
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SURFACEBENCH: CAN SELF-EVOLVING LLMS FIND
THE EQUATIONS OF 3D SCIENTIFIC SURFACES?

Anonymous authors
Paper under double-blind review

ABSTRACT

Equation discovery from data is a core challenge in machine learning for sci-
ence, requiring the recovery of concise symbolic expressions that govern complex
physical and geometric phenomena. Recent approaches with large language mod-
els (LLMs) show promise in symbolic regression, but their success often hinges
on memorized formulas or overly simplified functional forms. Existing bench-
marks exacerbate this limitation: they focus on scalar functions, ignore domain
grounding, and rely on brittle string-matching metrics that fail to capture scientific
equivalence. We introduce SURFACEBENCH, the first comprehensive benchmark
for symbolic surface discovery. SURFACEBENCH comprises 199 surfaces across
18 categories of symbolic complexity, spanning explicit, implicit, and paramet-
ric forms. Each task includes ground-truth equations, variable semantics, and
synthetically sampled 3D data. Many surfaces are novel or synthetically con-
structed to resist memorization, yet remain grounded in scientific domains such
as fluid dynamics, robotics, electromagnetics, and geometry. To evaluate dis-
covery quality, we pair symbolic checks with geometry-aware metrics (Cham-
fer, Hausdorff, Earth Mover’s), ensuring that models are judged by the structures
they reproduce rather than their algebraic syntax. Our experiments reveal that
state-of-the-art frameworks, while occasionally successful on specific families,
fail to generalize consistently across all representations. SURFACEBENCH thus
establishes a challenging and diagnostic testbed for equation discovery research,
enabling principled progress in symbolic generalization, data-driven induction,
and geometry-aware reasoning with LLMs. We release the code at the link:
https://anonymous.4open.science/r/surfacebench-183B

1 INTRODUCTION

Recovering the governing equations of complex 3D surfaces from sampled data is a foundational
challenge across science, engineering, and design. In real-world applications, ranging from medical
imaging and materials science to robotics and aerospace, surfaces are often observed only as dense
point clouds or measurement grids, without access to their underlying generative equations. Sym-
bolic representations offer interpretable and compact descriptions of geometric structures, capturing
physical, biological, or structural laws that can be generalized, simulated, and optimized. Yet, de-
spite progress in scientific modeling and equation discovery, symbolic recovery of surface equations
has remained underexplored due to challenges such as multi-output coupling, implicit constraints,
and nonlinear transformations.

Surfaces are not abstract constructs but central to high-stakes domains where precise geometry de-
termines outcomes. In physics and engineering, they define optical wavefronts, fracture boundaries,
and aerodynamic flow separation. In biology and medicine, they describe cortical folds, arterial
structures, and protein energy landscapes. In robotics and navigation, they capture terrains, obsta-
cle boundaries, and safe operating zones. Across these fields, surface equations are not aesthetic
artifacts—they are functional tools for analysis, optimization, and design.

Crucially, surfaces exhibit properties that scalar functions cannot capture: (i) Multi-output coupling:
Physical constraints tie multiple observables together, e.g., toroidal confinement surfaces in plasma
physics enforce algebraic identities across (x, y, z) that cannot be modeled independently; (ii) La-
tent coordinate systems: Many laws are compact only in reparameterized coordinates (e.g., spherical

1

https://anonymous.4open.science/r/surfacebench-183B

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the 18 surface categories in SurfaceBench. The central pie chart shows the distribution
of 199 benchmark surfaces across categories, with percentages indicating their relative proportions. Surround-
ing the chart are representative 3D renderings and canonical equations for each category, including parametric
(e.g., torus), implicit (e.g., sphere), symbolic-numeric hybrids, fractal/procedural forms, bio-inspired surfaces,
and higher-order analytic composites. Together, these categories span diverse structural complexities, func-
tional forms, and scientific motivations, highlighting the breadth and richness of SurfaceBench as a diagnostic
benchmark for symbolic surface discovery.

charts in planetary motion or angular systems in molecular orbitals), requiring inference of hidden
variables for interpretability; (iii) Topological and geometric richness: Real-world structures ex-
hibit holes, folds, discontinuities, and symmetries, as in protein folding, crack propagation, or fluid
vortices (phenomena beyond simple scalar relations); (iv) Invariant equivalence classes: Distinct
symbolic forms, such as implicit vs. parametric equations of a sphere, can yield the same geometry.
Evaluating at the surface level thus mirrors how scientific laws are judged (i.e., by the structures
they reproduce, not merely by algebraic syntax). These properties make symbolic surface discovery
both more demanding and more realistic than traditional symbolic regression benchmarks, which
focus on scalar outputs (e.g., y = f(x)). While such benchmarks have been valuable, they do not
reflect the multivariate, structurally constrained, and geometrically meaningful equations required
for real-world science and engineering. Bridging this gap demands benchmarks that explicitly test
reasoning, compositionality, and invariance handling in recovering surface equations.

To address this need and create a more challenging evaluation setting for recent LLM-based equation
discovery frameworks (Shojaee et al., 2025b), we introduce SURFACEBENCH, a benchmark suite
for symbolic surface discovery in scenarios where memorization fails but structure-aware reasoning
is essential. SURFACEBENCH is scientifically grounded, drawing from forms in optics, mechanics,
biology, and geometry, while deliberately altering parameterizations to resist trivial recall. Unlike
scalar benchmarks, it encodes multi-output coupling, latent coordinate systems, and symbolic non-
uniqueness, providing a richer and more realistic testbed. Ultimately, SURFACEBENCH functions
as a diagnostic tool: solving it requires reasoning about invariances, compositional structures, and
geometry-aware consistency—the core capabilities needed for interpretable scientific AI. Spanning
18 diverse categories of surfaces, from non-canonical algebraic forms to fractals, symbolic–numeric
hybrids, and topologically rich manifolds, it captures both synthetic complexity and real-world rel-
evance (see Figure 1).

The primary contributions of this work are as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• First benchmark for symbolic surface discovery. We introduce the first systematic benchmark
of 199 explicit, implicit, and parametric surfaces across 18 categories, establishing a new setting
for equation discovery beyond scalar functions.

• Geometry-aware evaluation protocol. We design evaluation metrics (Chamfer, Hausdorff, Earth
Mover’s) that assess equivalence at the surface level, moving beyond brittle string/AST compar-
isons and aligning with how scientists judge analytic models.

• Stress-testing reasoning over memorization. By including transformed, constraint-driven, and
non-canonical surface families, SURFACEBENCH explicitly distinguishes true structural reasoning
from rote equation recall, enabling rigorous diagnosis of LLM generalization.

• Scientifically motivated and interpretable. Each surface family is derived from real scientific
phenomena in physics, materials science, biology, and engineering, ensuring that benchmark tasks
are not only challenging but also grounded, interpretable, and practically relevant.

2 SURFACEBENCH: DESIGN AND MOTIVATION

Symbolic discovery of scientific surfaces introduces challenges that extend well beyond conven-
tional symbolic regression. Unlike benchmarks focused on recovering single-output functions
y = f(x), surface equations demand reasoning over multivariate structure, hidden parameteriza-
tions, and representational non-uniqueness. SURFACEBENCH is explicitly designed to foreground
these challenges, serving as a diagnostic testbed that separates rote memorization from genuine
symbolic reasoning.

2.1 MULTI-OUTPUT COUPLING

Surface equations are inherently multivariate. In parametric form, latent coordinates (u, v) map
into coupled outputs (x, y, z), where components share terms and satisfy algebraic constraints.
For example, in a torus, (x, y, z) = ((R + r cos v) cosu, (R + r cos v) sinu, r sin v) satisfies
x2 + y2 = (R + r cos v)2. Successful recovery thus requires identifying the underlying coupled
mechanism rather than treating outputs as independent regressions. This enforces structural consis-
tency, compositional reuse of symbolic components, and robustness against trivial memorization.

2.2 LATENT COORDINATE SYSTEMS

Many scientific surfaces admit compact laws only in reparameterized coordinates. For instance,
spheres or molecular orbitals are concise in spherical harmonics or angular charts but appear al-
gebraically entangled in Cartesian space. In practice, observations are provided as samples in R3,
requiring inference of hidden variables that simplify the representation. Discovery therefore en-
tails uncovering usable coordinate charts and respecting reparameterization invariances, rather than
piecemeal fitting of local composites.

