and can in fact introduce detrimental ad-
ditional variance to the training. Second, the zero-initialization which is difficult to escape
from as the fine-tuning parameters start from a saddle point. Third, the scaling parameter that
introduces nonlinear interactions between LoRA modules of different layers.

While each of those three design choices are well-motivated when considering long training, e.g.,
pretraining, it becomes harder to prove their benefits when considering fine-tuning that only employs
a minimal amount of training steps. That is why, after carefully bringing to light and studying the
above flaws of LoRA—in the context of fine-tuning—in section [3} we will propose a novel variation
of LoRA that we coin ALLoRA for Adaptive Learning rate LoRA (section ). ALLoRA proposes
to remove the Dropout regularizer and the scaling factor while adding an adaptive learning rate for
the low-rank matrices entries. As depicted in listing |1} the implementation is straightforward with
theoretical and practical benefits. First, by removing the Dropout regularization and the scaling
factor, ALLoRA is simpler to employ as it no longer requires cross-validation of those parameters.
Second, we demonstrate how ALLoRA improves performances over LoORA and alternatives such as
DoRA. In short, our adaptive learning rate strategy is able to prevent over-fitting, learn competitive
solutions, and converge more quickly than alternatives—all while employing less hyper-parameters.

‘We summarize our contributions below:

1. We identify three inefficiencies (sections [3.1]to[3.3) in the current LoRA design that make
it unfit for short training, i.e., finetuning.

2. We propose a novel adaptive learning rate variation of LoRA—coined ALLoRA-free of two
of the original LoRA’s complicated designs: the Dropout regularizer and the scaling factor.

3. We empirically validate the benefits of ALLoRA over numerous datasets and model ar-
chitectures including the latest Llama3 family. We obtain that despite ALLoRA employing
less hyperparameters than LoRA, it is able to outperform its counter part and recent variants
such as DoRA consistently.

The full codebase to reproduce figures and tables will be provided upon completion of the review
process.

2 RELATED WORKS

LoRA is a type of Parameter Efficient Fine Tuning (PEFT) method designed to reduce the cost of
finetuning LLMs. As LLMs typically have large number of parameters—in the scale of billions—one
can not afford to finetune all those parameters on a particular downstream task or dataset. Existing
PEFT can be divided into three categories, namely Adapter-based Methods, Prompt-based Methods,
and LoRA.

Adapter-based methods (Houlsby et al.| (2019), He et al.| (2022)), [Karimi Mahabadi et al.| (2021b),
and |Karimi Mahabadi et al.| (2021a))) introduce additional trainable modules, a.k.a. the adapters,
into the original backbone whose weights are frozen during the finetuning. In|Houlsby et al.|(2019),
linear modules were added in sequence to the existing layer, while in [He et al,| (2022)), they were
added in parallel to the existing layer for the sake of better performance.
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Prompt-based methods (Lester et al.| (2021)), Razdaibiedina et al.| (2023), and [Wang et al.| (2023))
introduce soft tokens as trainable parameters and prepend them to the prompt. This category is the
least intrusive as the finetuning can be done by only prompting the LLMs. However, prompt-based
methods are in general sensitive to initialization and their overall effectiveness is affected.

LoRA |Hu et al.|(2021) uses low-rank matrices to simulate weight changes of the pretrained weights.
Since low-rank matrices can be merged back to original weights, LoRA does not incur any additional
cost at inference, which is a significant advantage over the other two categories. Many variants
were proposed lately. For example, in |Zhang et al.| (2023), SVD decomposition was employed to
determine significance of singular values, and less important ones are pruned. Hyeon-Woo et al.
(2022) applies low-rank Hadamard product to federated learning. |Qiu et al.| (2023)) and [Liu et al.
(2024b)) adopt orthogonal factorization and applied to diffusion models. Renduchintala et al.| (2023)
introduces weight tying and realizes more savings on number of parameters. A unified LoRA family
was introduced for Stable diffusion in|Yeh et al.|(2024). Different combinations of LoRA are chosen
for different tasks in|Ponti et al.|(2022). A scaling vectors is learnt to adjust a pair of frozen random
matrices shared across layers in Kopiczko et al.| (2023)).

More recently, |Liu et al.|(2024a) proposes decomposing the weights into directional and magnitude
components to boost accuracy. Hayou et al.| (2024a) studies the optimal initialization of the low-
rank matrices, and a follow-up work |[Hayou et al.| (2024b)) proposes to apply different learning rate
to different low-rank matrices. Superficially this is similar to one of our idea to adapt learning rate,
though our idea is inspired by a principled study of dropout (Srivastava et al.|(2014)).

More broadly, [Zhao et al.| (2024)) applies the low-rank concept to compute low-rank gradients di-
rectly. Jang et al.|(2024) provides rigours theatrical study on the existence and convergence of
LoRA solutions. And [Zhang & Pilanci (2024) is a study of the potential ill conditioned low-rank
matrices.

