
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ALLORA: ADAPTIVE LEARNING RATE MITIGATES
LORA FATAL FLAWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adaptation (LoRA) is the bread and butter of Large Language Model
(LLM) finetuning. LoRA learns an additive low-rank perturbation of a pretrained
matrix parameter to align the model to a new task or dataset. We identify three
core limitations to LoRA for finetuning–with only a limited amount of training
steps. First, it employs Dropout as a means to prevent overfitting. We prove that
Dropout is only suitable for long training episodes but fails to reliably regularize
training for short training episodes, e.g., finetuning. Second, LoRA’s parameters
initialization is at 0 makes the optimization landscape poorly conditioned dur-
ing the first steps of training. That poor conditioning combined with the need to
move away from 0 lead to slow training dynamics. Third, the scaling factor that
multiply each LoRA additive perturbation create “short-sighted” interactions be-
tween the LoRA modules of different layers. Motivated by principled analysis of
those limitations, we find an elegant solution: a Dropout-free, scaling-free, LoRA
with Adaptive Learning rate–coined ALLoRA. By scaling the per sample and per
parameter gradients with a coefficient inversely proportional to parameters’ ℓ2
norm, ALLoRA alleviates those three limitations. As a by-product, ALLoRA re-
moves two hyper-parameters from LoRA: the scaling factor and the dropout rate.
Empirical results show that ALLoRA admits better accuracy than LoRA on vari-
ous settings, including against recent LoRA variants such as Weight-Decomposed
Low-Rank Adaptation (DoRA). Ablation studies show our solution is the optimal
in a family of weight-dependent / output-dependent approaches.

1 INTRODUCTION

Large Language Models (LLMs) Hoffmann et al. (2022); Touvron et al. (2023); Jiang et al. (2023)
are Deep Neural Networks (DNNs)–commonly built from Transformer with self-attention–built for
sequence processing, e.g., Natural Language Processing (NLP). LLMs have radically changed the
way we approach NLP Chowdhary (2020) by removing the need for handcrafted feature engineering
such as bags of words Zhang et al. (2010). Instead, current solutions directly operate on the input
data–or a lossless compression known as tokens Shibata et al. (1999). Because we now have access
to humongous amount of text data, the standard training pipeline for LLMs take the following form.
First, the LLM is pretrained a large text corpus through next-token prediction. That autoregressive
pretext-task enables the LLM to learn the underlying dynamic of the language. Commonly, RLHF
is also employed after pretraining to make the model’s behavior shift from autoregressive to agentic.
Then, the LLM is fine-tuned on a more specific downstream task or dataset. That fine-tuning is
user-specific and plays a fundamental role in making LLMs practically useful but relies on much
more limited datasets, as we formalize below.

Premise: The training regime involved in pretraining and fine-tuning are drastically different.
The former takes places on large “industrial” computational clusters with limitless data and
training steps. The latter takes place on small user-owned computational resources with limited
data and training steps.

That premise is now widely accepted upon as the latest state-of-the-art LLM solutions stem from
the numerous open-source industry groups such as Meta’s Llama Dubey et al. (2024), Google’s
Gemma Team et al. (2024), Apple’s OpenELM Mehta et al. (2024), or Cohere’s Aya. Hence, as

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LLM practitioners, most of the attention is now turning into deriving fine-tuning strategies that meet
the very particular needs of fine-tuning LLMs.

To tackle that paradigm shift introduced by the pretraining-finetuning strategy, specialized meth-
ods have been developed, such as the eponymous Low-Rank Adaption (LoRA). LoRA has fueled
countless deployment of LLMs–as it took a gigantic leap in accommodating for the fine-tuning
regime. In short, LoRA proposes to fine-tune a LLM by learning an additive low-rank matrix per-
turbation to some of the LLM’s internal parameter matrices. Core to its design, LoRA leverages
(i) Dropout Srivastava et al. (2014) as a mean to prevent overfitting to the fine-tuning task, and (ii)
zero-initialization to ensure that training starts from the LLM’s pretrained mapping, and (iii) a scal-
ing factor that rescales the LoRA’s matrix factorization. While the impact of LoRA is ubiquitous,
we nonetheless believe that LoRA could be further improved based on three observations.

LoRA’s three fatal flaws for finetuning: First, Dropout–a stochastic regularizer–whose ben-
efits quickly vanish when considering fine-tuning, and can in fact introduce detrimental ad-
ditional variance to the training. Second, the zero-initialization which is difficult to escape
from as the fine-tuning parameters start from a saddle point. Third, the scaling parameter that
introduces nonlinear interactions between LoRA modules of different layers.

While each of those three design choices are well-motivated when considering long training, e.g.,
pretraining, it becomes harder to prove their benefits when considering fine-tuning that only employs
a minimal amount of training steps. That is why, after carefully bringing to light and studying the
above flaws of LoRA–in the context of fine-tuning–in section 3, we will propose a novel variation
of LoRA that we coin ALLoRA for Adaptive Learning rate LoRA (section 4). ALLoRA proposes
to remove the Dropout regularizer and the scaling factor while adding an adaptive learning rate for
the low-rank matrices entries. As depicted in listing 1, the implementation is straightforward with
theoretical and practical benefits. First, by removing the Dropout regularization and the scaling
factor, ALLoRA is simpler to employ as it no longer requires cross-validation of those parameters.
Second, we demonstrate how ALLoRA improves performances over LoRA and alternatives such as
DoRA. In short, our adaptive learning rate strategy is able to prevent over-fitting, learn competitive
solutions, and converge more quickly than alternatives–all while employing less hyper-parameters.

We summarize our contributions below:

1. We identify three inefficiencies (sections 3.1 to 3.3) in the current LoRA design that make
it unfit for short training, i.e., finetuning.

