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Abstract

Recent empirical studies have explored the idea of continuing to train a model at
test-time for a given task, known as test-time training (TTT), and have found it to
yield significant performance improvements. However, there is limited understand-
ing of why and when TTT is effective. Earlier explanations mostly focused on the
observation that TTT may help when applied to out-of-distribution adaptation or
used with privileged data. However, the growing scale of foundation models with
most test data being in-distribution questions these explanations. We instead posit
that foundation models remain globally underparameterized, with TTT providing a
mechanism for specialization after generalization—focusing capacity on concepts
relevant to the test task. Specifically, under the linear representation hypothesis, we
propose a model in which TTT achieves a substantially smaller in-distribution test
error than global training. We empirically validate our model’s key assumptions by
training a sparse autoencoder on ImageNet, showing that semantically related data
points are explained by only a few shared concepts. Finally, we perform scaling
studies across image and language tasks that confirm the practical implications
of our model, identifying the regimes where specialization is most effective.

1 Introduction

Since the “ImageNet moment” in 2012 when AlexNet won the ImageNet challenge (Krizhevsky
et al., 2012), scaling data, parameters, and compute have led to foundation models that achieve
impressive performance on a wide range of tasks. This has spurred research on scaling laws,
suggesting that scaling pre-training of a single model on a broad data distribution is sufficient for
good performance on downstream tasks (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al.,
2022). With first-generation foundation models, fine-tuning was used primarily to adapt models
to out-of-distribution test data (i.e., with a distribution shift) or to leverage fresh training data that
was not seen during pre-training (so-called “privileged” data). Test-time training (TTT; Sun et al.,
2020; Hardt & Sun, 2024; Akyürek et al., 2025) emerged as pushing this mechanism to the extreme:
fine-tuning a separate model for each prediction. In recent years, foundation models have grown so
large that most test data is effectively “in-distribution”, meaning the model has encountered similar
data during pre-training. This raises a key question:

Can TTT improve predictions even in-distribution while using only already-seen data?

Our work posits that today’s foundation models are “underparameterized” (Kaplan et al., 2020;
Bubeck & Sellke, 2021), as evidenced by the continuing improvements in performance when scaling
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models. We hypothesize that due to this underparameterization, even if test data is in-distribution,
the model cannot simultaneously approximate the ground truth across the full data distribution. TTT
offers a mechanism to specialize the model to a local area around the test example. By temporarily
“forgetting” irrelevant pre-trained knowledge, the model “frees up” capacity to learn the relevant
concepts to the immediate task at a higher resolution. We refer to this mechanism as specialization
after generalization. The mechanism of TTT—temporarily reallocating capacity by “forgetting”
irrelevant knowledge—connects to concepts of capacity saturation and interference studied in
continual learning (McCloskey & Cohen, 1989; Kirkpatrick et al., 2017).
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Figure 1: Sparse semantic directions from
the concept space Φ are superimposed in
the dense activation vector within the fea-
ture space Ψ.

We propose to model this phenomenon under the linear
representation hypothesis (LRH; Mikolov et al., 2013;
Park et al., 2024, 2025), which postulates that models
represent high-level concepts—meaningful semantic
features—as directions in a latent space. Figure 1 illus-
trates how such directions can be superimposed within
the model’s dense activation space. The LRH has been
used extensively in prior work on interpretability (Kim
et al., 2018) and activation steering (Bolukbasi et al.,
2016; Templeton et al., 2024) of foundation models.
In this work, we analyze a model where TTT can learn
the meaning of these superimposed concepts from
data more efficiently than training a “global” model or
non-parametric methods.

In Section 3, we leverage the LRH to develop a
mechanistic understanding of how TTT behaves, and
make the following key observations:

O1: The learned features Ψ yield similar neighborhoods to those in the concept space Φ.
O2: Among a test point x⋆ ∈ X and its neighborhood (in Ψ-space), the ground truth function can

be approximated by an s-sparse linear function in the concept space Φ.
O3: TTT in Ψ-space finds approximately the same task-specific model as sparse TTT in the concept

space, indicating that TTT implicitly adjusts coefficients based on only a few concepts relevant
to the test task.

Based on the LRH and our key observations, we analyze when and why TTT is effective in Sections 4
and 5. We find that TTT improves predictions in the underparameterized regime, but this benefit
diminishes as models become overparameterized. We support this finding both empirically and
theoretically. Empirically (§4), our scaling studies in image classification and language modeling
show that TTT improves accuracy with increasing model size before the test loss saturates. This aligns
with recent findings that TTT learns the local meaning of existing concepts rather than discovering
new ones (Lim et al., 2025; Doimo et al., 2024). Theoretically (§5), we show that under the LRH,
TTT can generalize at test-time even when the model is globally underparameterized (i.e., the feature
space is exponentially smaller than the concept space: d2 ∼ log d1). In contrast, a globally trained
model cannot disentangle concepts in such an underparameterized feature space.

2 Related work

In the classical machine learning paradigm, models are trained on a fixed training set and then
kept frozen during evaluation. Despite this standard practice that was used for decades, early work
suggested specializing the model at test-time to each prediction task—such examples are local learn-
ing (Cleveland, 1979; Cleveland & Devlin, 1988; Atkeson et al., 1997) and local fine-tuning (Bottou &
Vapnik, 1992). More recently, the idea of TTT (Sun et al., 2020; Wang et al., 2021) has regained atten-
tion in the context of fine-tuning large foundation models during evaluation (e.g., Krause et al., 2018;
Hardt & Sun, 2024; Sun et al., 2024). TTT for a few gradient steps on (self-)supervised losses has since
shown success in domains such as control (Hansen et al., 2021), abstract reasoning (Akyürek et al.,
2025; Zweiger et al., 2025), language modeling (Hardt & Sun, 2024; Hübotter et al., 2025; Sun et al.,
2024; von Oswald et al., 2025; Yu et al., 2025), and video generation (Dalal et al., 2025). Many stan-
dard TTT methods train on carefully selected data from the pre-training dataset (i.e., do not add any
new privileged information; Hardt & Sun, 2024; Hübotter et al., 2025), and several works studied how
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to optimally select data for imitation, e.g., the early seminal work of MacKay (1992) and recent ex-
tensions (Hübotter et al., 2024; Bagatella et al., 2025b). TTT has also been extended from supervised
learning to reinforcement learning (Zuo et al., 2025; Bagatella et al., 2025a; Diaz-Bone et al., 2025).

