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ABSTRACT

Class imbalance is prevalent in real-world data, often leading to a deteriora-
tion in a classifier’s generalization performance, especially on minority classes.
Since graph-structured data is no exception, many efforts have been made to
tackle imbalanced node classification by focusing on minority classes, leading
to improved overall performance in imbalanced node classification. However, we
find that these methods boost minority recall at the expense of degrading major-
ity recall, a trade-off that has been overlooked. To address this issue, we pro-
pose Class Balancing Graph Generation (CBGG), a novel framework that pre-
vents imbalanced node classifiers from sacrificing prediction power on major-
ity classes. CBGG trains classifiers on high-quality synthetic graphs with class-
balanced nodes, thereby tightening their generalization bounds across all classes.
Extensive experimental results demonstrate that CBGG not only overcomes the
majority-sacrifice pitfall of prior work but also significantly outperforms state-of-
the-art imbalanced node classification methods across seven benchmark datasets.

1 INTRODUCTION

Semi-supervised node classification on graph-structured data is a fundamental task with wide appli-
cations in domains such as e-commerce and bioinformatics (Kipf & Welling, 2017; Veličković et al.,
2018; Hamilton et al., 2017). However, real-world graphs often exhibit severe class imbalance (Bo-
jchevski & Günnemann, 2018; Sen et al., 2008; Shchur et al., 2018), which poses significant chal-
lenges for learning. For instance, in citation networks, certain research fields may contain only a few
labeled nodes, making it difficult for models to generalize to those under-represented classes. This
class imbalance degrades classification performance by biasing the model toward majority classes
and increasing error rates on minority nodes.

To mitigate this issue, existing methods typically increase the relative presence of minority
nodes—either by assigning higher weights to minority samples (Yuan & Ma, 2012) or by synthe-
sizing additional minority nodes (Zhao et al., 2021; Park et al., 2021a; Li et al., 2023). However,
we identify a common trade-off in prior methods: improving recall for minority classes often comes
at the cost of reduced majority-class recall. As shown in Figure 1(a), these methods consistently
increase recall for minority classes but simultaneously reduce recall for majority classes compared
to a standard GNN classifier (Veličković et al., 2018), highlighting an inherent trade-off.

The trade-off we identify motivates us to enhance imbalanced node classifiers through graph-level
generation, which enables training on synthetic graphs that closely resembles the input graph. We
hypothesize that generating class-balanced synthetic nodes with high label-predictive consistency
plays a key role in reducing the generalization gap of classifiers, which we validate through both
theoretical and empirical analyses. To implement this idea in practice, we draw inspiration from
recent advances in diffusion-based graph generation (Jo et al., 2022; Vignac et al., 2023; Chen et al.,
2023). However, these methods are primarily designed for graph synthesis and are not tailored to
imbalanced node classification tasks.

In this paper, we propose Class Balancing via Graph Generation (CBGG), a novel plug-in frame-
work that addresses the trade-off between minority- and majority-class performance in imbalanced
node classification. CBGG begins by training an initial node classifier (e.g., GraphENS (Park et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

(a) (b)

Figure 1: Results on CiteSeer dataset: (a) recall of existing methods for majority and minority nodes,
and (b) the number of training nodes for majority and minority classes.

2021a) or GraphSHA (Li et al., 2023)). CBGG then trains a new diffusion-based graph generator that
produces synthetic graphs with class-balanced nodes. The generator is optimized with a supervised
contrastive classification loss and is conditioned on a soft label distribution obtained from the initial
node classifier. Lastly, a final, improved node classifier is trained on both the original graph and mul-
tiple diverse class-balanced graphs produced by the generator. This approach enables the classifiers
to train on a substantially larger number of majority and minority nodes, as shown in Figure 1(b),
thereby boosting classification performance on minority nodes without sacrificing the performance
of majority nodes. We provide a theoretical analysis showing that CBGG reduces the generalization
gap and empirically demonstrate that CBGG effectively mitigates the majority–minority trade-off.
Finally, CBGG significantly outperforms state-of-the-art imbalanced node classification methods
across seven benchmark datasets.

In summary, our contributions are as follows: (i) We identify the minority–majority trade-off inher-
ent in existing imbalalanced node classification methods, which has been underexplored. (ii) We
introduce a new paradigm for imbalanced node classification based on graph-level generation. (iii)
We theoretically highlight that CBGG mitigates the generalization gap by increasing the number of
synthetic samples through graph-level generation and minimizing the synthetic noise rate through
the supervised contrastive loss. (iv) Through extensive experiments on seven benchmark datasets,
we demonstrate that CBGG achieves significant performance gains over state-of-the-art methods for
imbalanced node classification.

2 RELATED WORK

Class-Imbalance Learning. Methods for class imbalance learning (Chen et al., 2024), including
its special case, long-tailed learning (Zhang et al., 2025), can be broadly categorized into two ap-
proaches: algorithm-level and data-level. The algorithm-level approach focuses on modifying the
training process—such as introducing reweighting strategies (Huang et al., 2016; Wang et al., 2017;
Cui et al., 2019; Cao et al., 2019; Ren et al., 2020; Hong et al., 2021) or adjusting loss function (Lin
et al., 2017; Park et al., 2021b)—to make the model more sensitive to minority classes, without
altering the original data distribution. In contrast, the data-level approach addresses class imbalance
by modifying the training data distribution itself—typically through repeatedly sampling minority
samples (i.e. oversampling) (Chawla et al., 2002; Mullick et al., 2019; Kim et al., 2020; Park et al.,
2022) or selectively removing a portion of majority samples (i.e. undersampling) (Mani & Zhang,
2003; Van Hulse et al., 2007; Kang et al., 2016)—to create a more balanced dataset for training.

Imbalanced Node Classification. Tailored techniques for imbalanced node classification on
graphs (Ma et al., 2025; Liu et al., 2025) have been developed under the same algorithm-level
and data-level categorization used in general class-imbalance learning. As the algorithm-level ap-
proach, ReVar (Yan et al., 2023) introduces variance-based regularization into the loss function,
while LTE4G (Yun et al., 2022) trains multiple expert graph neural networks (GNNs) for different
imbalanced node subsets and distills their knowledge into class-wise student models. As the data-
level approach, most methods for imbalanced node classification (Park et al., 2021a; Zhao et al.,
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Figure 2: An overview of Class Balancing via Graph Generation (CBGG).

