
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

WHY SACRIFICE MAJORITY NODES?:
IMPROVING IMBALANCED NODE CLASSIFIERS VIA
CLASS-BALANCED GRAPH GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Class imbalance is prevalent in real-world data, often leading to a deteriora-
tion in a classifier’s generalization performance, especially on minority classes.
Since graph-structured data is no exception, many efforts have been made to
tackle imbalanced node classification by focusing on minority classes, leading
to improved overall performance in imbalanced node classification. However, we
find that these methods boost minority recall at the expense of degrading major-
ity recall, a trade-off that has been overlooked. To address this issue, we pro-
pose Class Balancing Graph Generation (CBGG), a novel framework that pre-
vents imbalanced node classifiers from sacrificing prediction power on major-
ity classes. CBGG trains classifiers on high-quality synthetic graphs with class-
balanced nodes, thereby tightening their generalization bounds across all classes.
Extensive experimental results demonstrate that CBGG not only overcomes the
majority-sacrifice pitfall of prior work but also significantly outperforms state-of-
the-art imbalanced node classification methods across seven benchmark datasets.

1 INTRODUCTION

Semi-supervised node classification on graph-structured data is a fundamental task with wide appli-
cations in domains such as e-commerce and bioinformatics (Kipf & Welling, 2017; Veličković et al.,
2018; Hamilton et al., 2017). However, real-world graphs often exhibit severe class imbalance (Bo-
jchevski & Günnemann, 2018; Sen et al., 2008; Shchur et al., 2018), which poses significant chal-
lenges for learning. For instance, in citation networks, certain research fields may contain only a few
labeled nodes, making it difficult for models to generalize to those under-represented classes. This
class imbalance degrades classification performance by biasing the model toward majority classes
and increasing error rates on minority nodes.

To mitigate this issue, existing methods typically increase the relative presence of minority
nodes—either by assigning higher weights to minority samples (Yuan & Ma, 2012) or by synthe-
sizing additional minority nodes (Zhao et al., 2021; Park et al., 2021a; Li et al., 2023). However,
we identify a common trade-off in prior methods: improving recall for minority classes often comes
at the cost of reduced majority-class recall. As shown in Figure 1(a), these methods consistently
increase recall for minority classes but simultaneously reduce recall for majority classes compared
to a standard GNN classifier (Veličković et al., 2018), highlighting an inherent trade-off.

The trade-off we identify motivates us to enhance imbalanced node classifiers through graph-level
generation, which enables training on synthetic graphs that closely resembles the input graph. We
hypothesize that generating class-balanced synthetic nodes with high label-predictive consistency
plays a key role in reducing the generalization gap of classifiers, which we validate through both
theoretical and empirical analyses. To implement this idea in practice, we draw inspiration from
recent advances in diffusion-based graph generation (Jo et al., 2022; Vignac et al., 2023; Chen et al.,
2023). However, these methods are primarily designed for graph synthesis and are not tailored to
imbalanced node classification tasks.

In this paper, we propose Class Balancing via Graph Generation (CBGG), a novel plug-in frame-
work that addresses the trade-off between minority- and majority-class performance in imbalanced
node classification. CBGG begins by training an initial node classifier (e.g., GraphENS (Park et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

(a) (b)

Figure 1: Results on CiteSeer dataset: (a) recall of existing methods for majority and minority nodes,
and (b) the number of training nodes for majority and minority classes.

2021a) or GraphSHA (Li et al., 2023)). CBGG then trains a new diffusion-based graph generator that
produces synthetic graphs with class-balanced nodes. The generator is optimized with a supervised
contrastive classification loss and is conditioned on a soft label distribution obtained from the initial
node classifier. Lastly, a final, improved node classifier is trained on both the original graph and mul-
tiple diverse class-balanced graphs produced by the generator. This approach enables the classifiers
to train on a substantially larger number of majority and minority nodes, as shown in Figure 1(b),
thereby boosting classification performance on minority nodes without sacrificing the performance
of majority nodes. We provide a theoretical analysis showing that CBGG reduces the generalization
gap and empirically demonstrate that CBGG effectively mitigates the majority–minority trade-off.
Finally, CBGG significantly outperforms state-of-the-art imbalanced node classification methods
across seven benchmark datasets.

In summary, our contributions are as follows: (i) We identify the minority–majority trade-off inher-
ent in existing imbalalanced node classification methods, which has been underexplored. (ii) We
introduce a new paradigm for imbalanced node classification based on graph-level generation. (iii)
We theoretically highlight that CBGG mitigates the generalization gap by increasing the number of
synthetic samples through graph-level generation and minimizing the synthetic noise rate through
the supervised contrastive loss. (iv) Through extensive experiments on seven benchmark datasets,
we demonstrate that CBGG achieves significant performance gains over state-of-the-art methods for
imbalanced node classification.

2 RELATED WORK

Class-Imbalance Learning. Methods for class imbalance learning (Chen et al., 2024), including
its special case, long-tailed learning (Zhang et al., 2025), can be broadly categorized into two ap-
proaches: algorithm-level and data-level. The algorithm-level approach focuses on modifying the
training process—such as introducing reweighting strategies (Huang et al., 2016; Wang et al., 2017;
Cui et al., 2019; Cao et al., 2019; Ren et al., 2020; Hong et al., 2021) or adjusting loss function (Lin
et al., 2017; Park et al., 2021b)—to make the model more sensitive to minority classes, without
altering the original data distribution. In contrast, the data-level approach addresses class imbalance
by modifying the training data distribution itself—typically through repeatedly sampling minority
samples (i.e. oversampling) (Chawla et al., 2002; Mullick et al., 2019; Kim et al., 2020; Park et al.,
2022) or selectively removing a portion of majority samples (i.e. undersampling) (Mani & Zhang,
2003; Van Hulse et al., 2007; Kang et al., 2016)—to create a more balanced dataset for training.

Imbalanced Node Classification. Tailored techniques for imbalanced node classification on
graphs (Ma et al., 2025; Liu et al., 2025) have been developed under the same algorithm-level
and data-level categorization used in general class-imbalance learning. As the algorithm-level ap-
proach, ReVar (Yan et al., 2023) introduces variance-based regularization into the loss function,
while LTE4G (Yun et al., 2022) trains multiple expert graph neural networks (GNNs) for different
imbalanced node subsets and distills their knowledge into class-wise student models. As the data-
level approach, most methods for imbalanced node classification (Park et al., 2021a; Zhao et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 2: An overview of Class Balancing via Graph Generation (CBGG).

2021; Li et al., 2023; 2024b) have been based on oversampling, which synthesizes minority nodes
to mitigate class imbalance. Although these methods improve performance on minority classes by
generating synthetic minority nodes, we find that this comes at the cost of degrading performance
on majority classes. Unlike oversampling-based methods, our graph generation-based approach
effectively resolves this issue by generating a large number of both majority and minority nodes.

