
A framework for differentiable Supervised Graph Prediction

Paul Krzakala 1 2 Junjie Yang 1 Rémi Flamary 2 Florence d’Alché-Buc 1 Charlotte Laclau 1 Matthieu Labeau 1

Abstract

We introduce a general framework to train a deep
neural network to output a graph from a variety
of input modalities. The framework is built using
a novel Optimal Transport loss that exhibits all
necessary properties (permutation invariance and
differentiability) and allows for handling graphs
of any size. We showcase the versatility and state-
of-the-art performances of the proposed approach
on various real-world tasks and a novel challeng-
ing synthetic dataset.

1. Introduction
This work addresses Supervised Graph Prediction (SGP),
a supervised task where the output of the predictive model
is a graph. In contrast to supervised tasks involving graphs
as input that benefit from the hegemony of Graph Neural
Networks, there is no broadly accepted framework to ad-
dress SGP with deep learning. This can be explained by the
discrete nature of the output set which makes it challenging
to parameterize with a neural network. Consequently, most
existing methods rely on domain-specific heuristics, such
as introducing an ad hoc ordering of the nodes, to simplify
the task [1] [2] [3]. Another line of work is to leverage
energy-based models [4] or surrogate regression methods
[5] to circumvent the difficulty of directly predicting a graph.
However, these approaches typically suffer from an expen-
sive decoding step at inference time. To the best of our
knowledge, the graph barycenter of Brogat-Motte et al. [6]
and the Relationformer model [7] are the only approaches
that can tackle a variety of SGP tasks in a fully end-to-end
manner. Unfortunately, those methods suffer from some
limitations which we discuss in detail in section 3.

Contributions In this paper, we introduce Any2Graph, a
general framework for end-to-end SGP. Any2Graph lever-

1Télécom Paris, IP Paris, LTCI 2Ecole polytechnique, IP
Paris, CMAP UMR 7641. Correspondence to: Krzakala Paul
<paul.krzakala@telecom-paris.fr>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

Figure 1: A sample of predictions from Any2Graph (our
model) and its direct competitor Relationformer for different
SGP tasks. Any2Graph can adapt to a variety of input
modalities and output graphs. We extend Relationformer
so that it can process inputs that are not images, but its loss
limits its performances when the nodes are not uniquely
identified by their features (e.g. for molecules). We provide
more qualitative results in appendix G.

ages a novel, fully differentiable, OT-based loss. The frame-
work is completed with a novel synthetic dataset suited to
the evaluation of SGP methods. We demonstrate that our ap-
proach is versatile and achieves state-of-the-art performance
for diverse real-world tasks, such as constructing maps from
satellite images (Sat2Graph) or predicting molecules from
fingerprints (Fingerprint2Graph).

Notations. An attributed graph g with m nodes can be
represented by a tuple (F,A) where F ∈ Rm×d encodes
node features and A ∈ Rm×m is the (symmetric) adja-
cency matrix. Further, we denote Gm the set of attributed
graphs of m nodes and G =

⋃M
m=1 Gm, the set of attributed

graphs of size up to M . In the following, 1m ∈ Rm is the
all one vector and we denote σm = {P ∈ {0, 1}m×m |
P1m = 1m,PT1m = 1m} the set of permutation matri-
ces. Two graphs g1 = (F1,A1), g2 = (F2,A2) ∈ Gm

are said to be isomorphic whenever there exists P ∈ σm

such that (F1,A1) = (PF2,PA2P
T ), in which case we

denote g1 ∼ g2. In this work, we consider all graphs to be
unordered, meaning that all operations should be invariant
by Graph Isomorphism (GI).

1



A framework for differentiable Supervised Graph Prediction

Input Set Of Features Nodes Embeddings

ENCODER TRANSFORMER GRAPH DECODER

Input data
dependent

MLP

MLP

PM-FGW Loss

Prediction Padded Target

TRANSFORMER
ENCODER

TRANSFORMER
DECODER

Nodes queries

MLP

0
1
1
1

Figure 2: Illustration of the architecture for a target graph of size 3 and M = 4

2. An Optimal Transport loss for SGP
2.1. Graph matching and optimal transport.

Designing a loss function to compare graphs is a challeng-
ing task. Even for two graphs of the same size ĝ = (F̂, Â),
g = (F,A), one cannot simply compute a point-wise com-
parison as it would not satisfy GI invariance. One of the
solutions is to solve a Graph Matching (GM) problem i.e.
find a one-to-one matching between the nodes of the graphs
before computing the pairwise errors between matched
nodes/edges. Formally, the graph matching discrepancy
is defined as GM(ĝ, g) = minP∈σm E(ĝ, g,P) where the
matching cost E(ĝ, g,P) is

m∑
i,j=1

Pi,jℓF (f̂i, fj) +

m∑
i,j,k,l=1

Pi,jPk,lℓA(Âi,k, Aj,l) (1)

The minimization problem however is a Quadratic As-
signment Problem (QAP) which is known to be one of
the most difficult problems in the NP-Hard class [8]. To
mitigate this computational complexity, it has been sug-
gested to replace the space of permutation matrices with
a convex relaxation [9]. The Birkhoff polytope (doubly
stochastic matrices) πm = {T ∈ [0, 1]m×m | T1m =
1m,TT

1m = 1m} is the tightest of those relaxations
as it is exactly the convex hull of σm which makes it a
suitable choice [10]. Interestingly, the resulting metric
FGW(ĝ, g) = minT∈πm E(ĝ, g,T) is known in the Op-
timal Transport (OT) [11] field as a special case of the
(Fused) Gromov-Wasserstein (FGW) distance proposed by
Mémoli [12]. FGW is differentiable, GI invariant and effi-
cient solvers are available which make it an ideal candidate
for SGP [13]. Unfortunately, this formulation is limited
to graphs of the same size, and existing variations are not
suited for SGP as discussed in appendix A.1.

2.2. A size-agnostic representation for graphs

Our first step toward building an End-To-End SGP frame-
work is to introduce a space Ŷ that can be used to represent

any graph of size up to M . We define Ŷ as:

{(h,F,A) | h ∈ [0, 1]M ,F ∈ RM×d,A ∈ [0, 1]M×M}.
(2)

We refer to the elements of Ŷ as ’continuous’ graphs, in
opposition with ’discrete’ graphs of G. Here hi (resp. Ai,j)
should be interpreted as the probability of the existence of
node i (resp. edge [i, j] ). Any graph g = (Fm,Am) ∈ Gm

can be embedded into Ŷ with a Padding operator P that
adds m′ = M −m dummy nodes to g

P(g) =

((
1m

0m′

)
,

(
Fm

0m′

)
,

(
Am 0m′

0T
m′ 0m′,m′

))
. (3)

We denote Y = P(G) ⊂ Ŷ the space of padded graphs. For
any padded graph in Y , the padding operator can be inverted
to recover a discrete graph P−1 : Y 7→ G. Besides, any
continuous graph ŷ ∈ Ŷ can be projected back to padded
graphs Y by a threshold operator T : Ŷ 7→ Y . Note that Ŷ
is convex and of fixed dimension which makes it ideal for
parametrization with a neural network. Hence, the core idea
of our work is to use a neural network to make a prediction
ŷ ∈ Ŷ and to compare it to some target g ∈ G through some
loss ℓ(ŷ,P(g)). This calls for the design of an asymmetric
loss ℓ : Ŷ × Y 7→ R+.

2.3. An Asymmetric loss for SGP

The Partially Masked Fused Gromov-Wasserstein (PM-
FGW) is a loss between a padded target graph P(g) =
(h,F,A) ∈ Y with real size m = ∥h∥1 ≤ M and a
continuous prediction ŷ = (ĥ, F̂, Â) ∈ Ŷ , we define
PMFGW(ŷ,P(g)) as:

min
T∈πM

αh

M

∑
i,j

Ti,jℓh(ĥi, hj)

+
αf

m

∑
i,j

Ti,jℓf (f̂i, fj)hj

+
αA

m2

∑
i,j,k,l

Ti,jTk,lℓA(Âi,k, Aj,l)hjhl

(4)

2



A framework for differentiable Supervised Graph Prediction

Table 1: Graph level, edge level, and node level metrics reported on test for the different models and datasets. ∗ denotes
methods that use the actual size of the graph at inference time, hence the performance reported is a non-realistic upper-bound.

DATASET MODEL
GRAPH LEVEL EDGE LEVEL NODE LEVEL ACC.