3 A CRITICAL ANALYSIS OF LORA FOR FINETUNING

Because PEFT is the current bottleneck between large and powerful LLMs and specialized practical
use-cases, numerous variations of LoRA have emerged.

Definition 1. (Low Rank Adapters (LoRA) from Hu et al|(2021)). For any weight matrix W &
R™*"2 in the pretrained model, we constrain its update in the finetuning process by representing
the latter with a low-rank decomposition W = W* + ©BA. Here, only the weight matrices
B € R"*", A € R"*™ are trainable. The rank r < min(nq,n2) and « € R are tunable
constants.

Yet, very little attention was put on the core premises of LoRA within a finetuning context, i.e.,
with limited amount of training steps. We propose here a principled and critical study of LoRA,
culminating with our finding of three core flaws of LoRA for short training (sections to [3.3).
The following section ] will investigate our solution, ALLoRA.

3.1 FIRST FLAW: A STOCHASTIC REGULARIZATION THAT WILL NOT CONVERGE

LoRA’s regularization hinges on using Dropout |Srivastava et al.| (2014), i.e., on applying a multi-
plicative binary mask to the latent space of the matrix factorization. In fact, it has been long known
that Dropout is a great solution to prevent overfitting. However, those benefits have either been
found in the context of (pre-)training, or through theoretical derivations assuming infinite training
time, i.e., on expectation. For example, Wager et al.|(2013) shows how in the linear regime dropout
acts as some variant of {5 regularization on normalized design matrix (inputs), a result also found in
the previous study of [Wang & Manning| (2013). However, we now argue that both previous empiri-
cal and theoretical studies showing the benefits of dropout do not hold in a fine-tuning setting where
the number of training steps is highly limited.

Let’s consider in the linear regime the following Ordinary Least Squares (OLS) setting | Y —
(XW)o V|2, withY € RVXC X ¢ RVXP W ¢ RP*® and the random realization of dropout
matrix V' € {0, %}N *¢_ We note that such parametrization of Dropout is commonly employed in
the literature to ensure that its expectation is equal to 1. We have the following property that has
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Figure 1: Depiction of the distribution of standard deviation of gradients (y-axis) w.r.t. the second
layer of a MLP trained for MNIST (left) and CIFAR10 (right) classification, equipped with Dropout.
At each training epoch (x-axis), we consider a single mini-batch and compute the gradients under
numerous Dropout realisation. For each entry in the matrix of gradients, we compute the standard
deviation and report the distribution over entries. We clearly see that while the average variance
of the gradient decreases slightly during training, the worst case increases, hence leading to
unstable training in finetuning regimes.

motivated the use of Dropout through more than a decade by now:
min Y —(XW)o V(3]

=min [Y|E+E[-2Tr (Y (VI 0 (XW) ")) +Tr (V' 0 (XW)") (XW) o V)]
= min ||Y[|% — 27 (Y(XW)T) + Tr (XW) " (XW)) /p,

which is solved for W = p(X " X)~'Y " X. Comparing that with the usual Tikhonov regulariza-
tion that produces W = (X " X + M )~'Y T X we see than whenever the eigenvalues of X ' X

are all identical to a positive constant ¢, e.g. when X is whitened, then W = ci X (X TX )*IYTX

hence recovering the dropout solution. Hence we obtain that (assuming ¢ = 1 without loss of gen-

erality) p = 1%\ The above results recovers known theoretical analysis of Dropout—showing its

benefits as an implicit regularizer. However, those derivations only emerge from taking expectation
of the loss, i.e., considering infinite training steps. For us, the question thus turns into the following:
what are the benefits of Dropout as a regularizer for very short training regime such as finetuning ?

A first naive bound on “how far off” is the expectation can be obtained (derivations in appendix [A)

as follows
E Std[||ly — (XW) o V(%]
VN

As aresult, the benefit of /V, in our case the number of training steps, only appears for large N. This
is particularly true as training progresses where the variance of the current approximation against
the targets (Std [|Y — (XW) ® V||%]) will decrease on average but increase in the worst case
compared to initialization with random matrices, or zero matrices with LoRA. We illustrate that
dynamics in Figure [T] looking at the standard deviation of the gradients as a function of Dropout

realisation in a simple MLP with MNIST classification task as training progresses. Moving to LLMs,
we also confirm that simplified model’s intuition with LLM experiments below.

N
1
N D IY-(XW)o Vi -E[[Y-(XW) o V]| <

n=1

Empirical validation of the harmful impact of Dropout for short fine-tuning Empirical results
support above theory. We run experiments with Qwen2-0.5B on bias_in_bios, a classification task
to predict the job of an employee given the job description, for various dropout rates and up to
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Figure 2: Left: LoRA with varying Dropout rates: High value of Dropout provides the strongest perfor-
mance after long fine-tuning and the weakest performance after short fine-tuning. Each line is an average
of 3 runs. X-axis is epochs, and Y-axis is accuracy. Right: ALLoRA escapes from 0 rapidly, and then tapers
off into a measured move. The starting phase matches that of LoRA with a much higher learning rate. LoRA
with a lower learning rate can reach the same level of L? norm but much slower.