2. We propose a novel adaptive learning rate variation of LoRA–coined ALLoRA–free of two
of the original LoRA’s complicated designs: the Dropout regularizer and the scaling factor.

3. We empirically validate the benefits of ALLoRA over numerous datasets and model ar-
chitectures including the latest Llama3 family. We obtain that despite ALLoRA employing
less hyperparameters than LoRA, it is able to outperform its counter part and recent variants
such as DoRA consistently.

The full codebase to reproduce figures and tables will be provided upon completion of the review
process.

2 RELATED WORKS

LoRA is a type of Parameter Efficient Fine Tuning (PEFT) method designed to reduce the cost of
finetuning LLMs. As LLMs typically have large number of parameters–in the scale of billions–one
can not afford to finetune all those parameters on a particular downstream task or dataset. Existing
PEFT can be divided into three categories, namely Adapter-based Methods, Prompt-based Methods,
and LoRA.

Adapter-based methods (Houlsby et al. (2019), He et al. (2022), Karimi Mahabadi et al. (2021b),
and Karimi Mahabadi et al. (2021a)) introduce additional trainable modules, a.k.a. the adapters,
into the original backbone whose weights are frozen during the finetuning. In Houlsby et al. (2019),
linear modules were added in sequence to the existing layer, while in He et al. (2022), they were
added in parallel to the existing layer for the sake of better performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Prompt-based methods (Lester et al. (2021), Razdaibiedina et al. (2023), and Wang et al. (2023))
introduce soft tokens as trainable parameters and prepend them to the prompt. This category is the
least intrusive as the finetuning can be done by only prompting the LLMs. However, prompt-based
methods are in general sensitive to initialization and their overall effectiveness is affected.

LoRA Hu et al. (2021) uses low-rank matrices to simulate weight changes of the pretrained weights.
Since low-rank matrices can be merged back to original weights, LoRA does not incur any additional
cost at inference, which is a significant advantage over the other two categories. Many variants
were proposed lately. For example, in Zhang et al. (2023), SVD decomposition was employed to
determine significance of singular values, and less important ones are pruned. Hyeon-Woo et al.
(2022) applies low-rank Hadamard product to federated learning. Qiu et al. (2023) and Liu et al.
(2024b) adopt orthogonal factorization and applied to diffusion models. Renduchintala et al. (2023)
introduces weight tying and realizes more savings on number of parameters. A unified LoRA family
was introduced for Stable diffusion in Yeh et al. (2024). Different combinations of LoRA are chosen
for different tasks in Ponti et al. (2022). A scaling vectors is learnt to adjust a pair of frozen random
matrices shared across layers in Kopiczko et al. (2023).

More recently, Liu et al. (2024a) proposes decomposing the weights into directional and magnitude
components to boost accuracy. Hayou et al. (2024a) studies the optimal initialization of the low-
rank matrices, and a follow-up work Hayou et al. (2024b) proposes to apply different learning rate
to different low-rank matrices. Superficially this is similar to one of our idea to adapt learning rate,
though our idea is inspired by a principled study of dropout (Srivastava et al. (2014)).

More broadly, Zhao et al. (2024) applies the low-rank concept to compute low-rank gradients di-
rectly. Jang et al. (2024) provides rigours theatrical study on the existence and convergence of
LoRA solutions. And Zhang & Pilanci (2024) is a study of the potential ill conditioned low-rank
matrices.

3 A CRITICAL ANALYSIS OF LORA FOR FINETUNING

Because PEFT is the current bottleneck between large and powerful LLMs and specialized practical
use-cases, numerous variations of LoRA have emerged.

Definition 1. (Low Rank Adapters (LoRA) from Hu et al. (2021)). For any weight matrix W ∈
Rn1×n2 in the pretrained model, we constrain its update in the finetuning process by representing
the latter with a low-rank decomposition W = W ∗ + α

rBA. Here, only the weight matrices
B ∈ Rn1×r, A ∈ Rr×n2 are trainable. The rank r ≪ min(n1, n2) and α ∈ R are tunable
constants.

Yet, very little attention was put on the core premises of LoRA within a finetuning context, i.e.,
with limited amount of training steps. We propose here a principled and critical study of LoRA,
culminating with our finding of three core flaws of LoRA for short training (sections 3.1 to 3.3).
The following section 4 will investigate our solution, ALLoRA.

3.1 FIRST FLAW: A STOCHASTIC REGULARIZATION THAT WILL NOT CONVERGE

LoRA’s regularization hinges on using Dropout Srivastava et al. (2014), i.e., on applying a multi-
plicative binary mask to the latent space of the matrix factorization. In fact, it has been long known
that Dropout is a great solution to prevent overfitting. However, those benefits have either been
found in the context of (pre-)training, or through theoretical derivations assuming infinite training
time, i.e., on expectation. For example, Wager et al. (2013) shows how in the linear regime dropout
acts as some variant of ℓ2 regularization on normalized design matrix (inputs), a result also found in
the previous study of Wang & Manning (2013). However, we now argue that both previous empiri-
cal and theoretical studies showing the benefits of dropout do not hold in a fine-tuning setting where
the number of training steps is highly limited.