2021; Li et al., 2023; 2024b) have been based on oversampling, which synthesizes minority nodes
to mitigate class imbalance. Although these methods improve performance on minority classes by
generating synthetic minority nodes, we find that this comes at the cost of degrading performance
on majority classes. Unlike oversampling-based methods, our graph generation-based approach
effectively resolves this issue by generating a large number of both majority and minority nodes.

Graph Generation. With the development of deep generative models, many data-driven approaches
for graph structure generation have been developed (Kipf & Welling, 2016; You et al., 2018b; Bo-
jchevski et al., 2018; Li et al., 2018; Liao et al., 2019). Deep generative models have also been
applied to molecular graph generation (Jin et al., 2018; Liu et al., 2018; You et al., 2018a; De Cao
& Kipf, 2018), where each graph typically contains a few dozen nodes and a single categorical at-
tribute per node. As the trend in deep generative models has shifted toward diffusion models (Ho
et al., 2020; Rombach et al., 2022), this paradigm has also inspired the development of diffusion-
based methods tailored for graph structure and molecule generation (Niu et al., 2020; Jo et al., 2022;
Vignac et al., 2023; Chen et al., 2023; Kong et al., 2023; Ketata et al., 2025). Among them, Graph-
Maker (Li et al., 2024a) improves scalability by replacing the graph transformer encoder Dwivedi &
Bresson (2020) with a message-passing neural network (MPNN) Gilmer et al. (2017) and adopting
a minibatch strategy. However, they are not designed for semi-supervised node classification.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

The problem of node classification considers a graph G = (V, E ,X), where V = {v1, . . . , vN} is
the set of N nodes, E is the set of edges, and X ∈ RN×F is a node feature matrix, with F being the
number of feature channels. Specifically, Xi,a represents the a-th channel feature value of vi. To
represent the structure of G, we use the adjacency matrix A ∈ {0, 1}N×N . Ã ∈ {0, 1}N×N×2 is
a one-hot encoded tensor of A, where the last dimension represents the presence or absence of an
edge. X̃ ∈ RN×F×BX is a one-hot encoding of X ∈ RN×F , where BX denotes the possible classes
of all categorical attributes. Since each node is also associated with a class label, Y ∈ {0, 1}N×C

denotes a node label matrix, where C is the number of classes. The i-th row of Y, denoted as Yi,:,
is a one-hot vector indicating the ground-truth label of node vi. All nodes in V are partitioned into
Vtrain, Vval, and Vtest, which represent the training, validation, and test sets, respectively. The goal of
node classification is to accurately predict the labels of nodes in Vtest by training a model on labeled
nodes in Vtrain, using both X and A. In this work, we focus on imbalanced node classification,
where the number of labeled nodes significantly differs across classes. That is, we consider class
imbalance within the training set Vtrain, which contains the labeled nodes available during training.

3.2 OVERVIEW OF CBGG

We introduce CBGG, a two-stage plug-in framework designed to mitigate class imbalance in semi-
supervised node classification. As illustrated in Figure 2, CBGG consists of two stages. In the
first stage, CBGG trains a new diffusion-based graph generator designed for node classification to
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reconstruct the input graph, using the predictions of the initial classifier fθ. In the second stage, the
classifier is retrained as fθ∗ using class-balanced synthetic graphs generated by the trained generator.

3.3 STAGE I: TRAINING A GRAPH GENERATION MODEL

Given a node classifier fθ such as GraphSMOTE (Zhao et al., 2021), GraphENS (Park et al., 2021a),
and GraphSHA (Li et al., 2023), our CBGG aims to reduce the generalization error of fθ via graph-
level generation. To accomplish this, we train a new label-conditioned diffusion model gϕ that learns
to recover the input graph G = (V, E ,X) via a denoising diffusion process.

We generate Ŷv by replacing Yv of unobserved nodes v ∈ Vvalid ∪ Vtest with the soft label pre-
dictions (i.e., probability distributions) of fθ. While labeled nodes retain their ground-truth one-hot
labels, the rest are filled with these soft label probability vectors. The primary advantage of this
approach is that it allows us to capture and incorporate the uncertainty inherent in the classifier’s
predictions into the graph generation process. This ultimately helps to reduce the generalization
error of the node classifier fθ. Our diffusion model gϕ consists of a forward process and a reverse
process.

Forward Process. In the forward process, the given graph G is progressively corrupted by perturb-
ing its attributes X and edges A over multiple steps. Subsequently, during the reverse process, gϕ
is trained to perform one-step denoising. We follow the asynchronous strategy designed by Graph-
Maker (Li et al., 2024b)). We define TX̃ = {t1

X̃
, . . . , t

TX̃

X̃
} ⊆ [T ] as the set of time steps dedicated

to corrupting node attributes, and similarly, TÃ = {t1
Ã
, . . . , t

TÃ

Ã
} ⊆ [T ] for edge corruption.

During the forward process, we define the corruption transition Q
(t)

X̃d
∈ RBX×BX and Q

(t)

Ã
∈ R2×2

as

Q
(t)

X̃d
= ᾱγX̃(t) · IBX×BX

+
(
1− ᾱγX̃(t)

)
· 1BX

·m⊤
X̃d

, (1)

Q
(t)

Ã
= ᾱγÃ(t) · I2×2 +

(
1− ᾱγÃ(t)

)
· 12 ·m⊤

Ã
. (2)

where ᾱγZ (t) = cos2
(
π
2 · γZ(t)

|TZ |+s

)
is a time-dependent noise coefficient, and Z ∈ {X̃, Ã}. mX̃d

denotes a BX-dimensional column vector that represents the empirical marginal distribution of the
d-th node attribute, and mÃ a two-dimensional column vector that represents the empirical marginal
distribution of edge existence. Im×m ∈ {0, 1}m×m is the identity matrix, 1m is an m-dimensional
column vector of ones, and ⊤ denotes transpose. To ensure that the corrupted adjacency tensor Ã(t)

remains symmetric and reflects an undirected graph, the transition matrix Q
(t)

Ã
is applied only to the

upper triangular part of Ã, and the full matrix is reconstructed via symmetrization after sampling.

