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Abstract
Characterizing the confidence of machine learn-
ing predictions unlocks models that know when
they do not know. In this study, we propose a
framework for assessing the quality of predictive
distributions obtained using deep learning models.
The framework enables representation of aleatory
and epistemic uncertainty, and relies on simulated
data to generate different sources of uncertainty.
Finally, it enables quantitative evaluation of the
performance of uncertainty estimation techniques.
We demonstrate the proposed framework with a
case study highlighting the insights one can gain
from using this framework.

1. Introduction
While we rely on deep neural networks (DNNs) to make de-
cisions in a wide variety of applications, they do not provide
information on the confidence of their predictions. However
we can make better-informed decisions if we understand
the trustworthiness of model predictions. For instance, pre-
dictive uncertainty can help identify when DNNs fail in
the presence of adversarial (Smith & Gal, 2018) or out-of-
distribution inputs (Snoek et al., 2019). There are also many
applications of using such information, such as in bandit set-
tings for recommendation systems (Thompson, 1933) and
reinforcement learning (Dabney et al., 2018).

To this end, Bayesian neural networks (BNNs) (Neal, 2012)
allow us to estimate predictive uncertainty. Unfortunately
at the scale in which deep learning is applied in industry,
Bayesian inference is generally intractable. In recent years,
alternative approximations of the Bayesian posterior have
been proposed such as the Monte Carlo simulation based
application of dropout (Gal & Ghahramani, 2016), variance
networks (Neklyudov et al., 2018) or partial Bayesian ap-
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proaches such as Bayesian last layer (Snoek et al., 2015).
Past assessments of the merits of these methods typically
rely on gains in predictive accuracy, via the mean of the
predictive distribution. However, we can also make use
of other characteristics of the distribution when evaluating
risk-return tradeoffs for decision making, and it is therefore
crucial to assess its full distributional properties.

In this study, we propose a simulation based framework that
enables the comparison of distributional information across
different uncertainty estimation techniques. It is inspired by
BNNs and is generalizable to any model architecture. By
controlling the amount of uncertainty added to a model and
dataset, our framework permits comparisons with respect to
the uncertainty injected into the system. We first outline the
framework, focusing on how different sources of uncertainty
can be simulated in this setting. This is followed by a case
study where we demonstrate, with a toy dataset, the possible
insights one can obtain through this framework.

2. The Framework
2.1. Controlling Different Sources of Uncertainty

For a model f(·) characterized by parameters θ, the target
variable y is represented using input features x as:

y = f(x;θ) + ε (1)

where ε represents the residuals in predictions.

Sources of uncertainty are commonly classified into epis-
temic and aleatory uncertainty, where the former is defined
as uncertainty due to limited knowledge about the data gen-
erating process and the latter stems from inherent random-
ness in the data (Tagasovska & Lopez-Paz, 2019). Following
a BNN representation, epistemic uncertainty can be repre-
sented in model parameters as:

θ̃ = θ + εθ (2)

where εθ represents the noise we add to the fitted model,
characterized here by the parameters θ. In our framework,
εθ can be configured by users and we support adding noise
to individual parameters of the model independently as well
as assuming a covariance structure.
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We also incorporate aleatory uncertainty through mimicking
measurement error through similarly adding noise εx to the
input features as well as εy to the target variables. Then
by treating sources of uncertainty independently, we can
generate input features and target variables to be used with
uncertainty estimation techniques via the following process:

x̃ = x+ εx
ỹ = f(x; θ̃) + εy

(3)

Since we control the level of uncertainty injected into the
system, we can speculate on the uncertainty we should
retrieve when we estimate the uncertainty of the dataset
{x̃, ỹ}. This enables us to perform quantitative analysis
by comparing an estimated distribution with the empirical
predictive distribution, formed from Monte Carlo samples of
our simulation process. Evidently, the simulations heavily
depend on the original model, so we note that they will be
limited by the model’s structure.

2.2. Evaluating with Simulated Uncertainty

Previously, predictive accuracy metrics such as Mean
Squared Error (MSE) based on the average of the predictive
samples (Gal & Ghahramani, 2016; Hernández-Lobato &
Adams, 2015) and coverage probabilities (Romano et al.,
2019) have been used for quantitative evaluations with re-
spect to dataset labels. Snoek et al. (2019) also performed an
indirect evaluation by measuring the accuracy of a classifier
trained on the task of detecting out-of-distribution inputs
with uncertainty estimates. There have also been qualita-
tive evaluations that check whether epistemic uncertainty
increases after removal of input regions (Kendall & Gal,
2017) or that there exists a positive correlation between
uncertainty and prediction error (McMahan et al., 2013).