Let’s consider in the linear regime the following Ordinary Least Squares (OLS) setting ∥Y −
(XW)⊙V ∥2F , with Y ∈ RN×C ,X ∈ RN×D,W ∈ RD×C and the random realization of dropout
matrix V ∈ {0, 1

p}
N×C . We note that such parametrization of Dropout is commonly employed in

the literature to ensure that its expectation is equal to 1. We have the following property that has

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Depiction of the distribution of standard deviation of gradients (y-axis) w.r.t. the second
layer of a MLP trained for MNIST (left) and CIFAR10 (right) classification, equipped with Dropout.
At each training epoch (x-axis), we consider a single mini-batch and compute the gradients under
numerous Dropout realisation. For each entry in the matrix of gradients, we compute the standard
deviation and report the distribution over entries. We clearly see that while the average variance
of the gradient decreases slightly during training, the worst case increases, hence leading to
unstable training in finetuning regimes.

motivated the use of Dropout through more than a decade by now:

min
W

E
[
∥Y − (XW)⊙ V ∥2F

]
= min

W
∥Y ∥2F + E

[
−2Tr

(
Y
(
V ⊤ ⊙ (XW)⊤

))
+ Tr

((
V ⊤ ⊙ (XW)⊤

)
((XW)⊙ V)

)]
= min

W
∥Y ∥2F − 2Tr

(
Y (XW)⊤

)
+ Tr

(
(XW)⊤(XW)

)
/p,

which is solved for W = p(X⊤X)−1Y ⊤X . Comparing that with the usual Tikhonov regulariza-
tion that produces W = (X⊤X + λI)−1Y ⊤X we see than whenever the eigenvalues of X⊤X
are all identical to a positive constant c, e.g. when X is whitened, then W = c

c+λ (X
⊤X)−1Y ⊤X

hence recovering the dropout solution. Hence we obtain that (assuming c = 1 without loss of gen-
erality) p = 1

1+λ . The above results recovers known theoretical analysis of Dropout–showing its
benefits as an implicit regularizer. However, those derivations only emerge from taking expectation
of the loss, i.e., considering infinite training steps. For us, the question thus turns into the following:
what are the benefits of Dropout as a regularizer for very short training regime such as finetuning?

A first naive bound on “how far off” is the expectation can be obtained (derivations in appendix A)
as follows

E

[∣∣∣∣∣ 1N
N∑

n=1

∥Y−(XW)⊙ Vn∥2F − E
[
∥Y−(XW)⊙ V ∥2F

]∣∣∣∣∣
]
≤
Std

[
∥Y − (XW)⊙ V ∥2F

]
√
N

.

As a result, the benefit of N , in our case the number of training steps, only appears for large N . This
is particularly true as training progresses where the variance of the current approximation against
the targets (Std

[
∥Y − (XW)⊙ V ∥2F

]
) will decrease on average but increase in the worst case

compared to initialization with random matrices, or zero matrices with LoRA. We illustrate that
dynamics in Figure 1 looking at the standard deviation of the gradients as a function of Dropout
realisation in a simple MLP with MNIST classification task as training progresses. Moving to LLMs,
we also confirm that simplified model’s intuition with LLM experiments below.

Empirical validation of the harmful impact of Dropout for short fine-tuning Empirical results
support above theory. We run experiments with Qwen2-0.5B on bias in bios, a classification task
to predict the job of an employee given the job description, for various dropout rates and up to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Left: LoRA with varying Dropout rates: High value of Dropout provides the strongest perfor-
mance after long fine-tuning and the weakest performance after short fine-tuning. Each line is an average
of 3 runs. X-axis is epochs, and Y-axis is accuracy. Right: ALLoRA escapes from 0 rapidly, and then tapers
off into a measured move. The starting phase matches that of LoRA with a much higher learning rate. LoRA
with a lower learning rate can reach the same level of L2 norm but much slower.

10 epochs. We note that 10 epochs is already a large number of finetuning iterations for practical
scenarios. It shows that large dropout rates successfully avoid overfitting, but at the cost of lower
accuracy at lower number of epochs, while no dropout sees higher accuracy at lower number of
epochs, but will overfit at later epochs. See Figure 2 Left and Table 2.

3.2 SECOND FLAW: A POOR OPTIMIZATION LANDSCAPE

The second flaw we uncover is the zero-initialization. Let’s consider again our simplified model,
and applying a LoRA module for finetuning L(V) = ∥X(W +V)−Y ∥2F , where V is our LoRA
module, i.e., it is internally a low-rank matrix. We can obtain the following gradient and Hessian of
the loss with respect to V as follows. We note that for the Hessian we consider the flattened version
of the matrix V

∇V L(V) = 2X⊤XV − 2(Y −XW)⊤X, (1)

Hvec(V)L(V) = (In ⊗X)⊤(In ⊗X) = In ⊗X⊤X (2)

where the last line comes from the fact that ∥X(W + V) − Y ∥2F = ∥(In ⊗X)vec(W + V) −
vec(Y)∥22 with ⊗ the Kronecker product, and vec the vectorization operator. The Hessian is semi-
definite positive, as expected given the convex quadratic nature of the optimization problem. How-
ever, as the training set size (n) decreases, the optimization landscape for V will become degenerate.

3.3 THIRD FLAW: RIPPLE EFFECT OF SCALING FACTOR

Following Definition 1, denote η = α
r to be the Scaling Factor. The scaling factor plays an important

role to match ||BA|| to a comparable level with ||W ∗||. Despite its effectiveness, the scaling factor
creates a ripple effect across layers of a LLM and may make finetuning unstable. Hu et al. (2021)
discussed the importance of the scaling factor and suggest to tune it carefully to prevent BA from
overwhelming W ∗. From a different perspective, Houlsby et al. (2019) empirically showed the scale
of the initialization of BA can negatively impact validation accuracy. Later, Hayou et al. (2024a)
argued that for the best performance, either A or B must be initialized at 0.