EDIT DIST. ↓ GI ACC. ↑ PMFGW ↓ PREC. ↑ REC. ↑ NODE ↑ SIZE ↑

COLORING
FGWBARY-ILE∗ 7.60 0.90 0.93 72.17 83.81 79.15 N.A.
RELATIONFORMER 5.47 18.14 0.32 80.39 86.34 92.68 99.32
ANY2GRAPH 0.33 84.44 0.03 98.63 98.87 99.99 99.85

TOULOUSE
FGWBARY-ILE∗ 9.00 0.00 1.21 72.52 56.30 1.62 N.A.
RELATIONFORMER 0.13 93.28 0.02 99.25 99.24 99.25 98.30
ANY2GRAPH 0.13 93.62 0.02 99.34 99.26 99.39 98.81

USCITIES
RELATIONFORMER 2.09 55.00 0.13 92.96 87.98 95.18 79.80
ANY2GRAPH 1.86 58.10 0.12 92.91 90.85 95.70 78.95

QM9
FGWBARY-ILE∗ 2.84 28.95 0.28 82.96 79.76 92.99 N.A.
RELATIONFORMER 3.80 9.95 0.22 86.07 73.31 99.34 96.0
ANY2GRAPH 2.13 29.85 0.14 90.19 88.08 99.77 95.45

GDB13 RELATIONFORMER 8.83 0.01 0.29 84.14 55.89 97.57 98.65
ANY2GRAPH 3.63 16.25 0.11 90.83 84.86 99.80 98.15

The loss takes simultaneously into account each property
of the graph. More precisely, the first term ensures that
the padding of a node is well predicted. In particular, this
requires the model to predict correctly the number of nodes
in the target graph. The second term ensures that the fea-
tures of all non-padding nodes (hi = 1) are well predicted.
Similarly, the last term ensures that the relationships be-
tween pairs of non-padding nodes (hi = hj = 1) are well
predicted. The normalization in front of the sums ensures
that each term is a weighted average of its internal losses
as

∑
Ti,j = M ,

∑
Ti,jhj = m and

∑
Ti,jTk,lhjhl = m2.

Finally α = [αh, αf, αA] ∈ ∆3 is a triplet of hyperparame-
ters on the simplex balancing the relative scale of the differ-
ent terms. For ℓA and ℓh we use the cross-entropy between
the predicted value after a sigmoid and the actual binary
value in the target. This is equivalent to a logistic regres-
sion loss after the OT plan has matched the nodes. For ℓf
we use the squared ℓ2 or the cross-entropy loss when the
node features are continuous or discrete, respectively. A key
feature of this loss is its flexibility. Not only any ground
losses can be considered but it is also straightforward to
introduce richer spectral representations of the graph [14].
For instance, we discuss the benefits of leveraging a diffused
version of the nodes features F in appendix D.2. Finally,
PMFGW translates all the good properties of FGW to the
new size-agnostic representation:
Proposition 1 (Complexity). Each step of the inner opti-
mization can be performed in O(M3).
Proposition 2 (GI Invariance). If ŷ ∼ ŷ′ and g ∼ g′ then
PMFGW(ŷ,P(g)) = PMFGW(ŷ′,P(g′)).
Proposition 3 (Positivity). PMFGW(ŷ,P(g)) ≥ 0 with
equality if and only if ŷ ∼ P(g).

We discuss PMFGW in greater detail in appendix A. The
proofs of the propositions are provided in Appendix C.

2.4. Any2Graph framework

We now wrap up the tools introduced above to build
Any2Graph, a general framework for SGP.

Formally, the goal of SGP is to learn a function f : X → G
using the training samples {(xi, gi)}ni=1 ∈ (X × G)n. In
Any2Graph, we relax the output space and learn a function
f̂ : X → Ŷ that predicts a continuous graph ŷ := f(x) as
defined in the previous section. Assuming f̂ is a parametric
model (in this work, a deep neural network) completely de-
termined by a parameter θ, the Any2Graph objective writes
as the following empirical risk minimization problem:

min
θ

1

n

n∑
i=1

PMFGW(f̂θ(xi),P(gi)) (5)

At inference time, we recover a discrete prediction by a
straightforward decoding f(x) = P−1 ◦ T (ŷ). Where
T is the thresholding operator with threshold 1/2 on the
edges and nodes and P−1 is the inverse padding defined
in the previous section. In other words, the full decoding
pipeline P−1 ◦ T removes the nodes i (resp. edges (i, j))
whose predicted probability is smaller than 1/2 i.e. ĥi <1/2
(resp. Âi,j <1/2)). Unlike surrogate regression methods, this
decoding step does not induce any computational overhead.

The architecture we propose for f̂θ is heavily inspired by
that of Relationformer [7] and illustrated in figure 2. A full
description is provided in appendix B.1. The main novelty
is that we investigate more general encoders to enable graph
prediction from data other than images. We discuss how to
build encoders adapted to text, images, graphs and vectors
in appendix B.2 .

3



A framework for differentiable Supervised Graph Prediction

3. Numerical experiments
3.1. Experimental setting

We consider 5 datasets that cover a wide spectrum of differ-
ent input modalities, graph types and sizes. The 4 real-world
datasets Toulouse, USCities, QM9 and GDB13 are com-
pleted with Coloring, a novel synthetic dataset described in
appendix F. We compare Any2Graph to its direct competi-
tor Relationformer [7] and a surrogate regression approach
(FGW-Bary) based on FGW barycenters [6]. For a fair com-
parison, we use the same architecture for Relationformer
and Any2Graph and augment both with feature diffusion as
discussed in appendix D.2. Given the heterogeneity of the
datasets considered, we report task-agnostic metrics such
as average edit distance [15] or GI Accuracy (the fraction
of graphs that are perfectly predicted). The detailed experi-
mental setting is provided in appendix E.

3.2. Prediction Performances

Table 1 shows the performances of the different methods on
the five datasets. First, we observe that Any2Graph achieves
state-of-the-art performances for all datasets and graph-level
metrics. Relationformer is similar to PMFGW, except its
loss relies on a bipartite matching taking only the node fea-
tures into account. The consequence is that Relationformer
performs very close to Any2Graph on the Sat2Graph tasks
(Toulouse and USCities) but much poorly on any task where
nodes are not uniquely identified by their features. FGW-
Bary relies on a computationally heavy barycenter which
in its current implementation cannot scale to the datasets
featuring the larger graphs (GDB13 and USCities). The
SOTA kernel it leverages is very efficient for QM9, despite
this, it is still outperformed by Any2Graph given that we
use feature diffusion.

3.3. Computational Performances

Table 2 shows the ”speed” of each method both in training
and inference. Speed is expressed in terms of the number of
graph processes per second. Because of the barycenter com-
putation, FGWBary is several orders of magnitude slower
than Any2Graph. Note that Relationformer is faster at train-
ing time because it does not require solving a QAP. Overall
our proposed approach strikes the best of both worlds by
achieving SOTA prediction performances at all levels of
the graph, at a very low computational inference cost. All
values are computed on NVIDIA V100/Intel Xeon E5-2660.

3.4. Analysing the proposed approach

First, we explore the effect of M (the maximum number of
nodes) whose default value is that of the largest graph in the
train set. We train our model on Coloring for M between 10
(default value) and 25 and report the (test) edit distance. To

Table 2: Speed of the different methods on QM9 (in graph
per second). Training of FGWBary has a closed-form ex-
pression computed at once on CPU.

METHOD TRAIN. ↑ PRED. ↑
FGWBARY N.A. 1
RELATIONFORMER 2K 10K
ANY2GRAPH 1K 10K

10 12 14 16 18 20 25
10

11

12

13

14

A
ct

iv
e
 N

o
d

e
s

0.0

0.1

0.2

0.3

0.4

0.5

E
d

it
 D

is
ta

n
ce

h = 1

F = 1

A = 1 0

4

Figure 3: Effect of the choice of M (left) and α (right) on
the performances (test edit distance) for Coloring.

quantify the effective number of nodes used by the model,
we also record the number of active nodes i.e. that are
masked less than 99% of the time. Results are reported in
Figure 3 (left). Interestingly, we observe that performances
are robust w.r.t. the choice of M which can be explained by
the number of active nodes reaching a plateau. This suggests
that the model automatically learns how many nodes it needs
to reach the required expressiveness. Similarly, we check
that our model is robust to the choice of parameter α which
balances the terms of the loss. To this end, we train our
model on Coloring for different values α on the simplex
and report the (test) edit distance on Figure 3 (right). We
observe that performance is optimal for uniform α and
robust to other choices as long as there is not too much
weight on the structure loss term (corner αA = 1). We
further discuss this property in appendix D.1.

