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ABSTRACT

Equation discovery from data is a core challenge in machine learning for sci-
ence, requiring the recovery of concise symbolic expressions that govern complex
physical and geometric phenomena. Recent approaches with large language mod-
els (LLMs) show promise in symbolic regression, but their success often hinges
on memorized formulas or overly simplified functional forms. Existing bench-
marks exacerbate this limitation: they focus on scalar functions, ignore domain
grounding, and rely on brittle string-matching metrics that fail to capture scientific
equivalence. We introduce SURFACEBENCH, the first comprehensive benchmark
for symbolic surface discovery. SURFACEBENCH comprises 199 surfaces across
18 categories of symbolic complexity, spanning explicit, implicit, and paramet-
ric forms. Each task includes ground-truth equations, variable semantics, and
synthetically sampled 3D data. Many surfaces are novel or synthetically con-
structed to resist memorization, yet remain grounded in scientific domains such
as fluid dynamics, robotics, electromagnetics, and geometry. To evaluate dis-
covery quality, we pair symbolic checks with geometry-aware metrics (Cham-
fer, Hausdorff, Earth Mover’s), ensuring that models are judged by the structures
they reproduce rather than their algebraic syntax. Our experiments reveal that
state-of-the-art frameworks, while occasionally successful on specific families,
fail to generalize consistently across all representations. SURFACEBENCH thus
establishes a challenging and diagnostic testbed for equation discovery research,
enabling principled progress in symbolic generalization, data-driven induction,
and geometry-aware reasoning with LLMs. We release the code at the link:
https://anonymous.4open.science/r/surfacebench-183B

1 INTRODUCTION

Recovering the governing equations of complex 3D surfaces from sampled data is a foundational
challenge across science, engineering, and design. In real-world applications, ranging from medical
imaging and materials science to robotics and aerospace, surfaces are often observed only as dense
point clouds or measurement grids, without access to their underlying generative equations. Sym-
bolic representations offer interpretable and compact descriptions of geometric structures, capturing
physical, biological, or structural laws that can be generalized, simulated, and optimized. Yet, de-
spite progress in scientific modeling and equation discovery, symbolic recovery of surface equations
has remained underexplored due to challenges such as multi-output coupling, implicit constraints,
and nonlinear transformations.

Surfaces are not abstract constructs but central to high-stakes domains where precise geometry de-
termines outcomes. In physics and engineering, they define optical wavefronts, fracture boundaries,
and aerodynamic flow separation. In biology and medicine, they describe cortical folds, arterial
structures, and protein energy landscapes. In robotics and navigation, they capture terrains, obsta-
cle boundaries, and safe operating zones. Across these fields, surface equations are not aesthetic
artifacts—they are functional tools for analysis, optimization, and design.

Crucially, surfaces exhibit properties that scalar functions cannot capture: (i) Multi-output coupling:
Physical constraints tie multiple observables together, e.g., toroidal confinement surfaces in plasma
physics enforce algebraic identities across (x, y, z) that cannot be modeled independently; (ii) La-
tent coordinate systems: Many laws are compact only in reparameterized coordinates (e.g., spherical
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Figure 1: Overview of the 18 surface categories in SurfaceBench. The central pie chart shows the distribution
of 199 benchmark surfaces across categories, with percentages indicating their relative proportions. Surround-
ing the chart are representative 3D renderings and canonical equations for each category, including parametric
(e.g., torus), implicit (e.g., sphere), symbolic-numeric hybrids, fractal/procedural forms, bio-inspired surfaces,
and higher-order analytic composites. Together, these categories span diverse structural complexities, func-
tional forms, and scientific motivations, highlighting the breadth and richness of SurfaceBench as a diagnostic
benchmark for symbolic surface discovery.

charts in planetary motion or angular systems in molecular orbitals), requiring inference of hidden
variables for interpretability; (iii) Topological and geometric richness: Real-world structures ex-
hibit holes, folds, discontinuities, and symmetries, as in protein folding, crack propagation, or fluid
vortices (phenomena beyond simple scalar relations); (iv) Invariant equivalence classes: Distinct
symbolic forms, such as implicit vs. parametric equations of a sphere, can yield the same geometry.
Evaluating at the surface level thus mirrors how scientific laws are judged (i.e., by the structures
they reproduce, not merely by algebraic syntax). These properties make symbolic surface discovery
both more demanding and more realistic than traditional symbolic regression benchmarks, which
focus on scalar outputs (e.g., y = f(x)). While such benchmarks have been valuable, they do not
reflect the multivariate, structurally constrained, and geometrically meaningful equations required
for real-world science and engineering. Bridging this gap demands benchmarks that explicitly test
reasoning, compositionality, and invariance handling in recovering surface equations.

To address this need and create a more challenging evaluation setting for recent LLM-based equation
discovery frameworks (Shojaee et al., 2025b), we introduce SURFACEBENCH, a benchmark suite
for symbolic surface discovery in scenarios where memorization fails but structure-aware reasoning
is essential. SURFACEBENCH is scientifically grounded, drawing from forms in optics, mechanics,
biology, and geometry, while deliberately altering parameterizations to resist trivial recall. Unlike
scalar benchmarks, it encodes multi-output coupling, latent coordinate systems, and symbolic non-
uniqueness, providing a richer and more realistic testbed. Ultimately, SURFACEBENCH functions
as a diagnostic tool: solving it requires reasoning about invariances, compositional structures, and
geometry-aware consistency—the core capabilities needed for interpretable scientific AI. Spanning
18 diverse categories of surfaces, from non-canonical algebraic forms to fractals, symbolic–numeric
hybrids, and topologically rich manifolds, it captures both synthetic complexity and real-world rel-
evance (see Figure 1).

The primary contributions of this work are as follows:
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• First benchmark for symbolic surface discovery. We introduce the first systematic benchmark
of 199 explicit, implicit, and parametric surfaces across 18 categories, establishing a new setting
for equation discovery beyond scalar functions.

• Geometry-aware evaluation protocol. We design evaluation metrics (Chamfer, Hausdorff, Earth
Mover’s) that assess equivalence at the surface level, moving beyond brittle string/AST compar-
isons and aligning with how scientists judge analytic models.

• Stress-testing reasoning over memorization. By including transformed, constraint-driven, and
non-canonical surface families, SURFACEBENCH explicitly distinguishes true structural reasoning
from rote equation recall, enabling rigorous diagnosis of LLM generalization.

• Scientifically motivated and interpretable. Each surface family is derived from real scientific
phenomena in physics, materials science, biology, and engineering, ensuring that benchmark tasks
are not only challenging but also grounded, interpretable, and practically relevant.

2 SURFACEBENCH: DESIGN AND MOTIVATION

Symbolic discovery of scientific surfaces introduces challenges that extend well beyond conven-
tional symbolic regression. Unlike benchmarks focused on recovering single-output functions
y = f(x), surface equations demand reasoning over multivariate structure, hidden parameteriza-
tions, and representational non-uniqueness. SURFACEBENCH is explicitly designed to foreground
these challenges, serving as a diagnostic testbed that separates rote memorization from genuine
symbolic reasoning.

2.1 MULTI-OUTPUT COUPLING

Surface equations are inherently multivariate. In parametric form, latent coordinates (u, v) map
into coupled outputs (x, y, z), where components share terms and satisfy algebraic constraints.
For example, in a torus, (x, y, z) = ((R + r cos v) cosu, (R + r cos v) sinu, r sin v) satisfies
x2 + y2 = (R + r cos v)2. Successful recovery thus requires identifying the underlying coupled
mechanism rather than treating outputs as independent regressions. This enforces structural consis-
tency, compositional reuse of symbolic components, and robustness against trivial memorization.