So far it has not been well understood why and when TTT is effective. While many different methods
have been proposed for TTT, we focus here on analyzing “semi-parametric” TTT (e.g., Hardt &
Sun, 2024; Hübotter et al., 2025), where a pre-trained model is fine-tuned with a supervised loss on
a small neighborhood of the test point in the training data. This is different from some other methods
for test-time “adaptation”, which are commonly applied with distribution shifts (e.g., Wang et al.,
2021; Zhang et al., 2022; Durasov et al., 2025). Basu et al. (2023) consider a similar setting to ours,
but analyze it through the lens of non-parametric estimation, relying on the smoothness of the target
function in the feature space Ψ. In contrast, our framework explicitly models the underlying sparse
concept space Φ. This explains why TTT substantially outperforms “non-parametric" methods even
when the function is locally high-dimensional (s-sparse) in the concept space. Furthermore, while
most prior theoretical work simply assumes the TTT gradient aligns with the gradient on the oracle
label (e.g., Sun et al., 2020), our work provides an idealized model where this alignment is justified.

3 How does specialization behave?

In this section, we begin by developing a mechanistic understanding of how TTT behaves. Since the
“true” hypothesized concept space Φ is not accessible, we train SAEs to learn an approximate concept
space Φ̂ whose properties can be analyzed. We use a top-k SAE (Gao et al., 2025) to obtain sparse
feature representations. Leveraging this SAE, we present our key observations O1–O3, introduced
in Section 1, which provide evidence supporting our theoretical model. The experimental setup is
detailed in Appendix F.
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Figure 2: Average cosine similarity in
the concept space (Φ̂) between a test
point and its neighbors. Neighborhoods
are selected in the original (Ψ), recon-
structed (Ψ̂), and concept (Φ̂) spaces.

O1: The SAE preserves local geometry. Our first hy-
pothesis is that the SAE mapping preserves the angular re-
lationships between a point and its neighbors. To test this,
we select a neighborhood for a test point x⋆ in three differ-
ent spaces: the original CLIP space (Ψ), the reconstructed
space (Ψ̂), and the estimated concept space (Φ̂). We then
measure the average cosine similarity in the estimated con-
cept space between x⋆ and points in each neighborhood.
As shown in Figure 2, the distributions of cosine similar-
ities are nearly identical regardless of the space used for
neighbor selection. This suggests that the SAE projec-
tion to the concept space preserves the local geometric
structure, supporting our first key observation.

O2: Neighborhoods are supported by few concepts. We hypothesize that the data within a local
neighborhood can be explained by a small subset of concepts. To verify this, we train a TTT classifier
for ImageNet on a masked version of the concept vectors, Φ̂m(x) = m⊙ Φ̂(x), where m ∈ {0, 1}d1
is a binary mask with mi = I{θi > 0} for some trainable parameter θ ∈ Rd1 . The mask itself
is learned for each neighborhood by optimizing the following objective, using a straight-through
estimator ∇θm = sigmoid(θ/τ) with τ = 0.1 for the mask’s gradients:

Wx⋆ := argmin
W,m

1

k

∑
(x,y)∈DΦ̂

x⋆

L(W Φ̂m(x), y) + λ∥m∥22. (1)

Global TTT

Φ̂(x) 71.45 ± 0.21 72.64 ± 0.20

Ψ̂(x) 71.26 ± 0.20 72.56 ± 0.19

Table 1: ImageNet accuracy of globally
trained linear models vs. TTT, with boot-
strap standard errors.

With a sparsity penalty of λ = 0.2, the learned masks are
highly sparse, activating on average only ∥m∥0 ≈ 40 con-
cepts. This is substantially smaller than the total number
of unique concepts active across the neighborhood, which
is approximately 180. As shown in Table 1 (TTT column),
this sparsely supported model performs on par with TTT
on top of dense reconstructions Ψ̂(x). This suggests that
a small, adaptively chosen set of concepts is sufficient to
capture the relevant information within a local region. We

3



obtain similar results for the Gemma Scope SAE (Lieberum et al., 2024) on MNIST data, which
we present in Appendix F.3.

Notably, a non-adaptive mask, such as one that only includes concepts active in the test point x⋆,
performs poorly on ImageNet (71.51%). The learned mask, in contrast, often excludes some of
the test point’s active concepts (∥Φ̂(x⋆)⊙m∥0 ≈ 11 < 16 = s), likely identifying and removing
spurious features to improve generalization.
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Figure 3: Comparison of predicted class
probabilities for TTT models trained on
dense reconstructions (Ψ̂) and sparse
concepts (Φ̂), relative to their magni-
tude. The small relative TV distance
(≪1; defined in Appendix F.2) between
both distributions indicates strong func-
tional agreement between TTT in Ψ̂ and
Φ̂ space. We show 90% bootstrap confi-
dence intervals across 1000 test points.

O3: TTT in feature space implicitly finds a sparse
solution. While the adaptive masking in Equation (1)
explicitly enforces a sparse solution, we find evidence
that standard TTT in the feature space implicitly favors
a solution that is sparse in the concept space. First, the
TTT models trained on dense reconstructions Ψ̂(x) and
sparse concepts Φ̂m(x) achieve nearly identical accuracy
(cf. Table 1). Furthermore, their predictions agree in
≈89% of cases, indicating that they learn functionally
equivalent classifiers (apart from pathological examples).
Figure 3 reinforces this by showing that both models
lead to closely matched predictive distributions over
the top-10 predicted classes. In Figure 3, we compare
the ordered predicted probabilities for Φ̂ to the corre-
sponding probabilities for Ψ̂, matching the distributions’
temperatures, and averaging over all test points. Their
strong correspondence suggests that TTT on reconstructed
embeddings is implicitly biased towards a sparse solution
in the underlying concept space. This phenomenon may
be linked to the implicit bias of optimization algorithms
(e.g., SGD or Adam), which are known to favor minimum-norm solutions (Gunasekar et al., 2018;
Belkin et al., 2019; Frei et al., 2022). When the feature map superimposes concepts, this implicit
bias may favor sparse solutions in the underlying concept space (Vaskevicius et al., 2019).