Graph Generation. With the development of deep generative models, many data-driven approaches
for graph structure generation have been developed (Kipf & Welling, 2016; You et al., 2018b; Bo-
jchevski et al., 2018; Li et al., 2018; Liao et al., 2019). Deep generative models have also been
applied to molecular graph generation (Jin et al., 2018; Liu et al., 2018; You et al., 2018a; De Cao
& Kipf, 2018), where each graph typically contains a few dozen nodes and a single categorical at-
tribute per node. As the trend in deep generative models has shifted toward diffusion models (Ho
et al., 2020; Rombach et al., 2022), this paradigm has also inspired the development of diffusion-
based methods tailored for graph structure and molecule generation (Niu et al., 2020; Jo et al., 2022;
Vignac et al., 2023; Chen et al., 2023; Kong et al., 2023; Ketata et al., 2025). Among them, Graph-
Maker (Li et al., 2024a) improves scalability by replacing the graph transformer encoder Dwivedi &
Bresson (2020) with a message-passing neural network (MPNN) Gilmer et al. (2017) and adopting
a minibatch strategy. However, they are not designed for semi-supervised node classification.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

The problem of node classification considers a graph G = (V, E ,X), where V = {v1, . . . , vN} is
the set of N nodes, E is the set of edges, and X ∈ RN×F is a node feature matrix, with F being the
number of feature channels. Specifically, Xi,a represents the a-th channel feature value of vi. To
represent the structure of G, we use the adjacency matrix A ∈ {0, 1}N×N . Ã ∈ {0, 1}N×N×2 is
a one-hot encoded tensor of A, where the last dimension represents the presence or absence of an
edge. X̃ ∈ RN×F×BX is a one-hot encoding of X ∈ RN×F , where BX denotes the possible classes
of all categorical attributes. Since each node is also associated with a class label, Y ∈ {0, 1}N×C

denotes a node label matrix, where C is the number of classes. The i-th row of Y, denoted as Yi,:,
is a one-hot vector indicating the ground-truth label of node vi. All nodes in V are partitioned into
Vtrain, Vval, and Vtest, which represent the training, validation, and test sets, respectively. The goal of
node classification is to accurately predict the labels of nodes in Vtest by training a model on labeled
nodes in Vtrain, using both X and A. In this work, we focus on imbalanced node classification,
where the number of labeled nodes significantly differs across classes. That is, we consider class
imbalance within the training set Vtrain, which contains the labeled nodes available during training.

3.2 OVERVIEW OF CBGG

We introduce CBGG, a two-stage plug-in framework designed to mitigate class imbalance in semi-
supervised node classification. As illustrated in Figure 2, CBGG consists of two stages. In the
first stage, CBGG trains a new diffusion-based graph generator designed for node classification to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

reconstruct the input graph, using the predictions of the initial classifier fθ. In the second stage, the
classifier is retrained as fθ∗ using class-balanced synthetic graphs generated by the trained generator.

3.3 STAGE I: TRAINING A GRAPH GENERATION MODEL

Given a node classifier fθ such as GraphSMOTE (Zhao et al., 2021), GraphENS (Park et al., 2021a),
and GraphSHA (Li et al., 2023), our CBGG aims to reduce the generalization error of fθ via graph-
level generation. To accomplish this, we train a new label-conditioned diffusion model gϕ that learns
to recover the input graph G = (V, E ,X) via a denoising diffusion process.

We generate Ŷv by replacing Yv of unobserved nodes v ∈ Vvalid ∪ Vtest with the soft label pre-
dictions (i.e., probability distributions) of fθ. While labeled nodes retain their ground-truth one-hot
labels, the rest are filled with these soft label probability vectors. The primary advantage of this
approach is that it allows us to capture and incorporate the uncertainty inherent in the classifier’s
predictions into the graph generation process. This ultimately helps to reduce the generalization
error of the node classifier fθ. Our diffusion model gϕ consists of a forward process and a reverse
process.

Forward Process. In the forward process, the given graph G is progressively corrupted by perturb-
ing its attributes X and edges A over multiple steps. Subsequently, during the reverse process, gϕ
is trained to perform one-step denoising. We follow the asynchronous strategy designed by Graph-
Maker (Li et al., 2024b)). We define TX̃ = {t1

X̃
, . . . , t

TX̃

X̃
} ⊆ [T] as the set of time steps dedicated

to corrupting node attributes, and similarly, TÃ = {t1
Ã
, . . . , t

TÃ

Ã
} ⊆ [T] for edge corruption.

During the forward process, we define the corruption transition Q
(t)

X̃d
∈ RBX×BX and Q

(t)

Ã
∈ R2×2

as

Q
(t)

X̃d
= ᾱγX̃(t) · IBX×BX

+
(
1− ᾱγX̃(t)

)
· 1BX

·m⊤
X̃d

, (1)

Q
(t)

Ã
= ᾱγÃ(t) · I2×2 +

(
1− ᾱγÃ(t)

)
· 12 ·m⊤

Ã
. (2)

where ᾱγZ (t) = cos2
(
π
2 · γZ(t)

|TZ |+s

)
is a time-dependent noise coefficient, and Z ∈ {X̃, Ã}. mX̃d

denotes a BX-dimensional column vector that represents the empirical marginal distribution of the
d-th node attribute, and mÃ a two-dimensional column vector that represents the empirical marginal
distribution of edge existence. Im×m ∈ {0, 1}m×m is the identity matrix, 1m is an m-dimensional
column vector of ones, and ⊤ denotes transpose. To ensure that the corrupted adjacency tensor Ã(t)

remains symmetric and reflects an undirected graph, the transition matrix Q
(t)

Ã
is applied only to the

upper triangular part of Ã, and the full matrix is reconstructed via symmetrization after sampling.

Using these matrices, the forward process corrupts the graph as:

q(X̃
(t)
i,d | X̃i,d) =X̃i,d ·Q

(t)

X̃d
for i ∈ [N], d ∈ [F], (3)

q(Ã(t) | Ã) =Ã ·Q(t)

Ã
, (4)

This process gradually transforms the clean node features and adjacency matrix into their noisy
counterparts across time steps.

Reverse Process. In the reverse process, gϕ denoises the graph one step at a time. To guide the
generation toward class-consistent structure, we condition each node’s input on its label embed-
ding. This conditioning is implemented by concatenating soft-label label vectors. The resulting
conditioned matrix is used as input to the denoising network gϕ at each timestep. Accordingly,
the denoising distribution becomes conditioned on the label matrix pϕ(G(t−1) | G(t), t, Ŷ). Once
trained, gϕ generates a graph by iteratively denoising a noisy sample drawn from an empirical prior
distribution over node features and edges, formally defined as

∏N
v=1

∏F
d=1 mX̃d

·
∏

1≤u<v≤N mÃ.
This denoising process is performed step-by-step, where the joint distribution at each timestep is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

factorized as follows:

pϕ(G(t−1) | G(t), Ŷ) =

N∏
i=1

F∏
d=1

pϕ(X̃
(t−1)
i,d | G(t), Ŷi)

·
∏

1≤j<i≤N

pϕ(Ã
(t−1)
j,i | G(t), Ŷi).