2.2 LATENT COORDINATE SYSTEMS

Many scientific surfaces admit compact laws only in reparameterized coordinates. For instance,
spheres or molecular orbitals are concise in spherical harmonics or angular charts but appear al-
gebraically entangled in Cartesian space. In practice, observations are provided as samples in R3,
requiring inference of hidden variables that simplify the representation. Discovery therefore en-
tails uncovering usable coordinate charts and respecting reparameterization invariances, rather than
piecemeal fitting of local composites.

2.3 SYMBOLIC NON-UNIQUENESS

Multiple algebraically distinct expressions may describe the same surface. A sphere can be ex-
pressed implicitly as x2+y2+z2 = R2 or parametrically as (R sinϕ cos θ, R sinϕ sin θ, R cosϕ).
Trigonometric identities, affine transformations, and coordinate reparameterizations further multiply
equivalent forms. Conventional evaluation via string or AST matching penalizes these valid alter-
natives, while pointwise regression error rewards overfit surrogates that interpolate samples without
capturing structure. SURFACEBENCH addresses this by evaluating at the geometry level, treating
hypotheses as equivalent if they induce the same surface up to admissible transformations.

2.4 GEOMETRY-AWARE EVALUATION

To operationalize geometry-level equivalence, SURFACEBENCH renders candidate and ground-truth
surfaces, samples them as point clouds, aligns them under similarity transforms, and computes
object-space distances. We adopt Chamfer Distance (capturing average fidelity) and Hausdorff
Distance (capturing worst-case deviation). These measures respect symbolic non-uniqueness and
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emphasize the true scientific objective: discovering laws that reproduce geometric structure, not
merely equations that minimize sample error.

2.5 EXPRESSIVITY AND RICHNESS

Finally, SURFACEBENCH probes aspects of reasoning that scalar benchmarks cannot. Surfaces may
exhibit folds, holes, discontinuities, or fractal oscillations, requiring expressive forms that com-
bine periodic, conditional, or compositional elements. Categories include non-canonical algebraic
surfaces, fractal and procedural manifolds, symbolic–numeric hybrids, and topologically rich para-
metric embeddings. This diversity ensures that models must reason about symmetry, separability,
and invariance, rather than memorize canonical formulas. In doing so, SURFACEBENCH provides a
rigorous and scientifically grounded setting for advancing symbolic discovery.

2.6 PROBLEM SETUP

We introduce SurfaceBench, a benchmark designed to evaluate LLM-based methods for data-
driven symbolic discovery of 3D surfaces. As shown in Figure 3, a surface discovery task is
defined as follows: given a dataset D of sampled points, the objective is to recover a sym-
bolic hypothesis h that compactly represents the underlying surface with both high geometric fi-
delity and scientific plausibility. The hypothesis h may take one of three standard forms: an
explicit function z = f(x, y), an implicit relation g(x, y, z) = 0, or a parametric mapping
r(u, v) = (x(u, v), y(u, v), z(u, v)). The discovery process mirrors how human scientists itera-
tively refine models: LLMs generate candidate forms, evaluate them against data- and geometry-
based feedback, and progressively refine hypotheses.

Formal Objective. Given D = {(xi, yi, zi)}Ni=1 (or parametric samples {(uj , vj , rj)}, or signed-
distance/occupancy evaluations), together with context C specifying domains and evaluation rules,
the goal is to find a symbolic h such that

h⋆ = argmin
h∈T

Lgeo(D;h, C) + λLsimp(h),

where Lgeo measures geometric fidelity (e.g., Chamfer/Hausdorff distance, level-set consistency),
and Lsimp encourages interpretability via symbolic parsimony (e.g., operator count or expression
depth). By spanning explicit, implicit, and parametric hypotheses—and evaluating across both in-
domain and out-of-distribution regimes—SurfaceBench stresses challenges absent in scalar equa-
tion discovery, such as multi-output coupling, topological variation, and representational non-
uniqueness.

Dataset Construction. The benchmark surfaces are curated through a multi-stage process:

1. Base sampling: We manually select seed surfaces from diverse scientific and mathematical do-
mains (analytic geometry, implicit physical models, and parametric shapes from graphics).

2. Compositional rewrites: We apply symbolic transformations such as nesting trigonometric/expo-
nential functions, coordinate reparameterizations (e.g., polar or affine transforms), and controlled
combinations of functional components Shojaee et al. (2025b), yielding families of related but
distinct variants.

3. Filtering and validation: Each candidate surface is manually visualized, with discontinuous,
degenerate, or unnecessarily convoluted examples discarded. The retained corpus contains only
smooth, interpretable, and scientifically meaningful surfaces.

This procedure ensures both variety and quality: surfaces are either drawn directly from scientific
exemplars or generated through controlled perturbations that preserve interpretability.

Representation Categories. Surfaces in SURFACEBENCH are organized by their analytic repre-
sentation:

• Explicit: functions z = f(x, y), i.e., height fields over the xy-plane.
• Implicit: zero-level sets of g(x, y, z) = 0.
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• Parametric: vector maps r(u, v) = (x(u, v), y(u, v), z(u, v)) with two parameters.

These forms correspond to canonical surface definitions in geometry. Notably, explicit surfaces are
special cases of implicit ones (e.g., g(x, y, z) = f(x, y)−z). By requiring models to handle all three
conventions, SurfaceBench evaluates not only symbolic regression ability but also representation
robustness.

Figure 2: Iterative discovery of a parabolic saddle surface. nMSE decreases as the model progresses from flat to
curved surfaces, then to parabolic forms, and finally converges to the true saddle, with intermediate candidates
showing minor deformations.

3 EXPERIMENTAL SETUP

3.1 BENCHMARK METHODS

We evaluate SURFACEBENCH using a representative set of symbolic regression frameworks that
capture both classical and LLM-driven approaches. Together, these baselines span evolutionary
search, neural guidance, and language-model–based discovery.

LaSR (Grayeli et al., 2024). LaSR is a neural-guided symbolic regression system that combines
probabilistic grammars with learned search heuristics. It produces closed-form expressions directly
and has demonstrated success on large-scale scalar regression tasks. For SURFACEBENCH, we adapt
LaSR to handle multi-output targets and implicit formulations.

SGA (Holland, 1975; Koza, 1992). The Simple Genetic Algorithm (SGA) is a classical ge-
netic programming method that evolves symbolic expressions through mutation and recombination.
While computationally expensive and prone to expression bloat, it provides a reference point for
how traditional search-based methods perform on symbolic surface discovery.

LLM-SR (Shojaee et al., 2025a). LLM-SR leverages pretrained large language models to gen-
erate symbolic programs conditioned on sampled data. Candidate equations are produced through
prompting and then ranked by their fit to observed samples, offering a direct measure of how well
LLM priors alone can recover surface laws.

OpenEvolve (Sharma, 2025). OpenEvolve is an open-ended discovery framework that couples
LLM-based proposal generation with evolutionary refinement. By iteratively updating a pool of
candidate programs based on novelty and fitness, it provides a stronger exploratory baseline than
direct prompting.

PySR (Cranmer, 2023). PySR is a widely used evolutionary symbolic regression library in sci-
entific applications. It searches over mathematical expression trees using mutation, crossover, and
simplification rules. As a mature and well-optimized non-LLM baseline, PySR provides an impor-
tant point of comparison for evaluating LLM-based methods.
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Figure 3: Overview of the SurfaceBench evaluation pipeline. Given sampled 3D surface data, self-evolving
LLMs recover candidate symbolic equations. Predicted expressions are compared to ground truth using both
regression-style errors (NMSE), symbolic equivalence checks, and geometry-aware distance metrics: Chamfer
and Hausdorff.

3.2 EVALUATION METRICS

Prior equation discovery benchmarks typically rely on scalar regression metrics (e.g., normalized
mean squared error on y = f(x)) or exact string/AST matches between candidate and ground-
truth formulas. Such measures are insufficient for surfaces, where multiple algebraically distinct
forms (explicit, implicit, parametric) may describe the same geometry. To address this, SUR-
FACEBENCH introduces a domain-specific evaluation suite that combines geometry-aware dis-
tances, symbolic equivalence, and scale-invariant regression error.