4. Conclusion and limitations
We present Any2Graph, a novel end-to-end deep learning
approach to SGP based on an original asymmetric Partially-
Masked Fused Gromov-Wasserstein loss. To the best of our
knowledge, it is the first complete and versatile framework
to achieve SOTA performance on various graph prediction
tasks and input modalities, both in terms of accuracy and
computational cost, which makes it a good candidate to be
used as a novel baseline in SGP.

The main limitation of Any2Graph is its scalability to large
graphs. We envision two approaches to address this issue.
First, we plan to explore more general diffusion schemes
on the adjacency matrix to capture higher-order interactions
that may occur in large graphs. Secondly, we wish to accel-
erate the OT plan computation with entropic regularization
[16] to fully parallelize the solver on a GPU.

4



A framework for differentiable Supervised Graph Prediction

References
[1] X. Bresson and T. Laurent, “A two-step graph convolu-

tional decoder for molecule generation,” arXiv preprint
arXiv:1906.03412, 2019.

[2] D. Belli and T. Kipf, “Image-conditioned graph gen-
eration for road network extraction,” arXiv preprint
arXiv:1910.14388, 2019.

[3] A. Babu, A. Shrivastava, A. Aghajanyan, A. Aly, A. Fan,
and M. Ghazvininejad, “Non-autoregressive semantic pars-
ing for compositional task-oriented dialog,” arXiv preprint
arXiv:2104.04923, 2021.

[4] M. Suhail, A. Mittal, B. Siddiquie, et al., “Energy-based
learning for scene graph generation,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 13 936–13 945.

[5] C. Brouard, H. Shen, K. Dührkop, F. d’Alché-Buc, S.
Böcker, and J. Rousu, “Fast metabolite identification with
input output kernel regression,” Bioinformatics, vol. 32,
no. 12, pp. i28–i36, 2016.

[6] L. Brogat-Motte, R. Flamary, C. Brouard, J. Rousu, and
F. d’Alché-Buc, “Learning to predict graphs with fused
gromov-wasserstein barycenters,” in International Confer-
ence on Machine Learning, PMLR, 2022, pp. 2321–2335.

[7] S. Shit, R. Koner, B. Wittmann, et al., “Relationformer:
A unified framework for image-to-graph generation,” in
European Conference on Computer Vision, Springer, 2022,
pp. 422–439.

[8] E. M. Loiola, N. M. M. De Abreu, P. O. Boaventura-Netto,
P. Hahn, and T. Querido, “A survey for the quadratic assign-
ment problem,” European journal of operational research,
vol. 176, no. 2, pp. 657–690, 2007.

[9] Y. Aflalo, A. Bronstein, and R. Kimmel, “On convex relax-
ation of graph isomorphism,” Proceedings of the National
Academy of Sciences, vol. 112, no. 10, pp. 2942–2947,
2015.

[10] S. Gold and A. Rangarajan, “A graduated assignment algo-
rithm for graph matching,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 18, no. 4, pp. 377–
388, 1996.

[11] C. Villani, Optimal transport : old and new. Berlin:
Springer, 2009.

[12] F. Mémoli, “Gromov-wasserstein distances and the metric
approach to object matching.,” Foundations of Computa-
tional Mathematics, vol. 11, no. 4, pp. 417–487, 2011.

[13] T. Vayer, L. Chapel, R. Flamary, R. Tavenard, and N.
Courty, “Fused gromov-wasserstein distance for structured
objects,” Algorithms, vol. 13 (9), p. 212, 2020.

[14] A. Barbe, M. Sebban, P. Gonçalves, P. Borgnat, and R. Gri-
bonval, “Graph diffusion wasserstein distances,” in Joint
European Conference on Machine Learning and Knowl-
edge Discovery in Databases, Springer, 2020, pp. 577–
592.

[15] X. Gao, B. Xiao, D. Tao, and X. Li, “A survey of graph
edit distance,” Pattern Analysis and applications, vol. 13,
pp. 113–129, 2010.

[16] G. Rioux, Z. Goldfeld, and K. Kato, “Entropic gromov-
wasserstein distances: Stability and algorithms,” arXiv
preprint arXiv:2306.00182, 2023.

[17] A. Thual, H. Tran, T. Zemskova, et al., “Aligning individ-
ual brains with fused unbalanced gromov-wasserstein,” in
Neural Information Processing Systems (NeurIPS), 2022.

[18] L. Chapel, M. Z. Alaya, and G. Gasso, “Partial optimal tran-
port with applications on positive-unlabeled learning,” Ad-
vances in Neural Information Processing Systems, vol. 33,
pp. 2903–2913, 2020.

[19] T. Vayer, L. Chapel, R. Flamary, R. Tavenard, and N.
Courty, “Optimal transport for structured data with appli-
cation on graphs,” in International Conference on Machine
Learning (ICML), 2019.

[20] M. Thorpe, S. Park, S. Kolouri, G. K. Rohde, and D.
Slepčev, “A transportation lˆ p l p distance for signal anal-
ysis,” Journal of mathematical imaging and vision, vol. 59,
pp. 187–210, 2017.

[21] J. T. Vogelstein, J. M. Conroy, V. Lyzinski, et al., “Fast
approximate quadratic programming for large (brain) graph
matching,” arXiv preprint arXiv:1112.5507, 2011.

[22] G. Peyré, M. Cuturi, and J. Solomon, “Gromov-wasserstein
averaging of kernel and distance matrices,” in International
conference on machine learning, PMLR, 2016, pp. 2664–
2672.

[23] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R.
Salakhutdinov, and A. J. Smola, “Deep sets,” Advances in
neural information processing systems, vol. 30, 2017.

[24] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How
powerful are graph neural networks?” arXiv preprint
arXiv:1810.00826, 2018.

[25] G. Birkhoff, “Three observations on linear algebra,” Univ.
Nac. Tacuman, Rev. Ser. A, vol. 5, pp. 147–151, 1946.

[26] M. Simonovsky and N. Komodakis, “Graphvae: Towards
generation of small graphs using variational autoencoders,”
in Artificial Neural Networks and Machine Learning–
ICANN, Springer, 2018, pp. 412–422.

[27] H. De Plaen, P.-F. De Plaen, J. A. Suykens, M. Proesmans,
T. Tuytelaars, and L. Van Gool, “Unbalanced optimal trans-
port: A unified framework for object detection,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023, pp. 3198–3207.

[28] Z. Wu, B. Ramsundar, E. N. Feinberg, et al., “Moleculenet:
A benchmark for molecular machine learning,” Chemical
science, vol. 9, no. 2, pp. 513–530, 2018.

[29] L. C. Blum and J.-L. Reymond, “970 million druglike small
molecules for virtual screening in the chemical universe
database gdb-13,” Journal of the American Chemical Soci-
ety, vol. 131, no. 25, pp. 8732–8733, 2009.

[30] U. V. Ucak, I. Ashyrmamatov, and J. Lee, “Reconstruction
of lossless molecular representations from fingerprints,”
Journal of Cheminformatics, vol. 15, no. 1, pp. 1–11, 2023.

[31] G. Landrum et al., “Rdkit: A software suite for cheminfor-
matics, computational chemistry, and predictive modeling,”
Greg Landrum, vol. 8, no. 31.10, p. 5281, 2013.

[32] Y. Yang, M. Pilanci, and M. J. Wainwright, “Randomized
sketches for kernels: Fast and optimal nonparametric re-
gression,” The Annals of Statistics, vol. 45, no. 3, pp. 991–
1023, Jun. 2017. DOI: 10.1214/16-AOS1472. [On-
line]. Available: https://doi.org/10.1214/16-
AOS1472.

[33] T. El Ahmad, P. Laforgue, and F. d’Alché-Buc, “Fast Kernel
Methods for Generic Lipschitz Losses via \p\-Sparsified
Sketches,” Transactions on Machine Learning Research,
2023.

5

https://doi.org/10.1214/16-AOS1472
https://doi.org/10.1214/16-AOS1472
https://doi.org/10.1214/16-AOS1472


A framework for differentiable Supervised Graph Prediction

[34] R. Wang, Z. Guo, W. Pan, et al., “Pygmtools: A python
graph matching toolkit,” Journal of Machine Learning Re-
search, vol. 25, no. 33, pp. 1–7, 2024. [Online]. Available:
https://jmlr.org/papers/v25/23- 0572.
html.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2016, pp. 770–778.

[36] R. Xiong, Y. Yang, D. He, et al., “On layer normalization in
the transformer architecture,” in International Conference
on Machine Learning, PMLR, 2020, pp. 10 524–10 533.

[37] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is
all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[39] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, “Spatial
tessellations: Concepts and applications of voronoi dia-
grams,” 2009.