Figure 1. Illustration
of the confi-
dence interval
based accuracy
metrics

While these are all valuable and nec-
essary evaluations, we believe that ad-
ditional evaluations with respect to the
ground truth predictive distribution from
our simulation procedure will paint a
more complete picture. Here we briefly
discuss examples of such comparisons.
First, we can directly evaluate the full
predictive distribution using measures
such as Wasserstein distance. We can
also evaluate specific characteristics of
the distribution. For instance, there may
be applications where we are only in-
terested in confidence intervals or tech-
niques where we directly estimate con-
fidence intervals (Romano et al., 2019). For this purpose,
we introduce our own confidence interval accuracy metrics
based on classification accuracy metrics, which we will refer
to as CIP (recision) and CIR(ecall), as illustrated in Figure
1 and defined in Equations 4 and 5.

CIP =
CIWidthoverlap

CIWidthexpected

(4)

CIR =
CIWidthoverlap

CIWidthpredicted

(5)

3. Case Study
In this case study, we illustrate how the aforementioned
simulation and evaluation procedure can be used to obtain
insights about predictive distributions estimated from dif-
ferent techniques. We note that this study by no means
provides an exhaustive analysis of these techniques.

3.1. Toy regression model and dataset

For this case study, we use a toy sinusoidal dataset of the
form:

y = x sin(x) + 0.1 x ε (6)

where x ∼ Uniform(0, 10) and ε ∼ Normal(0, 1).

This dataset is then used to train a four layer feedforward
network, where the predictions are shown in Figure 2a.

(a) Toy regression dataset (b) Toy regression dataset with
added model parameter noise

Figure 2. Case study dataset

3.2. Uncertainty Estimation Methods

We briefly overview the techniques we will employ, which
are largely those that estimate epistemic uncertainty. These
methods are implemented in PyTorch (Paszke et al., 2019),
and make heavy use of broadcasting for vectorization of
computations that require repeated sampling. For all, we
use an MSE based loss criterion with 100 training epochs..

3.2.1. MONTE CARLO DROPOUT

Dropout is frequently used for regularization and Gal &
Ghahramani (2016) proposed using dropout at inference
time following a Monte-Carlo (MC) approach to estimate
predictive distributions. It has been shown that this provides
an approximation to the Bayesian posterior. For the case
study, we add dropout layers after each fully connected layer
with a dropout probability of 0.1. We use this model with
100 samples at inference time to collect empirical samples,
yielding the predictive uncertainty.
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3.2.2. BAYES BY BACKPROP

Blundell et al. (2015) proposed a variational inference ap-
proach to estimate the posterior distribution of the weights
of a Bayesian neural network. Here, we use this approach
with standard Gaussian priors on the model parameters with
100 samples drawn from the posterior distribution to repre-
sent the predictive distribution.

3.2.3. BOOTSTRAPPING

Bootstrapping is a randomization based ensembling tech-
nique for approximating the predictive distribution (Paass,
1993). In this study, we adopt a nonparametric bootstrapping
approach where we repeatedly perform sampling with re-
placement. For each bootstrap sample set, we train a model
and study the predictive distribution across all datasets. We
use this model with 100 bootstrap samples.

3.2.4. ENSEMBLING

A randomization-based model ensembling approach is pro-
posed for deep neural networks in Lakshminarayanan et al.
(2017) to estimate predictive uncertainty. Similar to this
approach, we train an ensemble of models where we use ten
random initialization of model parameters.

3.3. Estimating Uncertainty of the Original Dataset

Before we apply the framework, we first review the uncer-
tainty estimation techniques on the original dataset. We
investigate predictive accuracy improvements that can be
gained using the distributional information in an average
sense in Table 1.

Method Coverage CIW MSE
MC Dropout 0.88 5.07 1.8

BBB 1.00 8.6 1.1
Bootstrap 0.73 2.18 3.43
Ensemble 0.49 1.52 0.61

Table 1. Results using the original dataset. Here we show 95%
coverage probabilities and mean 95% confidence interval widths
(CIW ) using the empirical predictive distributions. We also com-
pute MSE of the mean predictive sample.

We observe that while Bayes by Backprop (BBB) provides
high coverage, it also has the widest confidence intervals.
This signals that it may be overestimating the predictive
uncertainty. On the other hand, ensembling has the opposite
trend to BBB in that predictive uncertainty is underesti-
mated. Bootstrap has lower coverage compared to BBB but
indicates poor predictive accuracy through its high MSE.
MC Dropout seems to be providing the best compromise
across these metrics.

3.4. Simulation experiments

We will now use the simulation framework to further our
understanding of the results in Table 1 by testing the mod-
els and predictive distributions under different sources of
uncertainty.

3.4.1. MODEL PARAMETER UNCERTAINTY

First, we are interested in a simple setting where the true
model parameter uncertainty is independently and identi-
cally distributed (i.i.d.) following a Gaussian distribution
with hierarchical priors. Figure 2b shows the simulated
data and Table 2 lists the results obtained in the presence of
parameter uncertainty.