(5)

This procedure predicts clean features X and structure A from the noisy inputs and conditioning
labels.

To compute each denoising term, we marginalize over the model’s categorical predictions. Specifi-
cally, for each node attribute dimension, we compute:

pϕ(X̃
(t−1)
i,d | G(t), Ŷi) =

∑
xd

q(X̃
(t−1)
i,d | X̃(t)

i,d)p̂
X
i,d(xd|Ŷi), (6)

where p̂Xi,d = softmax(WZi) and Z = gϕ(G(t), t, Ŷ) is a node representation matrix. W is a
trainable matrix and gϕ is a message-passing neural network.

To optimize parameters ϕ, we minimize a hybrid loss that combines a reconstruction loss and a
supervised contrastive loss. The full objective is defined as:

LDIFF = αLSC +
∑

1≤i≤N

CE(Xi, X̃i) +
∑

1≤i,j≤N

CE(Aij , Ãij), (7)

where α is a hyperparameter and CE is a cross-entropy loss.

The first term LSC is a kind of supervised contrastive loss (Khosla et al., 2020) that encourages
nodes with the same labels to be close:

LSC =
∑

i∈Vtrain

−1

|P (i)|
∑
p∈P (i)

log
exp

(
Zi · Zp/τ

)∑
a∈Vtrain\{i} exp

(
Zi · Za/τ

) , (8)

where P (i)={p ∈ Vtrain \ {i} | Yp = Yi}, and τ is a temperature hyperparameter. Our LSC uses
labeled nodes as anchors.

3.4 STAGE II: ENHANCING NODE CLASSIFIER VIA CLASS-BALANCED SYNTHETIC GRAPHS

Sampling Synthetic Graphs. To enhance the classifier fθ, CBGG generates class-balanced syn-
thetic graphs using the diffusion model gψ . This is achieved by repeatedly applying the reverse
process of gψ . Unlike prior diffusion-based models that follow the empirical class distribution of the
input graph, our approach conditions generation on a uniform class prior. This design increases the
minimum number of training samples across classes (nmin), thereby tightening the generalization
bound between true and empirical risks, as discussed in Section 3.5.

To achieve this, we employ a per-class buffer {Bc}Cc=1 of soft label distributions produced by the
pretrained teacher fθ. Each Bc stores probability vectors pfθ (· | v) ∈ ∆C−1 collected from nodes v
that are assigned to class c (i.e., argmaxy pfθ (y | v) = c).

Let {G̃k}Kk=1 be the set of synthetic graphs to be generated. For each k, we first construct a soft-label
matrix Yk ∈ RN×C by independently sampling soft label vectors from the buffers as follows:

(Yk)i,: ∼ Uniform(Bci), ci ∼ Uniform({1, . . . , C}), (9)

The sampled matrix Yk serves as the conditioning signal that enforces class balance during genera-
tion while incorporating calibrated uncertainty.

We then sample an initial noisy graph G̃(T)
k = (X̃

(T)
k , Ã

(T)
k) from a predefined prior distribution

over features and adjacency structures. Starting from this noisy graph, the model performs reverse
diffusion in T steps:

G̃(t−1)
k ∼ pϕ(G̃(t−1)

k | G̃(t)
k , t,Yk). (10)

where t = T, T − 1, . . . , 1. At each step, the model predicts cleaner features and structure condi-
tioned on the current noisy graph, the timestep, and the label matrix.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: Step-class imbalanced node classification results on three citation networks. Bold marks
the best scores, while underlining denotes the second-best.

Method Cora (Imb. class num = 3) Citeseer (Imb. class num = 3) Pubmed (Imb. class num = 1)

Imb. Ratio (ρ = 0.05) GMeans bAcc Macro-F1 GMeans bAcc Macro-F1 GMeans bAcc Macro-F1
OverSampling 70.4 ± 2.9 53.7 ± 1.6 47.0 ± 2.2 63.3 ± 1.7 45.0 ± 2.2 35.2 ± 2.5 66.7 ± 5.4 56.8 ± 6.8 54.9 ± 7.3
Reweight 76.7 ± 2.2 62.7 ± 3.2 59.5 ± 5.4 64.9 ± 1.7 47.2 ± 2.3 38.3 ± 3.7 70.5 ± 0.6 61.6 ± 0.7 54.1 ± 2.8
SMOTE 69.5 ± 1.6 52.5 ± 2.1 45.4 ± 4.9 62.8 ± 2.1 44.4 ± 2.8 34.2 ± 3.6 66.5 ± 2.0 56.5 ± 2.5 48.2 ± 3.0
GraphSMOTE 73.3 ± 0.6 57.8 ± 0.8 63.5 ± 6.7 68.3 ± 2.1 51.6 ± 2.8 45.2 ± 4.4 69.3 ± 4.3 60.0 ± 5.5 56.6 ± 8.3
GNN-CL 74.5 ± 2.1 59.5 ± 2.4 51.9 ± 2.8 68.2 ± 2.0 51.5 ± 2.5 42.6 ± 3.2 68.8 ± 2.6 59.4 ± 3.4 53.4 ± 3.8
GraphENS 78.7 ± 0.6 65.8 ± 0.8 63.1 ± 1.0 69.7 ± 0.7 53.5 ± 0.9 49.0 ± 1.2 72.7 ± 3.0 64.4 ± 3.8 61.6 ± 4.5
LTE4G 75.8 ± 1.8 61.5 ± 2.6 58.4 ± 3.9 66.8 ± 1.5 49.6 ± 2.0 45.6 ± 3.1 68.7 ± 2.0 59.3 ± 1.6 55.9 ± 2.1
GraphSHA 76.8 ± 1.5 62.9 ± 2.1 56.6 ± 1.6 65.7 ± 1.2 48.0 ± 1.5 39.9 ± 1.6 69.8 ± 1.7 60.7 ± 2.2 58.2 ± 3.0
ReVar 77.7 ± 1.4 64.3 ± 2.1 59.5 ± 3.1 69.4 ± 0.3 53.2 ± 0.4 46.6 ± 0.5 79.1 ± 0.8 72.5 ± 1.0 72.1 ± 0.9

CBGG w/o LSC (LTE4G) 81.9 ± 1.1 70.5 ± 1.7 70.6 ± 1.3 73.5 ± 2.6 58.9 ± 2.3 57.7 ± 1.8 78.8 ± 1.3 72.1 ± 1.7 71.5 ± 1.8
CBGG w/o LSC (GraphENS) 82.8 ± 0.2 71.9 ± 0.3 70.2 ± 0.3 72.9 ± 1.3 57.9 ± 1.8 53.6 ± 0.5 80.1 ± 1.1 73.8 ± 1.5 73.2 ± 1.6
CBGG w/o LSC (GraphSHA) 82.6 ± 0.3 71.7 ± 0.4 70.4 ± 0.3 73.3 ± 0.3 58.6 ± 0.4 54.1 ± 0.4 79.8 ± 0.7 73.5 ± 1.2 73.1 ± 1.2

CBGG (LTE4G) 82.6 ± 1.3 71.6 ± 2.0 71.2 ± 2.1 77.1 ± 0.7 64.1 ± 1.0 62.6 ± 1.2 79.2 ± 2.5 72.7 ± 3.3 72.1 ± 3.4
CBGG (GraphENS) 83.2 ± 0.2 72.5 ± 0.3 70.7 ± 0.3 75.5 ± 1.0 61.8 ± 1.4 59.2 ± 0.7 81.0 ± 0.6 75.0 ± 0.8 74.7 ± 0.8
CBGG (GraphSHA) 83.3 ± 0.2 72.7 ± 0.3 71.3 ± 0.2 76.6 ± 0.4 64.2 ± 0.5 61.5 ± 0.5 82.2 ± 0.8 76.6 ± 1.0 76.3 ± 1.0

After all denoising steps, we obtain the final synthetic graph:

G̃k := G̃(0)
k = (X̃

(0)
k , Ã

(0)
k), (11)

which is fully labeled by Yk and structurally aligned with the original graph distribution.