[40] R. M. Karp, Reducibility among combinatorial problems.
Springer, 2010.

6

https://jmlr.org/papers/v25/23-0572.html
https://jmlr.org/papers/v25/23-0572.html


A framework for differentiable Supervised Graph Prediction

A. Additional details about PMFGW
This section is organised as follows. First we discuss existing discrepancy to compare graphs of different sizes and why
we believe that they are not suited for SGP A.1. Then, we highlight the relationship between PMFGW and other existing
metrics A.2. Next, we describe the solver we use to compute the PMFGW optimal transport plan A.3. Finally, we introduce
a toy example illustrating the loss landscape of PMFGW on a toy example A.4

A.1. Comparing graphs of arbitrary size

The GM and FGW described in section 2.1 cannot directly be used to compare graphs of different sizes but several lines of
work have been proposed to address this limitation.

The first approach is to fully leverage Optimal Transport by introducing weights on the graph nodes. The Fused-Gromov-
Wasserstein distance can then be used to compare graphs of different sizes as long as they have the same total mass [13].
However, this approach raises specific issues. In scenarios where masses are uniform, nodes in larger graphs receive
lower mass which might not be suitable for practical applications. Conversely, employing non-uniform masses complicates
interpretation, as decoding a discrete object from a weighted one becomes less straightforward. Those issues can be mitigated
by leveraging Unbalanced Optimal Transport (UOT) [17], which relaxes marginal constraints, allowing for different total
masses in the graphs. Unfortunately, UOT introduces several additional regularization parameters that are difficult to tune,
especially in scenarios like SGP, where model predictions exhibit wide variability during training.

Another close line of work is Partial Matching (PM) [18], which consists in matching a small graph g to a subgraph of the
larger graph ĝ. In practice, this can be done by adding dummy nodes to g through some padding operator P after which
one can directly compute PM(ĝ, g) = GM(ĝ,P(g)) [10]. However, PM is not suited to train a model as the learned model
would only predict a graph that includes the target graph, with no indication of which subgraph is actually the correct
prediction. We discuss the relationship between PMFGW and Partial Matching in the next section.

A.2. Relation to existing metrics

PMFGW is an asymmetric extension of FGW [19] suited for comparing a continuous predicted graph with a padded target.
The extension is achieved by adding (1) a novel term to quantify the prediction of node padding, and (2) the partial masking
of the components of the second and third terms to reflect padding. It should be noted that in contrast to what is usually
done in OT, the node masking vectors (h and ĥ) are not used as a marginal distribution but directly integrated into the
loss. In that sense, the additional node masking term is very similar to the one of OTLp [20] that proposed to use uniform
marginal weight and move the part that measures the similarity between the distribution weights in an additional linear term.
However, OTLp is restricted to linear OT problems and does not use the marginal distributions as a masking for other terms
as in PMFGW.

PMFGW also relates to Partial GM/GW [18] as both metrics compare graphs by padding the smallest one with zero-cost
dummy nodes. The critical difference lies in the new vector ĥ which predicts which sub-graphs are activated, i.e., should be
matched to the target. To be precise, PMFGW and Partial Fused Gromov Wasserstein (PFGW) are equal if and only if lh is
set to 0. We prove this statement and provide a formal definition of PFGW in C.3. Note that setting lh = 0 would obviously
be undesirable since the vector ĥ would disappears from the loss and the model would not be trained to predict it correctly.
In particular, this would prevent the model from learning to predict the size of the target graph.

A.3. PMFGW solver

Computing PMFGW requires solving the inner optimization problem presented in Equation (4) whose objective rewrites

⟨T,U⟩+ ⟨T,L⊗T⟩

where U is a fixed matrix, L a fixed tensor and ⊗ the tensor matrix product. A standard way of solving this problem [21]
is to use a conditional gradient (CG) algorithm which iteratively solves a linearization of the problem. Each step of the
algorithm requires solving a linear OT/Matching problem of cost ⟨T,C(k)⟩ where the linear cost C(k) = U+ L⊗T(k) is
updated at each iteration. The linear problem can be solved with a Hungarian solver with cost O(M3) while the overall
complexity of computing the tensor product L⊗T(k) is theoretically O(M4). Fortunately, this bottleneck can be avoided
thanks to a O(M3) factorization (Proposition 1) that extend a result from Peyré et al. [22].

7



A framework for differentiable Supervised Graph Prediction

A.4. Illustrating PMFGW On A Toy Example

On the one hand, we consider a target graph of size 2, g = (F2,A2) where

F2 =

(
f1
f2

)
;A2 =

(
0 1
1 0

)
for some node features f1 and f2. For M = 3 the padded target is P(g) = (h,F,A) where

h =

1
1
0

 ;F =

f1
f2
−

 ;A =

0 1 −
1 0 −
− − −

 .

On the other hand, we consider a predicted graph ŷa,h = (ĥ, F̂, Â) that has the form

ĥ =

 1
h

1− h

 ; F̂ =

f1
f2
f2

 ; Â =

 0 a 1− a
a 0 0

1− a 0 0


for some a, h ∈ [0, 1]. The loss between the prediction and the (padded) target is

Ltrain(a, h) = PMFGW(ŷa,h,P3(g))

We are interested in the landscape of this loss. First of all, it appears that ŷ1,1 and ŷ0,0 and P(g) are isomorphic,
thus we get two global minima Ltrain(1, 1) = Ltrain(0, 0) = 0. Going into greater detail, it can be shown that for
ℓh(a, b) = ℓA(a, b) = (a− b)2 we have the following expression

Ltrain(a, h) = min

(
(1− a)2 +

2

3
(1− h)2; a2 +

2

3
h2

)
and the optimal transport plan is the permutation (1, 2, 3) when (1− a)2 + 2

3 (1− h)2 < a2 + 2
3h

2 and (1, 3, 2) otherwise.
In this toy example, the optimal transport plan is always a permutation.

At inference time, we could similarly be interested in the edit distance between the (discrete) prediction and the target

Leval(a, h) = ED(P−1
3 T (ŷa,h),g).

Once again, the expression can be computed explicitly

Leval(a, h) = 1[a < 0.5 and h > 0.5] + 1[a > 0.5 and h < 0.5]

We provide in Figure 4 an illustration of the edit distance and the proposed loss that is clearly a continuous and smoothed
version of the edit distance which allows for learning the NN parameters.

0.0 0.5 1.0
0.0

0.5

1.0

h

0.0

0.2

0.4

0.6

0.0 0.5 1.0
0.0

0.5

1.0

h

0.0
0.2
0.4
0.6
0.8
1.0

Figure 4: Heatmap of Ltrain (left) and Leval (right). The red line represents the transition between the regime where the
optimal plan is the permutation (1, 2, 3) and that where it is (1, 3, 2). In both cases, the optimal plan is a permutation.

8



A framework for differentiable Supervised Graph Prediction

B. Additional details about the architecture
B.1. Overview

The architecture that we use to parameterize f : X → Ŷ (left part of Figure 2) is composed of three modules , namely the
encoder that extracts features from the input, the transformer that convert these features into M nodes embeddings, that
are expected to capture both feature and structure information, and the graph decoder that predicts the properties of our
output graph, i.e., (ĥ, F̂, Â). As we will discuss later, the proposed architecture draws heavily on that of Relationformer [7]
since the latter has been shown to yield to state-of-the-art results on the Image2Graph task.

Encoder The encoder extracts k feature vectors in Rde from the input. Note that k is not fixed a priori and can depend on
the input (for instance sequence length in case of text input). This is critical for encoding structures as complex as graphs
and the subsequent transformer is particularly apt at treating this kind of representation. By properly designing the encoder,
we can accommodate different types of input data. We describe how to handle images, text, graphs, and vectors and provide
general guidelines to address other input modalities in the next section.

Transformer This module takes as input a set of feature vectors and outputs a fixed number of M node embeddings.
This resembles the approach taken in machine translation, and we used an architecture based on a stack of transformer
encoder-decoders, akin to [7].

Graph decoder This module decodes a graph from the set of node embeddings Z = [z1, . . . , zM ]T using the following
equation:

ĥi = σ(MLPm(zi)), F̂i = MLPf (zi), Âi,j = σ(MLP2
s(MLP1

s(zi) +MLP1
s(zj))) (6)

where σ is the sigmoid function and MLPm, MLPf , MLPk
s are multi-layer perceptrons heads corresponding to each

component of the graph (mask, features, structure). The adjacency matrix is expected to be symmetric which motivate us to
parameterize it as suggested by [23].