On the left portion of Table 2, we observe similar trends
amongst the methods to those in Table 1. This time, with the
simulation framework, we have access to the true model pa-
rameter distributions and can obtain further insights. Look-
ing at the right portion of Table 2, we observe that BBB’s
intervals have perfect recall but they also possess the lowest
precision. MC Dropout shows a similar trend for the average
interval precision and recall metrics. However, we observe
that there is considerable variability in these metrics for
MC Dropout across the dataset. Furthermore, Wasserstein
distance for MC Dropout is the second highest, indicating
the predictive intervals might be problematic. Indeed, when
we plot the expected versus predicted confidence intervals
in Figure 3, we observe that the predictive uncertainty devi-
ates from the expected distribution. We also note that this
toy experiment is designed to have increased uncertainty
as the magnitude of the input feature increases. Only boot-
strapping and ensembling are observed to capture this trend

Method Coverage CIW MSE CIP CIR d2
MC Dropout 0.83 2.97 0.67 0.51 ± 0.3 0.8 ± 0.23 0.45 ± 0.26

BBB 1.0 8.02 0.73 0.23 ± 0.18 1.0 ± 0 1.26 ± 0.12
Bootstrap 0.53 0.68 0.52 0.99 ± 0.06 0.45 ± 0.17 0.34 ± 0.32
Ensemble 0.41 0.57 0.74 1.0 ± 0 0.27 ± 0.09 0.35 ± 0.32

Table 2. Results with model uncertainty. On the right, we now include metrics enabled by our framework, interval precision (CIP ),
interval recall (CIR) and Wasserstein distance (d2). We compute these metrics for individual predictions in the simulated dataset and
report the mean and standard deviation across the dataset. We can now also compare CIW with the true mean width of 1.85.
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Figure 3. Expected and predicted 95% con-
fidence interval trends under model uncer-
tainty

Figure 4. Expected and predicted 95% con-
fidence interval trends under model and data
uncertainty

Figure 5. The standard deviation in pre-
dicted model parameters varies across the
layers of the feedforward network.

despite poor confidence interval recall and accordingly in
Table 2, we obtain the lowest Wasserstein distances for these
two methods.

3.4.2. DATA UNCERTAINTY

In order to investigate how the techniques in our study be-
have in the presence of aleatory uncertainty, we add standard
Gaussian label noise on top of the model parameter noise
from the previous section. The results in Table 3 show that
there is degradation in metrics for all methods but BBB,
which is more resilient to this uncertainty. As before, in
Figure 4 we can also visually inspect the 95% confidence
bounds for each method where we observe similar trends.

Method Coverage CIW CIP CIR d2
MC Dropout 0.63 3.1 0.82 0.54 0.77
BBB 0.98 7.75 0.63 0.98 0.71
Bootstrap 0.18 0.7 1.0 0.14 0.93
Ensemble 0.15 0.61 1.0 0.11 1.0

Table 3. Results under model and data uncertainty.

3.4.3. EXPLORING LAYERWISE APPLICATIONS OF
UNCERTAINTY ESTIMATION TECHNIQUES

One constraint encountered in practice is that applying such
techniques to the full model may be too computationally ex-
pensive and similar to Snoek et al. (2015), we may only wish
to apply these methods to particular layers. We can also use
our simulation framework to better understand this tradeoff.
First, we can further inspect the trained model weights for
each layer of the feedforward network to understand how
uncertainty was learnt in its parameters. We show results
in Figure 5 for the previous simulation setting, where it is
clear that even though we introduced uncertainty in an i.i.d.
fashion to all model parameters in the simulation setting,
the uncertainty learnt by each model can vary immensely
from layer to layer. We do not show results for MC Dropout

because it enables learning different model substructures
rather than different model parameter values.

We show the results obtained by applying partial Bayesian
layers in Table 4. As expected, we observe that the training
time is improved significantly by using a partial approach.
The results deviate from a full Bayesian approach as we
remove Bayesian layers with the closest results obtained
using the last few layers, which according to Figure 5 have
the highest variability. Together with the results on the
original dataset, these additional insights gained through the
simulation framework can help users make better informed
decisions when selecting a particular technique.

Bayesian
Layer

Coverage CIW CIP CIR timetrain

All 1.0 8.02 0.23 1.0 1.82
First 0.88 3.0 0.65 0.88 0.87
Last Two 0.99 7.0 0.3 0.98 1.17
Last 0.97 5.56 0.37 0.95 0.7

Table 4. Results applying partial Bayesian layers under model and
data uncertainty.

4. Conclusion
With the increasing interest in characterizing predictive dis-
tributions of DNNs, we propose a simulation-based frame-
work that is simple and generalizable to different models.
We believe that this framework can be used in conjunction
with existing approaches to better assess different uncer-
tainty estimation techniques. As we have shown in our toy
setting, the study of these predictive distributions under dif-
ferent simulation settings can help form a more complete
picture. It is also worth noting that we are also able to ob-
tain insights such as the quality of confidence intervals for
classification problems as well. As future work, we will
utilize this framework to perform extensive comparisons
using more complex simulations with different datasets.
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