Using these matrices, the forward process corrupts the graph as:

q(X̃
(t)
i,d | X̃i,d) =X̃i,d ·Q

(t)

X̃d
for i ∈ [N ], d ∈ [F ], (3)

q(Ã(t) | Ã) =Ã ·Q(t)

Ã
, (4)

This process gradually transforms the clean node features and adjacency matrix into their noisy
counterparts across time steps.

Reverse Process. In the reverse process, gϕ denoises the graph one step at a time. To guide the
generation toward class-consistent structure, we condition each node’s input on its label embed-
ding. This conditioning is implemented by concatenating soft-label label vectors. The resulting
conditioned matrix is used as input to the denoising network gϕ at each timestep. Accordingly,
the denoising distribution becomes conditioned on the label matrix pϕ(G(t−1) | G(t), t, Ŷ). Once
trained, gϕ generates a graph by iteratively denoising a noisy sample drawn from an empirical prior
distribution over node features and edges, formally defined as

∏N
v=1

∏F
d=1 mX̃d

·
∏

1≤u<v≤N mÃ.
This denoising process is performed step-by-step, where the joint distribution at each timestep is

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

factorized as follows:

pϕ(G(t−1) | G(t), Ŷ) =

N∏
i=1

F∏
d=1

pϕ(X̃
(t−1)
i,d | G(t), Ŷi)

·
∏

1≤j<i≤N

pϕ(Ã
(t−1)
j,i | G(t), Ŷi).

(5)

This procedure predicts clean features X and structure A from the noisy inputs and conditioning
labels.

To compute each denoising term, we marginalize over the model’s categorical predictions. Specifi-
cally, for each node attribute dimension, we compute:

pϕ(X̃
(t−1)
i,d | G(t), Ŷi) =

∑
xd

q(X̃
(t−1)
i,d | X̃(t)

i,d)p̂
X
i,d(xd|Ŷi), (6)

where p̂Xi,d = softmax(WZi) and Z = gϕ(G(t), t, Ŷ) is a node representation matrix. W is a
trainable matrix and gϕ is a message-passing neural network.

To optimize parameters ϕ, we minimize a hybrid loss that combines a reconstruction loss and a
supervised contrastive loss. The full objective is defined as:

LDIFF = αLSC +
∑

1≤i≤N

CE(Xi, X̃i) +
∑

1≤i,j≤N

CE(Aij , Ãij), (7)

where α is a hyperparameter and CE is a cross-entropy loss.

The first term LSC is a kind of supervised contrastive loss (Khosla et al., 2020) that encourages
nodes with the same labels to be close:

LSC =
∑

i∈Vtrain

−1

|P (i)|
∑
p∈P (i)

log
exp

(
Zi · Zp/τ

)∑
a∈Vtrain\{i} exp

(
Zi · Za/τ

) , (8)

where P (i)={p ∈ Vtrain \ {i} | Yp = Yi}, and τ is a temperature hyperparameter. Our LSC uses
labeled nodes as anchors.

3.4 STAGE II: ENHANCING NODE CLASSIFIER VIA CLASS-BALANCED SYNTHETIC GRAPHS

Sampling Synthetic Graphs. To enhance the classifier fθ, CBGG generates class-balanced syn-
thetic graphs using the diffusion model gψ . This is achieved by repeatedly applying the reverse
process of gψ . Unlike prior diffusion-based models that follow the empirical class distribution of the
input graph, our approach conditions generation on a uniform class prior. This design increases the
minimum number of training samples across classes (nmin), thereby tightening the generalization
bound between true and empirical risks, as discussed in Section 3.5.

To achieve this, we employ a per-class buffer {Bc}Cc=1 of soft label distributions produced by the
pretrained teacher fθ. Each Bc stores probability vectors pfθ (· | v) ∈ ∆C−1 collected from nodes v
that are assigned to class c (i.e., argmaxy pfθ (y | v) = c).

Let {G̃k}Kk=1 be the set of synthetic graphs to be generated. For each k, we first construct a soft-label
matrix Yk ∈ RN×C by independently sampling soft label vectors from the buffers as follows:

(Yk)i,: ∼ Uniform(Bci), ci ∼ Uniform({1, . . . , C}), (9)

The sampled matrix Yk serves as the conditioning signal that enforces class balance during genera-
tion while incorporating calibrated uncertainty.

We then sample an initial noisy graph G̃(T )
k = (X̃

(T )
k , Ã

(T )
k ) from a predefined prior distribution

over features and adjacency structures. Starting from this noisy graph, the model performs reverse
diffusion in T steps:

G̃(t−1)
k ∼ pϕ(G̃(t−1)

k | G̃(t)
k , t,Yk). (10)

where t = T, T − 1, . . . , 1. At each step, the model predicts cleaner features and structure condi-
tioned on the current noisy graph, the timestep, and the label matrix.
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Table 1: Step-class imbalanced node classification results on three citation networks. Bold marks
the best scores, while underlining denotes the second-best.

Method Cora (Imb. class num = 3) Citeseer (Imb. class num = 3) Pubmed (Imb. class num = 1)