Positioning with Relationformer As discussed above, the architecture is similar to the one proposed in Relationformer [7],
with two modifications: (1) we use a symmetric operation with a sum to compute the adjacency matrix while Relationformer
uses a concatenation that is not symmetric; (2) we investigate more general encoders to enable graph prediction from data
other than images. However, as stated in the previous section, the main originality of our framework lies in the design of the
PMFGW loss. Interestingly Relationformer uses a loss that presents similarities with FGW but where the matching is done
on the node features only, before computing a quadratic-linear loss similar to PMFGW. In other words, they solve a bi-level
optimization problem, where the plan is computed on only part of the information, leading to potentially suboptimal results
on heterophilic graphs as demonstrated in the next section.

B.2. Encoding any input to graphs

Philosophy of the Any2Graph encoder Any2Graph is compatible with different types of inputs, given that one selects
the appropriate encoder. The role of the encoder is to extract a set of feature vectors from the inputs x i.e. each input is
mapped to a list of k feature vectors of dimension de where k is not necessarily fixed. This is critically different from
extracting a unique feature vector (k = 1). If k is set to 1, the rest of the architecture must reconstruct an entire graph from a
single vector, and the architecture is akin to that of an auto-encoder. In Any2Graph, we avoid this undesirable bottleneck by
opting for a richer (k > 1) and more flexible (k is not fixed) representation of the input. The k feature vectors are then fed
to a transformer which is well suited to process sets of different sizes. Since the transformer module is permutation-invariant
any meaningful ordering is lost in the process. To alleviate this issue, we add positional encoding to the feature vectors
whenever the ordering carries information. Finally, note that the encoder might highly benefit from pre-training whenever
applicable; but this goes beyond the scope of this paper.

We now provide a general description of the encoders that can be used for each input modality.

Images For Image2Graph task we use Convolutional Neural Networks (CNN) as suggested in [7]. From an input image of
shape h× w × c the CNN outputs a tensor of shape H ×W × C which is seen as H ×W feature vectors of dimension C.
The raw output of the CNN is reshaped and passed through a linear layer to produce the final output of shape H ×W × de.
Since the ordering of the H ×W features carries spatial information we add positional encoding accordingly.

9



A framework for differentiable Supervised Graph Prediction

Self-Attention

Input (Text) Set Of Features

A

Piece

Of

Text

Self-Attention

Set Of Features

Graph Neural
Network
(GNN)

Input (graph)

Graph Neural
Network
(GNN)

Input (graph) Set of Features

Set of Features

A

Piece

Of

Text

But

Longer

Input (Text)

Convolutionnal 
Neural  Network

(CNN)

Convolutionnal 
Neural  Network

(CNN)

Set Of Features

Set Of Features

Input (Image)

Input (Image)

Figure 5: Illustration of encoders extracting k features vectors for different input modalities. For text/fingerprint, k is the
number of input tokens. For graphs, k is the size of the input graph. For images, k depends on the resolution of the image
and the CNN kernel size.

Fingerprint/text For tasks where the input is a list of tokens (e.g. Text2Graph or Fingerprint2Graph) we use the classical
NLP pipeline: each token is transformed into a vector by an embedding layer and the list of vectors is then processed by a
transformer encoder module. In text2graph the tokens ordering carries semantic meaning and positionnal encoding should be
added. On the contrary, in Fingerprint2Graph, the fingerprint ordering carries no information and the permutation invariance
of the transformer module is a welcomed property.

Graph For a graph2graph task (not featured in this paper) we would suggest using a Graph Neural Network (GNN) [24].
A GNN naturally extracts k feature vectors from an input graph, where k is the number of nodes in the input graph. No
positional encoding is required.

Vector We explore a Vect2Graph task in Appendix F. The naive encoder we use is composed of k parallel MLPs devoted to
the extraction of the k feature vectors. This approach is arguably simplistic and more suited encoders should be considered
depending on the type of data.

C. Formal Statements And Proofs
In this section, we write

PMFGW(ŷ,P(g)) = min
T∈πM

∑
i,j

Ti,jℓh(ĥi, hj) +
∑
i,j

Ti,jℓf (f̂i, fj)hj +
∑
i,j,k,l

Ti,jTk,lℓA(Âi,k, Aj,l)hjhl,

meaning that we absorb the normalization factors in the ground losses to lighten the notation.

Alternatively, we also consider the matrix formulation:

PMFGW(ŷ,P(g)) = min
T∈πM

⟨T,C⟩+ ⟨T,L⊗T⟩,

where Ci,j = ℓh(ĥi, hj) + ℓf (f̂i, fj)hj , Li,j,k,l = ℓA(Âi,k, Aj,l)hjhl and ⊗ is the tensor/matrix product.

10



A framework for differentiable Supervised Graph Prediction

C.1. PMFGW fast computation

The following results generalize Proposition 1 of [22] so that it can be applied to the computation of PMFGW.

Proposition 4. Assuming that the ground loss than can decomposed as ℓ(a, b) = f1(a) + f2(b) − h1(a)h2(b), for any
transport plan T ∈ Rn×m and matrices A,W ∈ Rn×n and A′,W′ ∈ Rm×m, then the tensor product of the form

(L⊗T)i,i′ =
∑
j,j′

Tj,j′ℓ(Ai,j , A
′
i′,j′)Wi,jW

′
i′,j′

can be computed as

L⊗T = U1TW′T +WTUT
2 −V1TVT

2 ,

where U1 = f1(A) ·W, U2 = f2(A
′) ·W′, V1 = h1(A) ·W, V2 = h2(A

′) ·W′ and [·] is the point-wise multiplication.

Proof. Thanks to the decomposition assumption the tensor product can be decomposed into 3 terms:

(L⊗T)i,i′ =
∑
j,j′

Tj,j′f1(Ai,j)Wi,jW
′
i′,j′ +

∑
j,j′

Tj,j′f2(A
′
i′,j′)Wi,jW

′
i′,j′ −

∑
j,j′

Tj,j′h1(Ai,j)h2(A
′
i′,j′)Wi,jW

′
i′,j′ .

=
∑
j

f1(Ai,j)Wi,j

∑
j′

Tj,j′W
′
i′,j′ +

∑
j′

f2(A
′
i′,j′)W

′
i′,j′

∑
j

Tj,j′Wi,j −
∑
j

h1(Ai,j)Wi,j

∑
j′

Tj,j′h2(A
′
i′,j′)W

′
i′,j′ .

Introducing U1,U2,V1 and U2 as defined above, we write:

(L⊗T)i,i′ =
∑
j

(U1)i,j
∑
j′

Tj,j′W
′
i′,j′ +

∑
j′

(U2)i′,j′
∑
j

Tj,j′Wi,j −
∑
j

(V1)i,j
∑
j′

Tj,j′(V2)i′,j′ ,

=
∑
j

(U1)i,j(TW
′T )j,i′ +

∑
j′

(U2)i′,j′(WT )i,j′ −
∑
j

(V1)i,j(Tj,j′V
T
2 )j,i′ ,

which concludes that L⊗T = U1TW′T +WTUT
2 −V1TVT

2 .

Remark 1 (Computational cost). U1,U2,V1,V2 can be pre-computed for a cost of O(n2 +m2), after which L⊗T can
be computed (for any T) at a cost of O(mn2 + nm2).
Remark 2 (Kullback-Leibler divergence decomposition). The Kullback-Leibler divergence KL(p, q) = q log q

p + (1 −
q) log (1−q)

(1−p) , which we use as ground loss in our experiments satisfies the required decomposition given f1(p) = − log(p),

f2(q) = q log(q) + (1− q) log(1− q), h1(p) = log( 1−p
p ) and, h2(q) = 1− q

Remark 3. The tensor product that appears in PMFGW is a special case of this theorem that corresponds to n = m = M ,
Wi,j = 1 and W ′

i′,j′ = hi′hj′ . Thus, proposition 1 is a direct corollary.

C.2. PMFGW divergence properties

First, we provide below a more detailed version of Proposition 2

Proposition 5 (GI Invariance). For any m ≤ M , ŷ, ŷ′ ∈ Ŷ and g, g′ ∈ Gm, we have that

ŷ ∼ ŷ′, g ∼ g′ =⇒ PMFGW(ŷ,P(g)) = PMFGW(ŷ′,P(g′)).