2.3 SYMBOLIC NON-UNIQUENESS

Multiple algebraically distinct expressions may describe the same surface. A sphere can be ex-
pressed implicitly as x2+y2+z2 = R2 or parametrically as (R sinϕ cos θ, R sinϕ sin θ, R cosϕ).
Trigonometric identities, affine transformations, and coordinate reparameterizations further multiply
equivalent forms. Conventional evaluation via string or AST matching penalizes these valid alter-
natives, while pointwise regression error rewards overfit surrogates that interpolate samples without
capturing structure. SURFACEBENCH addresses this by evaluating at the geometry level, treating
hypotheses as equivalent if they induce the same surface up to admissible transformations.

2.4 GEOMETRY-AWARE EVALUATION

To operationalize geometry-level equivalence, SURFACEBENCH renders candidate and ground-truth
surfaces, samples them as point clouds, aligns them under similarity transforms, and computes
object-space distances. We adopt Chamfer Distance (capturing average fidelity) and Hausdorff
Distance (capturing worst-case deviation). These measures respect symbolic non-uniqueness and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

emphasize the true scientific objective: discovering laws that reproduce geometric structure, not
merely equations that minimize sample error.

2.5 EXPRESSIVITY AND RICHNESS

Finally, SURFACEBENCH probes aspects of reasoning that scalar benchmarks cannot. Surfaces may
exhibit folds, holes, discontinuities, or fractal oscillations, requiring expressive forms that com-
bine periodic, conditional, or compositional elements. Categories include non-canonical algebraic
surfaces, fractal and procedural manifolds, symbolic–numeric hybrids, and topologically rich para-
metric embeddings. This diversity ensures that models must reason about symmetry, separability,
and invariance, rather than memorize canonical formulas. In doing so, SURFACEBENCH provides a
rigorous and scientifically grounded setting for advancing symbolic discovery.

2.6 PROBLEM SETUP

We introduce SurfaceBench, a benchmark designed to evaluate LLM-based methods for data-
driven symbolic discovery of 3D surfaces. As shown in Figure 3, a surface discovery task is
defined as follows: given a dataset D of sampled points, the objective is to recover a sym-
bolic hypothesis h that compactly represents the underlying surface with both high geometric fi-
delity and scientific plausibility. The hypothesis h may take one of three standard forms: an
explicit function z = f(x, y), an implicit relation g(x, y, z) = 0, or a parametric mapping
r(u, v) = (x(u, v), y(u, v), z(u, v)). The discovery process mirrors how human scientists itera-
tively refine models: LLMs generate candidate forms, evaluate them against data- and geometry-
based feedback, and progressively refine hypotheses.

Formal Objective. Given D = {(xi, yi, zi)}Ni=1 (or parametric samples {(uj , vj , rj)}, or signed-
distance/occupancy evaluations), together with context C specifying domains and evaluation rules,
the goal is to find a symbolic h such that

h⋆ = argmin
h∈T

Lgeo(D;h, C) + λLsimp(h),

where Lgeo measures geometric fidelity (e.g., Chamfer/Hausdorff distance, level-set consistency),
and Lsimp encourages interpretability via symbolic parsimony (e.g., operator count or expression
depth). By spanning explicit, implicit, and parametric hypotheses—and evaluating across both in-
domain and out-of-distribution regimes—SurfaceBench stresses challenges absent in scalar equa-
tion discovery, such as multi-output coupling, topological variation, and representational non-
uniqueness.

Dataset Construction. The benchmark surfaces are curated through a multi-stage process:

1. Base sampling: We manually select seed surfaces from diverse scientific and mathematical do-
mains (analytic geometry, implicit physical models, and parametric shapes from graphics).

2. Compositional rewrites: We apply symbolic transformations such as nesting trigonometric/expo-
nential functions, coordinate reparameterizations (e.g., polar or affine transforms), and controlled
combinations of functional components Shojaee et al. (2025b), yielding families of related but
distinct variants.

3. Filtering and validation: Each candidate surface is manually visualized, with discontinuous,
degenerate, or unnecessarily convoluted examples discarded. The retained corpus contains only
smooth, interpretable, and scientifically meaningful surfaces.

This procedure ensures both variety and quality: surfaces are either drawn directly from scientific
exemplars or generated through controlled perturbations that preserve interpretability.

Representation Categories. Surfaces in SURFACEBENCH are organized by their analytic repre-
sentation:

• Explicit: functions z = f(x, y), i.e., height fields over the xy-plane.
• Implicit: zero-level sets of g(x, y, z) = 0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Parametric: vector maps r(u, v) = (x(u, v), y(u, v), z(u, v)) with two parameters.

These forms correspond to canonical surface definitions in geometry. Notably, explicit surfaces are
special cases of implicit ones (e.g., g(x, y, z) = f(x, y)−z). By requiring models to handle all three
conventions, SurfaceBench evaluates not only symbolic regression ability but also representation
robustness.

Figure 2: Iterative discovery of a parabolic saddle surface. nMSE decreases as the model progresses from flat to
curved surfaces, then to parabolic forms, and finally converges to the true saddle, with intermediate candidates
showing minor deformations.

3 EXPERIMENTAL SETUP

3.1 BENCHMARK METHODS

We evaluate SURFACEBENCH using a representative set of symbolic regression frameworks that
capture both classical and LLM-driven approaches. Together, these baselines span evolutionary
search, neural guidance, and language-model–based discovery.

LaSR (Grayeli et al., 2024). LaSR is a neural-guided symbolic regression system that combines
probabilistic grammars with learned search heuristics. It produces closed-form expressions directly
and has demonstrated success on large-scale scalar regression tasks. For SURFACEBENCH, we adapt
LaSR to handle multi-output targets and implicit formulations.

SGA (Holland, 1975; Koza, 1992). The Simple Genetic Algorithm (SGA) is a classical ge-
netic programming method that evolves symbolic expressions through mutation and recombination.
While computationally expensive and prone to expression bloat, it provides a reference point for
how traditional search-based methods perform on symbolic surface discovery.

LLM-SR (Shojaee et al., 2025a). LLM-SR leverages pretrained large language models to gen-
erate symbolic programs conditioned on sampled data. Candidate equations are produced through
prompting and then ranked by their fit to observed samples, offering a direct measure of how well
LLM priors alone can recover surface laws.

OpenEvolve (Sharma, 2025). OpenEvolve is an open-ended discovery framework that couples
LLM-based proposal generation with evolutionary refinement. By iteratively updating a pool of
candidate programs based on novelty and fitness, it provides a stronger exploratory baseline than
direct prompting.

PySR (Cranmer, 2023). PySR is a widely used evolutionary symbolic regression library in sci-
entific applications. It searches over mathematical expression trees using mutation, crossover, and
simplification rules. As a mature and well-optimized non-LLM baseline, PySR provides an impor-
tant point of comparison for evaluating LLM-based methods.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Overview of the SurfaceBench evaluation pipeline. Given sampled 3D surface data, self-evolving
LLMs recover candidate symbolic equations. Predicted expressions are compared to ground truth using both
regression-style errors (NMSE), symbolic equivalence checks, and geometry-aware distance metrics: Chamfer
and Hausdorff.

3.2 EVALUATION METRICS

Prior equation discovery benchmarks typically rely on scalar regression metrics (e.g., normalized
mean squared error on y = f(x)) or exact string/AST matches between candidate and ground-
truth formulas. Such measures are insufficient for surfaces, where multiple algebraically distinct
forms (explicit, implicit, parametric) may describe the same geometry. To address this, SUR-
FACEBENCH introduces a domain-specific evaluation suite that combines geometry-aware dis-
tances, symbolic equivalence, and scale-invariant regression error.

Geometry-aware metrics. Candidate and ground-truth surfaces are rendered as point clouds and
aligned under a similarity transform. We adopt two standard object-space distances:

Chamfer(P,Q) =
1

|P |
∑
p∈P

min
q∈Q

∥p− q∥22 +
1

|Q|
∑
q∈Q

min
p∈P

∥q − p∥22, (1)

Hausdorff(P,Q) = max
{
sup
p∈P

min
q∈Q

∥p− q∥2, sup
q∈Q

min
p∈P

∥q − p∥2
}
. (2)

Chamfer Distance (CD) captures average geometric fidelity, while Hausdorff Distance (HD) high-
lights worst-case deviations. These metrics assess equivalence at the surface level, avoiding penalties
for symbolic non-uniqueness.

Symbolic accuracy. Following LLM-SRBench Shojaee et al. (2025b), we measure Symbolic Ac-
curacy using an LLM-based equivalence check that incorporates algebraic simplifications and pa-
rameter rescalings. This provides a principled but flexible way to judge whether the recovered
equation is symbolically equivalent to the ground truth.