Imb. Ratio (ρ = 0.05) GMeans bAcc Macro-F1 GMeans bAcc Macro-F1 GMeans bAcc Macro-F1
OverSampling 70.4 ± 2.9 53.7 ± 1.6 47.0 ± 2.2 63.3 ± 1.7 45.0 ± 2.2 35.2 ± 2.5 66.7 ± 5.4 56.8 ± 6.8 54.9 ± 7.3
Reweight 76.7 ± 2.2 62.7 ± 3.2 59.5 ± 5.4 64.9 ± 1.7 47.2 ± 2.3 38.3 ± 3.7 70.5 ± 0.6 61.6 ± 0.7 54.1 ± 2.8
SMOTE 69.5 ± 1.6 52.5 ± 2.1 45.4 ± 4.9 62.8 ± 2.1 44.4 ± 2.8 34.2 ± 3.6 66.5 ± 2.0 56.5 ± 2.5 48.2 ± 3.0
GraphSMOTE 73.3 ± 0.6 57.8 ± 0.8 63.5 ± 6.7 68.3 ± 2.1 51.6 ± 2.8 45.2 ± 4.4 69.3 ± 4.3 60.0 ± 5.5 56.6 ± 8.3
GNN-CL 74.5 ± 2.1 59.5 ± 2.4 51.9 ± 2.8 68.2 ± 2.0 51.5 ± 2.5 42.6 ± 3.2 68.8 ± 2.6 59.4 ± 3.4 53.4 ± 3.8
GraphENS 78.7 ± 0.6 65.8 ± 0.8 63.1 ± 1.0 69.7 ± 0.7 53.5 ± 0.9 49.0 ± 1.2 72.7 ± 3.0 64.4 ± 3.8 61.6 ± 4.5
LTE4G 75.8 ± 1.8 61.5 ± 2.6 58.4 ± 3.9 66.8 ± 1.5 49.6 ± 2.0 45.6 ± 3.1 68.7 ± 2.0 59.3 ± 1.6 55.9 ± 2.1
GraphSHA 76.8 ± 1.5 62.9 ± 2.1 56.6 ± 1.6 65.7 ± 1.2 48.0 ± 1.5 39.9 ± 1.6 69.8 ± 1.7 60.7 ± 2.2 58.2 ± 3.0
ReVar 77.7 ± 1.4 64.3 ± 2.1 59.5 ± 3.1 69.4 ± 0.3 53.2 ± 0.4 46.6 ± 0.5 79.1 ± 0.8 72.5 ± 1.0 72.1 ± 0.9

CBGG w/o LSC (LTE4G) 81.9 ± 1.1 70.5 ± 1.7 70.6 ± 1.3 73.5 ± 2.6 58.9 ± 2.3 57.7 ± 1.8 78.8 ± 1.3 72.1 ± 1.7 71.5 ± 1.8
CBGG w/o LSC (GraphENS) 82.8 ± 0.2 71.9 ± 0.3 70.2 ± 0.3 72.9 ± 1.3 57.9 ± 1.8 53.6 ± 0.5 80.1 ± 1.1 73.8 ± 1.5 73.2 ± 1.6
CBGG w/o LSC (GraphSHA) 82.6 ± 0.3 71.7 ± 0.4 70.4 ± 0.3 73.3 ± 0.3 58.6 ± 0.4 54.1 ± 0.4 79.8 ± 0.7 73.5 ± 1.2 73.1 ± 1.2

CBGG (LTE4G) 82.6 ± 1.3 71.6 ± 2.0 71.2 ± 2.1 77.1 ± 0.7 64.1 ± 1.0 62.6 ± 1.2 79.2 ± 2.5 72.7 ± 3.3 72.1 ± 3.4
CBGG (GraphENS) 83.2 ± 0.2 72.5 ± 0.3 70.7 ± 0.3 75.5 ± 1.0 61.8 ± 1.4 59.2 ± 0.7 81.0 ± 0.6 75.0 ± 0.8 74.7 ± 0.8
CBGG (GraphSHA) 83.3 ± 0.2 72.7 ± 0.3 71.3 ± 0.2 76.6 ± 0.4 64.2 ± 0.5 61.5 ± 0.5 82.2 ± 0.8 76.6 ± 1.0 76.3 ± 1.0

After all denoising steps, we obtain the final synthetic graph:

G̃k := G̃(0)
k = (X̃

(0)
k , Ã

(0)
k ), (11)

which is fully labeled by Yk and structurally aligned with the original graph distribution.

Training Node Classifier with Synthetic Graphs. The final stage is to train the classifier fθ∗

with the class-balanced graphs {G̃}Kk=1, along with the original graph G. Since each synthetic graph
contains approximately N/C nodes per class due to uniform label sampling, the number of training
nodes for both the most and least frequent classes increases by roughly K ·N/C. This augmentation
makes the effective number of training nodes nearly identical across classes, thereby achieving class
balance.

We train fθ∗ using the Original-Synthetic Balanced Loss (OSBL), which combines supervision from
both real and synthetic nodes:

LOSBL =
1

|Vtrain|
· LG + λ · 1

K

K∑
k=1

1

|V Ĝk |
· LĜk

, (12)

where LG denotes the backbone model-specific loss for fθ∗ , computed over the labeled nodes in G,
while LĜk

denotes the same loss computed over the synthetic nodes in Ĝk. λ is a hyperparameter
that controls the influence of the synthetic graphs in the overall OSBL. Trained under class-balanced
conditions, the improved classifier fθ∗ produces the final output of CBGG: label predictions for the
unlabeled nodes in G.

3.5 THEORETICAL ANALYSIS

To understand how CBGG improves generalization in imbalanced node classification, we analyze
its class-wise and overall generalization bounds. Let f denote a node classifier. For each class
k ∈ {1, . . . , C}, we define the class-conditional true risk as:

Rk(f) := Pr(f(x) ̸= k | y = k), (13)

where x ∼ Dk, the true data distribution for class k.

Let D̃k denote the distribution of synthetic nodes generated for class k by the diffusion-based graph
generator. We define the synthetic noise rate as:

εsyn
k := Pr

x∼D̃k

(f(x) ̸= k). (14)

CBGG explicitly minimizes the synthetic noise rate εsyn
k by training the graph generator using a

supervised classification loss.
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When training with both real and synthetic data, the generalization gap for class k can be decom-
posed as:

|Rk − R̂k| ≤ |Rk − R̃k|+ |R̃k − R̂k|
≤ εsyn

k + |R̃k − R̂k|

≤ εsyn
k +

√
log(2C/δ)

2
(
nk + (1− εsyn

k )nsyn
k

)
(By Hoeffding’s inequality).

(15)

Here, R̂k is the empirical risk over synthetic samples and R̃k is the empirical risk over training data.

By using a class-balanced sampling, CBGG can substantially increase nsyn
k for all k. Therefore,

the second term vanishes due to concentration, leaving the synthetic noise rate εsyn
k as the dominant

upper bound.

Consequently, the overall generalization gap of CBGG is bounded by the weighted average of syn-
thetic noise rates across all classes:

|R− R̂| ≤
C∑
k=1

pkε
syn
k , (16)

where pk = Pr(y = k) is the class prior.