Geometry-aware metrics. Candidate and ground-truth surfaces are rendered as point clouds and
aligned under a similarity transform. We adopt two standard object-space distances:

Chamfer(P,Q) =
1

|P |
∑
p∈P

min
q∈Q

∥p− q∥22 +
1

|Q|
∑
q∈Q

min
p∈P

∥q − p∥22, (1)

Hausdorff(P,Q) = max
{
sup
p∈P

min
q∈Q

∥p− q∥2, sup
q∈Q

min
p∈P

∥q − p∥2
}
. (2)

Chamfer Distance (CD) captures average geometric fidelity, while Hausdorff Distance (HD) high-
lights worst-case deviations. These metrics assess equivalence at the surface level, avoiding penalties
for symbolic non-uniqueness.

Symbolic accuracy. Following LLM-SRBench Shojaee et al. (2025b), we measure Symbolic Ac-
curacy using an LLM-based equivalence check that incorporates algebraic simplifications and pa-
rameter rescalings. This provides a principled but flexible way to judge whether the recovered
equation is symbolically equivalent to the ground truth.

Normalized Mean Squared Error (NMSE). To maintain comparability with scalar-function
benchmarks, we include NMSE as a regression-style measure of pointwise fit:

NMSE =

∑Ntest

i=1 (ŷi − yi)
2∑Ntest

i=1 (yi − ȳ)2
.

We also report a threshold-based accuracy score:

Accτ = 1

(
max

1≤i≤Ntest

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ ≤ τ

)
.

Together, these metrics capture complementary aspects of performance: NMSE links to prior sym-
bolic regression practice, Symbolic Accuracy measures algebraic recovery, and Chamfer/Hausdorff
distances ensure that discovered equations faithfully reproduce the intended scientific surfaces.
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4 RESULTS

Table 1: Comparison of LLM-based equation discovery methods on SURFACEBENCH. Performance is reported
across explicit, implicit, and parametric forms using symbolic accuracy (SA), normalized mean squared error
(NMSE), Chamfer distance, and Hausdorff distance. SGA, LaSR, and LLM-SR cannot handle parametric
equations by design, which is indicated with dashes. While LLM-based methods achieve partial success on
explicit and implicit surfaces, they consistently lag behind the PySR baseline, highlighting the difficulty of
generalizing to structurally complex equations.

Explicit Implicit Parametric

Base LLM SA ↑ NMSE ↓ Chamfer ↓ Hausdorff ↓ SA ↑ NMSE ↓ Chamfer ↓ Hausdorff ↓ SA ↑ NMSE ↓ Chamfer ↓ Hausdorff ↓

SGA

GPT4o-mini 0.20 2.86 8.26 16.53 0.16 1.38 2.96 6.72 – – – –

Llama-3.1-8B 0.10 3.73 9.82 18.48 0.12 1.43 3.01 7.81 – – – –

Qwen-7B 0.10 4.29 5.19 13.25 0.10 1.57 3.05 8.26 – – – –

LaSR

GPT4o-mini 0.35 2.87 4.30 11.00 0.06 3.48 5.04 10.07 – – – –

Llama-3.1-8B 0.30 3.21 3.68 14.21 0.10 2.81 4.67 9.78 – – – –

Qwen-7B 0.30 2.96 4.18 12.84 0.06 3.08 4.92 10.06 – – – –

LLM-SR

GPT4o-mini 0.30 2.57 7.08 24.17 0.10 1.54 2.20 5.25 – – – –

Llama-3.1-8B 0.20 2.62 7.44 29.29 0.13 1.74 3.01 9.05 – – – –

Qwen-7B 0.25 2.38 6.99 28.83 0.02 1.61 1.51 10.6 – – – –

OpenEvolve

GPT4o-mini 0.50 0.98 2.69 4.88 0.07 0.71 1.85 4.96 0.80 0.30 1.22 2.01

Llama-3.1-8B 0.40 0.99 3.17 5.08 0.02 0.99 2.96 5.02 0.65 0.32 1.62 2.57

Qwen-7B 0.40 1.25 3.23 5.82 0.04 0.92 2.35 5.92 0.75 0.32 1.63 2.06

PySR

Non-LLM 0.65 0.0011 0.13 0.41 0.10 0.6138 2.52 5.53 0.70 0.0020 0.70 1.80

Note: SGA, LaSR and LLM-SR methods cannot handle parametric equations due to their design.

The main table 1 reports results over all the surfaces by representation: explicit, implicit, and para-
metric, with four metrics: Symbolic Accuracy, nMSE, Chamfer, and Hausdorff. Two signals stand
out. Explicit surfaces attain the highest Symbolic Accuracy. Implicit surfaces attain the lowest ge-
ometric distances, reflected in stronger Chamfer and Hausdorff. Notably, the explicit results reveal
that models are recovering the correct structural family but not a geometrically tight instance. Sym-
bolic structure is often right, yet coefficients or latent symmetries remain imperfectly calibrated,
which elevates Chamfer and Hausdorff distances despite strong Symbolic Accuracy. This points to
a pipeline gap: after structure discovery, a targeted geometric calibration step is needed to lock scale,
shift, rotation, and curvature so structural exploration translates to gain in distance based metrics.

Secondly, the implicit category results show the converse pattern. Distance-driven search brings the
discovered surface equations close to the target even when the algebraic form is not fully faithful,
producing strong Chamfer and Hausdorff metrics with lower Symbolic Accuracy. Together, these
adjustments align geometric proximity with algebraic fidelity. Finally, the parametric surface results
show consistently good performance across metrics by both non-LLM and LLM based openevovle
framework. We conduct a comprehensive ablation to understand the robustness of these methods.
As noted previously, the LaSR, SGA and LLM-SR methods do not have algorithmic design for
parametric equation discovery. Hence, we do not include the parametric equations for our ablations.

5 ANALYSIS

5.1 OUT OF DOMAIN PERFORMANCE

We define OOD strictly as a range shift in the evaluation grid. If a model is trained on inputs sampled
from [-5,5] along each axis, OOD tests use the non-overlapping exterior bands [−10,−5] ∪ [5, 10].
This isolates extrapolation from interpolation: models must extend learned structure beyond the
training support rather than reuse local trends. We keep all other factors—category, representation,
and rendering—fixed, and assess geometry in object space using Chamfer/Hausdorff distances af-
ter Sim(3) alignment, ensuring that improvements reflect genuine extrapolative fidelity rather than
token-level or coordinate artifacts. We report both (i) absolute OOD errors and (ii) generalization
gaps (OOD minus in-distribution error) to quantify robustness.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Noise sensitivity across Chamfer Distance, Hausdorff Distance, and nMSE. Performance degrades
with increasing Gaussian noise, with OpenEvolve showing the most robustness, especially for explicit surfaces,
while LaSR and LLM-SR are more sensitive.

5.2 NOISE SENSITIVITY

Figure 5: Results of out-of-domain (OOD) perfor-
mance across explicit and implicit categories of
equations.

To evaluate the robustness of our symbolic regres-
sion models under realistic data conditions, we con-
ducted a comprehensive noise sensitivity analysis
across two state-of-the-art language models: GPT-
4o-mini and LLaMA-3.1-8B. The experiment was
designed to systematically assess how model per-
formance degrades when exposed to varying lev-
els of data corruption, simulating real-world sce-
narios where training data may contain measure-
ment errors, sensor noise, or other sources of un-
certainty. We selected 13 representative equations
spanning diverse mathematical domains including
nonlinear dynamical systems, quantum-inspired sur-
faces, stochastic processes, and hybrid multi-modal
symbolic surfaces, ensuring broad coverage of the
symbolic regression problem space. The experimen-
tal design employed a factorial approach with three
noise levels (1%, 5%, and 10% Gaussian noise).
Performance was evaluated using both Chamfer dis-
tance and Hausdorff distance metrics on in-domain
test data, providing complementary measures of ge-
ometric fidelity between predicted and ground truth.