Normalized Mean Squared Error (NMSE). To maintain comparability with scalar-function
benchmarks, we include NMSE as a regression-style measure of pointwise fit:

NMSE =

∑Ntest

i=1 (ŷi − yi)
2∑Ntest

i=1 (yi − ȳ)2
.

We also report a threshold-based accuracy score:

Accτ = 1

(
max

1≤i≤Ntest

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ ≤ τ

)
.

Together, these metrics capture complementary aspects of performance: NMSE links to prior sym-
bolic regression practice, Symbolic Accuracy measures algebraic recovery, and Chamfer/Hausdorff
distances ensure that discovered equations faithfully reproduce the intended scientific surfaces.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 RESULTS

Table 1: Comparison of LLM-based equation discovery methods on SURFACEBENCH. Performance is reported
across explicit, implicit, and parametric forms using symbolic accuracy (SA), normalized mean squared error
(NMSE), Chamfer distance, and Hausdorff distance. SGA, LaSR, and LLM-SR cannot handle parametric
equations by design, which is indicated with dashes. While LLM-based methods achieve partial success on
explicit and implicit surfaces, they consistently lag behind the PySR baseline, highlighting the difficulty of
generalizing to structurally complex equations.

Explicit Implicit Parametric

Base LLM SA ↑ NMSE ↓ Chamfer ↓ Hausdorff ↓ SA ↑ NMSE ↓ Chamfer ↓ Hausdorff ↓ SA ↑ NMSE ↓ Chamfer ↓ Hausdorff ↓

SGA

GPT4o-mini 0.20 2.86 8.26 16.53 0.16 1.38 2.96 6.72 – – – –

Llama-3.1-8B 0.10 3.73 9.82 18.48 0.12 1.43 3.01 7.81 – – – –

Qwen-7B 0.10 4.29 5.19 13.25 0.10 1.57 3.05 8.26 – – – –

LaSR

GPT4o-mini 0.35 2.87 4.30 11.00 0.06 3.48 5.04 10.07 – – – –

Llama-3.1-8B 0.30 3.21 3.68 14.21 0.10 2.81 4.67 9.78 – – – –

Qwen-7B 0.30 2.96 4.18 12.84 0.06 3.08 4.92 10.06 – – – –

LLM-SR

GPT4o-mini 0.30 2.57 7.08 24.17 0.10 1.54 2.20 5.25 – – – –

Llama-3.1-8B 0.20 2.62 7.44 29.29 0.13 1.74 3.01 9.05 – – – –

Qwen-7B 0.25 2.38 6.99 28.83 0.02 1.61 1.51 10.6 – – – –

OpenEvolve

GPT4o-mini 0.50 0.98 2.69 4.88 0.07 0.71 1.85 4.96 0.80 0.30 1.22 2.01

Llama-3.1-8B 0.40 0.99 3.17 5.08 0.02 0.99 2.96 5.02 0.65 0.32 1.62 2.57

Qwen-7B 0.40 1.25 3.23 5.82 0.04 0.92 2.35 5.92 0.75 0.32 1.63 2.06

PySR

Non-LLM 0.65 0.0011 0.13 0.41 0.10 0.6138 2.52 5.53 0.70 0.0020 0.70 1.80

Note: SGA, LaSR and LLM-SR methods cannot handle parametric equations due to their design.

The main table 1 reports results over all the surfaces by representation: explicit, implicit, and para-
metric, with four metrics: Symbolic Accuracy, nMSE, Chamfer, and Hausdorff. Two signals stand
out. Explicit surfaces attain the highest Symbolic Accuracy. Implicit surfaces attain the lowest ge-
ometric distances, reflected in stronger Chamfer and Hausdorff. Notably, the explicit results reveal
that models are recovering the correct structural family but not a geometrically tight instance. Sym-
bolic structure is often right, yet coefficients or latent symmetries remain imperfectly calibrated,
which elevates Chamfer and Hausdorff distances despite strong Symbolic Accuracy. This points to
a pipeline gap: after structure discovery, a targeted geometric calibration step is needed to lock scale,
shift, rotation, and curvature so structural exploration translates to gain in distance based metrics.

Secondly, the implicit category results show the converse pattern. Distance-driven search brings the
discovered surface equations close to the target even when the algebraic form is not fully faithful,
producing strong Chamfer and Hausdorff metrics with lower Symbolic Accuracy. Together, these
adjustments align geometric proximity with algebraic fidelity. Finally, the parametric surface results
show consistently good performance across metrics by both non-LLM and LLM based openevovle
framework. We conduct a comprehensive ablation to understand the robustness of these methods.
As noted previously, the LaSR, SGA and LLM-SR methods do not have algorithmic design for
parametric equation discovery. Hence, we do not include the parametric equations for our ablations.

5 ANALYSIS

5.1 OUT OF DOMAIN PERFORMANCE

We define OOD strictly as a range shift in the evaluation grid. If a model is trained on inputs sampled
from [-5,5] along each axis, OOD tests use the non-overlapping exterior bands [−10,−5] ∪ [5, 10].
This isolates extrapolation from interpolation: models must extend learned structure beyond the
training support rather than reuse local trends. We keep all other factors—category, representation,
and rendering—fixed, and assess geometry in object space using Chamfer/Hausdorff distances af-
ter Sim(3) alignment, ensuring that improvements reflect genuine extrapolative fidelity rather than
token-level or coordinate artifacts. We report both (i) absolute OOD errors and (ii) generalization
gaps (OOD minus in-distribution error) to quantify robustness.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Noise sensitivity across Chamfer Distance, Hausdorff Distance, and nMSE. Performance degrades
with increasing Gaussian noise, with OpenEvolve showing the most robustness, especially for explicit surfaces,
while LaSR and LLM-SR are more sensitive.

5.2 NOISE SENSITIVITY

Figure 5: Results of out-of-domain (OOD) perfor-
mance across explicit and implicit categories of
equations.

To evaluate the robustness of our symbolic regres-
sion models under realistic data conditions, we con-
ducted a comprehensive noise sensitivity analysis
across two state-of-the-art language models: GPT-
4o-mini and LLaMA-3.1-8B. The experiment was
designed to systematically assess how model per-
formance degrades when exposed to varying lev-
els of data corruption, simulating real-world sce-
narios where training data may contain measure-
ment errors, sensor noise, or other sources of un-
certainty. We selected 13 representative equations
spanning diverse mathematical domains including
nonlinear dynamical systems, quantum-inspired sur-
faces, stochastic processes, and hybrid multi-modal
symbolic surfaces, ensuring broad coverage of the
symbolic regression problem space. The experimen-
tal design employed a factorial approach with three
noise levels (1%, 5%, and 10% Gaussian noise).
Performance was evaluated using both Chamfer dis-
tance and Hausdorff distance metrics on in-domain
test data, providing complementary measures of ge-
ometric fidelity between predicted and ground truth.

5.3 IMPACT OF DOMAIN KNOWLEDGE

We examine whether lightweight domain pri-
ors—e.g., hints about plausible coordinate charts (spherical/cylindrical), conservation or symme-
try constraints, or canonical basis functions from optics and mechanics—improve recovery. Sur-
faceBench is grounded in real scientific forms but perturbs parameters, compositions, and coordi-
nate mappings to thwart rote memorization; thus, the role of priors is to guide structure discovery
(e.g., shared factors across outputs, separability, invariances) rather than to supply an answer key. In
practice, providing such priors narrows the search space toward mechanisms consistent with the tar-
get domain, and when coupled with geometry-aware scoring, prioritizes concise laws that faithfully
reproduce the surface over ad-hoc composites that only interpolate samples.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Normal vs Specialized prompts on Chamfer and Hausdorff distances (↓ better). ∆ =
Normal − Specialized. Positive ∆ indicates improvement.

Explicit Implicit

Method Chamfer Hausdorff Chamfer Hausdorff
Normal Spec. ∆ Normal Spec. ∆ Normal Spec. ∆ Normal Spec. ∆

SGA 7.76 6.22 +1.54 16.09 12.22 +3.87 3.01 2.76 +0.25 7.60 6.26 +1.34
LaSR 4.05 4.04 +0.01 12.68 10.04 +2.64 4.88 4.24 +0.64 9.97 9.24 +0.73
LLM-SR 7.17 5.77 +1.40 27.43 20.77 +6.66 2.24 2.07 +0.17 8.30 5.07 +3.23
OpenEvolve 2.93 1.16 +1.77 4.98 4.16 +0.82 2.41 1.82 +0.59 4.99 4.82 +0.17

6 RELATED WORK

Symbolic regression and equation discovery. Classical symbolic regression (SR) methods such as
PySR Cranmer (2023) use evolutionary search to fit scalar functions but scale poorly to complex do-
mains and often rediscover shallow forms. Recent work integrates large language models (LLMs)
into this process: LLM-SR Shojaee et al. (2025b) and LaSR Grayeli et al. (2024) combine LLM
priors with evolutionary search to generate equation skeletons or libraries of reusable components.
OpenEvolve Sharma (2025), AlphaEvolve Novikov et al. (2025), and AI Scientist Lu et al. (2024)
extend this idea to iterative optimization pipelines that couple LLM reasoning with execution feed-
back. These advances highlight the promise of LLM-driven discovery, but their evaluation remains
focused on single-output scalar functions.