This analysis shows that CBGG can reduce the generalization gap of f by drastically increasing
nsynk through graph-level generation and by minimizing εsynk via the supervised contrastive loss in
Eq.(8).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Baselines. We evaluate our proposed method on five widely used graph-structured
datasets: Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), Pubmed (Sen et al., 2008),
Amazon-Computers, and Amazon-Photo (Shchur et al., 2018). We compare our CBGG with various
imbalance node classification methods, including three classic methods and six GNN-based meth-
ods. For classic methods, we select Over-sampling, Re-weight Yuan & Ma (2012), and SMOTE
Chawla et al. (2002). For GNN-based methods, we choose GraphSMOTE Zhao et al. (2021), GNN-
CL Li et al. (2024b), GraphENS Park et al. (2021a), LTE4G Yun et al. (2022), GraphSHA Li et al.
(2023), and ReVar Yan et al. (2023). For fair comparisons, we set the hyperparameters of baselines
according to specifications in the papers and official codes. For CBGG, we consistently set α and λ
to 0.1. Experimental details regarding datasets and baselines are provided in Appendix A.

Evaluation Metrics. In all experiments, we assess the performance of our CBGG and baselines
with three metrics that are widely used and well-suited for class-imbalance classification: Geomet-
ric Mean (G-Means), Balanced Accuracy (bACC), and Macro-F1. Results are averaged over five
independent runs with different random seeds, and we report the mean ± standard deviation.

4.2 EXPERIMENT RESULTS

CBGG outperforms baselines by a large margin in step class imbalance settings. We begin
by evaluating the effectiveness of CBGG under step-class imbalance, where the imbalance ratio is
standardized to ρ = 0.05 by assigning 20 training nodes to each head class and a single node to
each tail class across all datasets. We instantiate CBGG using three different classifiers (LTE4G,
GraphENS, and GraphSHA) and benchmark their performance against state-of-the-art methods to
assess robustness across architectures. We standardize the imbalance level ρ = 0.05 across datasets
by assigning 20 training nodes to each head class and only 1 to each tail class. As reported in Table 1
and Table 2, CBGG consistently outperforms baselines across all cases. On average, it yields relative
improvements of 5.6% in G-Means and 8.3% in balanced accuracy over the strongest baseline,
demonstrating the effectiveness of graph-level generation in imbalanced node classification.
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Table 2: Step-class imbalanced node classifica-
tion results on two Amazon networks. Bold
marks the best scores, while underlining denotes
the second-best.

Method Computers Photo
(Imb. class num = 5) (Imb. class num = 3)

Imb. Ratio (ρ = 0.05) GMeans bAcc GMeans bAcc
OverSampling 68.1 ± 3.9 48.7 ± 5.8 85.5 ± 2.5 75.7 ± 4.0
Reweight 77.7 ± 1.7 62.9 ± 2.5 88.6 ± 3.3 80.7 ± 3.2
SMOTE 76.8 ± 2.1 61.6 ± 3.1 87.1 ± 2.5 78.4 ± 4.1
GraphSMOTE 77.9 ± 4.5 63.4 ± 6.8 85.6 ± 3.6 75.9 ± 5.7
GNN-CL 77.6 ± 3.1 64.5 ± 3.4 86.9 ± 2.8 78.0 ± 3.1
GraphENS 77.8 ± 0.8 63.1 ± 1.1 91.3 ± 0.3 84.8 ± 0.5
LTE4G 79.3 ± 4.6 64.4 ± 3.9 86.5 ± 5.1 77.4 ± 8.2
GraphSHA 78.4 ± 0.4 63.9 ± 0.7 86.9 ± 1.5 78.0 ± 2.4
ReVar 81.3 ± 1.6 75.1 ± 2.1 89.9 ± 0.7 82.9 ± 1.2

CBGG w/o LSC (LTE4G) 83.1 ± 1.2 74.2 ± 2.2 88.9 ± 1.0 81.2 ± 1.6
CBGG w/o LSC (GraphENS) 84.5 ± 0.5 73.6 ± 2.1 92.1 ± 0.2 86.4 ± 0.4
CBGG w/o LSC (GraphSHA) 83.3 ± 1.0 71.7 ± 1.6 90.5 ± 0.5 83.9 ± 0.8

CBGG (LTE4G) 83.6 ± 1.3 74.6 ± 2.0 92.2 ± 2.1 86.7 ± 3.5
CBGG (GraphENS) 85.2 ± 1.2 75.5 ± 0.3 92.8 ± 0.3 87.7 ± 0.4
CBGG (GraphSHA) 84.9 ± 1.4 74.2 ± 2.2 91.3 ± 0.7 85.2 ± 1.1

Table 3: Long-tailed node classification results
on two citation networks. Bold marks the best
scores, while underlining denotes the second-
best.

Method Cora-LT CiteSeer-LT
Imb. Ratio (ρ = 0.01) GMeans bAcc GMeans bAcc
OverSampling 77.2 ± 1.7 63.5 ± 2.6 65.6 ± 1.5 48.0 ± 2.0
Reweight 81.2 ± 0.9 69.4 ± 1.3 70.6 ± 0.8 54.8 ± 1.1
SMOTE 76.3 ± 1.5 62.2 ± 2.1 64.4 ± 2.9 46.5 ± 3.7
GraphSMOTE 80.0 ± 0.9 67.6 ± 1.4 65.5 ± 0.9 47.9 ± 1.2
GNN-CL 80.2 ± 0.7 66.9 ± 1.0 71.2 ± 0.4 55.7 ± 0.6
GraphENS 83.7 ± 0.3 73.5 ± 0.5 73.8 ± 0.5 59.3 ± 0.2
LTE4G 80.2 ± 1.4 67.9 ± 2.2 71.5 ± 1.4 56.1 ± 2.0
GraphSHA 84.5 ± 1.0 74.6 ± 1.5 73.4 ± 0.6 58.7 ± 0.9
ReVar 81.0 ± 0.4 69.1 ± 0.6 73.7 ± 0.4 59.2 ± 0.5

CBGG w/o LSC (LTE4G) 82.7 ± 0.8 71.8 ± 1.3 75.2 ± 0.6 61.3 ± 0.9
CBGG w/o LSC (GraphENS) 85.5 ± 0.3 76.2 ± 0.5 75.1 ± 0.1 61.3 ± 0.2
CBGG w/o LSC (GraphSHA) 85.5 ± 0.3 76.2 ± 0.5 75.0 ± 0.3 61.0 ± 0.4

CBGG (LTE4G) 83.1 ± 0.2 72.4 ± 0.3 75.3 ± 0.2 61.4 ± 0.3
CBGG (GraphENS) 87.1 ± 0.2 78.7 ± 0.3 75.2 ± 0.1 61.3 ± 0.2
CBGG (GraphSHA) 85.9 ± 0.3 76.9 ± 0.4 75.4 ± 0.2 61.6 ± 0.3

Figure 3: Recall of majority and minority classes on Cora and CiteSeer.