4 When does specialization help?

After gaining some mechanistic understanding of TTT in Section 3, we next study when specialization
through TTT improves over a globally trained model. The experimental setup is explained in
Appendix F.
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Figure 4: Model scaling. Error rates when scaling model size (classification error in image
classification and bits per byte in language modeling). We evaluate a globally trained model (black)
across different model sizes, as well as TTT (red) and a majority vote on the neighborhood (gray).
While majority vote leads to a poor predictor with many classes (i.e., complex tasks), TTT consistently
outperforms global training, with the performance gap shrinking as the model size increases. This
supports our model’s implication that TTT effectively recombines learned concepts, which is
particularly beneficial when many concepts are superimposed in an underparameterized model.

Scaling with model size. We conduct a scaling study by varying the model size and comparing the
performance of TTT against global training as well as a majority vote baseline over the neighborhood
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(i.e., a simple non-parametric approach). The results are shown in Figure 4. For MNIST, we train
convolutional neural networks of different sizes, as summarized in Appendix F. For ImageNet, we
train multi-layer perceptrons on top of CLIP embeddings, varying the hidden dimension. In language
modeling, we evaluate Qwen2.5 base models of sizes ranging from 0.5B to 32B parameters. We
find across all tasks that TTT outperforms global training and majority vote, with the performance
gap shrinking as the model size increases. We hypothesize that at a larger model size, fewer concepts
have to be superimposed in latent space, leading to less interference when globally mapping latent
representations to predictions. While a larger model size allows for better global disentanglement
of concepts, TTT can compensate for limited model capacity by adapting the head to the specific
concepts in a local neighborhood.

Takeaway 1

TTT locally improves predictions for underparameterized models, but its improvement dimin-
ishes as models become overparameterized.

Scaling with dataset size. Next to performing a scaling study on model size, we also vary the
dataset size. Figure 5 shows the results at a fixed model scale. We subsample the training datasets
of ImageNet and MNIST to fractions ranging from 1% to 100% of the original training set size,
ensuring that all subsampled datasets are class-balanced. We then train global models and evaluate
TTT on the respective test sets. We find that TTT consistently outperforms global training, with
the slight trend of the performance gap widening as the dataset size increases. We hypothesize that
larger datasets provide richer neighborhoods for local adaptation, enabling TTT to specialize more
effectively to the specific concepts relevant to each test point.
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Figure 5: Data scaling. Left & Middle: Classification error rate of different models, trained on
varying fractions of the MNIST and ImageNet training dataset. Notably on MNIST, we find that
TTT learns more effectively from larger sample sizes than global training. Right: We vary the
neighborhood size for TTT on ImageNet. We find that the optimal neighborhood size trades off
statistical variance due to “too few examples” and “too many examples with irrelevant concepts”.

5 Why may specialization help?

Based on our mechanistic understanding gained in Section 3 through observations O1-O3, we
next provide theoretical evidence that the LRH supports our practical observations from Section 4,
therefore, potentially offering an understanding for why specialization is effective. In particular,
we show in an idealized setting that TTT can efficiently learn the meaning of exponentially many
concepts from data by specializing the model to the concepts relevant to the test data.

Our main theoretical result builds on the formal hypotheses in Appendix C, which we derive from the
empirical observations in Section 3. With these hypotheses, we can bound the in-distribution test
error of TTT using techniques from sparse recovery (Bickel et al., 2009; Van De Geer & Bühlmann,
2009). The proofs are included in Appendix D.

Proposition (informal, see Proposition 3 in the appendix). Let Φ : X → Rd1 be an s-sparse concept
space and Ψ : X → Rd2 be a learned feature map with d2 ≪ d1. Let f(x) = ⟨Φ(x), w⋆⟩ be the
ground truth function and data be σ2-subgaussian. Assume that the learned features Ψ are sufficiently
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expressive to represent f locally (in particular, d2 ≥ Ω(s log d1)). Let x⋆ be a test point with a
neighborhood (in Ψ-space) of sufficiently small size k such that the following hypotheses hold:

1. The feature space preserves the geometry of the concept space.

2. Neighborhoods are supported by few concepts.

3. TTT implicitly regularizes towards sparsity in concept space.

Then, under standard regularity conditions for sparse recovery and with high probability over the
sampling of the data, (

f(x⋆)− ⟨Ψ(x⋆), v̂TTT
x⋆ ⟩

)2 ≤ O

(
σ2s log(d1/s)

k

)
,

where v̂TTT
x⋆ denotes the local empirical risk minimizer on the neighborhood of x⋆. This is the

standard minimax optimal rate from sparse recovery (Raskutti et al., 2011, Theorem 1).

Takeaway 2

In this idealized model, TTT can locally learn a function from very few samples that activate
similar concepts as the test point, even when the feature map is underparameterized.

We expand on our theoretical results in the appendix as follows: First, we explore whether one
can understand TTT under the LRH through the lens of statistical learning theory. Specifically,
in Appendix B.1, we explore this direction using notions from low-degree polynomials and
hypercontractivity (Klivans et al., 2008; Paouris et al., 2022; Damian et al., 2024; Bizeul & Klartag,
2025, and references therein). Next, in Appendix B.2, we contrast TTT to classical non-parametric
methods (Fix & Hodges Jr., 1951; Nadaraya, 1964; Watson, 1964) such as majority voting,
which underperform in our experiments (cf. Section 4). Finally, in Appendix D.3, we compare
in-distribution test error of TTT to the generalization error of training a global model v̂global on all
data. The results highlight that, when concepts are superimposed in an underparameterized feature
space, a linear head cannot globally disentangle all concept meanings.

6 Conclusion

This work introduces a framework, supported by new empirical findings, for understanding the
effectiveness of TTT on in-distribution data, based on the hypothesis that foundation models are
globally underparameterized. We hypothesize that TTT facilitates specialization after generalization,
temporarily reallocating model capacity to concepts relevant to the immediate test task. We formalize
this intuition under the linear representation hypothesis, and show how TTT can efficiently recover
the local meaning of superimposed concepts (§5). Our trained sparse autoencoders reveal that local
neighborhoods are indeed supported by few concepts and that TTT implicitly favors sparse solutions
in the concept space (§3). Finally, scaling studies across vision and language tasks confirm that TTT
yields the largest gains in the underparameterized regime (§4).