Training Node Classifier with Synthetic Graphs. The final stage is to train the classifier fθ∗

with the class-balanced graphs {G̃}Kk=1, along with the original graph G. Since each synthetic graph
contains approximately N/C nodes per class due to uniform label sampling, the number of training
nodes for both the most and least frequent classes increases by roughly K ·N/C. This augmentation
makes the effective number of training nodes nearly identical across classes, thereby achieving class
balance.

We train fθ∗ using the Original-Synthetic Balanced Loss (OSBL), which combines supervision from
both real and synthetic nodes:

LOSBL =
1

|Vtrain|
· LG + λ · 1

K

K∑
k=1

1

|V Ĝk |
· LĜk

, (12)

where LG denotes the backbone model-specific loss for fθ∗ , computed over the labeled nodes in G,
while LĜk

denotes the same loss computed over the synthetic nodes in Ĝk. λ is a hyperparameter
that controls the influence of the synthetic graphs in the overall OSBL. Trained under class-balanced
conditions, the improved classifier fθ∗ produces the final output of CBGG: label predictions for the
unlabeled nodes in G.

3.5 THEORETICAL ANALYSIS

To understand how CBGG improves generalization in imbalanced node classification, we analyze
its class-wise and overall generalization bounds. Let f denote a node classifier. For each class
k ∈ {1, . . . , C}, we define the class-conditional true risk as:

Rk(f) := Pr(f(x) ̸= k | y = k), (13)

where x ∼ Dk, the true data distribution for class k.

Let D̃k denote the distribution of synthetic nodes generated for class k by the diffusion-based graph
generator. We define the synthetic noise rate as:

εsyn
k := Pr

x∼D̃k

(f(x) ̸= k). (14)

CBGG explicitly minimizes the synthetic noise rate εsyn
k by training the graph generator using a

supervised classification loss.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

When training with both real and synthetic data, the generalization gap for class k can be decom-
posed as:

|Rk − R̂k| ≤ |Rk − R̃k|+ |R̃k − R̂k|
≤ εsyn

k + |R̃k − R̂k|

≤ εsyn
k +

√
log(2C/δ)

2
(
nk + (1− εsyn

k)nsyn
k

)
(By Hoeffding’s inequality).

(15)

Here, R̂k is the empirical risk over synthetic samples and R̃k is the empirical risk over training data.

By using a class-balanced sampling, CBGG can substantially increase nsyn
k for all k. Therefore,

the second term vanishes due to concentration, leaving the synthetic noise rate εsyn
k as the dominant

upper bound.

Consequently, the overall generalization gap of CBGG is bounded by the weighted average of syn-
thetic noise rates across all classes:

|R− R̂| ≤
C∑
k=1

pkε
syn
k , (16)

where pk = Pr(y = k) is the class prior.

This analysis shows that CBGG can reduce the generalization gap of f by drastically increasing
nsynk through graph-level generation and by minimizing εsynk via the supervised contrastive loss in
Eq.(8).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Baselines. We evaluate our proposed method on five widely used graph-structured
datasets: Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), Pubmed (Sen et al., 2008),
Amazon-Computers, and Amazon-Photo (Shchur et al., 2018). We compare our CBGG with various
imbalance node classification methods, including three classic methods and six GNN-based meth-
ods. For classic methods, we select Over-sampling, Re-weight Yuan & Ma (2012), and SMOTE
Chawla et al. (2002). For GNN-based methods, we choose GraphSMOTE Zhao et al. (2021), GNN-
CL Li et al. (2024b), GraphENS Park et al. (2021a), LTE4G Yun et al. (2022), GraphSHA Li et al.
(2023), and ReVar Yan et al. (2023). For fair comparisons, we set the hyperparameters of baselines
according to specifications in the papers and official codes. For CBGG, we consistently set α and λ
to 0.1. Experimental details regarding datasets and baselines are provided in Appendix A.

Evaluation Metrics. In all experiments, we assess the performance of our CBGG and baselines
with three metrics that are widely used and well-suited for class-imbalance classification: Geomet-
ric Mean (G-Means), Balanced Accuracy (bACC), and Macro-F1. Results are averaged over five
independent runs with different random seeds, and we report the mean ± standard deviation.

4.2 EXPERIMENT RESULTS

CBGG outperforms baselines by a large margin in step class imbalance settings. We begin
by evaluating the effectiveness of CBGG under step-class imbalance, where the imbalance ratio is
standardized to ρ = 0.05 by assigning 20 training nodes to each head class and a single node to
each tail class across all datasets. We instantiate CBGG using three different classifiers (LTE4G,
GraphENS, and GraphSHA) and benchmark their performance against state-of-the-art methods to
assess robustness across architectures. We standardize the imbalance level ρ = 0.05 across datasets
by assigning 20 training nodes to each head class and only 1 to each tail class. As reported in Table 1
and Table 2, CBGG consistently outperforms baselines across all cases. On average, it yields relative
improvements of 5.6% in G-Means and 8.3% in balanced accuracy over the strongest baseline,
demonstrating the effectiveness of graph-level generation in imbalanced node classification.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Step-class imbalanced node classifica-
tion results on two Amazon networks. Bold
marks the best scores, while underlining denotes
the second-best.