5.3 IMPACT OF DOMAIN KNOWLEDGE

We examine whether lightweight domain pri-
ors—e.g., hints about plausible coordinate charts (spherical/cylindrical), conservation or symme-
try constraints, or canonical basis functions from optics and mechanics—improve recovery. Sur-
faceBench is grounded in real scientific forms but perturbs parameters, compositions, and coordi-
nate mappings to thwart rote memorization; thus, the role of priors is to guide structure discovery
(e.g., shared factors across outputs, separability, invariances) rather than to supply an answer key. In
practice, providing such priors narrows the search space toward mechanisms consistent with the tar-
get domain, and when coupled with geometry-aware scoring, prioritizes concise laws that faithfully
reproduce the surface over ad-hoc composites that only interpolate samples.
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Table 2: Comparison of Normal vs Specialized prompts on Chamfer and Hausdorff distances (↓ better). ∆ =
Normal − Specialized. Positive ∆ indicates improvement.

Explicit Implicit

Method Chamfer Hausdorff Chamfer Hausdorff
Normal Spec. ∆ Normal Spec. ∆ Normal Spec. ∆ Normal Spec. ∆

SGA 7.76 6.22 +1.54 16.09 12.22 +3.87 3.01 2.76 +0.25 7.60 6.26 +1.34
LaSR 4.05 4.04 +0.01 12.68 10.04 +2.64 4.88 4.24 +0.64 9.97 9.24 +0.73
LLM-SR 7.17 5.77 +1.40 27.43 20.77 +6.66 2.24 2.07 +0.17 8.30 5.07 +3.23
OpenEvolve 2.93 1.16 +1.77 4.98 4.16 +0.82 2.41 1.82 +0.59 4.99 4.82 +0.17

6 RELATED WORK

Symbolic regression and equation discovery. Classical symbolic regression (SR) methods such as
PySR Cranmer (2023) use evolutionary search to fit scalar functions but scale poorly to complex do-
mains and often rediscover shallow forms. Recent work integrates large language models (LLMs)
into this process: LLM-SR Shojaee et al. (2025b) and LaSR Grayeli et al. (2024) combine LLM
priors with evolutionary search to generate equation skeletons or libraries of reusable components.
OpenEvolve Sharma (2025), AlphaEvolve Novikov et al. (2025), and AI Scientist Lu et al. (2024)
extend this idea to iterative optimization pipelines that couple LLM reasoning with execution feed-
back. These advances highlight the promise of LLM-driven discovery, but their evaluation remains
focused on single-output scalar functions.

Benchmarks. Datasets such as the Nguyen and Strogatz suites Matsubara et al. (2022); Cava et al.
(2021) provide synthetic nonlinear functions, while Feynman-I Udrescu & Tegmark (2020) compiles
physics-inspired analytic expressions. LLM-SRBench Shojaee et al. (2025b) recently expanded
this space with 239 problems designed to probe generalization beyond memorization. Although
influential, these benchmarks are restricted to scalar outputs and explicit forms, and thus cannot
test reasoning about multi-output coupling, implicit surfaces, or parametric representations that are
essential in real-world scientific contexts.

Geometry and language–geometry models. Surface learning benchmarks in geometry processing
focus on reconstruction from point clouds or meshes. Classical techniques such as Poisson recon-
struction (Kazhdan et al., 2006) remain widely used, while neural approaches like Points2Surf (Erler
et al., 2020) and SALD (Atzmon & Lipman, 2021) leverage implicit neural fields for higher fidelity.
Evaluation is typically performed with Chamfer and Hausdorff distances (Fan et al., 2017), and
more recent work such as STITCH (Jignasu et al., 2024) introduces topology-aware constraints to
capture connectivity and cycles. Meanwhile, emerging LLM–geometry systems (Mews et al., 2025;
Li et al., 2025) extend language models to procedural 3D reasoning, but they operate on geometric
primitives or latent fields rather than producing interpretable analytic equations.

SURFACEBENCH fills this gap as the first benchmark for symbolic surface discovery, bridging SR
and geometry by requiring recovery of explicit, implicit, and parametric forms. It emphasizes multi-
output coupling, latent coordinate systems, and representation non-uniqueness, enabling evaluation
of both symbolic interpretability and geometric fidelity.

7 CONCLUSION

We introduce SurfaceBench, the first comprehensive benchmark for LLM-driven symbolic discov-
ery of 3D surfaces, encompassing 199 tasks across 18 categories and three representation types:
explicit, implicit, and parametric. SurfaceBench provides a standardized and geometry-aware eval-
uation protocol (Chamfer/Hausdorff in object space, alongside Symbolic Accuracy and NMSE) and
accommodates diverse hypothesis formats spanning expression strings and executable programs.
Extensive experiments with state-of-the-art discovery frameworks and multiple LLM backbones re-
veal that, despite occasional successes on specific families, no method consistently excels across all
representations or evaluation regimes; overall performance remains far from saturation, underscor-
ing substantial headroom for advances in structure discovery, parameter calibration, and invariance
handling. We envision that the SurfaceBench datasets and evaluation protocol will serve as a com-
mon foundation for future research, catalyzing progress in automated discovery of surface equations
and deepening our understanding of LLMs’ geometric and symbolic reasoning in scientific settings.
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8 APPENDIX

A. EVALUATION DETAILS

A.1. GEOMETRIC FIDELITY

Unlike symbolic regression tasks over 1D functions, SURFACEBENCH evaluates the quality of dis-
covered surface equations primarily through their geometric agreement with the ground-truth sur-
faces. Our evaluation emphasizes spatial accuracy rather than symbolic form, since different alge-
braic expressions may represent geometrically equivalent surfaces.

We employ three complementary metrics: Chamfer Distance (CD), Hausdorff Distance (HD),
and Normalized Mean Squared Error (NMSE).

Bidirectional Chamfer distance (CD).

CD(P,Q) =
1

|P |
∑
p∈P

min
q∈Q

∥p− q∥22 +
1

|Q|
∑
q∈Q

min
p∈P

∥q − p∥22. (3)

This estimates the average nearest-neighbor discrepancy in both directions, providing a stable mea-
sure of typical geometric error; by construction it can underweight sparse but severe mismatches,
which motivates pairing it with a worst-case metric.

Hausdorff distance (HD).

HD(P,Q) = max
{
sup
p∈P

min
q∈Q

∥p− q∥2, sup
q∈Q

min
p∈P

∥q − p∥2
}
. (4)

This yields an upper bound on the geometric deviation between the two surfaces—if HD ≤ ε,
every point on either surface lies within ε of the other. Its sensitivity to outliers is well known; in
practice we also report a high-percentile variant (e.g., HD95, the 95th percentile of the one-sided
nearest-neighbor distances) to separate systematic mismatch from isolated artifacts.

Normalized Mean Squared Error (NMSE).

NMSE =

∑Ntest
i=1 (ẑi − zi)

2∑Ntest
i=1 (zi − z̄)2

, (5)
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Question: Given the ground truth mathematical expression A and the hypothesis B, determine if there exist any constant parameter values that would 

make the hypothesis equivalent to the given ground truth expression.

Let’s think step by step. Explain your reasoning and then provide the final answer as: 

(A): ‘sqrt(q1/(Ef*epsilon))/(2*sqrt(pi))’

(B): Hypothesis as Program 

LLM (GPT-4o) Judgement

Reasoning:  
 “The expressions can match if params[0] * params[1] = 

1 and params[2] = 1, as this aligns both the scalar and 

constant factors appropriately.”