Proof. We denote ŷ = (ĥ, F̂, Â) and P(g) = (h,F,A). Since ŷ and ŷ′ are isomorphic, there exist a permutation P ∈ σM

such that ŷ′ = (Pĥ,PF̂,PÂPT ). Moreover, the fact that g and g′ are isomorphic implies that P(g) and P(g′) are
isomorphic as well, thus there exist a permutation Q ∈ σM such that P(g′) = (Qh,QF,QAQT ). Plugging into the
PMFGW objective we get

11



A framework for differentiable Supervised Graph Prediction

PMFGW(ŷ′,P(g′)) = min
T∈πM

∑
i,j

Ti,jℓh((Pĥ)i, (Qh)j) +
∑
i,j

Ti,jℓf ((PF̂)i, (QF)j)(Qh)j

+
∑
i,j,k,l

Ti,jTk,lℓA((PÂPT )i,k, (QAQT )j,l)(Qh)j(Qh)l

= min
T∈πM

∑
i,j

(PTTQ)i,jℓh(ĥi,hj) +
∑
i,j

(PTTQ)i,jℓf (f̂i, fj)hj

+
∑
i,j,k,l

(PTTQ)i,j(P
TTQ)k,lℓA(Âi,k, Aj,l)hjhl.

Denoting T̃ = PTTQ we have that

PMFGW(ŷ′,P(g′)) = min
T̃∈πM

∑
i,j

T̃i,jℓh(ĥi, hj) +
∑
i,j

T̃i,jℓf (f̂i, fj)hj

+
∑
i,j,k,l

T̃i,j T̃k,lℓA(Âi,k, Aj,l)hjhl

= PMFGW(ŷ,P(g)).

We now provide a more detailed version of Proposition 3

Definition 1. We say that ℓ : X̂ × X 7→ R is positive when for any x, y ∈ X̂ × X , ℓ(x, y) ≥ 0 with equality if and only if
x = y.

Proposition 6 (Positivity). Let us assume that ℓh : [0, 1]× {0, 1} 7→ R, ℓf : Rd × Rd 7→ R and ℓA : [0, 1]× {0, 1} 7→ R
are positive. Then we have that for any ŷ ∈ Ŷ, g ∈ G :

• i) PMFGW(ŷ,P(g)) ≥ 0

• ii) There is equality if and only if ŷ ∼ P(g)

• iii) In that case P−1T (ŷ) ∼ g

Proof. The direct implication of ii) is the only statement that is not trivial. First, let us show that if PMFGW(ŷ,P(g)) = 0,
the optimal transport T∗ is a permutation. Recall that any transport plan is a convex combination of permutations [25] i.e.
there exist λ1, ..., λK ∈]0, 1] and P1, ...,PK ∈ σM such that

∑K
k=1 λk = 1 and T∗ =

∑K
k=1 λkPk. Thus

0 = ⟨T∗,C⟩+ ⟨T∗,L⊗T∗⟩ (7)

=

K∑
k=1

λk⟨Pk,C⟩+
K∑

k=1

λ2
k⟨Pk,L⊗Pk⟩+

K∑
k ̸=l

λkλl⟨Pk,L⊗Pl⟩. (8)

This is a sum of positive terms, thus all terms are null and in particular, for any k

0 = ⟨Pk,C⟩+ ⟨Pk,L⊗Pk⟩. (9)

Thus all the Pk are optimal transport plans. In the following, we chose one of them and denote it P. Moving back to the
developed formulation of PMFGW we get that

12



A framework for differentiable Supervised Graph Prediction

0 = PMFGW(ŷ,P(g)) =
∑
i,j

Pi,jℓh(ĥi, hj) +
∑
i,j

Pi,jℓf (f̂i, fj)hj +
∑
i,j,k,l

Pi,jPk,lℓA(Âi,k, Aj,l)hjhl.

Once again this is a sum of positive terms thus for all i, j, k, and l

0 = Pi,jℓh(ĥi, hj) = Pi,jℓf (f̂i, fj)hj = Pi,jPk,lℓA(Âi,k, Aj,l)hjhl

and thus

0 = ℓh((P
T ĥ)j , hj) = ℓf ((P

T F̂)j , Fj)hj = ℓA((P
T ÂP)j,l, Aj,l)hjhl.

And from the positivity of ℓh, ℓf and ℓA we get that: PT ĥ = h, PT F̂[: m] = F[: m] and PT ÂP[: m, : m] = A[: m, : m].
Since the nodes i > m are not activated, by abuse of notation we simply write PT F̂ = F and PT ÂP = A. This concludes
that ŷ ∼ P(g).

C.3. PMFGW and Partial Fused Gromov Wasserstein

Following [18], we define an OT relaxation of the Partial Matching problem.

For a large graph ĝ = (F̂, Â) ∈ GM and a smaller graph g = (F,A) ∈ Gm, the set of transport plan transporting a subgraph
of ĝ to g can be defined as

πM,m = {T ∈ [0, 1]M×m | T1m ≤ 1M ,TT
1M = 1m,1T

MT1m = m}

and the associated partial Fused Gromov Wasserstein distance is

partialFGW(ĝ, g) = min
T∈πM,m

M∑
i=1

m∑
j=1

Ti,jℓF (f̂i, fj) +

M∑
i,k=1

m∑
j,l=1

Ti,jTk,lℓA(Ai,k, Aj,l).

In the following, we show that partialFGW(ĝ, g) is equivalent to the padded Fused Gromov Wasserstein distance defined as

paddedFGW(ĝ, g) = min
T∈πM

M∑
i=1

m∑
j=1

Ti,jℓF (f̂i, fj) +

M∑
i,k=1

m∑
j,l=1

Ti,jTk,lℓA(Ai,k, Aj,l).

Lemma 4. Any transport plan T ∈ πM has the form T =
(
Tp T2

)
where Tp is a partial transport plan i.e. Tp ∈ πM,m.

Proof. Let us check that Tp is in πM .

• 1M = T1M = Tp1m +T21M−m ≥ Tp1m

• 1M = TT
1M =

(
TT

p 1M

TT
2 1M

)
. And thus TT

p 1M = 1m

• From the previous we immediately get that 1T
MTp1m = m

Lemma 5. For any partial transport plan Tp ∈ πM,m there exist T2 ∈ RM×(M−m) such that T =
(
Tp T2

)
∈ πM .

13



A framework for differentiable Supervised Graph Prediction

Proof. Let us define p = 1M − Tp1m. This is the mass of the larger graph that is not matched by Tp. Note that since
Tp ∈ πM,m we have that p ≥ 0. Thus we can set T2 = 1

M−mp1T
M−m i.e. we spread the remaining mass uniformly across

the padding nodes. Let us check that T =
(
Tp T2

)
∈ πM is indeed a valid transport plan.

• T1M = Tp1m +T21M−m = Tp1m + p = 1m

• TT
1M =

(
TT

p 1M

TT
2 1M

)
=

(
1m

1
M−m (pT1M )1M−m

)
=

(
1m

1
M−m (1T

M1M − 1
T
mTT

p 1M )1M−m

)
=

(
1m

1M−m

)
= 1M

Proposition 7. paddedFGW and partialFGW are equal and any optimal plan T∗ of paddedFGW has the form T∗ =
(T ∗

p , T2) where T ∗
p is optimal for partialFGW.

Proof. Follows directly from the two previous lemmas.

Remark 6. The proposed PMFGW is equivalent to paddedFGW (and thus to partialFGW) if and only if ℓh is set to a
constant.
Remark 7. The algorithm proposed to compute PMFGW can be applied to paddedFGW and thus to partialFGW. Hence,
we have indirectly introduced an alternative to the algorithm of [18]. Further comparisons are left for future work.

D. Training Any2Graph
D.1. Learning dynamics

The PMFGW loss is composed of three terms, two of them are linear and account for the prediction of the nodes and their
features, one is quadratic and accounts for the prediction of edges. The last term is arguably the harder to minimize for the
model, as a consequence, we observe that the training performs best when the two first terms are minimized first which
then guides the minimization of the structure term. In other words, the model must first learn to predict the nodes before
addressing their relationship. Fortunately, this behavior naturally arises in Any2Graph as long as αA, the hyperparameter
controlling the importance of the quadratic term, is not too large. This is illustrated in figure 6.

0 1 2 3 4 5 6 7 8 9 10
Epochs

0.0

0.5

1.0

Lo
ss

es
 (t

es
t s

et
)

loss features
loss mask
loss structure

0 1 2 3 4 5 6 7 8 9 10
Epochs

0.0

0.5

1.0

Lo
ss

es
 (t

es
t s

et
)

loss features
loss mask
loss structure

Figure 6: First epochs of training for Coloring. The test values of the 3 components of the loss are reported. On the left
(resp. right) α is set to [1, 1, 1] (resp. [1,1,10]). In the first scenario, the first two terms of the loss are learned very fast and
the structure is optimized next. In the second scenario, setting αA = 10 prevents this desirable learning dynamic.