To illustrate the ripple effect, we adopt a multi-linear model which is a simplified version of the toy
model in Hayou et al. (2024b).

fl(x) = W ∗
l fl−1(x), l ∈ [L] (3)

where L ≥ 1 is the number of layers. Applying LoRA at each layer gives

fl(x) = (W ∗
l + ηBlAl)fl−1(x)

Expanding the equation, we have

fL(x) = (W ∗
L + ηBLAL)...(W

∗
1 + ηB1A1)x

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Let || · ||M be a matrix norm induced by a vector norm || · ||v , we have
||fL(x)||v = ||(W ∗

L + ηBLAL)...(W
∗
1 + ηB1A1)||M · ||x||v

We abuse the notation to use ||·|| for both matrix norm and vector norm, applying triangle inequality,
we have

||fL(x)|| ≤ (||W ∗
L||+ η||BLAL||)...(||W ∗

1 ||+ η||B1A1||)||x||

= C(1 + η
||BLAL||
||W ∗

L||
)...(1 + η

||B1A1||
||W ∗

1 ||
)||x||

≤ C(1 + ηm̄)L||x|| = Θ((1 + η)L)

where C = ||W ∗
L||...||W ∗

1 || is a constant, and m̄ = 1
L

∑
l∈L

||BlAl||
||W ∗

L|| is also a constant in a single
forward pass. Notice that all the inequalities are tight, we have
Proposition 1. (Ripple Effect) In the worst case, a constant scaling factor η may cause the final
output of a single forward pass of a LoRA finetuned model to grow exponentially w.r.t. the number
of layers in the model.

We also note that proposition 1 is especially limiting for LLMs that most commonly resort to in-
creased depth rather than increased width to scale up their capacity Hestness et al. (2017). Having
concluded our brief tour of LoRA’s possible shortcomings when it comes to fine-tuning LLMs in a
few shots, we now propose to study our attempt at improving LoRA through a novel parametrization.

4 ALLORA: ESCAPING LORA’S FLAWS FOR FINE-TUNING

4.1 ADAPTIVE LEARNING

Section 3 summarized three flaws of LoRA, which we’ll show can be addressed by a single solution.
First we establish the underlying links among dropout, scale factor, and learning rate. Consider the
LoRA finetuning of a single layer in (3), f(x) = (W ∗ + ηBA)x. Following Hayou et al. (2024b),
WLOG, we can further simply the model by assuming W ∗ = 0, which is equivalent to defining
ỹ = y − W ∗x and rewrite the loss function by ỹ. Also assume η = 1, we have f(x) = BAx.
The goal is the minimize loss L whose gradient is g = ∂L

∂(BA) . f(x) ∈ Rn1 is a column vector.
Expanding it per row gives

(f(x))i = (BA)i,:x, i ∈ [n1] (4)

The effect of dropping out (f(x))i for a given i is equivalent to applying a per-row scaling factor
ηi = 0 to (BA)i,:. Note that this is true only for (BA)i,:, the effect on (BA)j,:, j ̸= i is slightly
different. Since dη·f(x)

dx = η df(x)
x , ηi = 0 is implicitly applied to the i-th row of the gradient

gi = (∂L
∂(BA))i,:, which is again a scaling factor applied to the learning rate l.

The observation reveals that both scaling factor and dropout are adaptions on LoRA output f(x),
and both have effects on gradient. We are inspired to formalize a general framework that subsumes
both, within which we can use a principled approach to systematically discover novel solutions.
Definition 2. (Adaptive Learning) Consider a single layer linear model f(x) = BAx with gradient
g(x) = ∂L(f(x))

∂(BA) . Let Output Adaptor be a function fo : Rn1 → Rn1 , Gradient Adaptor be a

function fg : Rn1×n2 → Rn1×n2 . Define adapted output f̃ and adapted gradient g̃ by{
f̃ = fo ◦ f
g̃ = fg ◦ g

(5)

Adaptive learning is to use the adapted f̃ and g̃ in place of f and g respectively in the learning
process.

Let I : x 7→ x be the identity function. Then a natural corollary is that all learning is adaptive
learning (when fo = I and fg = I). Note that L is a function of f(x), hence g(x) = ∂(L◦f)

∂(BA) . Use f̃

in place of f defines a natural adapted gradient g̃ = ∂(L◦f̃)
∂(BA) = ∂(L◦fo◦f)

∂(BA) . When it’s clear from the

context, we omit g̃ if it’s naturally defined by a non-trivial f̃ .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 ALLORA

Under the Adaptive Learning framework, scaling factor is define by fo = κ : x 7→ ηx.{
f̃ = κ ◦ f = ηf

g̃ = κ ◦ f = ηg
(6)

One idea to reduce the ripple effect while keeping the positive effect of scaling factor is to force fo =
I , while keeping g̃ intact, which is to use a larger learning rate η · l. Nonetheless, a fixed learning rate
cannot simultaneously achieve both fast escape from 0 and, once away from 0, measured discovery
of optimal direction. We think a function that is inversely proportional to ||(BA)i,:|| is a good
candidate to realize our idea. We use the function 1/

√
||(BA)i,:||+ 1/η2 which reaches maximum

at ||(BA)i,:|| = 0 and then tapers down when ||(BA)i,:|| increases (Figure 5).

Formally, ALLoRA is defined by{
f̃ = I ◦ f
g̃i = 1/

√
||(BA)i,:||+ 1/η2 · gi, i ∈ [n1]

where η is a hyperparameter. Note that this does not introduce a new hyperparameter. We split
learning rate into a constant base learning rate lb and η, and the effective learning rate is η · lb.

One more implementation detail is the backward pass computes, in addition to the gradients of A
and B, also the gradient of the input from layer below, and propagate which back to the layer below.
We only modify the gradients of A and B, but not that of the input. This helps further restrict the
changes within each layer and reduce ripple effect.