Benchmarks. Datasets such as the Nguyen and Strogatz suites Matsubara et al. (2022); Cava et al.
(2021) provide synthetic nonlinear functions, while Feynman-I Udrescu & Tegmark (2020) compiles
physics-inspired analytic expressions. LLM-SRBench Shojaee et al. (2025b) recently expanded
this space with 239 problems designed to probe generalization beyond memorization. Although
influential, these benchmarks are restricted to scalar outputs and explicit forms, and thus cannot
test reasoning about multi-output coupling, implicit surfaces, or parametric representations that are
essential in real-world scientific contexts.

Geometry and language–geometry models. Surface learning benchmarks in geometry processing
focus on reconstruction from point clouds or meshes. Classical techniques such as Poisson recon-
struction (Kazhdan et al., 2006) remain widely used, while neural approaches like Points2Surf (Erler
et al., 2020) and SALD (Atzmon & Lipman, 2021) leverage implicit neural fields for higher fidelity.
Evaluation is typically performed with Chamfer and Hausdorff distances (Fan et al., 2017), and
more recent work such as STITCH (Jignasu et al., 2024) introduces topology-aware constraints to
capture connectivity and cycles. Meanwhile, emerging LLM–geometry systems (Mews et al., 2025;
Li et al., 2025) extend language models to procedural 3D reasoning, but they operate on geometric
primitives or latent fields rather than producing interpretable analytic equations.

SURFACEBENCH fills this gap as the first benchmark for symbolic surface discovery, bridging SR
and geometry by requiring recovery of explicit, implicit, and parametric forms. It emphasizes multi-
output coupling, latent coordinate systems, and representation non-uniqueness, enabling evaluation
of both symbolic interpretability and geometric fidelity.

7 CONCLUSION

We introduce SurfaceBench, the first comprehensive benchmark for LLM-driven symbolic discov-
ery of 3D surfaces, encompassing 199 tasks across 18 categories and three representation types:
explicit, implicit, and parametric. SurfaceBench provides a standardized and geometry-aware eval-
uation protocol (Chamfer/Hausdorff in object space, alongside Symbolic Accuracy and NMSE) and
accommodates diverse hypothesis formats spanning expression strings and executable programs.
Extensive experiments with state-of-the-art discovery frameworks and multiple LLM backbones re-
veal that, despite occasional successes on specific families, no method consistently excels across all
representations or evaluation regimes; overall performance remains far from saturation, underscor-
ing substantial headroom for advances in structure discovery, parameter calibration, and invariance
handling. We envision that the SurfaceBench datasets and evaluation protocol will serve as a com-
mon foundation for future research, catalyzing progress in automated discovery of surface equations
and deepening our understanding of LLMs’ geometric and symbolic reasoning in scientific settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Matan Atzmon and Yaron Lipman. Sald: Sign agnostic learning with derivatives. In International
Conference on Learning Representations (ICLR), 2021. URL https://openreview.net/
forum?id=7EDgLu9reQD.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales, 2021. URL https://arxiv.org/abs/2106.
06427.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Oliveira de França, Manuel Vir-
golin, Yaochu Jin, Michael Kommenda, and Jason H. Moore. Contemporary symbolic regression
methods and their relative performance. arXiv preprint, 2021. URL https://arxiv.org/
abs/2107.14351.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl,
2023. URL https://arxiv.org/abs/2305.01582.

Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Michael Wimmer, and Niloy J. Mitra. Points2surf:
Learning implicit surfaces from point cloud patches. arXiv preprint arXiv:2007.10453, 2020.
URL https://arxiv.org/abs/2007.10453.

Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object
reconstruction from a single image. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 605–613, 2017. doi: 10.1109/CVPR.2017.654.

Amin Grayeli, Anant Sehgal, Octavio Costilla-Reyes, Miles D. Cranmer, and Shibabrat Chaudhuri.
Symbolic regression with a learned concept library. arXiv preprint, 2024. URL https://
arxiv.org/abs/2409.09359.

John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann
Arbor, MI, 1975.

Anushrut Jignasu, Ethan Herron, Zhanhong Jiang, Soumik Sarkar, Chinmay Hegde, Baskar Gana-
pathysubramanian, Aditya Balu, and Adarsh Krishnamurthy. STITCH: Surface reconstruction
using implicit neural representations with topology constraints and persistent homology. arXiv
preprint arXiv:2412.18696, 2024. URL https://arxiv.org/abs/2412.18696.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In Pro-
ceedings of the Eurographics Symposium on Geometry Processing (SGP), pp. 61–70. Eurograph-
ics Association, 2006. doi: 10.2312/SGP/SGP06/061-070.

John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-262-11170-5.

Zongzhao Li, Jiacheng Cen, Bing Su, Wenbing Huang, Tingyang Xu, Yu Rong, and Deli Zhao.
Large language-geometry model: When LLM meets equivariance (EquiLLM). arXiv preprint
arXiv:2502.11149, 2025. URL https://arxiv.org/abs/2502.11149.

Cheng Lu, Chi Lu, Robert T. Lange, Jakob N. Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint, 2024. URL https:
//arxiv.org/abs/2408.06292.

Yusuke Matsubara, Naoki Chiba, Ryota Igarashi, Takahiro Taniai, and Yasushi Ushiku. Rethinking
symbolic regression datasets and benchmarks for scientific discovery. arXiv preprint, 2022. URL
https://arxiv.org/abs/2206.10540.

Maximilian Mews, Ansar Aynetdinov, Vivian Schiller, Peter Eisert, and Alan Akbik. Don’t mesh
with me: Generating constructive solid geometry instead of meshes by fine-tuning a code-
generation LLM. arXiv preprint arXiv:2411.15279, 2025. doi: 10.48550/arXiv.2411.15279. URL
https://arxiv.org/abs/2411.15279. AI for Content Creation Workshop @ CVPR
2025.

10

https://openreview.net/forum?id=7EDgLu9reQD
https://openreview.net/forum?id=7EDgLu9reQD
https://arxiv.org/abs/2106.06427
https://arxiv.org/abs/2106.06427
https://arxiv.org/abs/2107.14351
https://arxiv.org/abs/2107.14351
https://arxiv.org/abs/2305.01582
https://arxiv.org/abs/2007.10453
https://arxiv.org/abs/2409.09359
https://arxiv.org/abs/2409.09359
https://arxiv.org/abs/2412.18696
https://arxiv.org/abs/2502.11149
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2206.10540
https://arxiv.org/abs/2411.15279

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexey Novikov, Nhat Vu, Michael Eisenberger, Emile Dupont, Po-Sen Huang, Alexander Z. Wag-
ner, Sergei Shirobokov, Boris Kozlovskii, Francisco J. R. Ruiz, Arshak Mehrabian, M. Pawan
Kumar, Abelina See, Shibabrat Chaudhuri, Guy Holland, Andrew Davies, Sebastian Nowozin,
Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic
discovery. arXiv preprint, 2025. URL https://arxiv.org/abs/2506.13131.

Animesh Sharma. Openevolve: an open-source evolutionary coding agent. GitHub repository, 2025.
URL https://github.com/codelion/openevolve.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
Llm-sr: Scientific equation discovery via programming with large language models, 2025a. URL
https://arxiv.org/abs/2404.18400.

Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan, and
Chandan K Reddy. Llm-srbench: A new benchmark for scientific equation discovery with large
language models, 2025b. URL https://arxiv.org/abs/2504.10415.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020. URL https://arxiv.org/abs/
1905.11481.

8 APPENDIX

A. EVALUATION DETAILS

A.1. GEOMETRIC FIDELITY

Unlike symbolic regression tasks over 1D functions, SURFACEBENCH evaluates the quality of dis-
covered surface equations primarily through their geometric agreement with the ground-truth sur-
faces. Our evaluation emphasizes spatial accuracy rather than symbolic form, since different alge-
braic expressions may represent geometrically equivalent surfaces.