10 epochs. We note that 10 epochs is already a large number of finetuning iterations for practical
scenarios. It shows that large dropout rates successfully avoid overfitting, but at the cost of lower
accuracy at lower number of epochs, while no dropout sees higher accuracy at lower number of
epochs, but will overfit at later epochs. See Figure 2] Left and Table

3.2 SECOND FLAW: A POOR OPTIMIZATION LANDSCAPE

The second flaw we uncover is the zero-initialization. Let’s consider again our simplified model,
and applying a LoRA module for finetuning £(V') = || X (W + V) — Y||%, where V is our LoRA
module, i.e., it is internally a low-rank matrix. We can obtain the following gradient and Hessian of
the loss with respect to V' as follows. We note that for the Hessian we consider the flattened version
of the matrix V/

VvL(V)=2XTXV -2(Y - XW)'X, (1)

HpeeWLV) =T, X) (I, X) =L, XX 2)

where the last line comes from the fact that || X (W + V) = Y |2 = ||(I, ® X)vec(W + V) —
vee(Y)||3 with ® the Kronecker product, and vec the vectorization operator. The Hessian is semi-

definite positive, as expected given the convex quadratic nature of the optimization problem. How-
ever, as the training set size (n) decreases, the optimization landscape for V' will become degenerate.

3.3 THIRD FLAW: RIPPLE EFFECT OF SCALING FACTOR

Following Deﬁnition denote 17 = < to be the Scaling Factor. The scaling factor plays an important
role to match || BA|| to a comparable level with ||[W*||. Despite its effectiveness, the scaling factor
creates a ripple effect across layers of a LLM and may make finetuning unstable. |Hu et al.| (2021)
discussed the importance of the scaling factor and suggest to tune it carefully to prevent B A from
overwhelming W*. From a different perspective,([Houlsby et al.|(2019) empirically showed the scale
of the initialization of B A can negatively impact validation accuracy. Later, Hayou et al|(20244)
argued that for the best performance, either A or B must be initialized at 0.

To illustrate the ripple effect, we adopt a multi-linear model which is a simplified version of the toy
model in/Hayou et al.| (2024b).

fil®) =W/ fii(z), 1el[L] (3)
where L > 1 is the number of layers. Applying LoRA at each layer gives

filz) = (W[ + 1B A)) fi—1(z)
Expanding the equation, we have

fo(@®) = (WL +nBLAL)...(W +nB1A)x
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Let || - ||ar be a matrix norm induced by a vector norm || - ||,,, we have
(@)l = [|(WE +0BLAL)..(WT +1nB1A)||a - ||z]

We abuse the notation to use ||-|| for both matrix norm and vector norm, applying triangle inequality,
we have

[ fe(@)|| < (WLl +nl|BLAL)-..(IW{ || + 0l B1Aq|]) |||
||BLAL|| ||B1 Al

= C 4y ) (U + e )|
Wl Wl
< C(1+ngm)t|z]| = ©((1 +n)")
where C' = [|[W7}||...||W7]| is a constant, and m = + >,/ % is also a constant in a single
L

forward pass. Notice that all the inequalities are tight, we have

Proposition 1. (Ripple Effect) In the worst case, a constant scaling factor 7 may cause the final
output of a single forward pass of a LoRA finetuned model to grow exponentially w.r.f. the number
of layers in the model.

We also note that proposition [I]is especially limiting for LLMs that most commonly resort to in-
creased depth rather than increased width to scale up their capacity [Hestness et al.| (2017). Having
concluded our brief tour of LoRA’s possible shortcomings when it comes to fine-tuning LLMs in a
few shots, we now propose to study our attempt at improving LoRA through a novel parametrization.

4 ALLORA: ESCAPING LORA’S FLAWS FOR FINE-TUNING

4.1 ADAPTIVE LEARNING

Section [3|summarized three flaws of LoRA, which we’ll show can be addressed by a single solution.
First we establish the underlying links among dropout, scale factor, and learning rate. Consider the
LoRA finetuning of a single layer in (3)), f(x) = (W* + nBA)x. Following Hayou et al.| (2024b),
WLOG, we can further simply the model by assuming W* = 0, which is equivalent to defining
y = y — W*x and rewrite the loss function by §. Also assume 7 = 1, we have f(x) = BAwx.

The goal is the minimize loss £ whose gradient is g = a(%LA)' f(x) € R™ is a column vector.