To quickly verify our idea, we add probing code to trace the L2 norm of row vectors of BA. As
shown in Figure 2 Right, adaptive learning rate escapes from 0 rapidly, the speed matches with LoRA
with a learning rate that is η · lb. Then it finds an approriate level and enters measured discovery of
optimal directions. LoRA with a learning rate lower than η · lb can reach the same level, but at a
much slower pace. The experiment is with Snowflake Arctic XS and Rotten Tomatoes.

4.3 A FAMILY OF ADAPTIVE SOLUTIONS

We adopt a principled approach to explore other reasonable designs that fall into the adaptive learn-
ing framework defined by Definition 2.

First notice that in (f(x))i = (BA)i,:x, (f(x))i and (BA)i,: define each other. So instead of
adapt the learning by (BA)i,:, we can also adapt it by (f(x))i, which is Output-Dependent, or
ALLoRA-OD, defined by{

f̃ = I ◦ f
g̃i = 1/

√
|(f(x))i|+ 1/η2 · gi, i ∈ [n1]

Note that (f(x))i is a scalar, hence we use its absolute value. Qualitatively, ALLoRA-OD subjects
to the stochastic noise in x because (f(x))i = (BA)i,:x. According to Smith et al. (2021), this
type of stochastic noise is an implicit regularization. Our conjecture is that it may drag down the
accuracy just as dropout does, and therefore ALLoRA-OD may not be as good as ALLoRA.

Given the link between learning rate and scaling factor, we may achieve similar effect by switching
from adaptive learning rate to Adaptive Scaling Factor, or ASF-LoRA, defined by

f̃i = 1/
√
|(f(x))i|+ 1/η2 · fi, i ∈ [n1]

Note that g̃ is naturally defined by using f̃ in place of f . The potential downside is that it introduces
ripple effect across layers, which may blur accuracy. And our conjecture is again ASF-LoRA may
not be as good as ALLoRA.

One more caveat of ASF-LoRA is that we cannot merge BA back to W ∗ as we need to apply fo to
the LoRA output.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Accuracy gap between ALLoRA and LoRA. Each cell is an average of 5 runs. Left: AL-
LoRA admits better accuracy than that of LoRA. Right: ALLoRA-0, the version without dropout,
admits comparable accuracy than that of ALLoRA.

4.4 EMPIRICAL VALIDATION: PERCEPTION TASKS

Our first set of experiments gauges the performance of ALLoRA on perception tasks. Mainstream
LLMs nowadays are mostly pretrained by next token prediction, which is good for generative tasks,
but may not be a good fit for perception tasks such as Natural Language Understanding (NLU) and
Sentiment Analysis (SA). In fact, we observe subpar accuracy when finetuning popular open-weight
models for NLU and SA tasks (see Table 3). We hope to show that ALLoRA may help boost the
accuracy for perception tasks.

For our experiments, we pick three midsized LLMs: Qwen2-0.5B, Snowflake-Artic-L, and
OpenELM-450M, and four NLU and SA datasets: Bias in Bios, Emotion, Rotten Tomatoes,
and Yelp Review. To demonstrate the stability of ALLoRA, we run the experiments with various
η2 ∈ {1, 2, 4} with a fixed baseline learning rate lb = 1e− 4. To be fair for LoRA, we run LoRA at
learning rate l ∈ {1e−4,

√
2e−4, 2e−4}, respectively. We finetune for 2 epochs. Each experiment

is run 5 times and we report average final accuracy. Figure 3 Left shows the accuracy gap between
ALLoRA and LoRA, where positive numbers indicate ALLoRA has better accuracy. The result
shows that ALLoRA in general admits better accuracy over plain LoRA. Average improvement over
all cases is 0.3%.

In the experiment, we use a dropout rate 0.05 for both ALLoRA and LoRA. We also run ALLoRA-0,
the version of ALLoRA with 0 dropout rate. Figure 3 Right shows that there is no evident difference
between ALLoRA and ALLoRA-0, matching our theoretical result from 3.1.

4.5 EMPIRICAL VALIDATION: COMMONSENSE REASONING

We also compare ALLoRA with DoRA (Liu et al. (2024a)), a recent LoRA variant that demonstrated
superb performance over a range of PEFT methods. Since DoRA results are universally better than
other PEFT methods, we only compare ALLoRA to DoRA. We run experiments on LLaMA-7B,
LLaMA2-7B, and LLaMA3-8B on 8 Commonsense tasks. Following DoRA’s setup, for each
model, we run both ALLoRA and ALLoRA-0 with LoRA rank r ∈ {16, 32} and for 3 epochs.
Table 1 shows that for all cases, either ALLoRA or ALLoRA-0 has the best average accuracy. On
average, ALLoRA and ALLoRA-0 each boosted accuracy by 0.3% over DoRA.

Note that we run experiments with various η2 ∈ {1, 2, 4} and report the best accuracy1, this follows
DoRA’s practices to run with various learning rate l ∈ {1e− 4, 2e− 4} and report the best.

In Table 1 we also report the number of trainable parameters as a percentage of the number of pre-
trained parameters. Since ALLoRA does not introduce additional trainable parameters, its trainable
parameters are slightly lower than that of DoRA.

1Weights of ALLoRA and ALLoRA-0 will be publicly shared in near future.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Accuracy comparison of LLaMA 7B, LLaMA2 7B, and LLaMA3 8B between ALLoRA
and DoRA on eight commonsense reasoning datasets. DoRA results are taken from Liu et al.
(2024a). ALLoRA-0 is the version of ALLoRA with 0 dropout rate.

Model
LoRA Rank Method # Params

% BoolQ PIQA SIQA HSwag WGrande ARC-e ARC-c OBQA Avg.