CBGG consistently outperforms baselines in long-tailed imbalance settings. We further eval-
uate the performance of CBGG under long-tailed class distributions. For each dataset, we sort the
classes in descending order of frequency, then iteratively remove low-degree nodes from the minor-
ity classes until the desired imbalance ratio ρ = 0.01 is reached. Here, ρ denotes the ratio between
the most frequent class and the least frequent class. As shown in Table 3, CBGG consistently
outperforms all competing methods under long-tailed class distributions, further demonstrating its
robustness to severe class imbalance.

CBGG effectively improves the performance of imbalanced node classifiers. CBGG aims to
improve the performance of imbalanced node classifiers by leveraging class-balanced synthetic
graphs generated by a graph diffusion process. To assess its effectiveness, we instantiate CBGG with
three different downstream classifiers (LTE4G, GraphENS, and GraphSHA) under both step-class
and long-tailed imbalance settings. As shown in Tables 1, 2, and 3, CBGG consistently improves
performance across all classifiers and imbalance conditions.

LSC improves the performance of CBGG. Unlike prior diffusion-based graph generators, our
graph generator gϕ leans to minimize LSC to support node classification. By tightly clustering
the representative points of the same class while pushing different classes farther apart, it reduces
boundary instability arising from label noise. To isolate the effect of LSC, we set α = 0 and
denote this ablation as CBGGw/oLSC . As reported in Tables 1, 2, and 3, this variant consistently
underperforms compared to CBGG. These results supports that including LSC effectively reduces
the synthetic error in Eq.(14) and thus yields an improvement in classification accuracy.

CBGG mitigates the majority-minority performance tradeoff of imbalanced node classifiers.
Training on class-balanced synthetic graphs, CBGG increases the recall of majority classes with-
out sacrificing the accuracy of minority classes. To verify this effect, we measure the recall of
three imbalanced node classifiers (LTE4G, GraphENS, and GraphSHA) and their CBGG-augmented
counterparts. As shown in Figure 3, CBGG consistently and substantially improves recall for ma-
jority classes across all classifiers. These results demonstrate that class-balanced synthetic graphs
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Figure 4: (a) Homophily rate and degree earth mover’s distance of synthetic graphs, (b) false positive
rate and the number of training nodes depending on the number of Ĝk, and (c) relative G-Means
improvement (%) over GraphENS and GraphSHA.

effectively mitigate class imbalance, enabling improved overall performance without compromising
majority-class accuracy.

Does the generator gϕ capture realistic graph properties? Our CBGG introduces a new
diffusion-based graph generator that conditions soft-label distributions of nodes. To investigate if
CBGG reproduces structural properties of real-world graphs, we assess the fidelity of its generated
graphs against those of GraphMaker (Li et al., 2024a). Our evaluation uses two metrics: (i) the
homophily rate, which measures assortativity by class, and (ii) the Degree Earth Mover’s Distance
(Degree EMD), which quantifies the dissimilarity between the node degree distributions of original
and synthetic graphs. Figure 4(a) shows that CBGG generates synthetic graphs with a homophily
rate nearly identical to the original graph, whereas GraphMaker fails to capture this fundamental
property. Furthermore, CBGG consistently achieves a lower Degree EMD than GraphMaker on
both Cora and CiteSeer, indicating a more faithful reproduction of the node degree distribution.

Does the number of synthetic graphs matter? To further examine the impact of class-balanced
synthetic graphs, we vary the number of generated graphs K ∈ {0, 1, 3, 5, 10, 20} and measure the
false positive rate (FPR) of CBGG. Figure 4(b) shows that adding more synthetic graphs consistently
decreases the FPR of both majority and minority nodes. Notably, the effect saturates when K ≥ 5,
suggesting that a moderate number of synthetic graphs is sufficient.

Class-balanced synthetic graphs outperform unbalanced counterparts. To assess the impact
of class-balanced sampling, we create a variant of CBGG where node labels are drawn from the
empirical distribution of Ŷ, instead of the uniform prior in Eq. (9). We then train the classifiers
fθ∗ (GraphENS and GraphSHA) on both balanced and unbalanced synthetic graphs, and compare
their F1-score improvement over initial classifiers fθ. As shown in Figure 4(c), balanced sampling
consistently leads to gains across both classifiers. These results are consistent with our theoretical
analysis in Eq.(15): balanced sampling increases the minimum class-wise sample count nk, which
tightens the generalization bound across all classes.

Additional experiments are provided in the Appendix, including hyperparameter analysis (in Ap-
pendix C), loss analysis (in Appendix D), time complexity analysis (in Appendix E), and robustness
to noise (in Appendix F).

5 CONCLUSION

In this work, we propose Class Balancing via Graph Generation (CBGG), a novel framework
for imbalanced node classification that alleviates the majority–minority trade-off by generating
class-balanced synthetic graphs. We theoretically and empirically show that CBGG narrows the
generalization gap by (i) increasing the number of training samples through graph-level genera-
tion and (ii) reducing synthetic noise via a supervised contrastive loss. Extensive experiments on
seven benchmarks confirm that CBGG substantially improves the performance of state-of-the-art
methods.We expect that our graph-level generation–based approach will serve as a new direction
for addressing imbalanced node classification. While our study focuses on homogeneous graphs,
extending this approach to heterogeneous graphs is a promising future direction.
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REPRODUCIBILITY STATEMENT

We have made careful efforts to ensure the reproducibility of our work. Specifically, Sec. 4.1
describes the experimental setup, including datasets, baselines, and evaluation metrics. Detailed
descriptions of the experimental settings, including hardware specifications and software envi-
ronments, are provided in Appendix A. Dataset information and download sources are given in
Appendix A.2, while baseline implementations and hyperparameter choices are detailed in Ap-
pendix A.3. Finally, definitions of all evaluation metrics are summarized in Appendix A.3. The
source code is provided in the supplementary material and will be made publicly available upon
publication.
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Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In International Conference on Learning Representations,
2018.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan: Gen-
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A EXPERIMENTAL DETAILS

A.1 SETTINGS

We conduct experiments on four NVIDIA GeForce RTX 3090 Ti GPUs and an Intel Core i9-12900k
CPU. We use CUDA 11.8, Python 3.9.21, PyTorch 2.0.0+cu118 (Paszke et al., 2019), and PyTorch
Geometric 2.3.1 (Fey & Lenssen, 2019).