Answer: Yes

Human 

Judgement

{  “reasoning”: ”Brief step-by-step analysis”,

   ”answer”:       “Yes/No”           }

‘ sqrt(4*E/m– omega^2 *x^2)/x ’

‘ C1 * sqrt(4*E/m)/x

 – C2 * omega 

+ C3 * omega * sqrt(4*E/m)/x ’

LLM (GPT-4o) Judgement

Reasoning:  
“The ground truth expression contains a quadratic term 

omega^2 x^2 inside the square root, which cannot be 

expressed as a linear combination of the terms in hypothesis  B.

Answer: No

Human 

Judgement

(A): 

(B): Hypothesis as Expression 

Figure 6: Symbolic assessment in equation discovery with GPT-4o as evaluator

Given test samples (xi, yi, zi), the predicted surface values ẑi are compared against true values zi
via: where z̄ is the mean of ground-truth values. NMSE captures scale-invariant accuracy in the
predicted scalar field, and is analogous to metrics used in curve regression benchmarks.

Together, these metrics provide a balanced assessment: NMSE captures numerical prediction ac-
curacy, CD measures average geometric similarity, and HD highlights worst-case divergences. This
combination allows us to evaluate not only whether an equation fits sample points, but whether it
recovers the entire surface geometry faithfully.

A.2. SYMBOLIC ACCURACY

In addition to geometry-based metrics, we also report Symbolic Accuracy to provide a comple-
mentary view of equation discovery performance. For this, we adopt the evaluation methedology
introduced in Shojaee et al. (2025b), which leverage GPT-4o as an automated evaluator for accessing
mathematical equivalance between predicted and ground-truth hypotheses.

Traditional exact-match metrics (e.g., recovery rate, tree edit distance) are insufficient in our setting,
as many surface equations admit multiple algebraically equivalent representations. The LLM-based
evaluator provides a more flexible and semantically meaningful assessment of symbolic equivalence,
operating across diverse formats (strings, trees, and executable forms).

We follow the same preprocessing pipeline as Shojaee et al. (2025b), including normalization of
constants and removal of auxiliary infromation, and rely on GPT-4o’s judgement of equivalance.
This ensures comparability with prior symbolic regression benchmarks while complementing our
primary focus on geometric fidelity.

As shown in Figure 6, the symbolic assessment provides a complementary view of equation discov-
ery performance.
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Table 3: Implementation details of LLM-based scientific equation discovery methods.

Method Parameters
OpenEvolve(Sharma, 2025) Temperature τ = 0.8

Iterations = 1000
e = 4 parallel evaluators
Time limit T = 30s per program hypothesis,

SGA PyTorch-based implementation of model and torch.nn.Module class
Mean square error loss for data-driven feedback in agentic search
Adam optimizer in PyTorch for differential parameter optimization of equation skeletons

LaSR (Biggio et al., 2021) Iterations = 25
Cycles per iteration = 550
Populations = 10
Population size = 33
Maximum size = 30
Operators: +, ∗, −, /, ∧, exp, log, sqrt, sin, cos, tan, cosh
LLM weights: llm mutate =0.005, llm crossover =0.005, llm gen random =0.005
Top-K = 20 concepts from library
Default configuration of PySR for parameter optimization

LLM-SR (Shojaee et al., 2025a) Temperature τ = 0.8
Batch size b = 4 equation programs per prompt
e = 4 parallel evaluators
Time limit T = 30s per program hypothesis,
Memory limit M = 2GB
m = 10 islands for population diversity through search
k = 2 in-context examples per prompt
Maximum 10 parameters per equation skeleton
BFGS optimizer from Scipy for parameter optimization of equation skeletons

B. IMPLEMENTATION DETAILS

For a comprehensive evaluation, we implement three state-of-the-art LLM-guided scientific equa-
tion discovery baselines, each tested on the SURFACEBENCH datasets using three different LLM
backbones: an open-source model (Llama-3.1-8B-Instruct), a closed-source model (GPT-4o-mini),
and a proprietary model (Qwen-2.5-7B-Instruct).

B.1. PARAMETERS

Table 3 presents the key implementation details for each discovery agentic method. We adopt most
of the hyperparameters from the original implementation for these methods. We have only changed
some hyperparameters in different baselines that affect the number of LLM calls in the search frame-
work. This is to make sure we have a fair comparison across baseline discovery frameworks with
same access budget to LLMs. In our experiments, all baseline frameworks have 1k calls to LLMs
(per problem) through the discovery process and equivalent number of calls to Non-LLM method.

B.2. PROMPTS

For our experiments, we employ two types of prompts. The first set consists of generic prompts,
which provide minimal surface description and are applicable across all surface categories. The
second set comprises specialized prompts, which include detailed information about the specific
surface category, its domain, or structural characteristics. This distinction allows us to evaluate the
impact of category-specific guidance on the performance of LLM-based equation discovery.

B.2.1. GENERIC PROMPTS

B.2.1.1. LLM-SR

1. Instruction prompt.

You are a symbolic regression assistant. Your goal is to recover the symbolic equation z = f(x,y)
that describes a 3D surface from sampled data.

Input variables:
- x: horizontal coordinate
- y: vertical coordinate
Output variable:

13
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- z: height or surface value at (x,y)

Optional observations:
- Discontinuities or piecewise behaviours may be present.

Generate a closed-from symbolic expression for z = f(x,y) using common mathematical functions
(e.g. sin, log, exp, tanh, polynomials, np.where).

Explain your reasoning briefly.

2. Evaluation specification prompt.

import numpy as np

#Initialize parameters
MAX_NPARAMS = 10
params = [1.0]*MAX_NPARAMS

def evaluate(data: dict) -> float:
""" Evaluate the equation on data observations."""

# Load data observations
inputs, outputs = data[’inputs’], data[’outputs’]
X = inputs

# Optimize parameters based on data
from scipy.optimize import minimize
def loss(params):

y_pred = equation(*X, params)
return np.mean((y_pred - outputs) ** 2)

loss_partial = lambda params: loss(params)
result = minimize(loss_partial, [1.0]*MAX_NPARAMS, method=’BFGS’)

# Return evaluation score
optimized_params = result.x
loss = result.fun

if np.isnan(loss) or np.isinf(loss):
return None

else:
return -loss

3. Equation example specification as Python programming function.

### Function Examples
def equation_v0($INPUT_VAR[0], ..., $INPUT_VAR[N], params):

""" Mathematical function for {$OUTPUT_VAR_DESC}
Args:
$INPUT_VAR[0]: A numpy array representing observations of {$INPUT_VAR_DESC[0]}.
...
$INPUT_VAR[N]: A numpy array representing observations of {$INPUT_VAR_DESC[N]}.
params: Array of numeric constants or parameters to be optimized

Return: A numpy array representing {$OUTPUT_VAR_DES} as the result of applying the
mathematical function to the inputs.
"""

# Equation example 1 logic as function body
...

def equation_v1($INPUT_VAR[0], ..., $INPUT_VAR[N], params):
# Equation example 2
...

### Function to be completed
def equation($INPUT_VAR[0], ..., $INPUT_VAR[N], params):

""" Improvement version of equation_v0 and equation_v1 """

B.2.1.2. OPENEVOLVE

The following prompts are used in our implementation of OpenEvolve for scientific equation
discovery tasks, following the original implementation of OpenEvolve’s public code repository
(https://github.com/codelion/openevolve), which includes:

System prompt for task.
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You are a symbolic regression assistant. Your goal is to recover the symbolic equation z = f(x,y)
that describes a 3D surface from sampled data.

Input variables:
- x: horizontal coordinate
- y: vertical coordinate
Output variable:
- z: height or surface value at (x,y)

Optional observations:
- Discontinuities or piecewise behaviours may be present.

Generate a closed-from symbolic expression for z = f(x,y) using common mathematical functions
(e.g. sin, log, exp, tanh, polynomials, np.where).