Expanding it per row gives

(f(x))i = (BA);.z, i€ [n] 4)

The effect of dropping out (f(x)), for a given ¢ is equivalent to applying a per-row scaling factor
n; = 0 to (BA); .. Note that this is true only for (BA); ., the effect on (BA); ., j # 1 is slightly
dn~df(w) =7 df (z)

different. Since == = , n; = 0 is implicitly applied to the i-th row of the gradient

gi = (%)i,: , which is again a scaling factor applied to the learning rate [.

The observation reveals that both scaling factor and dropout are adaptions on LoRA output f(x),
and both have effects on gradient. We are inspired to formalize a general framework that subsumes
both, within which we can use a principled approach to systematically discover novel solutions.

Definition 2. (Adaptive Learning) Consider a single layer linear model f(x) = B Ax with gradient

g(x) = 9LU@)) 1 et Qutput Adaptor be a function f, : R™ — R™, Gradient Adaptor be a

9(BA) g
function f, : R"1*"2 — R"™1*"2 Define adapted output f and adapted gradient § by
{f = fO o f (5)
g= fg °g

Adaptive learning is to use the adapted f and g in place of f and g respectively in the learning
process.

Let I : x — x be the identity function. Then a natural corollary is that all learning is adaptive
learning (when f, = I and f, = I). Note that £ is a function of f(x), hence g(x) = O(Lof) Use f

2 9(BA) "
in place of f defines a natural adapted gradient § = ggf;ji = a(aﬁ(gj:)f ). When it’s clear from the

context, we omit g if it’s naturally defined by a non-trivial f.
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4.2 ALLORA

Under the Adaptive Learning framework, scaling factor is define by f, = k : x — nzx.

{f_nof_nf ©
g=rof=mng

One idea to reduce the ripple effect while keeping the positive effect of scaling factor is to force f, =
1, while keeping g intact, which is to use a larger learning rate n- . Nonetheless, a fixed learning rate
cannot simultaneously achieve both fast escape from 0 and, once away from 0, measured discovery
of optimal direction. We think a function that is inversely proportional to ||(BA); .|| is a good
candidate to realize our idea. We use the function 1/1/[[(BA); .|| + 1/1? which reaches maximum
at||(BA);,|| = 0 and then tapers down when ||(BA); .|| increases (Figure|[5).

Formally, ALLoRA is defined by

{f:IOf
G = 1/VIBA+ 1/ gi, i€ [n]

where 7 is a hyperparameter. Note that this does not introduce a new hyperparameter. We split
learning rate into a constant base learning rate [, and 7, and the effective learning rate is 7 - [j.

One more implementation detail is the backward pass computes, in addition to the gradients of A
and B, also the gradient of the input from layer below, and propagate which back to the layer below.
We only modify the gradients of A and B, but not that of the input. This helps further restrict the
changes within each layer and reduce ripple effect.

To quickly verify our idea, we add probing code to trace the L? norm of row vectors of BA. As
shown in Figure[2|Right, adaptive learning rate escapes from 0 rapidly, the speed matches with LoRA
with a learning rate that is 77 - [. Then it finds an approriate level and enters measured discovery of
optimal directions. LoRA with a learning rate lower than 7 - [, can reach the same level, but at a
much slower pace. The experiment is with Snowflake Arctic XS and Rotten Tomatoes.

4.3 A FAMILY OF ADAPTIVE SOLUTIONS

We adopt a principled approach to explore other reasonable designs that fall into the adaptive learn-
ing framework defined by Definition 2]

First notice that in (f(z)); = (BA);.x, (f(z)); and (BA); . define each other. So instead of
adapt the learning by (BA); ., we can also adapt it by (f(«x));, which is Output-Dependent, or
ALLoRA-OD, defined by
{fIOf
9i =1/ VI(f(@))il +1/0 - gi, i € [na]

Note that (f(x)), is a scalar, hence we use its absolute value. Qualitatively, ALLoRA-OD subjects
to the stochastic noise in « because (f(x)); = (BA);.x. According to [Smith et al.|(2021), this
type of stochastic noise is an implicit regularization. Our conjecture is that it may drag down the
accuracy just as dropout does, and therefore ALLoRA-OD may not be as good as ALLoRA.

Given the link between learning rate and scaling factor, we may achieve similar effect by switching
from adaptive learning rate to Adaptive Scaling Factor, or ASF-LoRA, defined by

Ffi=1 V@)l +1/n2 fi, i€ [ni

Note that g is naturally defined by using fin place of f. The potential downside is that it introduces
ripple effect across layers, which may blur accuracy. And our conjecture is again ASF-LoRA may
not be as good as ALLoRA.