LLaMA-7B
16

DoRA 0.43 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 77.5
ALLoRA (ours) 0.41 69.4 82.7 78.3 84.8 80.0 80.9 65.7 79.2 77.6

ALLoRA-0 (ours) 0.41 69.2 80.8 78.5 83.9 81.1 80.8 65.2 78.2 77.2

LLaMA-7B
32

DoRA 0.84 69.7 83.4 78.6 87.2 81.0 81.9 66.2 79.2 78.4
ALLoRA (ours) 0.83 70.0 82.3 78.1 84.6 82.2 81.0 67.9 81.0 78.4

ALLoRA-0 (ours) 0.83 70.2 82.6 78.6 83.8 81.1 81.0 66.3 82.6 78.3

LLaMA2-7B
16

DoRA 0.43 72.0 83.1 79.9 89.1 83.0 84.5 71.0 81.2 80.5
ALLoRA (ours) 0.41 71.7 83.7 79.5 91.4 82.4 84.3 69.2 81.2 80.4

ALLoRA-0 (ours) 0.41 72.4 83.9 80.0 90.8 83.0 84.7 71.3 80.2 80.8

LLaMA2-7B
32

DoRA 0.84 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
ALLoRA (ours) 0.83 72.2 83.1 79.6 91.2 84.5 84.5 71.0 80.0 80.8

ALLoRA-0 (ours) 0.83 72.3 83.8 79.3 91.4 83.0 85.0 71.2 82.2 81.0

LLaMA3-8B
16

DoRA 0.35 74.5 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0
ALLoRA (ours) 0.35 75.2 88.9 80.8 95.6 84.7 90.2 80.6 85.8 85.2

ALLoRA-0 (ours) 0.35 74.5 89.1 80.4 95.5 85.8 90.7 80.3 86.0 85.3

LLaMA3-8B
32

DoRA 0.71 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
ALLoRA (ours) 0.70 74.5 88.9 81.8 95.9 86.3 90.4 80.5 87.6 85.8

ALLoRA-0 (ours) 0.70 75.1 88.7 81.8 95.8 85.4 91.0 81.1 86.6 85.7

5 ABLATION STUDY

Using the same setup in 4.4, we run experiments with ALLoRA-OD, the output-dependent variant,
and ASF-LoRA, the adaptive scaling factor variant. We also run LoRA with comparable fixed
scaling factors to form an objective baseline for ASF-LoRA.

5.1 ALLORA-OD

Figure 4 Top Left shows the accuracy gap between ALLoRA and ALLoRA-OD. A positive number
indicates that ALLoRA has better accuracy. Overall speaking, ALLoRA has better accuracy than
ALLoRA-OD. But the difference is moderate, as average improvement over all cases is 0.3%.

The result matches our conjecture that stochastic noise experienced by ALLoRA-OD might have
dragged down accuracy at early epochs.

5.2 ASF-LORA AND LORA WITH FIXED SCALING FACTOR

Since a scaling factor on output is implicitly also a scaling factor on gradient, we use the same η
when comparing between ALLoRA and ASF-LoRA, i.e., the gradient adaptor fg in ALLoRA and
the output adaptor fo use the same η.

Figure 4 Top Right shows the accuracy gap between ALLoRA and ASF-LoRA. A positive number
indicates that ALLoRA has better accuracy. ALLoRA has a significant advantage over ASF-LoRA
as average improvement over all cases is 1.0%. Since we know that ALLoRA-OD is only slightly
worse than ALLoRA, the evidence leans toward that Adaptive Learning Rate is in general a better
solution family than Adaptive Scaling Factor.

We also run LoRA at comparable fixed scaling factors α
r ∈ {1,

√
2, 2}. The results, as shown in

Figure 4 Bottom, show that

• ASF-LoRA is not a competitive method, as over half of cases see ASF-LoRA’s accuracy
significantly lower than LoRA with a comparable fixed scaling factor (positive numbers in
Figure 4 Bottom Right).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Accuracy gap between ALLoRA and other adaptive approaches. Each cell is an average
of 5 runs. Top left: ALLoRA admits better accuracy than that of ALLoRA-OD, where learning rate
is LoRA Output-Dependent. Top right: ALLoRA admits better accuracy than that of ASF-LoRA,
where an Adaptive Scale Factor is applied to LoRA output. Bottom left: ALLoRA admits better
accuracy than that of LoRA with a fixed scaling factor. Bottom right: Adaptive scale factor is not
better than a fixed scale factor.

• ALLoRA is significantly better than LoRA with a comparable fixed scaling factor, as aver-
age improvement over all cases is 0.9%.

6 CONCLUSION AND FUTURE WORK

This paper identifies three major flaws of LoRA, namely dropout, poor optimization landsacpe, and
scaling factor. We conducted principled analysis and proved that dropout is not a must-have in the
finetuning regime. After uncovering the hidden connection between dropout, scaling factor, and
learning rate, we proposed a unified adaptive learning framework to address them all. Motivated by
which, we proposed a novel LoRA variant: ALLoRA. Empirical results show that ALLoRA admits
better accuracy than plain LoRA over multiple backbones, datasets, and learning rates; and better
accuracy than recent successful LoRA variants such as DoRA. Ablation study shows that ALLoRA
is the optimal in a family of adaptive methods.

Below we list a few interesting research directions and invite researchers to explore the frontier
opened-up by our research:

• The adaptive learning framework introduced by this paper is generic and may find broad ap-
plications beyond LoRA. Other use cases such as pretraining may not have the constraints
that the weight matrix must be initialized at 0. But they may have other types of constraints,
which may be solved by adaptive learning with a different adaptor function.

• Within the LoRA use case, we only examine one particular adaptor function, there could
be other adaptor functions that have superior performance.

• We only provide empirical evidence that ALLoRA admits better accuracy. Theoretical
guarantee is needed, especially for the convoluted case where the base model has multiple
layers.