Explain your reasoning briefly.

Evaluator prompt.
You are an expert code reviewer.

B.2.1.3. LASR

We use the default prompts from LaSR’s (?) public code repository (https://github.com/
trishullab/LibraryAugmentedSymbolicRegression.jl), which includes:

1. The LLMINIT prompt, which is used in an LLM-augmented initialization operation.

2. LLMMUTATION prompt is used to mutate an expression based on a set of concepts.

3. LLMCROSSOVER prompt is used to construct a new expression from the crossover of two
sampled expressions based on a set of concepts.

4. LLM Concept Abstraction prompt in CONCEPTABSTRACTION function, which extracts a
natural language concept from current trends of hypotheses at each iteration.

5. LLM Concept Evolution prompt in CONCEPTEVOLUTION function, which creates a new
concept that follows a set of ideas in the current library.

In the following, we provide examples of these prompts.

1. LLMINIT prompt.
<System prompt>
You are a helpful assistant that proposes a mathematical expression by following three provided
suggestions.
An expression must consist of the following variables: {{variables}}. All constants will be
represented with the symbol C. Each expression will only use these operators: {{operators}}.

<User prompt>
Suggestion 1: {{assump1}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}

Propose {{N}} expressions that would be appropriate given the suggestions. Provide short
commentary for each of your decisions. End with a JSON list that enumerates the proposed
expressions following this format:
‘‘‘json
["expr1",
"expr2",
...
"expr{{N}}"
]
‘‘‘

2. LLMMUTATION prompt.
<System prompt>
You are a helpful assistant that mutates a mathematical expression by following a few provided
suggestions. You will be given three suggestions and a single reference expression to mutate.
An expression must consist of the following variables: {{variables}}. All constants will be
represented with the symbol C. Each expression will only use these operators: {{operators}}.

<User prompt>
Suggestion 1: {{assump1}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}
Reference Expression: {{expr}}
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Propose {{N}} expressions that would be appropriate given the suggestions and references. Provide
short commentary for each of your decisions. End with a JSON list that enumerates the proposed
expressions following this format:
‘‘‘json
["expr1",
"expr2",
...
"expr{{N}}"
]
‘‘‘

3. LLMCROSSOVER prompt.

<System prompt>
You are a helpful assistant that recombines two mathematical expressions by following a few
provided suggestions. You will be given three suggestions and two reference expressions to
recombine.
An expression must consist of the following variables: {{variables}}. All constants will be
represented with the symbol C. Each expression will only use these operators: {{operators}}.

<User prompt>
Suggestion 1: {{assump1}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}
Reference Expression 1: {{expr1}}
Reference Expression 2: {{expr2}}

Propose {{N}} expressions that would be appropriate given the suggestions and references. Provide
short commentary for each of your decisions. End with a JSON list that enumerates the proposed
expressions following this format:
‘‘‘json
["expr1",
"expr2",
...
"expr{{N}}"
]
‘‘‘

4. LLM Concept Abstraction prompt.

<System prompt>
You are a helpful assistant that hypothesizes about the underlying assumptions that generated a
list of good and bad mathematical expressions in detailed ways. My ultimate goal is to discover
what assumptions generated the observed good mathematical expressions and excludes the bad
mathematical expressions. Focus more on the good expressions, their mathematical structure, and
any relation to physical concepts. Note that capital C represents an arbitrary constant

<User prompt>
Good Expression 1: {{gexpr1}}
Good Expression 2: {{gexpr2}}
Good Expression 3: {{gexpr3}}
Good Expression 4: {{gexpr4}}
Good Expression 5: {{gexpr5}}

Bad Expression 1: {{bexpr1}}
Bad Expression 2: {{bexpr2}}
Bad Expression 3: {{bexpr3}}
Bad Expression 4: {{bexpr4}}
Bad Expression 5: {{bexpr5}}

Propose {{N}} hypotheses that would be appropriate given the expressions. Provide short commentary
for each of your decisions. Do not talk about topics related to the simplicity or complexity of
the expressions. I want ideas that are unique and interesting enough to amaze the world’s best
mathematicians. End with a JSON list that enumerates the proposed hypotheses following this format:
‘‘‘json
["hyp1",
"hyp2",
...
"hyp{{N}}"
]
‘‘‘

5. LLM Evolution prompt.

<System prompt>
You are an insightful assistant skilled in logical reasoning and deduction. Your task is to
analyze a set of ideas and infer nontrivial conclusions that logically follow from them. The
ultimate goal is to uncover underlying principles or properties of the hidden expressions. Focus
on providing logical conclusions that are unique, interesting, and profound.

<User prompt>
Idea 1: {{idea1}}
Idea 2: {{idea2}}
Idea 3: {{idea3}}
Idea 4: {{idea4}}
Idea 5: {{idea5}}
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Based on these ideas, deduce {{N}} logical conclusions or hypotheses that directly follow from
them. Provide a brief explanation for each conclusion, highlighting the logical connections
between the ideas. Avoid discussing topics related to the simplicity or complexity of the
expressions. Conclude with a JSON list that enumerates the proposed conclusions in the following
format:
‘‘‘json
["Conclusion 1",
"Conclusion 2",
...
"Conclusion {{N}}"
]
‘‘‘
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B.2.1.4. SGA

The following prompts are used in our implementation of SGA ? for scientific equation discovery
tasks, following the original implementation SGA’s public code repository (https://github.
com/PingchuanMa/SGA), which includes:

System prompt for task.

You are a symbolic regression assistant. Your goal is to recover the symbolic equation z = f(x,y)
that describes a 3D surface from sampled data.

Input variables:
- x: horizontal coordinate
- y: vertical coordinate
Output variable:
- z: height or surface value at (x,y)

Optional observations:
- Discontinuities or piecewise behaviours may be present.

Generate a closed-from symbolic expression for z = f(x,y) using common mathematical functions
(e.g. sin, log, exp, tanh, polynomials, np.where).

Explain your reasoning briefly.

Code formatting prompt for scientific discovery task.

### PyTorch Tips
1. When working with tensors, always use PyTorch’s operators (such as ‘torch.exp‘, ‘torch.cos‘,
‘torch.sqrt‘, ...) to ensure compatibility and optimal performance.
2. In PyTorch, operator input arguments must be tensors, not floats.

### Code Requirements
1. The only library allowed is PyTorch. Follow the format provided by the user examples.
2. Annotate the size of the tensor as comment after each tensor operation. For example, # (B, 3,
3).
3. Separate the code into parameters that can be tuned with differentiable optimization and the
symbolic expression represented by PyTorch code.
5. The proposed code must strictly follow the structure and function signatures below:

‘‘‘python
import torch
import torch.nn as nn

class SymbolicEquation(nn.Module):

def __init__(self, {$PARAM_INPUTS}):
"""
Define trainable continuous parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
{$PARAM_DESCRIPTION}

"""
super().__init__()
{$PARAM_INIT}

def forward(self, {$INPUT_VARIABLES}) -> torch.Tensor:
{$FORWARD_FUNCTION_DESCRIPTION$}

‘‘‘

### Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the
feedback. Think about why the results from previous iterations mismatched with the ground truth.
Do not give advice about how to optimize. Focus on the formulation of the scientific equation.
Start this section with "### Analysis". Analyze all iterations individually, and start the
subsection for each iteration with "#### Iteration N", where N stands for the index. Remember to
analyze every iteration in the history.

2. Think step-by-step what you need to do in this iteration. Think about what is needed to improve
performance. If the analysis suggests specific functional forms or constraints, think about how
these will be incorporated into the symbolic equation. Think about how to separate your algorithm
into a continuous parameter part and a symbolic expression model part. Describe your plan in
pseudo-code, written out in great detail. Remember to update the default values of the trainable
parameters based on previous optimizations. Start this section with "### Step-by-Step Plan".