A better understanding of specialization in foundation models opens up several exciting directions for
future research. An interesting question is understanding what determines the optimal neighborhood
size and whether it depends on the test point. Furthermore, it would be interesting to analyze the
compute-efficiency trade-offs of TTT; estimating at which model scale and inference budget TTT
becomes beneficial.
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A Extended related work

Our theoretical framework is built upon the LRH, which posits that foundation models represent
high-level concepts as linear directions in their activation spaces. This idea has its roots in early word
embedding models, which famously showed that semantic analogies could be solved with simple
vector arithmetic (Mikolov et al., 2013; Pennington et al., 2014; Arora et al., 2016). More recently,
the LRH has been validated across a wide range of models and domains, with studies identifying
linear representations for abstract concepts like sentiment (Tigges et al., 2023), the state of a game
board (Nanda et al., 2023), and even fundamental axes of space and time (Gurnee & Tegmark, 2024).
A key tool for discovering and studying these conceptual directions is SAEs (Makhzani & Frey,
2014; Lieberum et al., 2024; Gao et al., 2025). SAEs are auxiliary models trained to reconstruct
a foundation model’s internal activations from a sparse, overcomplete dictionary of features. This
process often yields features that are monosemantic, or aligned with single, human-interpretable
concepts, thereby providing an empirical method to uncover the sparse concept space we consider in
our work (Cunningham et al., 2024; Templeton et al., 2024).
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B Discussion

B.1 Limitations of global learning under the LRH

Next, we demonstrate that under the LRH, obtaining a global classifier requires a quasi-polynomial
number of samples in the dimension of the sparse concept space when analyzed within the
“low-degree polynomial” framework, commonly used in learning theory (Kalai et al., 2008; Klivans
et al., 2024; Damian et al., 2022, 2024, and references therein). In a nutshell, the idea is to think about
the behavior of underparametrization as the behavior of an approximating low-degree polynomial.

We consider the Gaussian measure γd on Rd and introduce the family of s-sparse, k-locally linear
functions (with k “cells”), denoted by Fd,s,k ⊂ {Rd → R}, defined as

Fd,s,k :=

{
f⋆(x) =

k∑
i=1

w⊤
i x · 1Ki

: ∀1 ≤ i < j ≤ k γd(Ki ∩Kj) = 0, ∥wi∥0 ≤ s, ∥wi∥2 ≲ 1

∥f⋆∥L2(γd) ≍ 1,

d∑
i=1

∥∂if⋆∥2L1(γd)
≲

s

d

}
.

(2)
The final condition defines the sparsity index derived from the L1-L2 Talagrand’s inequality (cf. the
monograph of Chatterjee (2014) and the survey of Ledoux (2019)), and note that the cells K1, . . . ,Kk

may depend on the function f⋆. For intuition, consider the function f⋆(x) = ∥x∥∞; here k = d,
s = 1, and the sparsity index condition holds with

∑d
i=1 ∥∂if⋆∥2L1(γd)

≲ 1/d.

We argue that when s ≍ 1 and k is polynomial in d, the functions in Fd,s,k predominantly lie in the
“high” frequencies of the Hermite polynomial basis. Specifically, by leveraging results of Paouris
et al. (2022), we show that for some constants c, C > 0, it holds that∥∥∥∥∥ E[f⋆] +

∑
c log(d)≤m≤C log(d)

Pm(f⋆)

∥∥∥∥∥
2

L2(γd)

∈ (0.1, 0.9), (3)

where Pm(·) denotes the orthogonal projection onto the m-degree Hermite polynomial basis. The
main result of this part is the following:

Proposition 1 (informal, see Proposition 10 below). Assume that σ ≲ 1, k ≍ Poly(d), and s ≍ 1.
Then Equation (3) holds. Furthermore, for n ≳ exp(Ω((log d)2)), there exists a polynomial-time
algorithm A such that

sup
f⋆∈Fd,s,k

ED∥A(D)− f⋆∥L2(γd) ≤ 0.1,

and under the low-degree polynomial conjecture, this bound is sharp for few classes of algorithms.

We refer to the survey of Reyzin (2020) for more details on the low-degree polynomial conjecture. We
emphasize that our assumptions on Fd,s,k are much less restrictive than imposing a uniform bounded
Lipschitz constraint (or an average L2 Lipschitz constraint), as the Lipschitz constant may be high on
the boundary between two cells. The results of Bizeul & Klartag (2025) show that Lipschitz functions
can be learned with a polynomial number of samples.

Roughly speaking, from a geometric view, this spectral concentration implies that most of the
energy of the coefficients is localized at the decision boundaries between the cells {Ki}. An
“underparameterized” global classifier, in this case, the best low-degree approximation, necessarily
smooths these boundaries. Therefore, by isoperimetry in high dimensions, this smoothing leads to
significant overlap between the decision boundaries of cells. Since most samples fall in the areas of
these “distorted/smoothed” decision boundaries, we need many samples to learn such functions.2 The
latter aligns with previous observations regarding the required complexity (and the lack of robustness)
of foundation models (e.g., Bubeck & Sellke, 2021).

2It is well-known that even for 1-Lipschitz function, its best low-degree polynomial (it terms of L2), is highly
non-Lipschitz, cf. Bizeul & Klartag (2025).
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B.2 TTT vs. non-parametric methods

While TTT utilizes local neighborhoods, superficially resembling majority voting (i.e., k-NN; Fix
& Hodges Jr., 1951) or kernel regression (Nadaraya, 1964; Watson, 1964), its mechanism is fun-
damentally different. Non-parametric methods generally require the target function to be locally
smooth or constant in the feature space (Ψ). When this assumption fails in high dimensions, their
performance degrades rapidly—the so-called curse of dimensionality (e.g., Hastie et al., 2009; Stone,
1982). Our framework explains this failure mode under the LRH. The superposition of concepts into
the underparameterized feature space leads to a function that is locally complex and non-smooth
within Ψ, even though it is simple (sparse linear) in Φ. This leads to ambiguous neighborhoods in
Ψ where samples share concepts but possess different labels. Simple averaging (like k-NN) cannot
resolve this ambiguity as it relies on a local smoothness that may not hold in Ψ.

In contrast, TTT performs local specialization by optimizing a local parametric model. TTT exploits
the underlying sparse structure in the concept space Φ (§3), effectively executing sparse recovery (§5).
This allows TTT to disentangle the local meaning of superimposed features, making it substantially
more effective than majority voting, as confirmed by our experiments (§4).

C Formal assumptions

Our key assumption is that for any given input, only a few concepts are active:
Assumption 1 (linear representation hypothesis (sparse concept space)). For all x ∈ X , the
concept vector Φ(x) is s-sparse, i.e., ∥Φ(x)∥0 ≤ s.

Next, we make a series of hypotheses, which are validated by the empirical observations in Section 3.