A.2 DATASETS

We conduct experiments on five benchmark graph-structured datasets: Cora (McCallum et al.,
2000), CiteSeer (Giles et al., 1998), PubMed (Sen et al., 2008), Amazon-Computers (Shchur
et al., 2018), and Amazon-Photo (Shchur et al., 2018). The three citation datasets (Cora, Cite-
seer, PubMed) are obtained from the PyTorch Geometric repository 1. The two Amazon graphs are
also downloaded from the corresponding loader in the same repository 2. These publicly available
datasets and the repository have no public declaration of license.

Table 4: Dataset statistics.

Dataset # of Nodes # of Edges # of Features # of Classes # of Imbalanced Classes

Cora 2,708 5,429 1,433 7 3
CiteSeer 3,327 4,732 3,703 6 3
PubMed 19,717 44,338 500 3 1

Amazon Computers 13,381 245,778 767 10 5
Amazon Photo 7,487 119,043 745 8 3

A.3 BASELINES

For each baseline, we utilize the following publicly available codes. We select the hyperparame-
ter setting for each baseline in the released code or its respective paper. For GraphENS, we use
Beta(2, 2) distribution to sample its mixing ratio. For GraphSHA, we choose the graph diffusion as
the Personalized PageRank (PPR) with a teleport rate α = 0.05 and then select 128 highest mass per
column. For LTE4G, following the original protocol, we designate 7 head / 3 tail classes on Cora
and 5 head / 5 tail classes on Citeseer in long-tailed settings.

Table 5: URL links for baselines.

Baseline URL Link

Oversampling https://github.com/SukwonYun/LTE4G/blob/main/models/baseline/oversampling.py
Reweighting https://github.com/SukwonYun/LTE4G/blob/main/models/baseline/reweight.py
SMOTE https://github.com/SukwonYun/LTE4G/blob/main/models/baseline/smote.py
GraphSMOTE https://github.com/SukwonYun/LTE4G/blob/main/models/baseline/graphsmote T.py
GNN-CL https://github.com/seanlxh/GNN-CL
GraphENS https://github.com/JoonHyung-Park/GraphENS
LTE4G https://github.com/SukwonYun/LTE4G
GraphSHA https://github.com/wenzhilics/GraphSHA
ReVar https://github.com/yanliang3612/ReVar

A.4 EVALUATION METRICS

We use three different metrics: Geometric Means (G-Means), Balanced Accuracy (bAcc), and
Macro-F1. Here, higher G-Means, bAcc, and Macro-F1 indicate better performance.

• G-Means. The geometric mean of the true-positive rate (sensitivity) and true-negative rate
(specificity). It rewards models that perform well on both the positive and negative classes,

1https://github.com/pyg-team/pytorch_geometric/blob/master/torch_
geometric/datasets/planetoid.py

2https://github.com/pyg-team/pytorch_geometric/blob/master/torch_
geometric/datasets/amazon.py
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Table 6: Imbalanced node classification results on three citation networks. For each method, we
report the mean ± standard error over five runs for geometric mean (G-Means %), balanced accuracy
(bAcc %), and macro-F1 score. Bold marks the best scores, while underlining denotes the second-
best.

Method Cora (Imb. class num = 3) Citeseer (Imb. class num = 3) Pubmed (Imb. class num = 1)

Imb. Ratio (ρ = 0.1) GMeans bAcc Macro-F1 GMeans bAcc Macro-F1 GMeans bAcc Macro-F1
OverSampling 74.4 ± 2.9 59.4 ± 4.2 55.5 ± 6.6 62.2 ± 2.1 43.6 ± 2.7 34.1 ± 3.1 68.5 ± 0.9 59.0 ± 1.1 54.0 ± 4.5
Reweight 81.3 ± 3.4 70.2 ± 5.1 70.3 ± 5.9 67.1 ± 0.8 50.0 ± 1.1 43.3 ± 1.4 75.0 ± 0.4 67.3 ± 0.5 66.1 ± 0.3
SMOTE 74.0 ± 1.5 58.8 ± 2.2 55.4 ± 2.6 63.9 ± 1.0 45.8 ± 1.3 37.9 ± 1.6 71.0 ± 2.7 62.2 ± 3.5 58.0 ± 6.7
GraphSMOTE 82.1 ± 0.6 71.0 ± 5.9 69.4 ± 7.9 67.0 ± 1.7 49.9 ± 2.2 44.2 ± 3.2 74.7 ± 2.1 66.9 ± 2.7 65.2 ± 3.3
GNN-CL 82.5 ± 1.1 72.0 ± 1.7 65.3 ± 1.5 67.8 ± 0.4 50.8 ± 0.6 50.1 ± 0.1 80.8 ± 1.6 74.7 ± 2.0 74.1 ± 2.7
GraphENS 79.3 ± 0.8 69.6 ± 1.3 68.6 ± 1.6 71.7 ± 1.1 56.4 ± 1.6 49.2 ± 2.9 80.5 ± 1.6 74.3 ± 2.0 74.3 ± 2.0
LTE4G 83.6 ± 3.1 73.2 ± 3.9 72.1 ± 5.8 70.2 ± 3.3 54.0 ± 4.1 51.8 ± 4.0 73.7 ± 1.4 65.7 ± 1.7 65.2 ± 1.3
GraphSHA 85.3 ± 0.3 75.8 ± 0.4 75.7 ± 0.4 72.3 ± 1.7 56.6 ± 2.4 56.3 ± 2.1 81.9 ± 0.2 76.1 ± 0.3 75.8 ± 0.4
ReVar 83.7 ± 1.1 73.4 ± 1.7 72.7 ± 1.9 72.4 ± 1.6 57.3 ± 2.3 53.8 ± 1.7 81.9 ± 0.9 76.1 ± 1.1 76.1 ± 1.2