D.2. Feature Diffusion

For the datasets where many nodes in the graphs share the same features (QM9 and GDB13) the good prediction of the nodes
and their features is not enough to guide the prediction of the edges and the desirable dynamic introduced above does not
occur. This motivates us to perform Feature Diffusion (FD) that is replacing the node feature vector F by the concatenation

[F,AF]

14



A framework for differentiable Supervised Graph Prediction

Table 3: Performances of the Relationformer and Any2Graph with (+FD) and without feature diffusion.

DATASET MODEL
GRAPH LEVEL EDGE LEVEL NODE LEVEL ACC.

EDIT DIST. ↓ GI ACC. ↑ PMFGW ↓ PREC. ↑ REC. ↑ NODE ↑ SIZE ↑

QM9

RELATIONFORMER 9.15 0.05 0.48 21.42 4.77 99.28 91.80
RELATIONFORMER + FD 3.80 9.95 0.22 86.07 73.31 99.34 96.0
ANY2GRAPH 3.44 7.50 0.21 86.21 77.27 99.26 93.65
ANY2GRAPH + FD 2.13 29.85 0.14 90.19 88.08 99.77 95.45

GDB13

RELATIONFORMER 11.40 0.00 0.43 81.96 31.49 97.77 97.45
RELATIONFORMER + FD 8.83 0.01 0.29 84.14 55.89 97.57 98.65
ANY2GRAPH 7.45 0.05 0.22 87.20 60.41 99.41 96.15
ANY2GRAPH + FD 3.63 16.25 0.11 90.83 84.86 99.80 98.15

0 2 4 6 8 10 12
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

 (t
es

t s
et

)

loss features
loss mask
loss structure

0 2 4 6 8 10 12
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

 (t
es

t s
et

)

loss features
loss mask
loss structure

Figure 7: First epochs of training for GDB13. The test values of the 3 components of the loss are reported. On the left, we
perform FD before training, on the right, we leave node features unchanged. We observe that the feature loss decreases
slightly slower with FD (the features are more complex) but the minimization of the structure term is largely accelerated.

before training. The diffused node features carry a portion of the structural information. This makes the node feature term
slightly harder to minimize but in turn, the subsequent prediction of the structure is much easier and we recover the previous
dynamic. This is illustrated in figure 7. We observe that both Any2Graph and Relationformer benefits from such procedure,
as reported in table 3

D.3. Optimal Transport Relaxation

We adopted the OT point of view when designing Any2Graph. In practice, this means that we do not project the OT plan
back to the set of permutations with a Hungarian matcher before plugging it in the loss as in [26]. Testing the effect of
adding this extra step we observed a 5% to 10% increase of the edit distance across datasets (table 4) along with a more
unstable training curve (figure 8). This confirms that a continuous transport plan provides a slightly more stable gradient
than a discrete permutation, which aligns with the findings of [27] on the similar topic of object detection.

Dataset Coloring Toulouse USCities QM9 GDB13

ED without Hungarian 0.20 0.13 1.86 2.13 3.63
ED with Hungarian 0.23 0.15 2.03 2.08 3.86

Table 4: Effect of adding Hungarian Matching on the performances evaluated with the test edit distance. We observe, that
Hungarian Matching slightly decreases the performances on all datasets but QM9.

15



A framework for differentiable Supervised Graph Prediction

5 10 15 20 25 30
Epochs

0.15

0.20

0.25

0.30

Lo
ss

 (t
es

t s
et

)

With Hungarian Matching
Without Hungarian Matching

Figure 8: First epochs of training for GDB13 with and without projection of the optimal transport plan to the set of
permutations with Hungarian matching. Hungarian matching slightly decreases the performances and induces more
oscillations of the loss, which could be explained by a less stable gradient.

E. Experimental setting
E.1. Datasets

In this paper, we consider five datasets for which we provide a variety of statistics in Table 5. Coloring is a new synthetic
dataset which we describe in detail in Appendix F. Toulouse (resp. USCities) is a Sat2Graph dataset [2] where the inputs
are images of size 64 × 64 (resp. 128 × 128). QM9 [28] and GDB13 [29] are datasets of small molecules which we
use to address the Fingerprint2Graph task. Here, we compute a fingerprint representation of the molecule and attempt to
reconstruct the original molecule from this loss representation. Following [30] we use the Morgan Radius-2 fingerprint
[31] which represents a molecule by a bit vector of size 2048, where each bit represents the presence/absence of a given
substructure. Finally, we feed our model with the list of non-zeros bits, i.e. the list of substructures (tokens) present in the
molecule. The list of substructures has a min/average/max length of 2/21/27 for QM9 and 7/29/36 for GDB13.

Table 5: Table summarizing the properties of the datasets considered.

DATASET
SIZE NODES EDGES INPUT MODALITY NODE FEATURES(TRAIN/TEST/VALID) (MIN/MEAN/MAX) (MIN/MEAN/MAX)

Coloring 100K/10K/10K 4/7.0/10 3/10.9/22 RGB IMAGES 4 CLASSES (COLORS)
Toulouse 80K/10K/10K 3/6.1/9 2/5.0/14 GREY IMAGES 2D POSITIONS
USCities 130K/10K/10K 2/7.5/17 1/5.8/20 GREY IMAGES 2D POSITIONS
QM9 120K/10K/10K 1/8.8/9 0/9.4/13 LIST OF TOKENS 4 CLASSES (ATOMS)
GDB13 1300K/70K/70K 5/12.7/13 5/15.15/18 LIST OF TOKENS 5 CLASSES (ATOMS)

E.2. Competitors

We compare Any2Graph, to our direct end-to-end competitor Relationformer [7] that has shown to be the state-of-the-art
method for Image2Graph. For a fair comparison, we use the same architecture (presented in Figure 2) for both approaches
so that the only difference is the loss. We apply feature diffusion both to Any2Graph and Relationformer. Moreover, we also
compare with a surrogate regression approach (FGW-Bary-ILE) based on FGW barycenters [6] whose prediction function
writes as:

f(x) = argmin
y∈Ŷm

K∑
k=1

αk(x;W )FGW2
2(y, ȳk), (10)

where each ȳk denotes the kth template graph and αk the kth weight function. The templates are the training samples and
weight function αk are learned by sketched kernel ridge regression [32], [33] with gaussian kernel. For fair comparison, we
also integrated feature diffusion to FGW-Bary-ILE.

16



A framework for differentiable Supervised Graph Prediction

E.3. Metrics

In the following, we provide a detailed description of the metrics reported in table 1.

Graph Level First we report the PMFGW loss between continuous prediction ŷ and padded target P(g). For this
computation, we set α to the values displayed in table 6.

PMFGW(ŷ,P(g))

Then we report the graph edit distance [15] between predicted graph P−1T ŷ and target g which we compute using Pygmtools
[34]. All edit costs (nodes and edges) are set to 1. Note that for Toulouse and USCities, node labels are 2D positions and we
consider two nodes features to be equal (edit cost of 0) whenever the L2 distance is smaller than 5% than the image width.

EDIT(P−1T ŷ, g)

Finally, we report the Graph Isomorphism Accuracy GI ACC that is

GI ACC(ŷ, g) = 1[EDIT(P−1T ŷ, g) = 0]

Node level Recall that for a prediction ŷ = (ĥ, F̂, Â) the size of the predicted graph is m̂ = ||ĥ > 0.5||1. Denoting m the
size of the target graph we report the size accuracy:

SIZE ACC(ŷ, g) = 1[m̂ = m].

The remaining node and edge-level metrics need the graphs to have the same number of nodes. To this end, we select the m
nodes with the highest probability ĥi, resulting in a graph ĝ = (F̃, Ã) with ground truth size. This is equivalent to assuming
that the size of the graph is well predicted. Then we use Pygmtools to compute a one-to-one matching σ between the nodes
of ĝ and g that can be used to align graphs (we use the matching that minimizes the edit distance). In the following, we
assume that g and ĝ have been aligned. We can now define the node accuracy NODE ACC as

NODE ACC(ĝ, g) =
1

m

m∑
i=1

1[F̃i = Fi],

which is the average number of node features that are well predicted.

Edge level Since the target adjacency matrices are typically sparse, the edge prediction accuracy is a poorly informative
metric. To mitigate this issue we report both Edge Precision and Edge Recall :

EDGE PREC.(ĝ, g) =

∑m
i,j=1 1[Ãi,j = 1, Ai,j = 1]∑m

i,j=1 1[Ãi,j = 1]

EDGE PREC.(ĝ, g) =

∑m
i,j=1 1[Ãi,j = 1, Ai,j = 1]∑m

i,j=1 1[Ai,j = 1]

All those metrics are then averaged other the test set.