We employ three complementary metrics: Chamfer Distance (CD), Hausdorff Distance (HD),
and Normalized Mean Squared Error (NMSE).

Bidirectional Chamfer distance (CD).

CD(P,Q) =
1

|P |
∑
p∈P

min
q∈Q

∥p− q∥22 +
1

|Q|
∑
q∈Q

min
p∈P

∥q − p∥22. (3)

This estimates the average nearest-neighbor discrepancy in both directions, providing a stable mea-
sure of typical geometric error; by construction it can underweight sparse but severe mismatches,
which motivates pairing it with a worst-case metric.

Hausdorff distance (HD).

HD(P,Q) = max
{
sup
p∈P

min
q∈Q

∥p− q∥2, sup
q∈Q

min
p∈P

∥q − p∥2
}
. (4)

This yields an upper bound on the geometric deviation between the two surfaces—if HD ≤ ε,
every point on either surface lies within ε of the other. Its sensitivity to outliers is well known; in
practice we also report a high-percentile variant (e.g., HD95, the 95th percentile of the one-sided
nearest-neighbor distances) to separate systematic mismatch from isolated artifacts.

Normalized Mean Squared Error (NMSE).

NMSE =

∑Ntest
i=1 (ẑi − zi)

2∑Ntest
i=1 (zi − z̄)2

, (5)

11

https://arxiv.org/abs/2506.13131
https://github.com/codelion/openevolve
https://arxiv.org/abs/2404.18400
https://arxiv.org/abs/2504.10415
https://arxiv.org/abs/1905.11481
https://arxiv.org/abs/1905.11481

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Question: Given the ground truth mathematical expression A and the hypothesis B, determine if there exist any constant parameter values that would

make the hypothesis equivalent to the given ground truth expression.

Let’s think step by step. Explain your reasoning and then provide the final answer as:

(A): ‘sqrt(q1/(Ef*epsilon))/(2*sqrt(pi))’

(B): Hypothesis as Program

LLM (GPT-4o) Judgement

Reasoning:
 “The expressions can match if params[0] * params[1] =

1 and params[2] = 1, as this aligns both the scalar and

constant factors appropriately.”

Answer: Yes

Human

Judgement

{ “reasoning”: ”Brief step-by-step analysis”,

 ”answer”: “Yes/No” }

‘ sqrt(4*E/m– omega^2 *x^2)/x ’

‘ C1 * sqrt(4*E/m)/x

 – C2 * omega

+ C3 * omega * sqrt(4*E/m)/x ’

LLM (GPT-4o) Judgement

Reasoning:
“The ground truth expression contains a quadratic term

omega^2 x^2 inside the square root, which cannot be

expressed as a linear combination of the terms in hypothesis B.

Answer: No

Human

Judgement

(A):

(B): Hypothesis as Expression

Figure 6: Symbolic assessment in equation discovery with GPT-4o as evaluator

Given test samples (xi, yi, zi), the predicted surface values ẑi are compared against true values zi
via: where z̄ is the mean of ground-truth values. NMSE captures scale-invariant accuracy in the
predicted scalar field, and is analogous to metrics used in curve regression benchmarks.

Together, these metrics provide a balanced assessment: NMSE captures numerical prediction ac-
curacy, CD measures average geometric similarity, and HD highlights worst-case divergences. This
combination allows us to evaluate not only whether an equation fits sample points, but whether it
recovers the entire surface geometry faithfully.

A.2. SYMBOLIC ACCURACY

In addition to geometry-based metrics, we also report Symbolic Accuracy to provide a comple-
mentary view of equation discovery performance. For this, we adopt the evaluation methedology
introduced in Shojaee et al. (2025b), which leverage GPT-4o as an automated evaluator for accessing
mathematical equivalance between predicted and ground-truth hypotheses.

Traditional exact-match metrics (e.g., recovery rate, tree edit distance) are insufficient in our setting,
as many surface equations admit multiple algebraically equivalent representations. The LLM-based
evaluator provides a more flexible and semantically meaningful assessment of symbolic equivalence,
operating across diverse formats (strings, trees, and executable forms).

We follow the same preprocessing pipeline as Shojaee et al. (2025b), including normalization of
constants and removal of auxiliary infromation, and rely on GPT-4o’s judgement of equivalance.
This ensures comparability with prior symbolic regression benchmarks while complementing our
primary focus on geometric fidelity.

As shown in Figure 6, the symbolic assessment provides a complementary view of equation discov-
ery performance.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 3: Implementation details of LLM-based scientific equation discovery methods.

Method Parameters
OpenEvolve(Sharma, 2025) Temperature τ = 0.8

Iterations = 1000
e = 4 parallel evaluators
Time limit T = 30s per program hypothesis,

SGA PyTorch-based implementation of model and torch.nn.Module class
Mean square error loss for data-driven feedback in agentic search
Adam optimizer in PyTorch for differential parameter optimization of equation skeletons

LaSR (Biggio et al., 2021) Iterations = 25
Cycles per iteration = 550
Populations = 10
Population size = 33
Maximum size = 30
Operators: +, ∗, −, /, ∧, exp, log, sqrt, sin, cos, tan, cosh
LLM weights: llm mutate =0.005, llm crossover =0.005, llm gen random =0.005
Top-K = 20 concepts from library
Default configuration of PySR for parameter optimization

LLM-SR (Shojaee et al., 2025a) Temperature τ = 0.8
Batch size b = 4 equation programs per prompt
e = 4 parallel evaluators
Time limit T = 30s per program hypothesis,
Memory limit M = 2GB
m = 10 islands for population diversity through search
k = 2 in-context examples per prompt
Maximum 10 parameters per equation skeleton
BFGS optimizer from Scipy for parameter optimization of equation skeletons

B. IMPLEMENTATION DETAILS

For a comprehensive evaluation, we implement three state-of-the-art LLM-guided scientific equa-
tion discovery baselines, each tested on the SURFACEBENCH datasets using three different LLM
backbones: an open-source model (Llama-3.1-8B-Instruct), a closed-source model (GPT-4o-mini),
and a proprietary model (Qwen-2.5-7B-Instruct).

B.1. PARAMETERS

Table 3 presents the key implementation details for each discovery agentic method. We adopt most
of the hyperparameters from the original implementation for these methods. We have only changed
some hyperparameters in different baselines that affect the number of LLM calls in the search frame-
work. This is to make sure we have a fair comparison across baseline discovery frameworks with
same access budget to LLMs. In our experiments, all baseline frameworks have 1k calls to LLMs
(per problem) through the discovery process and equivalent number of calls to Non-LLM method.

B.2. PROMPTS

For our experiments, we employ two types of prompts. The first set consists of generic prompts,
which provide minimal surface description and are applicable across all surface categories. The
second set comprises specialized prompts, which include detailed information about the specific
surface category, its domain, or structural characteristics. This distinction allows us to evaluate the
impact of category-specific guidance on the performance of LLM-based equation discovery.

B.2.1. GENERIC PROMPTS

B.2.1.1. LLM-SR

1. Instruction prompt.

You are a symbolic regression assistant. Your goal is to recover the symbolic equation z = f(x,y)
that describes a 3D surface from sampled data.

Input variables:
- x: horizontal coordinate
- y: vertical coordinate
Output variable:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

- z: height or surface value at (x,y)

Optional observations:
- Discontinuities or piecewise behaviours may be present.

Generate a closed-from symbolic expression for z = f(x,y) using common mathematical functions
(e.g. sin, log, exp, tanh, polynomials, np.where).

Explain your reasoning briefly.

2. Evaluation specification prompt.

import numpy as np

#Initialize parameters
MAX_NPARAMS = 10
params = [1.0]*MAX_NPARAMS

def evaluate(data: dict) -> float:
""" Evaluate the equation on data observations."""

Load data observations
inputs, outputs = data[’inputs’], data[’outputs’]
X = inputs

Optimize parameters based on data
from scipy.optimize import minimize
def loss(params):

y_pred = equation(*X, params)
return np.mean((y_pred - outputs) ** 2)

loss_partial = lambda params: loss(params)
result = minimize(loss_partial, [1.0]*MAX_NPARAMS, method=’BFGS’)

Return evaluation score
optimized_params = result.x
loss = result.fun

if np.isnan(loss) or np.isinf(loss):
return None

else:
return -loss

3. Equation example specification as Python programming function.

Function Examples
def equation_v0($INPUT_VAR[0], ..., $INPUT_VAR[N], params):

""" Mathematical function for {$OUTPUT_VAR_DESC}
Args:
$INPUT_VAR[0]: A numpy array representing observations of {$INPUT_VAR_DESC[0]}.
...
$INPUT_VAR[N]: A numpy array representing observations of {$INPUT_VAR_DESC[N]}.
params: Array of numeric constants or parameters to be optimized

Return: A numpy array representing {$OUTPUT_VAR_DES} as the result of applying the
mathematical function to the inputs.
"""

Equation example 1 logic as function body
...

def equation_v1($INPUT_VAR[0], ..., $INPUT_VAR[N], params):
Equation example 2
...