• Starting from 0 weights may avoid the lottery ticket hypothesis (Frankle & Carbin (2019)),
for good or bad, where adaptive learning rate can be a handy tool.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

KR Chowdhary. Natural language processing. Fundamentals of artificial intelligence, pp. 603–649,
2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.
arXiv preprint arXiv:2406.08447, 2024a.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024b.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan AllenZhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. In ICLR Hyeon-Woo et al. (2022).

Uijeong Jang, Jason D Lee, and Ernest K Ryu. Lora training in the ntk regime has no spurious local
minima. arXiv preprint arXiv:2402.11867, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 1022–1035. Curran Associates, Inc., 2021a.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Annual Meeting of
the Association for Computational Linguistics, 2021b.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. CoRR, abs/2310.11454, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Lester et al. (2021), pp. 3045–3059.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024a.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In ICLR Liu et al.
(2024b).

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan
Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, and Mohammad Raste-
gari. OpenELM: An Efficient Language Model Family with Open Training and Inference Frame-
work. arXiv.org, April 2024. URL https://arxiv.org/abs/2404.14619v1.

Edoardo M Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining modular skills
in multitask learning. arXiv preprint arXiv:2202.13914, 2022.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. In Qiu
et al. (2023).

Anastasia Razdaibiedina, Yuning Mao, Madian Khabsa, Mike Lewis, Rui Hou, Jimmy Ba, and
Amjad Almahairi. Residual prompt tuning: improving prompt tuning with residual reparameteri-
zation. In Razdaibiedina et al. (2023), pp. 6740–6757. ISBN 978-1-959429-62-3.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhacing parameter effi-
ciency of lora with weight tying. CoRR, abs/2311.09578, 2023.

Yusuxke Shibata, Takuya Kida, Shuichi Fukamachi, Masayuki Takeda, Ayumi Shinohara, Takeshi
Shinohara, and Setsuo Arikawa. Byte pair encoding: A text compression scheme that accelerates
pattern matching. 1999.

Samuel L Smith, Benoit Dherin, David GT Barrett, and Soham De. On the origin of implicit regu-
larization in stochastic gradient descent. arXiv preprint arXiv:2101.12176, 2021.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of machine learning
research, 15(1):1929–1958, 2014.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Stefan Wager, Sida Wang, and Percy Liang. Dropout training as adaptive regularization. In Christo-
pher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (eds.), NIPS, pp.
351–359, 2013.

Sida Wang and Christopher Manning. Fast dropout training. In Proceedings of the 30th International
Conference on Machine Learning, pp. 118–126, 2013.

Yaqing Wang, Jialin Wu, Tanmaya Dabral, Jiageng Zhang, Geoff Brown, Chun-Ta Lu, Fred-
erick Liu, Yi Liang, Bo Pang, Michael Bendersky, et al. Non-intrusive adaptation: Input-
centric parameter-efficient fine-tuning for versatile multimodal modeling. arXiv preprint
arXiv:2310.12100, 2023.

Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard B. W. Yang, Giyeong Oh, and Yanmin Gong.
Navigating text-to-image customization: From lycoris fine-tuning to model evaluation. In ICLR
Yeh et al. (2024).

12

https://arxiv.org/abs/2404.14619v1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned lora for fine-tuning foundation mod-
els. arXiv preprint arXiv:2402.02347, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In ICLR Zhang et al.
(2023).

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical frame-
work. International journal of machine learning and cybernetics, 1:43–52, 2010.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 2: Reprise of Figure 2 Left depicting that the epoch at which the LoRA fine-tuned model reaches the
best accuracy increases with the Dropout rate, i.e., the larger the probability to drop dimensions, the more
regularization is applied and the better the final performance–but only after very long fine-tuning.

dropout 0.0 0.05 0.1 0.2 0.4

Acc. at epoch=3 77.92 77.96 77.68 77.44 77.22
Acc. at epoch=10 78.00 79.95 80.50 80.77 80.65

Max acc. 79.81 80.27 80.54 80.78 80.65
Epoch of max acc. 6 8 8 9 10

A PROOF OF UPPER BOUND

Proof.

E

[∣∣∣∣∣ 1N
N∑

n=1

∥Y − (XW)⊙ Vn∥2F − E
[
∥Y − (XW)⊙ V ∥2F

]∣∣∣∣∣
]

=E


√√√√(1

N

N∑
n=1

∥Y − (XW)⊙ Vn∥2F − E [∥Y − (XW)⊙ V ∥2F]

)2


≤

√√√√√E

(1

N

N∑
n=1

∥Y − (XW)⊙ Vn∥2F − E [∥Y − (XW)⊙ V ∥2F]

)2


=

√√√√√E

(1

N

N∑
n=1

∥Y − (XW)⊙ Vn∥2F

)2
− E [∥Y − (XW)⊙ V ∥2F]

2

=

√√√√√E

(1

N

N∑
n=1

∥Y − (XW)⊙ Vn∥2F

)2
− E [∥Y − (XW)⊙ V ∥2F]

2

=

√√√√ 1

N2

N∑
n=1

E [∥Y − (XW)⊙ Vn∥4F]− E [∥Y − (XW)⊙ V ∥4F]

=

√
1

N
V ar [∥Y − (XW)⊙ V ∥2F]

=
Std

[
∥Y − (XW)⊙ V ∥2F

]
√
N

B FINETUNING ACCURACY AT VARIOUS DROPOUT RATES

Table 2 contains accuracy of various dropout rates at different number of epochs.

C ADAPTIVE FUNCTION

Figure 5 is an adaptive function that provides output value when |x| = 0, and then tapers down when
|x| > 0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 5: Adaptive function 1/
√

|x|+ 1/η2 for η2 = 1, 2, 4.