E.4. Training And Architecture Hyperparameters

Encoder We follow the guidelines established in B.2 for the choice of the encoder. In particular, all encoders for Coloring,
Toulouse and USCities are CNNs. The encoder for Coloring is a variation of Resnet18 [35], where we remove the first
max-pooling layer and the last two blocks to accommodate for the low resolution of our input image. We proceed similarly

17



A framework for differentiable Supervised Graph Prediction

for Toulouse except that we only remove the last block. For USCities we keep the full Resnet18. For the Fingerprint2Graph
datasets, we use a transformer encoder. In practice, this transformer encoder and that of the encoder-decoder module are
merged to avoid redundancy. All encoders end with a linear layer projecting the feature vectors to the hidden dimension de.

Transformer We use the Pre-LN variant [36] of the transformer encoder-decoder model as described in [37]. To reduce
the number of hyperparameters, encoder and decoder modules both consist of stacks of Nτ layers, with Nh heads and the
hidden dimensions of all MLP is set to 4× de.

Decoder All MLPs in the decoder module have one hidden layer.

Optimizer We train all neural networks with the Adam optimizer [38], learning rate η, 8000 warm-up steps and all other
hyperparameters set to default values. We also use gradient clipping with a max norm set to 0.1.

All hyperparameters are given in Table 6.

Table 6: Hyperparameters used to train our models. We also report the total training time on a NVIDIA V100.

DATASET
PMFGW ARCHITECTURE OPTIMIZATION

αH αF αA de Nτ Nh M η BATCHSIZE STEPS TIME

Coloring 1 1 1 256 3 8 12 3E-4 128 75K 4H
Toulouse 1 5 1 256 4 8 12 1E-4 128 100K 8H
USCities 2 5 0.5 256 4 8 20 1E-4 128 150K 14H
QM9 1 1 1 128 3 4 12 3E-4 128 150K 6H
GDB13 1 1 1 512 5 8 15 3E-4 256 150K 24H

F. Coloring: a new synthetic dataset for benchmarking SGP
We introduce Coloring, a new synthetic dataset well suited for benchmarking SGP methods. The main advantages of
Coloring are:

• The output graph is uniquely defined from the input image.

• The complexity of the task can be finely controlled by picking the distribution of the graph sizes, the number of node
labels (colors) and the resolution of the input image.

• One can generate as many pairs (inputs, output) as needed to explore different regimes, from abundant to scarce data.

To generate a new instance of Coloring, we apply the following steps:

Figure 9: Illustration of the five steps to follow to generate a new instance of Coloring.

• 0) Sample the number of nodes (graph size) m. In this paper, we sample uniformly on some interval [Mmin,Mmax].

• 1) Sample m centroids on [0, 1]× [0, 1]. In this paper, we sample the centroids as uniform i.i.d. variables.

• 2) Partition [0, 1]× [0, 1] (the image) in a Voronoi diagram fashion [39]. In this paper, we use the L1 distance. and an
image of resolution H ×H .

18



A framework for differentiable Supervised Graph Prediction

• 3) Create the associated graph i.e. each node is a region of the image and two nodes are linked by an edge whenever
the two associated regions are adjacent.

• 4) Color the graph with K > 4 colors. In this paper, we use K = 4. A coloring is said to be valid whenever no adjacent
nodes have the same color. Note that graph coloring is known to be NP-complete [40].

• 5) Color the original image accordingly.

As highlighted above, Coloring is a flexible dataset. Beyond the default dataset simply referred as Coloring we also explore
2 variations in our experiments. ColoringBig is a more challenging dataset that features larger graphs. ColoringVect is a
variation of Coloring where the input image is flattened and treated as a vector allowing us to explore a synthetic Vect2Graph
task. The properties of these datasets, along with the performances of Any2Graph are reported in table 7. We hope that
Coloring will be used to benchmark future SGP methods.

Table 7: Summary of the properties of the 3 variations of Coloring considered in this paper. We also report the test edit
distance achieved by the different models. For FGWBary we report the best performing variant that is ILE for ColoringVect
and NN forColoring. None scales to ColoringBig.

DATASET MMIN MMAX H NUMBER OF SAMPLES ANY2GRAPH RELATIONFORMER FGWBARY-NN

ColoringVect 4 6 16 100K 0.46 1.40 2.09
Coloring 6 10 32 100K 0.20 5.47 6.73
ColoringBig 10 15 64 200K 1.01 8.91 N.A.

G. Additional Qualitative Results
G.1. Out of distribution performances

We tested if, once trained on Toulouse dataset, the predictive model is able to cope with out-of-distribution data. Figure 10
shows that this is the case on these toy images, that are not related to satellite images or road maps. We leave for future work
the investigation of this property.

Figure 10: Any2Graph trained on Toulouse performing on out-of-distribution inputs. Input images are displayed on top row
and prediction in the bottom row.

19



A framework for differentiable Supervised Graph Prediction

G.2. Qualitative results on COLORING

Input Target Any2Graph Relationformer FGWBary-ILE FGWBary-NN

Figure 11: Graph prediction on the Coloring dataset.

20



A framework for differentiable Supervised Graph Prediction

G.3. Qualitative results on QM9

1 94 
32 89 689 

38 7 78 
455 1084 2 

14 285 3 
21 1157 482 
1567 5 1409 

82 49 54 
157 

1 27 
158 10 85 

187 62 124 
537 877 24 

6 723 43 
149 4 1545 

725 

1 529 
1717 145 15 

25 45 170 
6 452 2 

14 1092 3 
738 8 31 

1643 545 304 
167 605 11 

404 

1 100 
1024 490 15 

1297 12 1803 
107 30 29 

252 4 1692 
13 50 1013 
5 143 280 

203 1323 640 
11 127 

1 663 
10 187 144 
184 764 9 
7 17 427 
34 2 20 

3 131 53 
61 50 582 

599 645 154 
1221 389 11 

1 436 
312 7 12 

669 102 30 
2 29 39 

3 4 8 
131 464 18 

1161 521 1658 
1045 36 

1 10 
298 409 26 

1677 9 7 
25 95 34 
6 357 2 
747 3 4 

8 1002 47 
109 1409 260 

33 649 

Input Target Any2Graph Relationformer FGWBary-ILE FGWBary-NN

Figure 12: Graph prediction on the QM9 dataset.

21



A framework for differentiable Supervised Graph Prediction

G.4. Qualitative results on GDB13

2048 14 
113 292 425 
486 522 549 
566 589 640 
655 677 678 
705 806 909 

925 949 1018 
1027 1059 1113 
1223 1256 1324 
1385 1467 1563 
1634 1847 1872 

1882 1958 

2048 4 
21 143 293 

378 516 522 
655 728 738 
757 890 925 

934 949 1018 
1059 1128 1161 
1223 1365 1440 
1479 1507 1572 
1607 1634 1684 

2006 2039 

2048 96 
253 300 313 
317 377 502 
610 649 839 
872 925 949 

1018 1043 1113 
1249 1324 1379 
1430 1602 1637 
1644 1652 1716 
1763 1872 1949 

2040 

2048 70 
161 174 200 
316 377 454 
469 559 655 
694 821 925 

984 1018 1026 
1033 1113 1128 
1229 1291 1379 
1506 1513 1753 
1818 1826 1872 
1878 1892 1920 

2003 

2048 30 
49 165 330 

377 407 547 
622 655 674 
757 786 874 

884 934 1040 
1199 1232 1359 
1379 1393 1451 
1467 1566 1633 
1690 1695 1749 
1751 1872 1883 

1943 

2048 24 
107 171 411 
439 522 584 
613 655 678 
685 738 925 

934 1018 1059 
1070 1161 1186 
1223 1238 1264 
1291 1324 1543 
1704 1725 1880 

1909 1922 

2048 146 
226 309 522 
527 584 610 
655 678 856 
911 925 926 

973 1018 1024 
1049 1054 1059 
1161 1291 1358 
1372 1466 1689 
1728 1858 1881 

1922 2039 

Input Target Any2Graph Relationformer

Figure 13: Graph prediction on the GDB13 dataset.

22



A framework for differentiable Supervised Graph Prediction

G.5. Qualitative results on TOULOUSE

Input Target Any2Graph Relationformer FGWBary-NN FGWBary-ILE

Figure 14: Graph prediction on the Toulouse dataset.

23



A framework for differentiable Supervised Graph Prediction

G.6. Qualitative results on USCities

Input Target Any2Graph Relationformer

Figure 15: Graph prediction on the USCities dataset.

24