Function to be completed
def equation($INPUT_VAR[0], ..., $INPUT_VAR[N], params):

""" Improvement version of equation_v0 and equation_v1 """

B.2.1.2. OPENEVOLVE

The following prompts are used in our implementation of OpenEvolve for scientific equation
discovery tasks, following the original implementation of OpenEvolve’s public code repository
(https://github.com/codelion/openevolve), which includes:

System prompt for task.

14

https://github.com/codelion/openevolve

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You are a symbolic regression assistant. Your goal is to recover the symbolic equation z = f(x,y)
that describes a 3D surface from sampled data.

Input variables:
- x: horizontal coordinate
- y: vertical coordinate
Output variable:
- z: height or surface value at (x,y)

Optional observations:
- Discontinuities or piecewise behaviours may be present.

Generate a closed-from symbolic expression for z = f(x,y) using common mathematical functions
(e.g. sin, log, exp, tanh, polynomials, np.where).

Explain your reasoning briefly.

Evaluator prompt.
You are an expert code reviewer.

B.2.1.3. LASR

We use the default prompts from LaSR’s (?) public code repository (https://github.com/
trishullab/LibraryAugmentedSymbolicRegression.jl), which includes:

1. The LLMINIT prompt, which is used in an LLM-augmented initialization operation.

2. LLMMUTATION prompt is used to mutate an expression based on a set of concepts.

3. LLMCROSSOVER prompt is used to construct a new expression from the crossover of two
sampled expressions based on a set of concepts.

4. LLM Concept Abstraction prompt in CONCEPTABSTRACTION function, which extracts a
natural language concept from current trends of hypotheses at each iteration.

5. LLM Concept Evolution prompt in CONCEPTEVOLUTION function, which creates a new
concept that follows a set of ideas in the current library.

In the following, we provide examples of these prompts.

1. LLMINIT prompt.
<System prompt>
You are a helpful assistant that proposes a mathematical expression by following three provided
suggestions.
An expression must consist of the following variables: {{variables}}. All constants will be
represented with the symbol C. Each expression will only use these operators: {{operators}}.

<User prompt>
Suggestion 1: {{assump1}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}

Propose {{N}} expressions that would be appropriate given the suggestions. Provide short
commentary for each of your decisions. End with a JSON list that enumerates the proposed
expressions following this format:
‘‘‘json
["expr1",
"expr2",
...
"expr{{N}}"
]
‘‘‘

2. LLMMUTATION prompt.
<System prompt>
You are a helpful assistant that mutates a mathematical expression by following a few provided
suggestions. You will be given three suggestions and a single reference expression to mutate.
An expression must consist of the following variables: {{variables}}. All constants will be
represented with the symbol C. Each expression will only use these operators: {{operators}}.

<User prompt>
Suggestion 1: {{assump1}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}
Reference Expression: {{expr}}

15

https://github.com/trishullab/LibraryAugmentedSymbolicRegression.jl
https://github.com/trishullab/LibraryAugmentedSymbolicRegression.jl

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Propose {{N}} expressions that would be appropriate given the suggestions and references. Provide
short commentary for each of your decisions. End with a JSON list that enumerates the proposed
expressions following this format:
‘‘‘json
["expr1",
"expr2",
...
"expr{{N}}"
]
‘‘‘

3. LLMCROSSOVER prompt.

<System prompt>
You are a helpful assistant that recombines two mathematical expressions by following a few
provided suggestions. You will be given three suggestions and two reference expressions to
recombine.
An expression must consist of the following variables: {{variables}}. All constants will be
represented with the symbol C. Each expression will only use these operators: {{operators}}.

<User prompt>
Suggestion 1: {{assump1}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}
Reference Expression 1: {{expr1}}
Reference Expression 2: {{expr2}}

Propose {{N}} expressions that would be appropriate given the suggestions and references. Provide
short commentary for each of your decisions. End with a JSON list that enumerates the proposed
expressions following this format:
‘‘‘json
["expr1",
"expr2",
...
"expr{{N}}"
]
‘‘‘

4. LLM Concept Abstraction prompt.

<System prompt>
You are a helpful assistant that hypothesizes about the underlying assumptions that generated a
list of good and bad mathematical expressions in detailed ways. My ultimate goal is to discover
what assumptions generated the observed good mathematical expressions and excludes the bad
mathematical expressions. Focus more on the good expressions, their mathematical structure, and
any relation to physical concepts. Note that capital C represents an arbitrary constant

<User prompt>
Good Expression 1: {{gexpr1}}
Good Expression 2: {{gexpr2}}
Good Expression 3: {{gexpr3}}
Good Expression 4: {{gexpr4}}
Good Expression 5: {{gexpr5}}

Bad Expression 1: {{bexpr1}}
Bad Expression 2: {{bexpr2}}
Bad Expression 3: {{bexpr3}}
Bad Expression 4: {{bexpr4}}
Bad Expression 5: {{bexpr5}}

Propose {{N}} hypotheses that would be appropriate given the expressions. Provide short commentary
for each of your decisions. Do not talk about topics related to the simplicity or complexity of
the expressions. I want ideas that are unique and interesting enough to amaze the world’s best
mathematicians. End with a JSON list that enumerates the proposed hypotheses following this format:
‘‘‘json
["hyp1",
"hyp2",
...
"hyp{{N}}"
]
‘‘‘

5. LLM Evolution prompt.

<System prompt>
You are an insightful assistant skilled in logical reasoning and deduction. Your task is to
analyze a set of ideas and infer nontrivial conclusions that logically follow from them. The
ultimate goal is to uncover underlying principles or properties of the hidden expressions. Focus
on providing logical conclusions that are unique, interesting, and profound.

<User prompt>
Idea 1: {{idea1}}
Idea 2: {{idea2}}
Idea 3: {{idea3}}
Idea 4: {{idea4}}
Idea 5: {{idea5}}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Based on these ideas, deduce {{N}} logical conclusions or hypotheses that directly follow from
them. Provide a brief explanation for each conclusion, highlighting the logical connections
between the ideas. Avoid discussing topics related to the simplicity or complexity of the
expressions. Conclude with a JSON list that enumerates the proposed conclusions in the following
format:
‘‘‘json
["Conclusion 1",
"Conclusion 2",
...
"Conclusion {{N}}"
]
‘‘‘

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2.1.4. SGA

The following prompts are used in our implementation of SGA ? for scientific equation discovery
tasks, following the original implementation SGA’s public code repository (https://github.
com/PingchuanMa/SGA), which includes:

System prompt for task.

You are a symbolic regression assistant. Your goal is to recover the symbolic equation z = f(x,y)
that describes a 3D surface from sampled data.

Input variables:
- x: horizontal coordinate
- y: vertical coordinate
Output variable:
- z: height or surface value at (x,y)

Optional observations:
- Discontinuities or piecewise behaviours may be present.

Generate a closed-from symbolic expression for z = f(x,y) using common mathematical functions
(e.g. sin, log, exp, tanh, polynomials, np.where).

Explain your reasoning briefly.

Code formatting prompt for scientific discovery task.

PyTorch Tips
1. When working with tensors, always use PyTorch’s operators (such as ‘torch.exp‘, ‘torch.cos‘,
‘torch.sqrt‘, ...) to ensure compatibility and optimal performance.
2. In PyTorch, operator input arguments must be tensors, not floats.

Code Requirements
1. The only library allowed is PyTorch. Follow the format provided by the user examples.
2. Annotate the size of the tensor as comment after each tensor operation. For example, # (B, 3,
3).
3. Separate the code into parameters that can be tuned with differentiable optimization and the
symbolic expression represented by PyTorch code.
5. The proposed code must strictly follow the structure and function signatures below:

‘‘‘python
import torch
import torch.nn as nn

class SymbolicEquation(nn.Module):

def __init__(self, {$PARAM_INPUTS}):
"""
Define trainable continuous parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
{$PARAM_DESCRIPTION}

"""
super().__init__()
{$PARAM_INIT}

def forward(self, {$INPUT_VARIABLES}) -> torch.Tensor:
{$FORWARD_FUNCTION_DESCRIPTION$}

‘‘‘

Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the
feedback. Think about why the results from previous iterations mismatched with the ground truth.
Do not give advice about how to optimize. Focus on the formulation of the scientific equation.
Start this section with "### Analysis". Analyze all iterations individually, and start the
subsection for each iteration with "#### Iteration N", where N stands for the index. Remember to
analyze every iteration in the history.