3. Output the code in a single code block "‘‘‘python ... ‘‘‘" with detailed comments in the code
block. Do not add any trailing comments before or after the code block. Start this section with
"### Code".

Context prompt for each scientific problem.

18

https://github.com/PingchuanMa/SGA
https://github.com/PingchuanMa/SGA


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

### Context

The objective is to construct a mathematical expression that accurately maps input variables to a
target output based on a provided dataset. The task involves filling in a code block to define a
symbolic expression or model that minimizes the difference between predicted and ground-truth
outputs. The code block defines a class with two functions: one for parameters within the
expression and another for generating or modifying the symbolic structure of the expression.
Feedback is provided in the form of metrics measuring the error between the model’s predictions
and the ground-truth values, as well as guidance on structural improvements to the symbolic
expression.

The expression represents {$OUTPUT_VAR_DESC}, given data on {$INPUTS_DESC}.
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8.1 SURFACEBENCH EQUATIONS FOR EACH SCIENTIFIC CATEGORIES

Table 4: Benchmark equations.

Category ID Equations

Non-Canonical 3D
Geometric Surfaces

NCGS1
sin(x2 + y2)

1 + x2 + y2

NCGS2
x2 − y2

1 + x2 + y2

NCGS3 atan2(x, y) exp
(
− (x2 + y2)

)
NCGS4 tanh

(
sin(xy)

)
NCGS5 log

(
1 + x2 + y2

)
sin(x− y)

NCGS6 exp
(
sin(x2 + y2)

)
NCGS7

cos(x2 + y)

1 + |xy|
NCGS8 sinh(xy) exp(−y2)

NCGS9
sin

(√
x2 + y2

)
log(1 + x2)

NCGS10 x exp
(
− x2 − y2

)
cos y

NCGS11
sin(xy)

1 + x2 + y2

Piecewise Regime
Surfaces

PRS1 x2 if x < y else y2

PRS2 sin(x) if x < 0 else exp(y)

PRS3 xy if xy > 0 else − xy

PRS4 x2 + y2 if x < y else x2 − y2

PRS5 cos(x) if |x| < 1 else exp(−y2)

PRS6 x3 if y > 0 else − y3

PRS7 |x− y|+ sin(x)

PRS8 sin(x+ y) if x2 + y2 < 1 else 0

PRS9 tanh(x) if x > y else cos(y)

PRS10 xy if |x−y| < 0.5 else sin(x−y)

Symbolic-Numeric
Composite Surfaces

SNCS1 sin(x) + exp(−y2)

SNCS2 tanh(xy) + x2

SNCS3 exp(−x2 − y2) + cos(3x)

SNCS4 α sin(βx) + γ log(1 + y2)

SNCS5 sinh(x)− tanh(y)

SNCS6 sin(x2 + y2) exp(−
√
x2 + y2)

Continued on next page
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Table 4 - continued from previous page

Category Equation Real-world Domain

SNCS7 tanh(x) log(1 + y2)

SNCS8 cos(xy) + exp(−x2 + y)

SNCS9 sin(2x) + α exp(−y2)

SNCS10 β cos(x) + γ sin(y2)

Hybrid Multi-Modal
Symbolic Surfaces

HMMSS1 x2 if x < 0 else sin(y)

HMMSS2 log
(
1 + |x|

)
if y <

0 else exp(−y2)

HMMSS3 x2 + sin(y) if xy >
0 else

(
− x2 − cos y

)
HMMSS4 tanh(x− y) if x > y else 0

HMMSS5 |xy|+ sin(x− y)

HMMSS6 x2 if y > 0 else cos(y2)

HMMSS7 sin(xy) if x2 + y2 <
1 else log(1 + x2)

HMMSS8 tanh(x+ y) if xy <
0 else sin(x− y)

HMMSS9 x if x > y else y2 + sin(x)

Procedural & Fractal
Surfaces

PFS1 sin(5x) cos(5y)

PFS2 cos(x2y2)+0.2 sin
(
5
√
|x|+ |y|

)
PFS3 sin(xy) + 0.5 sin(3x+ 5y)

PFS4 e−0.1(x2+y2) sin(xy)

PFS5 sin(x3 + y3)

PFS6 xy cos
(√

x2 + y2
)

PFS7 sin(2xx) cos(2yy)

PFS8 e−|x−y| sin
(
3(x+ y)

)
PFS9

4∑
i=1

sin(2ix)

i

PFS10 tanh(xy) cos
(√

x2 + y2
)

Bio-Inspired
Morphological Surfaces

BIMS1 sin
(√

x2 + y2
)

BIMS2 exp(−x2 − y2) cos(3x)

BIMS3 tanh(x+ y) sin(xy)

BIMS4 log(1 + x2 + y2) cos(xy)

Continued on next page
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Table 4 - continued from previous page

Category Equation Real-world Domain

BIMS5 x2 + y2 − sin(2x+ 2y)

BIMS6 cos(2x) cos(2y)

BIMS7
sin(x2 + y2)

1 + x2 + y2

BIMS8 tanh(x2 − y2)

BIMS9 exp
(
− |xy|

)
sin(x+ y)

BIMS10 cos(xy) + 0.1 (x2 + y2)

Complex Composite
Surfaces

CSS1 log
(
1 + x2 + y2

)
cos(x− y)

CSS2
sin(x) + cos(y)

1 + x2 + y2

CSS3 e−0.1|xy| tanh(x+ y)

CSS4
x2y − y2

1 + x2

CSS5
√
1 + x2 + y2 sin(xy)

CSS6
ex + e−y

1 + |x− y|

CSS7

{
x2 + y2, if x+ y < 0,

sin(x+ y), if x+ y ≥ 0

CSS8
cos

(√
x2 + y2

)
1 + e−xy

CSS9 sinh(x2 − y2) e−0.1(x+y)2

CSS10 arctan(xy) + 0.2 e−x2−y2

Tensor Field Surfaces TFS1 x2 + y2

TFS2 sin(x) cos(y)

TFS3 exp(−x2 − y2)

TFS4 x y

TFS5 tanh(x+ y)

TFS6 cos(x2 + y2)

TFS7 log(1 + x2 + y2)

TFS8 x2 − y2

TFS9 sin(x y)

TFS10 exp
(
− |x− y|

)
Discrete Symbolic Grid
Surfaces

DSGS1 sin(i) + cos(j)

DSGS2 (−1)i (−1)j

Continued on next page
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Table 4 - continued from previous page

Category Equation Real-world Domain

DSGS3 mod(i, 3) + mod(j, 2)

DSGS4
⌊√

i2 + j2
⌋

DSGS5 sin(ij) + i− j

DSGS6 cos(i+ j)

DSGS7 mod(i2 + j2, 5)

DSGS8 tanh(i− j)

DSGS9
⌊
sin(i2 + j2)

⌋
DSGS10 mod(ij, 4)

Non-Linear Dynamical
System Surfaces

NLDSS1 cosh
(
0.1(x− y)

)
− cos

(
0.5(x+

y)
)

NLDSS2 e−0.05(x2+y2) (x2 − y) cos(y)

NLDSS3 log(1 + x2) sin(y)− log(1 +
y2) cos(x)

NLDSS4
√
1 + 0.1(x2 + y2) sin

(
0.5(x−

y)
)

NLDSS5 tanh
(
0.2(x2 − y2)

)
NLDSS6 0.3(xy)− 0.2 sin(x+

y) e−0.05(x2+y2)

NLDSS7
x2 sin(y)

1 + 0.2y2

NLDSS8 sinh(0.2x) e−0.1y2

NLDSS9 arctan(xy)− 0.3 sin(x− y)

Stochastic Process
Surfaces

SPS1 3 e−0.05(x2+y2) cos(0.2xy)+0.1x

SPS2 2.2 sin(0.3x+0.2y)
(
1−e−0.1x2)