Hypothesis 1: Feature space preserves the geometry of the concept space. We hypothesize that
the learned feature map Ψ preserves the similarity structure of the concept space Φ. Let us denote
by simΨ(x, x

′) a similarity measure in Ψ-space such as cosine similarity.
Assumption 2 (Neighborhood preservation). The learned feature map Ψ preserves the similarity
structure of the concept map Φ. There exists a distortion ηang ≥ 0 such that BΨ

x⋆(r) is contained
within the concept neighborhood BΦ

x⋆(r + ηang).

Hypothesis 2: Neighborhoods are supported by few concepts. Experimentally, we make the
additional surprising observation that the neighborhood of a test point x⋆ is explained by only a few
active concepts. Let us denote the corresponding feature matrices as Φx⋆ ∈ Rk×d1 and Ψx⋆ ∈ Rk×d2 ,
and the observation vector by yx⋆ ∈ Rk. We assume:
Assumption 3 (Local simplicity). Locally, the ground truth function is well-approximated by a
sparse model. There exists an s′-sparse concept vector wx∗ ∈ Rd1 with s′ ∈ Θ(s) such that the
average approximation error over the neighborhood is bounded:

1

k
∥⟨Φx⋆ , w⋆ − wx⋆⟩∥22 ≤ ηspa(r).

Learned features need to be sufficiently expressive. Next, we quantify the expressivity of the
learned features Ψ. Naturally, features need to be sufficiently expressive for any linear model in
feature space to approximate the ground truth function. First, we make the relatively straightforward
assumption that locally, the learned features are a linear recombination of concepts.
Assumption 4 (Local linearity of learned features). Locally, the learned features are a linear
recombination of concepts. That is, there exists some Px⋆ ∈ Rd2×d1 such that Ψ(x) = Px⋆Φ(x) for
all x ∈ {x⋆} ∪BΨ

x⋆(r).

Even if the global map from concepts Φ(x) to features Ψ(x) may be non-linear, A4 posits that a
local linear approximation is sufficient within a small neighborhood, where the local behavior can
often be approximated by a first-order Taylor expansion. This assumption is further supported by the
effectiveness of linear decoders in sparse autoencoders (Elhage et al., 2022).
Assumption 5 (Expressivity of learned features). The feature map Ψ is expressive enough to represent
the local function wx⋆ . We consider the set of s′-sparse weight vectors in Φ-space that are linearly
representable by the features Ψ. By local linearity (A4), this means a vector w must lie in the image
of P⊤

x⋆ (i.e., w = P⊤
x⋆v for some v ∈ Rd2). Let w̃x⋆ be the vector in this set that best approximates

14



the predictions of wx⋆ over the neighborhood. We assume that the resulting representation error is
bounded:

1

k
∥⟨Φx⋆ , wx⋆ − w̃x⋆⟩∥22 ≤ ηrep. (4)

If wx⋆ is not in the image of P⊤
x⋆ , there is no corresponding vector v in the feature space that

can replicate its behavior. This means the compression defined by Px⋆ has discarded information
necessary to represent wx⋆ . Thus, A5 highlights the importance of pre-training: for the representation
error ηrep to be small, the feature map needs to learn sufficient structure to represent the ground truth
function locally.

Hypothesis 3: TTT implicitly regularizes towards sparsity in concept space. We find experimen-
tally (§3) that TTT solutions often exhibit behavior consistent with sparsity in the concept space, even
without explicit regularization. To facilitate theoretical analysis using sparse recovery frameworks,
we analyze an idealized TTT estimator that explicitly enforces this observed sparsity:

Assumption 6 (Implicit regularization). We assume that TTT is implicitly regularized towards
solutions which are sparse in concept space:

v̂TTT
x⋆ = argmin

v∈Rd2

1

k
∥Ψx⋆v − yx⋆∥22 subject to ∥P⊤

x⋆v∥0 ≤ s′. (5)

While standard TTT omits the explicit constraint, we use this formulation to analyze the specialization
mechanism we observe empirically. It remains to state standard assumptions:

Assumption 7 (Bounded concepts). Concepts are bounded in L∞ and L2 norm, i.e., for all x ∈ X ,
∥Φ(x)∥∞ ≤ CΦ,∞ and ∥Φ(x)∥2 ≤ CΦ,2.

Assumption 8 (Linear model with homoscedastic noise). Data follows a linear model in the concept
space: y = ⟨Φ(x), w⋆⟩+ ε. The noise ε is i.i.d. zero-mean and σ2-subgaussian.

Finally, we assume that Ψx⋆ satisfies the generalized restricted eigenvalue (GRE) condition.
Combined with local linearity (A4), the GRE is simply the standard restricted eigenvalue condition
on the local concept design matrix Φx⋆ , a condition that is fundamental to guaranty stable recovery
in sparse regression (Bickel et al., 2009; Van De Geer & Bühlmann, 2009).

Assumption 9 (Generalized restricted eigenvalue (GRE) condition). The local design matrix Ψx⋆

satisfies the GRE at order 2s′ with respect to Px⋆ . There exists κ > 0 such that for all v with
∥P⊤

x⋆v∥0 ≤ 2s′:
1

k
∥Ψx⋆v∥22 ≥ κ · ∥P⊤

x⋆v∥22. (6)

With this, we are ready to state our result of this section.

Proposition 2 (Informal version of Proposition 3). Fix any test point x⋆ ∈ X and any δ ∈ (0, 1).
Let A1–A9 hold. Define the inherent misspecification error of any sparse linear approxima-
tion as ηinherent := ⟨Φ(x⋆), w⋆ − w̃x⋆⟩2 and the misspecification error on the neighborhood as
ηmis := ηspa(r + ηang) + ηrep.

Then, with probability 1− δ over the sampling of the data,

E
[(
y⋆ − ⟨Ψ(x⋆), v̂TTT

x⋆ ⟩
)2] ≤ σ2 +O

(
σ2s log(d1/s)

k

)
+O(s ηmis) + ηinherent.

We prove the result in Appendix D and briefly highlight several aspects of the error bound:

1. The fast rate Õ(s/k) explains why TTT can learn from few samples.
2. The optimal neighborhood size k depends on the tradeoff between variance (i.e., Õ(s/k)) and

bias (from ηspa). Note that A3 assumes the neighborhood is described by a Θ(s)-sparse model,
which is only possible if k ≪ N and the neighborhood is sufficiently “local”.