One more caveat of ASF-LoRA is that we cannot merge B A back to W* as we need to apply f, to
the LoRA output.
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ALLoRA - LoRA ALLoRA-0 - ALLoRA

modelds\ 7*2 1.0 2.0 4.0 Average model:ds\ 72 1.0 2.0 4.0 Average
Qwen2-0.5b:bib | 0.48% 0.06% 0.12% | 0.22% Qwen2-0.5b:bib| 0.24% 0.22% -0.19% | 0.09%
Qwen2-0.5b:emo | 1.59% |0.76% 0.32% | 0.89% Qwen2-0.5b:emo | 0.17% |[-0.43% 0.47% | 0.07%
Qwen2-0.5brott | 0.45% 0.36% |0.94% 0.58% Qwen2-0.5b:rott | 0.69% 0.69% -0.15%| 0.41%
Artic-l:emo | -0.13% -0.07% 0.13% | -0.02% Artic-l:emo | 0.05% 0.29% -0.17% | 0.06%
Artic-l:rott| 0.58% 0.09% 0.21% | 0.29% Artic-l:rott |-0.10% -0.28% 0.00% | -0.13%
Artic-l:yelp | -0.07% -0.02% 0.14% | 0.02% Artic-l:yelp|-0.03% 0.09% 0.00% | 0.02%
Opend450m:emo | 1.08% | 0.00% -0.06% | 0.34% Opend50m:emo |-0.03% -0.08% 0.16% | 0.02%
OpendS0m:rott| 0.24% 0.21% 0.06% | 0.17% Opend50m:rott |-0.09% 0.09% -0.13% | -0.04%
Opend50m:yelp | -0.10% 0.02% 0.05% | -0.01% OpendS0m:yelp | 0.04% 0.05% -0.01%| 0.03%
Average 0.48% 0.16% 0.21% 0.28% Average 0.10% 0.07% 0.00% 0.06%

Figure 3: Accuracy gap between ALLoRA and LoRA. Each cell is an average of 5 runs. Left: AL-
LoRA admits better accuracy than that of LoRA. Right: ALLoRA-0, the version without dropout,
admits comparable accuracy than that of ALLoRA.

4.4 EMPIRICAL VALIDATION: PERCEPTION TASKS

Our first set of experiments gauges the performance of ALLoRA on perception tasks. Mainstream
LLMs nowadays are mostly pretrained by next token prediction, which is good for generative tasks,
but may not be a good fit for perception tasks such as Natural Language Understanding (NLU) and
Sentiment Analysis (SA). In fact, we observe subpar accuracy when finetuning popular open-weight
models for NLU and SA tasks (see Table [3). We hope to show that ALLoRA may help boost the
accuracy for perception tasks.

For our experiments, we pick three midsized LLMs: Qwen2-0.5B, Snowflake-Artic-L, and
OpenELM-450M, and four NLU and SA datasets: Bias in Bios, Emotion, Rotten Tomatoes,
and Yelp Review. To demonstrate the stability of ALLoRA, we run the experiments with various
n? € {1,2,4} with a fixed baseline learning rate [;, = 1le — 4. To be fair for LoRA, we run LoRA at
learning rate [ € {le —4,/2e —4, 2e — 4}, respectively. We finetune for 2 epochs. Each experiment
is run 5 times and we report average final accuracy. Figure [3| Left shows the accuracy gap between
ALLoRA and LoRA, where positive numbers indicate ALLoRA has better accuracy. The result
shows that ALLoRA in general admits better accuracy over plain LoORA. Average improvement over
all cases is 0.3%.

In the experiment, we use a dropout rate 0.05 for both ALLoRA and LoRA. We also run ALLoRA-0,
the version of ALLoRA with 0 dropout rate. Figure[3|Right shows that there is no evident difference
between ALLoRA and ALLoRA-0, matching our theoretical result from|3.1

4.5 EMPIRICAL VALIDATION: COMMONSENSE REASONING

We also compare ALLoRA with DoRA (Liu et al.|(20244a)), a recent LoRA variant that demonstrated
superb performance over a range of PEFT methods. Since DoRA results are universally better than
other PEFT methods, we only compare ALLoRA to DoRA. We run experiments on LLaMA-7B,
LLaMA2-7B, and LLaMA3-8B on 8§ Commonsense tasks. Following DoRA’s setup, for each
model, we run both ALLoRA and ALLoRA-0 with LoRA rank r € {16,32} and for 3 epochs.
Table |1| shows that for all cases, either ALLoRA or ALLoRA-0 has the best average accuracy. On
average, ALLoRA and ALLoRA-0 each boosted accuracy by 0.3% over DoRA.

Note that we run experiments with various n? € {1,2,4} and report the best accuracyﬂ this follows
DoRA’s practices to run with various learning rate [ € {le — 4, 2e — 4} and report the best.

In Table [I] we also report the number of trainable parameters as a percentage of the number of pre-
trained parameters. Since ALLoRA does not introduce additional trainable parameters, its trainable
parameters are slightly lower than that of DoRA.