CBGG (GraphENS) 85.7 ± 0.5 76.1 ± 0.7 76.0 ± 0.8 78.1 ± 0.4 65.5 ± 0.6 62.1 ± 0.5 82.7 ± 1.8 77.2 ± 2.3 77.0 ± 2.2
CBGG (GraphSHA) 86.7 ± 0.1 78.1 ± 0.2 78.2 ± 0.2 77.5 ± 0.4 64.6 ± 0.5 62.7 ± 0.6 84.8 ± 0.4 79.9 ± 0.6 79.6 ± 0.5

even under severe class imbalance:

G-Means =

√
TP

TP + FN
× TN

TN + FP
(17)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

• bAcc. The arithmetic mean of per-class recalls, so every class contributes equally regard-
less of its prevalence:

bAcc =
1

C

C∑
c=1

TPc
TPc + FNc

, (18)

where TPc is the number of true positives on the class c, and FNc is the number of false
negatives on the class c.

• Macro-F1. Macro-F1 calculates the F1-score for each class and then takes their arithmetic
mean, so that precision and recall are both considered for every class as:

Macro-F1 =
1

C

C∑
c=1

2PrecisioncRecallc
Precisionc + Recallc

(19)

where Precisionc = TPc

TPc+FPc
, and Recallc = TPc

TPc+FNc
.

B RESULTS ON THE ANOTHER IMBALANCED RATE (ρ = 0.1)

We further assess the effectiveness of CBGG under another step-class imbalance of ρ = 0.1. Fol-
lowing the setup in Section 4.2, we instantiate CBGG with two final classifiers fθ∗ (GraphENS and
GraphSHA), then compare them against state-of-the-art baselines. Following the practice of Park
et al. (2021a); Yun et al. (2022), we equalise the imbalance level across all datasets: each head class
is given 20 labelled nodes, whereas each tail class receives only two. All other hyperparameters
and training settings remain unchanged from Section 4.2. Table 6 shows that CBGG continues to
outperform every baseline on every dataset and metric, even under this milder imbalance. More-
over, both GraphENS and GraphSHA benefit from CBGG, exhibiting consistent improvements in
all metrics. These results confirm that the gains delivered by our class-balancing diffusion module
are not confined to the most extreme imbalance setting, but generalise to more moderate scenarios
as well.

C HYPERPARAMETER ANALYSIS

CBGG employs two key hyperparameters: λ, which controls how strongly the synthetic graphs
influence classifier training, and α, which weights the supervised contrastive loss LSC loss within
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Figure 5: Hyperparameter sensitivity (α and λ) of CBGG.

the graph-generation objective. To assess its impact, we vary α ∈ {0, 0.1, 0.2, 0.3, 0.4} and λ ∈
{0, 0.05, 0.1, 0.5, 1, 10} and report the resulting G-Means scores of CBGG in Fig. 5. Each setting
is repeated five times, and the averages are plotted. When λ=0, CBGG invariably attains the lowest
score, confirming that including synthetic graphs is essential. Performance also drops slightly at
α=0, because an overly small α cannot sufficiently mitigate class imbalance. The sweet spot lies in
the mid-range α∈ [0.1, 0.3] and λ∈ [0.05, 1], where CBGG consistently reaches its global maximum
(˜83.2). Since this optimal region is broad, hyperparameter tuning incurs little overhead and readily
scales to larger datasets.

Figure 6: Train and test loss.

D LOSS ANALYSIS

To examine the effect of synthetic graph generation on generalization, we compare the training and
test losses of vanilla GRAPHENS and CBGG that uses the same classifier, as shown in Figure 6.
Across five random seeds (mean shown), CBGG consistently exhibits a much narrower training–test
gap, implying a smaller generalization gap than the vanilla model. We attribute this improvement to
the substantially larger number of nodes introduced by graph generation, which acts as an on-the-fly
data-augmentation mechanism and regularizes the classifier.

E TIME COMPLEXITY ANALYSIS

We analyze the computational complexity of the proposed CBGG framework. The graph gen-
erator gψ is implemented as a single-layer Graph Attention Network (GAT) (Veličković et al.,
2018) with embedding dimension H . During generation, we employ minibatch sampling, where
each denoising step processes Nb nodes and Eb edges, resulting in a per-step time complexity
of O(NbH

2 + EbH). To generate K synthetic graphs, the reverse diffusion process is repeated
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Figure 7: Performance variation by noise injection level in the initial classifier’s soft label distribu-
tion

for T steps per graph, leading to a total sampling cost of O(KT (NbH
2 + EbH)). Addition-

ally, training the final classifier fθ∗ on both the real and synthetic graphs incurs a complexity
O((1+K)L(NH2+EH)) where L denotes the number of GNN layers. Then, the overall complex-
ity of CBGG becomes O

(
KT (NbH

2 + EbH) + (1 +K)L(NH2 + EH)
)
. Under typical settings

such as H=256, N=104, E=105, T=30, K=5, and minibatch size Nb=Eb=500, the training cost of
CBGG is approximately 7.5 times higher than that of a standard GNN. At inference time, however,
CBGG requires only a single forward pass of the trained classifier on the original graph, incurring the
same computational cost as a vanilla GNN while delivering substantial performance gains. Despite
the additional training cost, CBGG offers a practical solution that delivers significant performance
improvements without increasing inference cost.

F ROBUSTNESS TO NOISE

In real-world scenarios, the initial classifier often produces noisy predictions. To evaluate whether
CBGG is robust to such imperfect supervision, we inject Gaussian noise of varying magnitude
(λ ∈ 0, 1, 2, 3) into the teacher outputs. Figure 7 presents the results on a GraphENS classifier
and its improved classifier via CBGG. As the noise level increases, the vanilla GraphENS baseline
experiences a sharp decline in G-Means, balanced accuracy, and Macro-F1. In contrast, the CBGG-
augmented models remain substantially more stable, maintaining high performance even under the
strongest perturbations. These findings indicate that CBGG effectively mitigates the impact of noisy
teacher signals, thereby providing robustness against unreliable initial supervision.
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