Method Computers Photo
(Imb. class num = 5) (Imb. class num = 3)

Imb. Ratio (ρ = 0.05) GMeans bAcc GMeans bAcc
OverSampling 68.1 ± 3.9 48.7 ± 5.8 85.5 ± 2.5 75.7 ± 4.0
Reweight 77.7 ± 1.7 62.9 ± 2.5 88.6 ± 3.3 80.7 ± 3.2
SMOTE 76.8 ± 2.1 61.6 ± 3.1 87.1 ± 2.5 78.4 ± 4.1
GraphSMOTE 77.9 ± 4.5 63.4 ± 6.8 85.6 ± 3.6 75.9 ± 5.7
GNN-CL 77.6 ± 3.1 64.5 ± 3.4 86.9 ± 2.8 78.0 ± 3.1
GraphENS 77.8 ± 0.8 63.1 ± 1.1 91.3 ± 0.3 84.8 ± 0.5
LTE4G 79.3 ± 4.6 64.4 ± 3.9 86.5 ± 5.1 77.4 ± 8.2
GraphSHA 78.4 ± 0.4 63.9 ± 0.7 86.9 ± 1.5 78.0 ± 2.4
ReVar 81.3 ± 1.6 75.1 ± 2.1 89.9 ± 0.7 82.9 ± 1.2

CBGG w/o LSC (LTE4G) 83.1 ± 1.2 74.2 ± 2.2 88.9 ± 1.0 81.2 ± 1.6
CBGG w/o LSC (GraphENS) 84.5 ± 0.5 73.6 ± 2.1 92.1 ± 0.2 86.4 ± 0.4
CBGG w/o LSC (GraphSHA) 83.3 ± 1.0 71.7 ± 1.6 90.5 ± 0.5 83.9 ± 0.8

CBGG (LTE4G) 83.6 ± 1.3 74.6 ± 2.0 92.2 ± 2.1 86.7 ± 3.5
CBGG (GraphENS) 85.2 ± 1.2 75.5 ± 0.3 92.8 ± 0.3 87.7 ± 0.4
CBGG (GraphSHA) 84.9 ± 1.4 74.2 ± 2.2 91.3 ± 0.7 85.2 ± 1.1

Table 3: Long-tailed node classification results
on two citation networks. Bold marks the best
scores, while underlining denotes the second-
best.

Method Cora-LT CiteSeer-LT
Imb. Ratio (ρ = 0.01) GMeans bAcc GMeans bAcc
OverSampling 77.2 ± 1.7 63.5 ± 2.6 65.6 ± 1.5 48.0 ± 2.0
Reweight 81.2 ± 0.9 69.4 ± 1.3 70.6 ± 0.8 54.8 ± 1.1
SMOTE 76.3 ± 1.5 62.2 ± 2.1 64.4 ± 2.9 46.5 ± 3.7
GraphSMOTE 80.0 ± 0.9 67.6 ± 1.4 65.5 ± 0.9 47.9 ± 1.2
GNN-CL 80.2 ± 0.7 66.9 ± 1.0 71.2 ± 0.4 55.7 ± 0.6
GraphENS 83.7 ± 0.3 73.5 ± 0.5 73.8 ± 0.5 59.3 ± 0.2
LTE4G 80.2 ± 1.4 67.9 ± 2.2 71.5 ± 1.4 56.1 ± 2.0
GraphSHA 84.5 ± 1.0 74.6 ± 1.5 73.4 ± 0.6 58.7 ± 0.9
ReVar 81.0 ± 0.4 69.1 ± 0.6 73.7 ± 0.4 59.2 ± 0.5

CBGG w/o LSC (LTE4G) 82.7 ± 0.8 71.8 ± 1.3 75.2 ± 0.6 61.3 ± 0.9
CBGG w/o LSC (GraphENS) 85.5 ± 0.3 76.2 ± 0.5 75.1 ± 0.1 61.3 ± 0.2
CBGG w/o LSC (GraphSHA) 85.5 ± 0.3 76.2 ± 0.5 75.0 ± 0.3 61.0 ± 0.4

CBGG (LTE4G) 83.1 ± 0.2 72.4 ± 0.3 75.3 ± 0.2 61.4 ± 0.3
CBGG (GraphENS) 87.1 ± 0.2 78.7 ± 0.3 75.2 ± 0.1 61.3 ± 0.2
CBGG (GraphSHA) 85.9 ± 0.3 76.9 ± 0.4 75.4 ± 0.2 61.6 ± 0.3

Figure 3: Recall of majority and minority classes on Cora and CiteSeer.

CBGG consistently outperforms baselines in long-tailed imbalance settings. We further eval-
uate the performance of CBGG under long-tailed class distributions. For each dataset, we sort the
classes in descending order of frequency, then iteratively remove low-degree nodes from the minor-
ity classes until the desired imbalance ratio ρ = 0.01 is reached. Here, ρ denotes the ratio between
the most frequent class and the least frequent class. As shown in Table 3, CBGG consistently
outperforms all competing methods under long-tailed class distributions, further demonstrating its
robustness to severe class imbalance.

CBGG effectively improves the performance of imbalanced node classifiers. CBGG aims to
improve the performance of imbalanced node classifiers by leveraging class-balanced synthetic
graphs generated by a graph diffusion process. To assess its effectiveness, we instantiate CBGG with
three different downstream classifiers (LTE4G, GraphENS, and GraphSHA) under both step-class
and long-tailed imbalance settings. As shown in Tables 1, 2, and 3, CBGG consistently improves
performance across all classifiers and imbalance conditions.

LSC improves the performance of CBGG. Unlike prior diffusion-based graph generators, our
graph generator gϕ leans to minimize LSC to support node classification. By tightly clustering
the representative points of the same class while pushing different classes farther apart, it reduces
boundary instability arising from label noise. To isolate the effect of LSC, we set α = 0 and
denote this ablation as CBGGw/oLSC . As reported in Tables 1, 2, and 3, this variant consistently
underperforms compared to CBGG. These results supports that including LSC effectively reduces
the synthetic error in Eq.(14) and thus yields an improvement in classification accuracy.

CBGG mitigates the majority-minority performance tradeoff of imbalanced node classifiers.
Training on class-balanced synthetic graphs, CBGG increases the recall of majority classes with-
out sacrificing the accuracy of minority classes. To verify this effect, we measure the recall of
three imbalanced node classifiers (LTE4G, GraphENS, and GraphSHA) and their CBGG-augmented
counterparts. As shown in Figure 3, CBGG consistently and substantially improves recall for ma-
jority classes across all classifiers. These results demonstrate that class-balanced synthetic graphs

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 4: (a) Homophily rate and degree earth mover’s distance of synthetic graphs, (b) false positive
rate and the number of training nodes depending on the number of Ĝk, and (c) relative G-Means
improvement (%) over GraphENS and GraphSHA.

effectively mitigate class imbalance, enabling improved overall performance without compromising
majority-class accuracy.

Does the generator gϕ capture realistic graph properties? Our CBGG introduces a new
diffusion-based graph generator that conditions soft-label distributions of nodes. To investigate if
CBGG reproduces structural properties of real-world graphs, we assess the fidelity of its generated
graphs against those of GraphMaker (Li et al., 2024a). Our evaluation uses two metrics: (i) the
homophily rate, which measures assortativity by class, and (ii) the Degree Earth Mover’s Distance
(Degree EMD), which quantifies the dissimilarity between the node degree distributions of original
and synthetic graphs. Figure 4(a) shows that CBGG generates synthetic graphs with a homophily
rate nearly identical to the original graph, whereas GraphMaker fails to capture this fundamental
property. Furthermore, CBGG consistently achieves a lower Degree EMD than GraphMaker on
both Cora and CiteSeer, indicating a more faithful reproduction of the node degree distribution.