"Weights of ALLoRA and ALLoRA-0 will be publicly shared in near future.
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Table 1: Accuracy comparison of LLaMA 7B, LLaMA?2 7B, and LLaMA3 8B between ALLoRA
and DoRA on eight commonsense reasoning datasets. DoRA results are taken from |[Liu et al.
(2024a). ALLoRA-0 is the version of ALLoRA with 0 dropout rate.

Model # Params
LoRA Rank Method % BoolQ PIQA SIQA HSwag WGrande ARC-e ARC-c OBQA Avg.
DoRA 0.43 70.0 82.6 79.7 83.2 80.6 80.6 654 77.6 715

ALLoRA (ours)  0.41 69.4 827 783 848 80.0 809 657 792 71.6

LLaMA-7B

16 ALLORA-O(ours) 041 692 808 785 839 811 808 652 782 77.2
LLaMATE DoRA 084 697 834 786 872 810 819 662 792 784
o ALLORA (ours) 083 700 823 78.1 846 822 810 679 810 784
ALLORA-0 (ours) 083 702 82.6 78.6 838 811 810 663 826 783

DoRA 043 720 831 799 891 830 845 710 812 805

LLaN{‘gmB ALLORA (ours) 041 717 837 795 914 824 843 692 812 804
ALLORA-0 (ours) 041 724 839 80.0 90.8 830 847 713 802 80.8

DoRA 084 718 837 760 89.1 826 837 0682 824 79

LLal\g/;”B ALLORA (ours) 083 722 831 79.6 912 845 845 710 80.0 808
ALLORA-0 (ours) 083 723 838 793 914 830 850 712 822 8L0
LLaMAs.gp  DoRA 035 745 838 803 955 847 901 791 872 850
i ALLORA (ours) 035 752 889 808 956 847 902 80.6 858 852
ALLORA-0 (ours) 035 745 891 804 955 858 907 803 860 85.3
LLavAsss  DoRA 071 746 893 799 955 856 905 804 858 852
A ALLORA (ours) 070 745 889 818 959 863 904 80.5 87.6 85.8

ALLoRA-0O (ours) 0.70  75.1 88.7 81.8 95.8 85.4 91.0 81.1 86.6 857

5 ABLATION STUDY

Using the same setup in we run experiments with ALLoRA-OD, the output-dependent variant,
and ASF-LoRA, the adaptive scaling factor variant. We also run LoRA with comparable fixed
scaling factors to form an objective baseline for ASF-LoRA.

5.1 ALLORA-OD

Figure ] Top Left shows the accuracy gap between ALLoRA and ALLoRA-OD. A positive number
indicates that ALLoRA has better accuracy. Overall speaking, ALLoRA has better accuracy than
ALLoRA-OD. But the difference is moderate, as average improvement over all cases is 0.3%.

The result matches our conjecture that stochastic noise experienced by ALLoRA-OD might have
dragged down accuracy at early epochs.

5.2 ASF-LORA AND LORA WITH FIXED SCALING FACTOR

Since a scaling factor on output is implicitly also a scaling factor on gradient, we use the same 7
when comparing between ALLoRA and ASF-LoRA, i.e., the gradient adaptor f, in ALLoRA and
the output adaptor f, use the same 7).

Figure 4] Top Right shows the accuracy gap between ALLoRA and ASF-LoRA. A positive number
indicates that ALLoRA has better accuracy. ALLoRA has a significant advantage over ASF-LoRA
as average improvement over all cases is 1.0%. Since we know that ALLoRA-OD is only slightly
worse than ALLoRA, the evidence leans toward that Adaptive Learning Rate is in general a better
solution family than Adaptive Scaling Factor.

We also run LoRA at comparable fixed scaling factors % e {1, \/5, 2}. The results, as shown in
Figure [4] Bottom, show that