Table 3: Accuracy comparison of various models, datasets, and learning rates between ALLoRA
and plain LoRA. ALLoRA-0 is the version of ALLoRA with 0 dropout rate. LoRA’s learning rate
is η× 1e− 4, ALLoRA’s and ALLoRA-0’s base learning rate is 1e− 4. Each cell is an average over
5 runs.

Learning Rate Method Qwen2-0.5B Snowflake-Artic-L OpenELM-450M
b-in-b emotion rotten emotion rotten yelp emotion rotten yelp

η2 = 1.0
lb = 1e− 4

LoRA 70.81 35.59 53.19 87.06 77.71 63.61 84.98 87.95 71.41
ALLoRA (ours) 71.29 37.18 53.64 86.93 78.29 63.55 86.07 88.20 71.32

ALLoRA-0 (ours) 71.53 37.35 54.33 86.98 78.19 63.52 86.04 88.11 71.36

η2 = 2.0
lb = 1e− 4

LoRA 73.70 37.76 54.32 88.30 79.34 64.26 90.01 88.74 71.62
ALLoRA (ours) 73.77 38.52 54.67 88.23 79.44 64.24 90.01 88.95 71.63

ALLoRA-0 (ours) 73.99 38.09 55.37 88.52 79.16 64.33 89.93 89.04 71.68

η2 = 4.0
lb = 1e− 4

LoRA 75.60 38.68 54.90 88.95 80.04 64.76 91.33 89.55 71.79
ALLoRA (ours) 75.72 39.00 55.83 89.08 80.24 64.61 91.27 89.61 71.83

ALLoRA-0 (ours) 75.52 39.47 55.68 88.91 80.24 64.76 91.43 89.47 71.82

D PERCEPTION TASKS

Table 3 shows the accuracy data of all of our experiments on perception tasks. Each cell is an average
of 5 runs. ALLoRA is universally better than LoRA in terms of accuracy.

E ABLATION

Table 4 shows the accuracy data of all of our ablation study on perception tasks. Each cell is an
average of 5 runs. ALLoRA is universally better than the rest in the family.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Accuracy comparison of various models, datasets, and learning rates between ALLoRA and
other adaptive approaches. for adaptive learning rate approaches, i.e., ALLoRA and ALLoRA-OD,
base learning rate is 1e − 4. For adaptive scaling factor, i.e., ASF-LoRA, learning rate is fixed at
1e − 4, an adaptive scaling factor 1/

√
|x|+ 1/η2 is applied. For LoRA, a fixed scaling factor η is

applied, and learning rate is fixed at 1e− 4. Each cell is an average over 5 runs.

η2 Method Qwen2-0.5B Snowflake-Artic-L OpenELM-450M
emotion rotten emotion rotten emotion rotten

1.0

ALLoRA (ours) 37.18 53.64 86.93 78.29 86.07 88.20
ALLoRA-OD 36.91 52.31 87.24 77.47 86.31 88.11
ASF-LoRA 36.40 53.43 87.30 78.03 83.44 87.58
LoRA ×η 35.59 53.19 87.06 77.71 84.98 87.95

2.0

ALLoRA (ours) 38.52 54.67 88.23 79.44 90.01 88.95
ALLoRA-OD 38.15 53.55 88.22 79.16 89.86 89.02
ASF-LoRA 37.20 54.17 87.74 78.18 86.26 88.22
LoRA ×η 36.61 54.47 87.62 78.72 88.77 88.39

4.0

ALLoRA (ours) 39.00 55.83 89.08 80.24 91.27 89.61
ALLoRA-OD 38.67 54.95 88.97 80.21 91.27 89.38
ASF-LoRA 38.45 54.41 87.97 79.23 89.64 88.80
LoRA ×η 37.63 53.70 88.49 79.31 90.25 89.08

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

F CODE

1 class ALLoRA(torch.autograd.Function):
2 rsq_scale = 1. / 4. # 1 / \etaˆ2
3

4 @staticmethod
5 def forward(ctx, input_x, weight_A, weight_B):
6 output = input_x @ weight_A.t() @ weight_B.t()
7 norms = torch.norm(weight_B @ weight_A, dim=1)
8 ctx.save_for_backward(input_x, weight_A, weight_B, norms)
9 return output

10

11 @staticmethod
12 def backward(ctx, grad_output):
13 input_x, weight_A, weight_B, norms = ctx.saved_tensors
14 accelerate = 1. / torch.sqrt(norms + LinearLayer2.rsq_scale)
15 grad_input = grad_output @ weight_B @ weight_A
16 temp = grad_output.mul(accelerate) @ weight_B
17 temp = torch.transpose(temp, 1, 2)
18 grad_weight_A = temp @ input_x
19 temp = grad_output.mul(accelerate).transpose(1, 2)
20 grad_weight_B = temp @ (input_x @ weight_A.t())
21 return grad_input, grad_weight_A, grad_weight_B

Listing 1: ALLoRA Code

17

	Introduction
	Related Works
	A Critical Analysis Of LoRA for Finetuning
	First Flaw: A Stochastic Regularization that Will not Converge
	Second Flaw: A Poor Optimization Landscape
	Third Flaw: Ripple Effect Of Scaling Factor

	ALLoRA: Escaping LoRA's Flaws for Fine-Tuning
	Adaptive Learning
	ALLoRA
	A Family of Adaptive Solutions
	Empirical Validation: Perception Tasks
	Empirical Validation: Commonsense Reasoning

	Ablation Study
	ALLoRA-OD
	ASF-LoRA and LoRA with Fixed Scaling Factor

	Conclusion and Future Work
	Proof of upper bound
	Finetuning Accuracy At Various Dropout Rates
	Adaptive Function
	Perception Tasks
	Ablation
	Code