2. Think step-by-step what you need to do in this iteration. Think about what is needed to improve
performance. If the analysis suggests specific functional forms or constraints, think about how
these will be incorporated into the symbolic equation. Think about how to separate your algorithm
into a continuous parameter part and a symbolic expression model part. Describe your plan in
pseudo-code, written out in great detail. Remember to update the default values of the trainable
parameters based on previous optimizations. Start this section with "### Step-by-Step Plan".

3. Output the code in a single code block "‘‘‘python ... ‘‘‘" with detailed comments in the code
block. Do not add any trailing comments before or after the code block. Start this section with
"### Code".

Context prompt for each scientific problem.

18

https://github.com/PingchuanMa/SGA
https://github.com/PingchuanMa/SGA

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Context

The objective is to construct a mathematical expression that accurately maps input variables to a
target output based on a provided dataset. The task involves filling in a code block to define a
symbolic expression or model that minimizes the difference between predicted and ground-truth
outputs. The code block defines a class with two functions: one for parameters within the
expression and another for generating or modifying the symbolic structure of the expression.
Feedback is provided in the form of metrics measuring the error between the model’s predictions
and the ground-truth values, as well as guidance on structural improvements to the symbolic
expression.

The expression represents {$OUTPUT_VAR_DESC}, given data on {$INPUTS_DESC}.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

8.1 SURFACEBENCH EQUATIONS FOR EACH SCIENTIFIC CATEGORIES

Table 4: Benchmark equations.

Category ID Equations

Non-Canonical 3D
Geometric Surfaces

NCGS1
sin(x2 + y2)

1 + x2 + y2

NCGS2
x2 − y2

1 + x2 + y2

NCGS3 atan2(x, y) exp
(
− (x2 + y2)

)
NCGS4 tanh

(
sin(xy)

)
NCGS5 log

(
1 + x2 + y2

)
sin(x− y)

NCGS6 exp
(
sin(x2 + y2)

)
NCGS7

cos(x2 + y)

1 + |xy|
NCGS8 sinh(xy) exp(−y2)

NCGS9
sin

(√
x2 + y2

)
log(1 + x2)

NCGS10 x exp
(
− x2 − y2

)
cos y

NCGS11
sin(xy)

1 + x2 + y2

Piecewise Regime
Surfaces

PRS1 x2 if x < y else y2

PRS2 sin(x) if x < 0 else exp(y)

PRS3 xy if xy > 0 else − xy

PRS4 x2 + y2 if x < y else x2 − y2

PRS5 cos(x) if |x| < 1 else exp(−y2)

PRS6 x3 if y > 0 else − y3

PRS7 |x− y|+ sin(x)

PRS8 sin(x+ y) if x2 + y2 < 1 else 0

PRS9 tanh(x) if x > y else cos(y)

PRS10 xy if |x−y| < 0.5 else sin(x−y)

Symbolic-Numeric
Composite Surfaces

SNCS1 sin(x) + exp(−y2)

SNCS2 tanh(xy) + x2

SNCS3 exp(−x2 − y2) + cos(3x)

SNCS4 α sin(βx) + γ log(1 + y2)

SNCS5 sinh(x)− tanh(y)

SNCS6 sin(x2 + y2) exp(−
√
x2 + y2)

Continued on next page

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 4 - continued from previous page

Category Equation Real-world Domain

SNCS7 tanh(x) log(1 + y2)

SNCS8 cos(xy) + exp(−x2 + y)

SNCS9 sin(2x) + α exp(−y2)

SNCS10 β cos(x) + γ sin(y2)

Hybrid Multi-Modal
Symbolic Surfaces

HMMSS1 x2 if x < 0 else sin(y)

HMMSS2 log
(
1 + |x|

)
if y <

0 else exp(−y2)

HMMSS3 x2 + sin(y) if xy >
0 else

(
− x2 − cos y

)
HMMSS4 tanh(x− y) if x > y else 0

HMMSS5 |xy|+ sin(x− y)

HMMSS6 x2 if y > 0 else cos(y2)

HMMSS7 sin(xy) if x2 + y2 <
1 else log(1 + x2)

HMMSS8 tanh(x+ y) if xy <
0 else sin(x− y)

HMMSS9 x if x > y else y2 + sin(x)

Procedural & Fractal
Surfaces

PFS1 sin(5x) cos(5y)

PFS2 cos(x2y2)+0.2 sin
(
5
√
|x|+ |y|

)
PFS3 sin(xy) + 0.5 sin(3x+ 5y)

PFS4 e−0.1(x2+y2) sin(xy)

PFS5 sin(x3 + y3)

PFS6 xy cos
(√

x2 + y2
)

PFS7 sin(2xx) cos(2yy)

PFS8 e−|x−y| sin
(
3(x+ y)

)
PFS9

4∑
i=1

sin(2ix)

i

PFS10 tanh(xy) cos
(√

x2 + y2
)

Bio-Inspired
Morphological Surfaces

BIMS1 sin
(√

x2 + y2
)

BIMS2 exp(−x2 − y2) cos(3x)

BIMS3 tanh(x+ y) sin(xy)

BIMS4 log(1 + x2 + y2) cos(xy)

Continued on next page

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 4 - continued from previous page

Category Equation Real-world Domain

BIMS5 x2 + y2 − sin(2x+ 2y)

BIMS6 cos(2x) cos(2y)

BIMS7
sin(x2 + y2)

1 + x2 + y2

BIMS8 tanh(x2 − y2)

BIMS9 exp
(
− |xy|

)
sin(x+ y)

BIMS10 cos(xy) + 0.1 (x2 + y2)

Complex Composite
Surfaces

CSS1 log
(
1 + x2 + y2

)
cos(x− y)

CSS2
sin(x) + cos(y)

1 + x2 + y2

CSS3 e−0.1|xy| tanh(x+ y)

CSS4
x2y − y2

1 + x2

CSS5
√
1 + x2 + y2 sin(xy)

CSS6
ex + e−y

1 + |x− y|

CSS7

{
x2 + y2, if x+ y < 0,

sin(x+ y), if x+ y ≥ 0

CSS8
cos

(√
x2 + y2

)
1 + e−xy

CSS9 sinh(x2 − y2) e−0.1(x+y)2

CSS10 arctan(xy) + 0.2 e−x2−y2

Tensor Field Surfaces TFS1 x2 + y2

TFS2 sin(x) cos(y)

TFS3 exp(−x2 − y2)

TFS4 x y

TFS5 tanh(x+ y)

TFS6 cos(x2 + y2)

TFS7 log(1 + x2 + y2)

TFS8 x2 − y2

TFS9 sin(x y)

TFS10 exp
(
− |x− y|

)
Discrete Symbolic Grid
Surfaces

DSGS1 sin(i) + cos(j)

DSGS2 (−1)i (−1)j

Continued on next page

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 4 - continued from previous page

Category Equation Real-world Domain

DSGS3 mod(i, 3) + mod(j, 2)

DSGS4
⌊√

i2 + j2
⌋

DSGS5 sin(ij) + i− j

DSGS6 cos(i+ j)

DSGS7 mod(i2 + j2, 5)

DSGS8 tanh(i− j)

DSGS9
⌊
sin(i2 + j2)

⌋
DSGS10 mod(ij, 4)

Non-Linear Dynamical
System Surfaces

NLDSS1 cosh
(
0.1(x− y)

)
− cos

(
0.5(x+

y)
)

NLDSS2 e−0.05(x2+y2) (x2 − y) cos(y)

NLDSS3 log(1 + x2) sin(y)− log(1 +
y2) cos(x)

NLDSS4
√
1 + 0.1(x2 + y2) sin

(
0.5(x−

y)
)

NLDSS5 tanh
(
0.2(x2 − y2)

)
NLDSS6 0.3(xy)− 0.2 sin(x+

y) e−0.05(x2+y2)

NLDSS7
x2 sin(y)

1 + 0.2y2

NLDSS8 sinh(0.2x) e−0.1y2

NLDSS9 arctan(xy)− 0.3 sin(x− y)