* ASF-LoRA is not a competitive method, as over half of cases see ASF-LoRA’s accuracy
significantly lower than LoRA with a comparable fixed scaling factor (positive numbers in
Figure | Bottom Right).
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ALLoRA - ALLoRA-OD ALLoRA - ASF-LoRA
modelds\7"2 1.0 2.0 4.0 Average model:ds\#"2 1.0 2.0 4.0 Average
Qwen2-0.5b:eme | 0.27% 0.37% 0.33% | 0.32% Qwen2-0.5b:emo | 0.78% 1.32% 0.55% @ 0.88%
Qwen2-0.5b:rott| 1.33% | 1.13% 0.88% 1.11% Qwen2-0.5bcrott| 0.21% 0.51% 1.43%  0.71%
Artic-lzemo |-0.31% 0.01% 0.11% | -0.06% Artic-l:emo |-0.37% 0.48% 1.11%  0.41%
Artic-l:rott | 0.83% 0.28% 0.04% | 0.38% Artic-lrott| 0.26%  1.26% 1.01% 0.84%
Opend50m:emo | -0.24% 0.15% 0.00% | -0.03% Opend50m:emo | 2.63% | 3.75% 1.63% 2.67%
Opend50m:rott| 0.09% -0.08% 0.23% | 0.08% OpendS0m:rott| 0.62% 0.73% 0.81% | 0.72%
Average 0.33% 0.31% 0.26% 0.30% Average 0.69% 1.34% 1.09% 1.04%
ALLoRA - LoRA xn LoRA xn — ASF-LoRA
model.ds\ 72 1.0 2.0 4.0 Average modelds\ 72 1.0 2.0 4.0 Average
Qwen2-0.5b:emo | 1.58% | 1.91% [1.37% 1.62% Qwen2-0.5b:emo
Qwen2-0.5b:rott| 0.45% 0.21% | 2.14% 0.83% Qwen2-0.5b:rott -0.22%
Artic-lzemo | -0.13% 0.61% 0.58% | 0.36% Artic-l:emo 0.05%
Artic-l:rott| 0.58% 0.71% 0.94% 0.74% Artic-lzrott| -0.32% 0.54% 0.10%
Opend50m:emo | 1.09% | 1.24% 1.02% 1.12% Opend450m:emo | 1.54% |2.51% 0.61% @ 1.55%
Opend50m:rott| 0.24% 0.56% 0.53% | 0.44% Opend50m:rott| 0.38% 0.17% 0.28% | 0.28%
Average 0.64% 0.87% 1.10% 0.87% Average 0.05% 0.47% -0.01% 0.17%

Figure 4: Accuracy gap between ALLoRA and other adaptive approaches. Each cell is an average
of 5 runs. Top left: ALLoRA admits better accuracy than that of ALLoRA-OD, where learning rate
is LoRA Output-Dependent. Top right: ALLoRA admits better accuracy than that of ASF-LoRA,
where an Adaptive Scale Factor is applied to LoRA output. Bottom left: ALLoRA admits better
accuracy than that of LoRA with a fixed scaling factor. Bottom right: Adaptive scale factor is not
better than a fixed scale factor.

* ALLoRA is significantly better than LoRA with a comparable fixed scaling factor, as aver-
age improvement over all cases is 0.9%.

6 CONCLUSION AND FUTURE WORK

This paper identifies three major flaws of LoRA, namely dropout, poor optimization landsacpe, and
scaling factor. We conducted principled analysis and proved that dropout is not a must-have in the
finetuning regime. After uncovering the hidden connection between dropout, scaling factor, and
learning rate, we proposed a unified adaptive learning framework to address them all. Motivated by
which, we proposed a novel LoRA variant: ALLoRA. Empirical results show that ALLoRA admits
better accuracy than plain LoRA over multiple backbones, datasets, and learning rates; and better
accuracy than recent successful LoRA variants such as DoRA. Ablation study shows that ALLoRA
is the optimal in a family of adaptive methods.

Below we list a few interesting research directions and invite researchers to explore the frontier
opened-up by our research:

 The adaptive learning framework introduced by this paper is generic and may find broad ap-
plications beyond LoRA. Other use cases such as pretraining may not have the constraints
that the weight matrix must be initialized at 0. But they may have other types of constraints,
which may be solved by adaptive learning with a different adaptor function.

* Within the LoRA use case, we only examine one particular adaptor function, there could
be other adaptor functions that have superior performance.

* We only provide empirical evidence that ALLoRA admits better accuracy. Theoretical
guarantee is needed, especially for the convoluted case where the base model has multiple
layers.

» Starting from 0 weights may avoid the lottery ticket hypothesis (Frankle & Carbin|(2019)),
for good or bad, where adaptive learning rate can be a handy tool.
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Table 2: Reprise of Figure [2| Left depicting that the epoch at which the LoRA fine-tuned model reaches the
best accuracy increases with the Dropout rate, i.e., the larger the probability to drop dimensions, the more
regularization is applied and the better the final performance—but only after very long fine-tuning.

dropout 0.0 0.05 0.1 0.2 0.4

Acc. atepoch=3 7792 7796 77.68 77.44 77.22

Acc. atepoch=10 78.00 79.95 80.50 80.77 80.65

Max acc. 79.81 80.27 80.54 80.78 80.65
Epoch of max acc. 6 8 8 9 10

A PROOF OF UPPER BOUND

Proof.

IN

N
%Z Y - (XW) oVl -E[lY - (XW)o V|E] 1
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:\/;]Var Y — (XW) 6 V|2]
_SH[|[Y - (XW) o V3]

VN

B FINETUNING ACCURACY AT VARIOUS DROPOUT RATES

Table [2| contains accuracy of various dropout rates at different number of epochs.

C ADAPTIVE FUNCTION

Figure[3]is an adaptive function that provides output value when |z| = 0, and then tapers down when

|z| > 0.
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Figure 5: Adaptive function 1/+/|z| + 1/n2 for n? = 1,2, 4.