Does the number of synthetic graphs matter? To further examine the impact of class-balanced
synthetic graphs, we vary the number of generated graphs K ∈ {0, 1, 3, 5, 10, 20} and measure the
false positive rate (FPR) of CBGG. Figure 4(b) shows that adding more synthetic graphs consistently
decreases the FPR of both majority and minority nodes. Notably, the effect saturates when K ≥ 5,
suggesting that a moderate number of synthetic graphs is sufficient.

Class-balanced synthetic graphs outperform unbalanced counterparts. To assess the impact
of class-balanced sampling, we create a variant of CBGG where node labels are drawn from the
empirical distribution of Ŷ, instead of the uniform prior in Eq. (9). We then train the classifiers
fθ∗ (GraphENS and GraphSHA) on both balanced and unbalanced synthetic graphs, and compare
their F1-score improvement over initial classifiers fθ. As shown in Figure 4(c), balanced sampling
consistently leads to gains across both classifiers. These results are consistent with our theoretical
analysis in Eq.(15): balanced sampling increases the minimum class-wise sample count nk, which
tightens the generalization bound across all classes.

Additional experiments are provided in the Appendix, including hyperparameter analysis (in Ap-
pendix C), loss analysis (in Appendix D), time complexity analysis (in Appendix E), and robustness
to noise (in Appendix F).

5 CONCLUSION

In this work, we propose Class Balancing via Graph Generation (CBGG), a novel framework
for imbalanced node classification that alleviates the majority–minority trade-off by generating
class-balanced synthetic graphs. We theoretically and empirically show that CBGG narrows the
generalization gap by (i) increasing the number of training samples through graph-level genera-
tion and (ii) reducing synthetic noise via a supervised contrastive loss. Extensive experiments on
seven benchmarks confirm that CBGG substantially improves the performance of state-of-the-art
methods.We expect that our graph-level generation–based approach will serve as a new direction
for addressing imbalanced node classification. While our study focuses on homogeneous graphs,
extending this approach to heterogeneous graphs is a promising future direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

We have made careful efforts to ensure the reproducibility of our work. Specifically, Sec. 4.1
describes the experimental setup, including datasets, baselines, and evaluation metrics. Detailed
descriptions of the experimental settings, including hardware specifications and software envi-
ronments, are provided in Appendix A. Dataset information and download sources are given in
Appendix A.2, while baseline implementations and hyperparameter choices are detailed in Ap-
pendix A.3. Finally, definitions of all evaluation metrics are summarized in Appendix A.3. The
source code is provided in the supplementary material and will be made publicly available upon
publication.

REFERENCES

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In International Conference on Learning Representations,
2018.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan: Gen-
erating graphs via random walks. In International conference on machine learning, pp. 610–619.
PMLR, 2018.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Wuxing Chen, Kaixiang Yang, Zhiwen Yu, Yifan Shi, and CL Philip Chen. A survey on imbalanced
learning: latest research, applications and future directions. Artificial Intelligence Review, 57(6):
137, 2024.

Xiaohui Chen, Jiaxing He, Xu Han, and Liping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. In International Conference on Machine Learning, pp. 4585–
4610. PMLR, 2023.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9268–9277, 2019.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pp. 89–98, 1998.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang. Dis-
entangling label distribution for long-tailed visual recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 6626–6636, 2021.

Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep representation for
imbalanced classification. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5375–5384, 2016.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International conference on machine learning, pp.
10362–10383. PMLR, 2022.

Qi Kang, XiaoShuang Chen, SiSi Li, and MengChu Zhou. A noise-filtered under-sampling scheme
for imbalanced classification. IEEE transactions on cybernetics, 47(12):4263–4274, 2016.

Mohamed Amine Ketata, Nicholas Gao, Johanna Sommer, Tom Wollschläger, and Stephan
Günnemann. Lift your molecules: Molecular graph generation in latent euclidean space. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=uNomADvF3s.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Jaehyung Kim, Jongheon Jeong, and Jinwoo Shin. M2m: Imbalanced classification via major-to-
minor translation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 13896–13905, 2020.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International conference on machine
learning, pp. 17391–17408. PMLR, 2023.

Mufei Li, Eleonora Kreacic, Vamsi K. Potluru, and Pan Li. Graphmaker: Can diffusion models
generate large attributed graphs? Transactions on Machine Learning Research, 2024a. ISSN
2835-8856. URL https://openreview.net/forum?id=0q4zjGMKoA.

Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. Graphsha: Synthesizing harder
samples for class-imbalanced node classification. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1328–1340, 2023.

Xiaohe Li, Zide Fan, Feilong Huang, Xuming Hu, Yawen Deng, Lei Wang, and Xinyu Zhao. Graph
neural network with curriculum learning for imbalanced node classification. Neurocomputing,
574:127229, 2024b.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32, 2019.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

11

https://openreview.net/forum?id=uNomADvF3s
https://openreview.net/forum?id=uNomADvF3s
https://openreview.net/forum?id=0q4zjGMKoA

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph varia-
tional autoencoders for molecule design. Advances in neural information processing systems, 31,
2018.

Zemin Liu, Yuan Li, Nan Chen, Qian Wang, Bryan Hooi, and Bingsheng He. A survey of imbal-
anced learning on graphs: Problems, techniques, and future directions. IEEE Transactions on
Knowledge and Data Engineering, 2025.

Yihong Ma, Yijun Tian, Nuno Moniz, and Nitesh V Chawla. Class-imbalanced learning on graphs:
A survey. ACM Computing Surveys, 57(8):1–16, 2025.

Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case study involv-
ing information extraction. In Proceedings of workshop on learning from imbalanced datasets,
volume 126, pp. 1–7. ICML United States, 2003.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127–163, 2000.

Sankha Subhra Mullick, Shounak Datta, and Swagatam Das. Generative adversarial minority over-
sampling. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
1695–1704, 2019.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In International con-
ference on artificial intelligence and statistics, pp. 4474–4484. PMLR, 2020.

Joonhyung Park, Jaeyun Song, and Eunho Yang. Graphens: Neighbor-aware ego network synthesis
for class-imbalanced node classification. In International conference on learning representations,
2021a.

Seulki Park, Jongin Lim, Younghan Jeon, and Jin Young Choi. Influence-balanced loss for imbal-
anced visual classification. In Proceedings of the IEEE/CVF international conference on com-
puter vision, pp. 735–744, 2021b.

Seulki Park, Youngkyu Hong, Byeongho Heo, Sangdoo Yun, and Jin Young Choi. The majority can
help the minority: Context-rich minority oversampling for long-tailed classification. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6887–6896,
2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-
tailed visual recognition. Advances in neural information processing systems, 33:4175–4186,
2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Jason Van Hulse, Taghi M Khoshgoftaar, and Amri Napolitano. Experimental perspectives on learn-
ing from imbalanced data. In Proceedings of the 24th international conference on Machine learn-
ing, pp. 935–942, 2007.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=UaAD-Nu86WX.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. Advances in
neural information processing systems, 30, 2017.

Divin Yan, Gengchen Wei, Chen Yang, Shengzhong Zhang, et al. Rethinking semi-supervised im-
balanced node classification from bias-variance decomposition. Advances in Neural Information
Processing Systems, 36:29174–29200, 2023.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in neural information processing
systems, 31, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pp. 5708–5717. PMLR, 2018b.