Stochastic Process
Surfaces

SPS1 3 e−0.05(x2+y2) cos(0.2xy)+0.1x

SPS2 2.2 sin(0.3x+0.2y)
(
1−e−0.1x2)

SPS3 1.8 cos(0.4xy) e−0.1x2

+ 0.3y2

SPS4 2 sin(0.7x) e−0.05y2

+ 0.5xy

SPS5 3 (1− e−0.15x2

) cos(0.3y) + 0.2x

SPS6 2.5 tanh(0.2xy) + 0.4 sin(0.5x+
y)

SPS7 1.5e−0.1(x2+y2) sin(0.6x) + 0.3y

SPS8 4 cos(0.4x)
(
1−e−0.05y2)

+0.1x2

SPS9 2x2e−0.2|y| + 1.5 sin(0.3xy)

SPS10 3 sin(0.5x) e−0.1y2

+0.2xy cos(y)

Continued on next page

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 4 - continued from previous page

Category Equation Real-world Domain

Quantum Inspired
Surfaces

QIS1 e−0.8(x2+y2)

QIS2 x2 e−(x2+y2)

QIS3 (x2 + y2) e−0.9(x2+y2)

QIS4 e−0.4(x2+y2)
(
1.1 + cos(5x)

)
QIS5

(
cos(1.5x) cos(1.5y)

)2
QIS6 sin2

(
3 arctan(yx)

)
e−

√
x2+y2

QIS7 1− tanh(x2 + y2 − 4)

QIS8 (x2 − y2)2 e−0.7(x2+y2)

QIS9 sin2(x+ y) cos2(x− y)

QIS10 1+x2

1+(x2+y2)2

Surrogate-Distilled
Symbolic Approximations

SDSA1 x3 + y3 − 3xy + sin(x)

SDSA2 log
(
1 + x2 + y2

)
− tanh(x− y)

SDSA3 e−x2−y2

sin(2x+ y)

SDSA4 arctan(x) + arctan(y)

SDSA5 sin(x) cos(y) + 0.1xy

SDSA6 3 sin(0.4x) e−0.05y2

+ 0.2xy

SDSA7 2 sin(x+ y) e−0.5x2

+ y2

SDSA8 tanh(xy) + 0.5 sin(0.5x) y

SDSA9 1.5x2 cos(0.2y) + 0.3 e−0.1x2

Algebraic Manifold of
Higher Degree

AMHD1 x3 + y3 + z3 − 3xyz = 0

AMHD2 x3y + y3z + z3x = 0

AMHD3 x5 + y5 + z5 − xyz = 0

AMHD4 x4y − z6 + sin(xz) = 1

AMHD5 z5 + x3y4 − ey = 0

AMHD6 x6 − y4z2 + tan(z) = 2

AMHD7 z3 + x4y3 − cos(x) = −1

AMHD8 x3y2 − z5 + sin(yz) = 0

AMHD9 x2y3z − z4 + sin(x) = −1

AMHD10 z3 + x5y − ez + xy2 = 0

AMHD11 x4 − y2z5 + tan(z) = 2

Continued on next page

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 4 - continued from previous page

Category Equation Real-world Domain

AMHD12 z5 + x3y4 − cos(y) = 1

AMHD13 x6y2 − z3 + ex = 0

AMHD14 z4 − x4y + sin(xz) = −2

AMHD15 x3 + y4z2 − ey + cos(x) = 1

AMHD16 x5y − z4 + sin(yz) = 2

AMHD17 z3 − x3y + ez + 2xy = −1

AMHD18 x4 + y5z − cos(xz) = 0

AMHD19 x6 − y3z2 + tan(z) = 2

AMHD20 x2y2z − z5 + sin(xz) = 1

AMHD21 z3 + x4y − 2ez + xy2 = 0

AMHD22 x5 − y2z3 + cos(xy) = −1

AMHD23 x3 + y4z − tan(x) + 1 = 0

AMHD24 z5 + x3y2 − 2z2x+ sin(y) = 1

Transformed Coordinate
Surfaces

TCS1 (sin(u2 +
v) e−v, cos(uv) log(1 +

|v|), sin(uv2)
1+u2)

TCS2 (cosh(u+
v2), sinh(uv), tanh(u2 −
v) cos v)

TCS3 (eu−v2

sinu, u2 cos v, log(1 +
u2 + v2))

TCS4 (sin(u2) v, cos(v2)u, u e−v)

TCS5 (u3 − v2, cos(uv2), tanh(u−
v) log(1 + u2))

TCS6 ((u2 + v2) sinu, (u2 +

v2) cos v,
√
u2 + v2 cos

√
u2 + v2)

TCS7 (log(1 + u2) cos v, sin(u+
v2), u2 tanh v)

TCS8 (tanh(u2) sin v, u e−v2

, cos(uv2)
1+u2)

TCS9 (cos(u2 + v) eu/5, sin(v2 −
u), u log(1 + v2) tanhu)

TCS10 (u cos(v2), u sin v, e(u−v2)/5)

High-Dimensional
Parametric Surfaces

HDPS1 (sinh(u/5), cosh(uv/10), sin(u+
v) log(1 + v2))

HDPS2 (u2 cos v, v2 sinu, tanh(uv))

Continued on next page

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 4 - continued from previous page

Category Equation Real-world Domain

HDPS3 (e(u
2−v)/10 sin v, cos(uv), u2 +

v2)

HDPS4 (tanh(u+v2), sin(u2v), cos(u−
v2) log(1 + u2))

HDPS5 (u cos(v2), u sin v, sin(u2 + v))

HDPS6 (sinh(uv/5), cos(u−
v2), e−u2/10 tanh v)

HDPS7 (u sin(v2), v cosu, log(1 + u2 +
v2) sinu)

HDPS8 (tanh(u2 +

v) cos v, sin(uv2), u2e−v/5)

HDPS9 (e(u−v)/5 sin(u2), cos(v2 −
u), u tanh(v2))

HDPS10 (sin(u
2v
10), v cosu, log(1 +

u2) sinh(v/5))

Topologically Rich
Parametric Surfaces

TRPS1 (log(1 + u2) cos(v2), sin(u+

v), u ev
2/10)

TRPS2 (u
3 sin v
100 , cos(uv2), tanh(u−

v2))

TRPS3 (sin
(

u2

v2+1

)
, e−v/5 cosu,

TRPS4 ((5 + v cos(u/2)) sinu, (5 +
v cos(u/2)) cosu, v sin(u/2))

TRPS5 ((5 + sin(uv)) cosu sin v, (5 +
sin(uv)) sinu sin v, (5 +
sin(uv)) cos v)

TRPS6 (cosu sin v, sinu sin v, cos v +
u
2)

TRPS7 (u, v, sin
√
u2 + v2 + cosu sin v

5)

TRPS8 (cosu (5 + sin 3v), sinu (5 +
sin 3v), cos(3v) + u/2)

TRPS9 (sin(2u) cos2 v, cos(2u) sin v, sinu cos v)

TRPS10 (sinh(u/5) cos v, cosh(u/5) sin v, tanh(v) cosu)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

8.2 GROUND TRUTH V PREDICTED PROGRAM/EQUATION

Predicted: OpenEvolve

def func(x, params):

"""

Calculates the model output using a linear combination of input

variables↪→

or a constant value if no input variables. Operates on a matrix

of samples.↪→

"""

x0 = x[:, 0]

x1 = x[:, 1]

x0_squared = x0 ** 2

x1_squared = x1 ** 2

x0_x1 = x0 * x1

Combine terms for better readability and potential numerical

stability↪→

x0_x1_squared = x0_x1 * x0_x1

result = (params[0] + # Constant term

params[1] * x0 +

params[2] * x1 +

params[3] * x0_squared +

params[4] * x1_squared +

params[5] * x0_x1 +

params[6] * x0_x1 * x0 + # x^2 * y

params[7] * x0_x1 * x1 + # x * y^2

params[8] * x0_x1_squared * x1 + # Combined cubic

term↪→

params[9] * x0_x1_squared) # Keeping y^3

return result

Figure 9

28

	Introduction
	SurfaceBench: Design and Motivation
	Multi-Output Coupling
	Latent Coordinate Systems
	Symbolic Non-Uniqueness
	Geometry-Aware Evaluation
	Expressivity and Richness
	Problem Setup

	Experimental Setup
	Benchmark Methods
	Evaluation Metrics

	Results
	Analysis
	Out of Domain performance
	Noise sensitivity
	Impact of Domain Knowledge

	Related Work
	Conclusion
	Appendix
	SurfaceBench equations for each scientific categories
	Ground Truth v Predicted Program/Equation