3. The error grows linearly with more active concepts s and is only logarithmically dependent
on the total number of concepts d1. In contrast, a larger feature dimension d2 can reduce
misspecification error through ηang and ηrep.
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D Proofs

D.1 Proof of Proposition 2

We begin by stating the formal version of Proposition 2:
Proposition 3. Fix any test point x⋆ ∈ X and any δ ∈ (0, 1). Let A1–A9 hold. Let k be the
neighborhood size and s′ the sparsity in concept space. Let concept vectors be bounded in L∞ and
L2 space with constants CΦ,∞, CΦ,2 > 0. Assume the GRE holds with κ > 0. Define the inherent
misspecification bias of any sparse linear approximation as E2

inherent := ⟨Φ(x⋆), w⋆ − w̃x⋆⟩2.

With probability 1− δ (over sampling of the data), the squared prediction error is bounded as:

E
[(
y⋆ − ⟨Ψ(x⋆), v̂TTT

x⋆ ⟩
)2] ≤ σ2 + (Einherent + Eestimation)

2

where the squared estimation error E2
estimation achieves rate Õ(s/k) with C a universal constant:

E2
estimation ≤

CC2
Φ,2C

2
Φ,∞

κ2
· s′ ·

(
σ2 log(d1/s

′δ)

k
+ ηspa(r + ηang) + ηrep︸ ︷︷ ︸

misspecification

)
. (7)

Proof of Proposition 3. Step 1: Data decomposition and comparison to oracle. By A5, there
exists some “oracle” ṽx⋆ ∈ Rd2 such that P⊤

x⋆ ṽx⋆ = w̃x⋆ .

We decompose the observations yx⋆ (cf. A8).

yx⋆ = Φx⋆w⋆ + ε

= Φx⋆w̃x⋆ + (Φx⋆w⋆ −Φx⋆wx⋆) + (Φx⋆wx⋆ −Φx⋆w̃x⋆)︸ ︷︷ ︸
∆ (total misspecification)

+ ε.

Note that using A2, A3, A5, the average squared magnitude of ∆ is bounded by

1

k
∥∆∥22 ≤ η′(r, s, d2) := 2(ηspa(r + ηang, s) + ηrep(d2)).

Let h = ṽx⋆ − v̂TTT
x⋆ . Since by A5, both ṽx⋆ and v̂TTT

x⋆ satisfy the constraint of Equation (5), the error
vector h is sparse in the concept space: ∥P⊤

x⋆h∥0 ≤ 2s′.

Step 2: By the optimality of v̂TTT
x⋆ (cf. A6):

1

k
∥Ψx⋆ v̂TTT

x⋆ − yx⋆∥22 ≤ 1

k
∥Ψx⋆ ṽx⋆ − yx⋆∥22.

Substituting yx⋆ = Ψx⋆ ṽx⋆ +∆+ ε (using local linearity, A4, Ψx⋆ ṽx⋆ = Φx⋆w̃x⋆ ):

1

k
∥ −Ψx⋆h− (∆ + ε)∥22 ≤ 1

k
∥∆+ ε∥22.

Expanding the left hand side:

1

k
(∥Ψx⋆h∥22 + 2h⊤Ψ⊤

x⋆(∆ + ε) + ∥∆+ ε∥22) ≤
1

k
∥∆+ ε∥22.

Rearranging yields the basic inequality:

1

k
∥Ψx⋆h∥22 ≤ −2

k
h⊤Ψ⊤

x⋆(∆ + ε). (8)

Step 3: We analyze the right hand side of Equation (8). Using local linearity (cf. A4), h⊤Ψ⊤
x⋆ =

(P⊤
x⋆h)⊤Φ⊤

x⋆ . Let Z = 1
kΦ

⊤
x⋆(∆ + ε) be the total concept score. Then,

1

k
h⊤Ψ⊤

x⋆(∆ + ε) = ⟨P⊤
x⋆h, Z⟩.

We bound the inner product using the sparse dual norm, since ∥P⊤
x⋆h∥0 ≤ 2s′:

|⟨P⊤
x⋆h, Z⟩| ≤ ∥P⊤

x⋆h∥2 · ∥Z∥∗2,2s′ .
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We condition on the high probability event (w.p. 1 − δ) of Lemma 5 and use Lemma 6 (with
η = η′(r, s, d2)).

∥Z∥∗2,2s′ ≤ Λ + η∆ := Γ.

Substituting this back into Equation (8) gives:

1

k
∥Ψx⋆h∥22 ≤ 2Γ∥P⊤

x⋆h∥2. (9)

Step 4: Applying GRE. Since ∥P⊤
x⋆h∥0 ≤ 2s′, we can apply the GRE (cf. A9) to Equation (9):

κ∥P⊤
x⋆h∥22 ≤ 2Γ∥P⊤

x⋆h∥2.
This yields a bound on the L2 estimation error:

∥P⊤
x⋆h∥2 ≤ 2Γ

κ
. (10)

Step 5: Bounding the prediction error. We next decompose the total prediction error,

E = (y⋆ − ⟨Ψ(x⋆), v̂TTT
x⋆ ⟩)

= (y⋆ − ⟨Ψ(x⋆), ṽx⋆⟩) + ⟨Ψ(x⋆), ṽx⋆ − v̂TTT
x⋆ ⟩

= (y⋆ − ⟨Ψ(x⋆), ṽx⋆⟩) + ⟨Ψ(x⋆), h⟩
= (y⋆ − ⟨Φ(x⋆), w̃x⋆⟩) + ⟨Φ(x⋆), P⊤

x⋆h⟩ (local linearity, A4)

= ε+ ⟨Φ(x⋆), w⋆ − w̃x⋆⟩︸ ︷︷ ︸
Einherent

+ ⟨Φ(x⋆), P⊤
x⋆h⟩︸ ︷︷ ︸

Eestimation

. (data model, A8)

We next bound the estimation error Eestimation using A7 (L2 bound):

|Eestimation| = |⟨Φ(x⋆), P⊤
x⋆h⟩| ≤ ∥Φ(x⋆)∥2∥P⊤

x⋆h∥2 ≤ CΦ,2∥P⊤
x⋆h∥2.

Combining this with Equation (10) gives:

|Eestimation| ≤
2CΦ,2Γ

κ
.

Hence, the expected squared error is E[E2] ≤ σ2 + (|Einherent|+ |Eestimation|)2.

Step 6: Finalizing the bound. Finally, we resolve the dependencies and compute E2
estimation. Using

(a+ b)2 ≤ 2a2 + 2b2:

E2
estimation ≤

4C2
Φ,2

κ2
Γ2 ≤

8C2
Φ,2

κ2
(Λ2 + η2∆).