Table 3: Accuracy comparison of various models, datasets, and learning rates between ALLoRA
and plain LoRA. ALLoRA-0 is the version of ALLoRA with 0 dropout rate. LoRA’s learning rate
isn x le —4, ALLoRA’s and ALLoRA-0’s base learning rate is 1e — 4. Each cell is an average over
5 runs.

. Qwen2-0.5B Snowflake-Artic-L OpenELM-450M
Learning Rate Method b-in-b emotion rotten emotion rotten yelp emotion rotten yelp
2_10 LoRA 70.81 3559 53.19 87.06 77.771 63.61 84.98 8795 71.41
ln Ie’ 4 ALLoRA (ours) 71.29 37.18 53.64 86.93 7829 63.55 86.07 88.20 71.32
b= le—

ALLoRA-O (ours) 71.53 37.35 5433 8698 78.19 63.52 86.04 88.11 71.36
LoRA 73.70 3776 5432 88.30 7934 64.26 90.01 88.74 71.62

2 _
! 77_; 2'04 ALLoRA (ours) 73.77 3852 54.67 8823 79.44 6424 90.01 8895 71.63
b= e ALLoRA-O (ours) 73.99 38.09 55.37 88.52 79.16 6433 89.93 89.04 71.68
2_ 40 LoRA 75.60 38.68 5490 8895 80.04 64.76 9133 89.55 71.79
ln Ie. 4 ALLoRA (ours) 75.72 39.00 55.83 89.08 80.24 64.61 91.27 89.61 71.83
b= le—

ALLoRA-0 (ours) 75.52 3947 55.68 8891 80.24 64.76 91.43 89.47 71.82

D PERCEPTION TASKS

Table[3]shows the accuracy data of all of our experiments on perception tasks. Each cell is an average
of 5 runs. ALLoRA is universally better than LoRA in terms of accuracy.

E ABLATION

Table [ shows the accuracy data of all of our ablation study on perception tasks. Each cell is an
average of 5 runs. ALLoRA is universally better than the rest in the family.

15
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Table 4: Accuracy comparison of various models, datasets, and learning rates between ALLoRA and
other adaptive approaches. for adaptive learning rate approaches, i.e., ALLoRA and ALLoRA-OD,
base learning rate is 1le — 4. For adaptive scaling factor, i.e., ASF-LoRA, learning rate is fixed at
le — 4, an adaptive scaling factor 1/+/|z| + 1/7? is applied. For LoRA, a fixed scaling factor 7 is
applied, and learning rate is fixed at 1e — 4. Each cell is an average over 5 runs.

Qwen2-0.5B  Snowflake-Artic-L  OpenELM-450M

2 Meth
n ethod emotion rotten emotion rotten emotion rotten

ALLoRA (ours) 37.18 53.64 86.93 78.29 86.07  88.20
ALLoRA-OD 3691 5231 87.24 77.47 86.31  88.11
ASF-LoRA 3640 5343 87.30 78.03 83.44  87.58
LoRA xn 3559 53.19 87.06 77.71 8498  87.95

ALLORA (ours) 38.52 54.67 88.23 79.44 90.01 88.95
ALLOoRA-OD  38.15 5355 88.22 79.16 89.86  89.02
ASF-LoRA 37.20 54.17 87.74  78.18 86.26  88.22
LoRA xn 36.61 5447 87.62 78.72 88.77  88.39

ALLORA (ours) 39.00 55.83 89.08 80.24 91.27 89.61
ALLoRA-OD  38.67 5495 88.97 80.21 91.27  89.38
ASF-LoRA 38.45 5441 8797 79.23 89.64  88.80
LoRA xn 37.63 53.70 83.49 79.31 90.25  89.08

1.0

2.0

4.0
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F CoDE

class ALLoRA (torch.autograd.Function) :
rsqg_scale = 1. / 4. # 1 / \eta”2

@staticmethod

def forward(ctx, input_x, weight_A, weight_B):
output = input_x @ weight_A.t () @ weight_B.t ()
norms = torch.norm(weight_B @ weight_A, dim=1)
ctx.save_for_backward (input_x, weight_A, weight_B, norms)
return output

@staticmethod

def backward(ctx, grad_output):
input_x, weight_A, weight_B, norms = ctx.saved_tensors
accelerate = 1. / torch.sqrt (norms + LinearLayer2.rsqg_scale)

grad_input = grad_output @ weight_B @ weight_A
temp = grad_output.mul (accelerate) @ weight_B
temp = torch.transpose(temp, 1, 2)
grad_weight_A = temp @ input_x

temp = grad_output.mul (accelerate) .transpose (1,
grad_weight_B = temp @ (input_x @ weight_A.t())
return grad_input, grad_weight_A, grad_weight_B

Listing 1: ALLoRA Code

2)
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