Bo Yuan and Xiaoli Ma. Sampling+ reweighting: Boosting the performance of adaboost on imbal-
anced datasets. In The 2012 international joint conference on neural networks (IJCNN), pp. 1–6.
IEEE, 2012.

Sukwon Yun, Kibum Kim, Kanghoon Yoon, and Chanyoung Park. Lte4g: Long-tail experts for
graph neural networks. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pp. 2434–2443, 2022.

Chongsheng Zhang, George Almpanidis, Gaojuan Fan, Binquan Deng, Yanbo Zhang, Ji Liu,
Aouaidjia Kamel, Paolo Soda, and João Gama. A systematic review on long-tailed learning.
IEEE Transactions on Neural Networks and Learning Systems, 2025.

Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification on
graphs with graph neural networks. In Proceedings of the 14th ACM international conference on
web search and data mining, pp. 833–841, 2021.

13

https://openreview.net/forum?id=UaAD-Nu86WX
https://openreview.net/forum?id=UaAD-Nu86WX

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A EXPERIMENTAL DETAILS

A.1 SETTINGS

We conduct experiments on four NVIDIA GeForce RTX 3090 Ti GPUs and an Intel Core i9-12900k
CPU. We use CUDA 11.8, Python 3.9.21, PyTorch 2.0.0+cu118 (Paszke et al., 2019), and PyTorch
Geometric 2.3.1 (Fey & Lenssen, 2019).

A.2 DATASETS

We conduct experiments on five benchmark graph-structured datasets: Cora (McCallum et al.,
2000), CiteSeer (Giles et al., 1998), PubMed (Sen et al., 2008), Amazon-Computers (Shchur
et al., 2018), and Amazon-Photo (Shchur et al., 2018). The three citation datasets (Cora, Cite-
seer, PubMed) are obtained from the PyTorch Geometric repository 1. The two Amazon graphs are
also downloaded from the corresponding loader in the same repository 2. These publicly available
datasets and the repository have no public declaration of license.

Table 4: Dataset statistics.

Dataset # of Nodes # of Edges # of Features # of Classes # of Imbalanced Classes

Cora 2,708 5,429 1,433 7 3
CiteSeer 3,327 4,732 3,703 6 3
PubMed 19,717 44,338 500 3 1

Amazon Computers 13,381 245,778 767 10 5
Amazon Photo 7,487 119,043 745 8 3

A.3 BASELINES

For each baseline, we utilize the following publicly available codes. We select the hyperparame-
ter setting for each baseline in the released code or its respective paper. For GraphENS, we use
Beta(2, 2) distribution to sample its mixing ratio. For GraphSHA, we choose the graph diffusion as
the Personalized PageRank (PPR) with a teleport rate α = 0.05 and then select 128 highest mass per
column. For LTE4G, following the original protocol, we designate 7 head / 3 tail classes on Cora
and 5 head / 5 tail classes on Citeseer in long-tailed settings.

Table 5: URL links for baselines.

Baseline URL Link

Oversampling https://github.com/SukwonYun/LTE4G/blob/main/models/baseline/oversampling.py
Reweighting https://github.com/SukwonYun/LTE4G/blob/main/models/baseline/reweight.py
SMOTE https://github.com/SukwonYun/LTE4G/blob/main/models/baseline/smote.py
GraphSMOTE https://github.com/SukwonYun/LTE4G/blob/main/models/baseline/graphsmote T.py
GNN-CL https://github.com/seanlxh/GNN-CL
GraphENS https://github.com/JoonHyung-Park/GraphENS
LTE4G https://github.com/SukwonYun/LTE4G
GraphSHA https://github.com/wenzhilics/GraphSHA
ReVar https://github.com/yanliang3612/ReVar

A.4 EVALUATION METRICS

We use three different metrics: Geometric Means (G-Means), Balanced Accuracy (bAcc), and
Macro-F1. Here, higher G-Means, bAcc, and Macro-F1 indicate better performance.

• G-Means. The geometric mean of the true-positive rate (sensitivity) and true-negative rate
(specificity). It rewards models that perform well on both the positive and negative classes,

1https://github.com/pyg-team/pytorch_geometric/blob/master/torch_
geometric/datasets/planetoid.py

2https://github.com/pyg-team/pytorch_geometric/blob/master/torch_
geometric/datasets/amazon.py

14

https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/datasets/planetoid.py
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/datasets/planetoid.py
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/datasets/amazon.py
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/datasets/amazon.py

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table 6: Imbalanced node classification results on three citation networks. For each method, we
report the mean ± standard error over five runs for geometric mean (G-Means %), balanced accuracy
(bAcc %), and macro-F1 score. Bold marks the best scores, while underlining denotes the second-
best.

Method Cora (Imb. class num = 3) Citeseer (Imb. class num = 3) Pubmed (Imb. class num = 1)

Imb. Ratio (ρ = 0.1) GMeans bAcc Macro-F1 GMeans bAcc Macro-F1 GMeans bAcc Macro-F1
OverSampling 74.4 ± 2.9 59.4 ± 4.2 55.5 ± 6.6 62.2 ± 2.1 43.6 ± 2.7 34.1 ± 3.1 68.5 ± 0.9 59.0 ± 1.1 54.0 ± 4.5
Reweight 81.3 ± 3.4 70.2 ± 5.1 70.3 ± 5.9 67.1 ± 0.8 50.0 ± 1.1 43.3 ± 1.4 75.0 ± 0.4 67.3 ± 0.5 66.1 ± 0.3
SMOTE 74.0 ± 1.5 58.8 ± 2.2 55.4 ± 2.6 63.9 ± 1.0 45.8 ± 1.3 37.9 ± 1.6 71.0 ± 2.7 62.2 ± 3.5 58.0 ± 6.7
GraphSMOTE 82.1 ± 0.6 71.0 ± 5.9 69.4 ± 7.9 67.0 ± 1.7 49.9 ± 2.2 44.2 ± 3.2 74.7 ± 2.1 66.9 ± 2.7 65.2 ± 3.3
GNN-CL 82.5 ± 1.1 72.0 ± 1.7 65.3 ± 1.5 67.8 ± 0.4 50.8 ± 0.6 50.1 ± 0.1 80.8 ± 1.6 74.7 ± 2.0 74.1 ± 2.7
GraphENS 79.3 ± 0.8 69.6 ± 1.3 68.6 ± 1.6 71.7 ± 1.1 56.4 ± 1.6 49.2 ± 2.9 80.5 ± 1.6 74.3 ± 2.0 74.3 ± 2.0
LTE4G 83.6 ± 3.1 73.2 ± 3.9 72.1 ± 5.8 70.2 ± 3.3 54.0 ± 4.1 51.8 ± 4.0 73.7 ± 1.4 65.7 ± 1.7 65.2 ± 1.3
GraphSHA 85.3 ± 0.3 75.8 ± 0.4 75.7 ± 0.4 72.3 ± 1.7 56.6 ± 2.4 56.3 ± 2.1 81.9 ± 0.2 76.1 ± 0.3 75.8 ± 0.4
ReVar 83.7 ± 1.1 73.4 ± 1.7 72.7 ± 1.9 72.4 ± 1.6 57.3 ± 2.3 53.8 ± 1.7 81.9 ± 0.9 76.1 ± 1.1 76.1 ± 1.2