Substituting the definitions from Lemmas 5 and 6:

Λ2 = C2
HC2

Φ,∞σ2 s
′

k

(
log(d1/s

′) + log(1/δ)
)
,

η2∆ = 2s′C2
Φ,∞η′(r, s, d2).

Therefore,

E2
estimation ≤

8C2
Φ,2C

2
Φ,∞

κ2
· s′ ·

(
C2
Hσ2 log(d1/s

′δ)

k
+ 4η′(r, s, d2)

)
.

Combining the universal constants into C yields the final result.

D.2 Concentration bounds

We utilize the sparse dual norm to analyze the correlation between sparse vectors and the noise /
misspecification.
Definition 4 (Sparse dual norm). We define the sparse L2 dual norm of a vector z ∈ Rd1 as:

∥z∥∗2,m := sup
∥u∥0≤m,∥u∥2=1

⟨u, z⟩ = max
S:|S|=m

∥zS∥2.
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Lemma 5 (Sparse noise concentration). Under A7 (L∞ bound) and A8 (subgaussian noise), there
exists a universal constant CH > 0 such that for any δ ∈ (0, 1), with probability at least 1− δ:∥∥∥∥1kΦ⊤

x⋆ε

∥∥∥∥∗
2,2s′

≤ Λ := CH · CΦ,∞ · σ
√

s′

k

(
log(d1/s′) + log(1/δ)

)
.

Proof. Let Zε = 1
kΦ

⊤
x⋆ε and m = 2s′. The sparse dual norm is the supremum of a stochastic process

indexed by the set of sparse unit vectors Um = {u ∈ Rd1 : ∥u∥0 ≤ m, ∥u∥2 = 1}.
∥Zε∥∗2,m = sup

u∈Um

⟨u, Zε⟩.

For any u ∈ Um, the random variable Xu = ⟨u, Zε⟩ = 1
k

∑k
i=1 εi⟨Φ(xi), u⟩ is a sum of independent

centered subgaussian variables. Its variance is uniformly bounded:

Var(Xu) =
1

k2

k∑
i=1

Var(εi) ⟨Φ(xi), u⟩2

≤ σ2

k2

k∑
i=1

⟨Φ(xi), u⟩2 ≤ σ2

k2

k∑
i=1

(∥Φ(xi)∥∞∥u∥1)2

≤ σ2

k2

k∑
i=1

(
CΦ,∞

√
m∥u∥2

)2 ≤ σ2

k2
(
k ·mC2

Φ,∞
)
=

mσ2C2
Φ,∞

k
.

Moreover, the process has subgaussian increments: for any u, v ∈ Um,

∥Xu −Xv∥ψ2
≤ σ

k

( k∑
i=1

⟨Φ(xi), u− v⟩2
)1/2

≤ σCΦ,∞√
k

∥u− v∥1 ≤ σCΦ,∞
√
m√

k
∥u− v∥2.

Hence, by Dudley’s entropy integral (applied with the L2 metric on Um and diam(Um) ≤ 2),

E
[
∥Zε∥∗2,m

]
≲

σCΦ,∞√
k

∫ diam(Um)

0

√
logN (Um, ∥ · ∥2, ε) dε.

Using the standard bound N (Um, ∥ · ∥2, ε) ≤
(
d1
m

)
(3/ε)m,

E
[
∥Zε∥∗2,m

]
≲

σCΦ,∞√
k

∫ 2

0

√
m log(d1/m) +m log(3/ε) dε ≲ σCΦ,∞

√
m log(d1/m)

k
.

We conclude using a standard concentration inequality for the supremum W = ∥Zε∥∗2,m of a
subgaussian process: with probability at least 1− δ,

∥Zε∥∗2,m ≲ E[∥Zε∥∗2,m] +σCΦ,∞

√
m log(1/δ)

k
≲ σCΦ,∞

(√
m log(d1/m)

k
+

√
m log(1/δ)

k

)
.

The result follows by substituting m = 2s′ and using
√
a+

√
b ≤

√
2(a+ b) to consolidate terms

under a single universal constant CH .

Lemma 6 (Misspecification correlation bound). Let ∆ be a misspecification vector such that
1
k∥∆∥22 ≤ η. Under A7 (L∞ bound), the correlation of ∆ with sparse concept vectors is bounded by:∥∥∥∥1kΦ⊤

x⋆∆

∥∥∥∥∗
2,2s′

≤ η∆ :=
√
2s′CΦ,∞

√
η.

Proof. Let Z∆ = 1
kΦ

⊤
x⋆∆. We first bound the L∞ norm.

∥Z∆∥∞ = max
j

∣∣∣∣∣1k
k∑
i=1

Φij∆i

∣∣∣∣∣ .
By Cauchy-Schwarz, |∑i Φij∆i| ≤

√∑
iΦ

2
ij

√∑
i∆

2
i ≤

√
kC2

Φ,∞
√
kη. Thus, ∥Z∆∥∞ ≤

CΦ,∞
√
η. The sparse dual norm is bounded by:

∥Z∆∥∗2,2s′ = max
S:|S|=2s′

∥(Z∆)S∥2 ≤
√
2s′∥Z∆∥∞ ≤

√
2s′CΦ,∞

√
η.
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D.3 Insufficiency of global training

We contrast the in-distribution test error of TTT in Proposition 3 with the generalization error of
training a global model v̂global on all data. Our goal is to show that, due to underparameterization,
global training can fail to learn even simple functions. To illustrate this effect, we analyze a
representative instance of our model by defining a specific construction that satisfies A1–A5 and
models the superposition of concepts through a randomized feature map. This construction captures
the challenge faced by an underparameterized model learning a complex environment.
Definition 7 (Globally non-learnable instance). Let d2 ≥ Ω(s log d1). We assume the following:

1. Data distribution and concepts: We partition the input space X into M = d1 disjoint
neighborhoods {Bm}d1m=1 with equal probability P(Bm) = 1/d1. The concept map is constant
locally: Φ(x) = em ∈ Rd1 (standard basis vector) for x ∈ Bm. This is 1-sparse.

2. Ground truth: The observations are noiseless and constant y = 1 everywhere. The global
ground truth vector is w⋆ = 1. Locally, the function is perfectly matched by the 1-sparse
model wm = em.