SPS3 1.8 cos(0.4xy) e−0.1x2

+ 0.3y2

SPS4 2 sin(0.7x) e−0.05y2

+ 0.5xy

SPS5 3 (1− e−0.15x2

) cos(0.3y) + 0.2x

SPS6 2.5 tanh(0.2xy) + 0.4 sin(0.5x+
y)

SPS7 1.5e−0.1(x2+y2) sin(0.6x) + 0.3y

SPS8 4 cos(0.4x)
(
1−e−0.05y2)

+0.1x2

SPS9 2x2e−0.2|y| + 1.5 sin(0.3xy)

SPS10 3 sin(0.5x) e−0.1y2

+0.2xy cos(y)

Continued on next page
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Table 4 - continued from previous page

Category Equation Real-world Domain

Quantum Inspired
Surfaces

QIS1 e−0.8(x2+y2)

QIS2 x2 e−(x2+y2)

QIS3 (x2 + y2) e−0.9(x2+y2)

QIS4 e−0.4(x2+y2)
(
1.1 + cos(5x)

)
QIS5

(
cos(1.5x) cos(1.5y)

)2
QIS6 sin2

(
3 arctan( yx )

)
e−

√
x2+y2

QIS7 1− tanh(x2 + y2 − 4)

QIS8 (x2 − y2)2 e−0.7(x2+y2)

QIS9 sin2(x+ y) cos2(x− y)

QIS10 1+x2

1+(x2+y2)2

Surrogate-Distilled
Symbolic Approximations

SDSA1 x3 + y3 − 3xy + sin(x)

SDSA2 log
(
1 + x2 + y2

)
− tanh(x− y)

SDSA3 e−x2−y2

sin(2x+ y)

SDSA4 arctan(x) + arctan(y)

SDSA5 sin(x) cos(y) + 0.1xy

SDSA6 3 sin(0.4x) e−0.05y2

+ 0.2xy

SDSA7 2 sin(x+ y) e−0.5x2

+ y2

SDSA8 tanh(xy) + 0.5 sin(0.5x) y

SDSA9 1.5x2 cos(0.2y) + 0.3 e−0.1x2

Algebraic Manifold of
Higher Degree

AMHD1 x3 + y3 + z3 − 3xyz = 0

AMHD2 x3y + y3z + z3x = 0

AMHD3 x5 + y5 + z5 − xyz = 0

AMHD4 x4y − z6 + sin(xz) = 1

AMHD5 z5 + x3y4 − ey = 0

AMHD6 x6 − y4z2 + tan(z) = 2

AMHD7 z3 + x4y3 − cos(x) = −1

AMHD8 x3y2 − z5 + sin(yz) = 0

AMHD9 x2y3z − z4 + sin(x) = −1

AMHD10 z3 + x5y − ez + xy2 = 0

AMHD11 x4 − y2z5 + tan(z) = 2

Continued on next page
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Table 4 - continued from previous page

Category Equation Real-world Domain

AMHD12 z5 + x3y4 − cos(y) = 1

AMHD13 x6y2 − z3 + ex = 0

AMHD14 z4 − x4y + sin(xz) = −2

AMHD15 x3 + y4z2 − ey + cos(x) = 1

AMHD16 x5y − z4 + sin(yz) = 2

AMHD17 z3 − x3y + ez + 2xy = −1

AMHD18 x4 + y5z − cos(xz) = 0

AMHD19 x6 − y3z2 + tan(z) = 2

AMHD20 x2y2z − z5 + sin(xz) = 1

AMHD21 z3 + x4y − 2ez + xy2 = 0

AMHD22 x5 − y2z3 + cos(xy) = −1

AMHD23 x3 + y4z − tan(x) + 1 = 0

AMHD24 z5 + x3y2 − 2z2x+ sin(y) = 1

Transformed Coordinate
Surfaces

TCS1 (sin(u2 +
v) e−v, cos(uv) log(1 +

|v|), sin(uv2)
1+u2 )

TCS2 (cosh(u+
v2), sinh(uv), tanh(u2 −
v) cos v)

TCS3 (eu−v2

sinu, u2 cos v, log(1 +
u2 + v2))

TCS4 (sin(u2) v, cos(v2)u, u e−v)

TCS5 (u3 − v2, cos(uv2), tanh(u−
v) log(1 + u2))

TCS6 ((u2 + v2) sinu, (u2 +

v2) cos v,
√
u2 + v2 cos

√
u2 + v2)

TCS7 (log(1 + u2) cos v, sin(u+
v2), u2 tanh v)

TCS8 (tanh(u2) sin v, u e−v2

, cos(uv2)
1+u2 )

TCS9 (cos(u2 + v) eu/5, sin(v2 −
u), u log(1 + v2) tanhu)

TCS10 (u cos(v2), u sin v, e(u−v2)/5)

High-Dimensional
Parametric Surfaces

HDPS1 (sinh(u/5), cosh(uv/10), sin(u+
v) log(1 + v2))

HDPS2 (u2 cos v, v2 sinu, tanh(uv))

Continued on next page
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Table 4 - continued from previous page

Category Equation Real-world Domain

HDPS3 (e(u
2−v)/10 sin v, cos(uv), u2 +

v2)

HDPS4 (tanh(u+v2), sin(u2v), cos(u−
v2) log(1 + u2))

HDPS5 (u cos(v2), u sin v, sin(u2 + v))

HDPS6 (sinh(uv/5), cos(u−
v2), e−u2/10 tanh v)

HDPS7 (u sin(v2), v cosu, log(1 + u2 +
v2) sinu)

HDPS8 (tanh(u2 +

v) cos v, sin(uv2), u2e−v/5)

HDPS9 (e(u−v)/5 sin(u2), cos(v2 −
u), u tanh(v2))

HDPS10 (sin(u
2v
10 ), v cosu, log(1 +

u2) sinh(v/5))

Topologically Rich
Parametric Surfaces

TRPS1 (log(1 + u2) cos(v2), sin(u+

v), u ev
2/10)

TRPS2 (u
3 sin v
100 , cos(uv2), tanh(u−

v2))

TRPS3 (sin
(

u2

v2+1

)
, e−v/5 cosu,

TRPS4 ((5 + v cos(u/2)) sinu, (5 +
v cos(u/2)) cosu, v sin(u/2))

TRPS5 ((5 + sin(uv)) cosu sin v, (5 +
sin(uv)) sinu sin v, (5 +
sin(uv)) cos v)

TRPS6 (cosu sin v, sinu sin v, cos v +
u
2 )

TRPS7 (u, v, sin
√
u2 + v2 + cosu sin v

5 )

TRPS8 (cosu (5 + sin 3v), sinu (5 +
sin 3v), cos(3v) + u/2)

TRPS9 (sin(2u) cos2 v, cos(2u) sin v, sinu cos v)

TRPS10 (sinh(u/5) cos v, cosh(u/5) sin v, tanh(v) cosu)
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8.2 GROUND TRUTH V PREDICTED PROGRAM/EQUATION

Predicted: OpenEvolve

def func(x, params):

"""

Calculates the model output using a linear combination of input

variables↪→

or a constant value if no input variables. Operates on a matrix

of samples.↪→

"""

x0 = x[:, 0]

x1 = x[:, 1]

x0_squared = x0 ** 2

x1_squared = x1 ** 2

x0_x1 = x0 * x1

# Combine terms for better readability and potential numerical

stability↪→

x0_x1_squared = x0_x1 * x0_x1

result = (params[0] + # Constant term

params[1] * x0 +

params[2] * x1 +

params[3] * x0_squared +

params[4] * x1_squared +

params[5] * x0_x1 +

params[6] * x0_x1 * x0 + # x^2 * y

params[7] * x0_x1 * x1 + # x * y^2

params[8] * x0_x1_squared * x1 + # Combined cubic

term↪→

params[9] * x0_x1_squared) # Keeping y^3

return result

Figure 9
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