CBGG (GraphENS) 85.7 ± 0.5 76.1 ± 0.7 76.0 ± 0.8 78.1 ± 0.4 65.5 ± 0.6 62.1 ± 0.5 82.7 ± 1.8 77.2 ± 2.3 77.0 ± 2.2
CBGG (GraphSHA) 86.7 ± 0.1 78.1 ± 0.2 78.2 ± 0.2 77.5 ± 0.4 64.6 ± 0.5 62.7 ± 0.6 84.8 ± 0.4 79.9 ± 0.6 79.6 ± 0.5

even under severe class imbalance:

G-Means =

√
TP

TP + FN
× TN

TN + FP
(17)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

• bAcc. The arithmetic mean of per-class recalls, so every class contributes equally regard-
less of its prevalence:

bAcc =
1

C

C∑
c=1

TPc
TPc + FNc

, (18)

where TPc is the number of true positives on the class c, and FNc is the number of false
negatives on the class c.

• Macro-F1. Macro-F1 calculates the F1-score for each class and then takes their arithmetic
mean, so that precision and recall are both considered for every class as:

Macro-F1 =
1

C

C∑
c=1

2PrecisioncRecallc
Precisionc + Recallc

(19)

where Precisionc = TPc

TPc+FPc
, and Recallc = TPc

TPc+FNc
.

B RESULTS ON THE ANOTHER IMBALANCED RATE (ρ = 0.1)

We further assess the effectiveness of CBGG under another step-class imbalance of ρ = 0.1. Fol-
lowing the setup in Section 4.2, we instantiate CBGG with two final classifiers fθ∗ (GraphENS and
GraphSHA), then compare them against state-of-the-art baselines. Following the practice of Park
et al. (2021a); Yun et al. (2022), we equalise the imbalance level across all datasets: each head class
is given 20 labelled nodes, whereas each tail class receives only two. All other hyperparameters
and training settings remain unchanged from Section 4.2. Table 6 shows that CBGG continues to
outperform every baseline on every dataset and metric, even under this milder imbalance. More-
over, both GraphENS and GraphSHA benefit from CBGG, exhibiting consistent improvements in
all metrics. These results confirm that the gains delivered by our class-balancing diffusion module
are not confined to the most extreme imbalance setting, but generalise to more moderate scenarios
as well.

C HYPERPARAMETER ANALYSIS

CBGG employs two key hyperparameters: λ, which controls how strongly the synthetic graphs
influence classifier training, and α, which weights the supervised contrastive loss LSC loss within

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 5: Hyperparameter sensitivity (α and λ) of CBGG.

the graph-generation objective. To assess its impact, we vary α ∈ {0, 0.1, 0.2, 0.3, 0.4} and λ ∈
{0, 0.05, 0.1, 0.5, 1, 10} and report the resulting G-Means scores of CBGG in Fig. 5. Each setting
is repeated five times, and the averages are plotted. When λ=0, CBGG invariably attains the lowest
score, confirming that including synthetic graphs is essential. Performance also drops slightly at
α=0, because an overly small α cannot sufficiently mitigate class imbalance. The sweet spot lies in
the mid-range α∈ [0.1, 0.3] and λ∈ [0.05, 1], where CBGG consistently reaches its global maximum
(˜83.2). Since this optimal region is broad, hyperparameter tuning incurs little overhead and readily
scales to larger datasets.

Figure 6: Train and test loss.

D LOSS ANALYSIS

To examine the effect of synthetic graph generation on generalization, we compare the training and
test losses of vanilla GRAPHENS and CBGG that uses the same classifier, as shown in Figure 6.
Across five random seeds (mean shown), CBGG consistently exhibits a much narrower training–test
gap, implying a smaller generalization gap than the vanilla model. We attribute this improvement to
the substantially larger number of nodes introduced by graph generation, which acts as an on-the-fly
data-augmentation mechanism and regularizes the classifier.

E TIME COMPLEXITY ANALYSIS

We analyze the computational complexity of the proposed CBGG framework. The graph gen-
erator gψ is implemented as a single-layer Graph Attention Network (GAT) (Veličković et al.,
2018) with embedding dimension H . During generation, we employ minibatch sampling, where
each denoising step processes Nb nodes and Eb edges, resulting in a per-step time complexity
of O(NbH

2 + EbH). To generate K synthetic graphs, the reverse diffusion process is repeated

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 7: Performance variation by noise injection level in the initial classifier’s soft label distribu-
tion

for T steps per graph, leading to a total sampling cost of O(KT (NbH
2 + EbH)). Addition-

ally, training the final classifier fθ∗ on both the real and synthetic graphs incurs a complexity
O((1+K)L(NH2+EH)) where L denotes the number of GNN layers. Then, the overall complex-
ity of CBGG becomes O

(
KT (NbH

2 + EbH) + (1 +K)L(NH2 + EH)
)
. Under typical settings

such as H=256, N=104, E=105, T=30, K=5, and minibatch size Nb=Eb=500, the training cost of
CBGG is approximately 7.5 times higher than that of a standard GNN. At inference time, however,
CBGG requires only a single forward pass of the trained classifier on the original graph, incurring the
same computational cost as a vanilla GNN while delivering substantial performance gains. Despite
the additional training cost, CBGG offers a practical solution that delivers significant performance
improvements without increasing inference cost.

F ROBUSTNESS TO NOISE

In real-world scenarios, the initial classifier often produces noisy predictions. To evaluate whether
CBGG is robust to such imperfect supervision, we inject Gaussian noise of varying magnitude
(λ ∈ 0, 1, 2, 3) into the teacher outputs. Figure 7 presents the results on a GraphENS classifier
and its improved classifier via CBGG. As the noise level increases, the vanilla GraphENS baseline
experiences a sharp decline in G-Means, balanced accuracy, and Macro-F1. In contrast, the CBGG-
augmented models remain substantially more stable, maintaining high performance even under the
strongest perturbations. These findings indicate that CBGG effectively mitigates the impact of noisy
teacher signals, thereby providing robustness against unreliable initial supervision.

17

	Introduction
	Related Work
	Proposed Method
	Problem Definition
	Overview of CBGG
	Stage I: Training a Graph Generation Model
	Stage II: Enhancing Node Classifier via Class-Balanced Synthetic Graphs
	Theoretical Analysis

	Experiments
	Experimental Setup
	Experiment Results

	Conclusion
	Experimental Details
	Settings
	Datasets
	Baselines
	Evaluation Metrics

	Results on the Another Imbalanced Rate (=0.1)
	Hyperparameter Analysis
	Loss Analysis
	Time Complexity Analysis
	Robustness to Noise