3. Learned features & random superposition: The feature map Ψ : X → Rd2 is defined such
that Ψ(x) = pm for x ∈ Bm, which implies local linearity of features. We model the learned
features by assuming the representations {pm}d1m=1 are drawn independently and uniformly
from the unit sphere Sd2−1.

We first verify that Definition 7 satisfies Assumptions 1 to 5, A7, A8, leading to a misspecification
error of ηmis = 0. As a consequence and by Proposition 3, TTT is consistent. Notably, the dimension
of the feature map d2 may be exponentially smaller than the number of concepts d1, yet TTT can still
learn the ground truth perfectly.

Proof.

A1 (Sparse concepts): Φ(x) = em is 1-sparse.

A7 (Bounded concepts): ∥Φ(x)∥2 = 1.

A8 (Linear model): y = 1. w∗ = 1. σ2 = 0.

A2 (Neighborhood preservation): We require |simΨ(x, x
′) − simΦ(x, x

′)| ≤ ηang. Consider
x ∈ Bi, x

′ ∈ Bj with i ̸= j. simΦ(x, x
′) = ⟨ei, ej⟩ = 0. simΨ(x, x

′) = ⟨pi, pj⟩. Since
pi, pj are drawn uniformly from Sd2−1, the inner product concentrates around 0. By
standard concentration inequalities (related to the Johnson-Lindenstrauss lemma), with high
probability over the draw of all pairs {pi}, we have maxi ̸=j |⟨pi, pj⟩| ≤ O(

√
log(d1)/d2).

Thus, A2 holds with ηang small if d2 is sufficiently large compared to log(d1).

A3 (Local simplicity): In Bm, f(x) = 1. wm = em is 1-sparse and achieves ηspa = 0 since
⟨Φ(x), w∗⟩ = ⟨em,1⟩ = 1 and ⟨Φ(x), wm⟩ = ⟨em, em⟩ = 1.

To verify A4, A5, we need to define the local linear maps Pm.

A4 (Local linearity): We require Ψ(x) = PmΦ(x) for x ∈ Bm. This means pm = Pmem. We
construct Pm ∈ Rd2×d1 by setting the m-th column to pm and all other columns to zero:
Pm = [0, . . . , pm, . . . , 0].

A5 (Expressivity): We require wm = em to be in the row space of Pm. The row space of
the constructed Pm is exactly span(em). Thus, ηrep = 0. We also need to verify that
the optimal local solution corresponds to a sparse concept vector. The local optimization
is minv(1 − ⟨pm, v⟩)2. The minimum norm solution is v∗m = pm/∥pm∥2 = pm (since
∥pm∥ = 1). We check the sparsity of the corresponding concept vector P⊤

mv∗m = P⊤
mpm.

The j-th component of P⊤
mpm is ⟨colj(Pm), pm⟩. For j = m, it is ⟨pm, pm⟩ = 1. For

j ̸= m, it is ⟨0, pm⟩ = 0. Thus, P⊤
mv∗m = em, which is 1-sparse.
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We compare this to training a single global model on all data,

v̂global := argmin
v∈Rd2 ,∥v∥2 minimized

1

N

N∑
i=1

(yi − ⟨Ψ(xi), v⟩)2.

Remarkably, global training fails to learn this “simple” ground truth function, even as N → ∞.
Due to being underparameterized, the model’s features represent concepts in superposition, i.e., the
features pm are not orthogonal. Thus, adjusting the global model to fit one neighborhood inevitably
interferes with the predictions in other neighborhoods. Global training therefore has to find a
compromise that minimizes the average error across all neighborhoods.
Proposition 8 (Interference error of global training). Consider the instance of Definition 7. The
expected approximation error of the global model, averaged over the random realizations of the
feature map Ψ, is EΨ[(y − ⟨Ψ(x), v̂global⟩)2] = 1− d2

d1
.

Remark 9. Note that if the global model is not underparameterized, i.e., d2 = d1, the error of global
training is zero, as one would naturally expect. On the other hand, the trivial global model v̂global = 0
has error 1. As the model size d2 shrinks, the error of global training increases towards 1. As the
number of distinct concepts d1 increases, the error of global training also increases, approaching 1
as d1 → ∞. When increasing the number of distinct concepts, global training must compromise
between more neighborhoods, leading to higher interference.

Takeaway 3

The example illustrates that when concepts are superimposed in an underparameterized feature
space, a linear head cannot globally disentangle the meaning of all concepts.

Proof of Proposition 8. We analyze the approximation error of the global model. The global loss is:

Lglobal(v) = E[(y − ⟨Ψ(x), v⟩)2] = 1

d1

d1∑
m=1

(1− ⟨pm, v⟩)2. (11)

Let P ∈ Rd1×d2 be the matrix whose rows are p⊤m. The loss can be written in vector form:

Lglobal(v) =
1

d1
∥1− Pv∥2. (12)

This is a standard least squares problem. We assume d1 > d2. Since the vectors pm are drawn from a
continuous distribution (uniform on the sphere), P has full column rank (d2) with probability 1.

The optimal global model is v̂global = (P⊤P )−1P⊤1. The resulting approximation error is:

Eglobal := E[(y − ⟨Ψ(x), v̂global⟩)2] = Lglobal(v̂global) =
1

d1
∥1− P (P⊤P )−1P⊤1∥2.

Let Π = P (P⊤P )−1P⊤ ∈ Rd1×d1 be the orthogonal projection matrix onto the column space of P .
The residual vector is 1−Π1 = (I −Π)1. Since (I −Π) is also an orthogonal projection matrix,
(I −Π)⊤(I −Π) = (I −Π).

Eglobal =
1

d1
1⊤(I −Π)⊤(I −Π)1 =

1

d1
1⊤(I −Π)1

=
1

d1
(1⊤1− 1⊤Π1) =

1

d1
(d1 − 1⊤Π1)

= 1− 1

d1
1⊤Π1.

We want to calculate the expectation of this error over the random realization of P .

E[Eglobal] = 1− 1

d1
E[1⊤Π1]. (13)

We next analyze the term 1⊤Π1 =
∑d1
i=1

∑d1
j=1 Πij and the expected values of the entries E[Πij ].
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Step 1: Diagonal elements (i = j). Πii is the leverage score of the i-th data point pi. The trace of a
projection matrix equals its rank. Since P has rank d2 (w.p. 1), Tr(Π) = d2.

Tr(Π) =

d1∑
i=1

Πii. (14)

Taking the expectation:

E[Tr(Π)] =

d1∑
i=1

E[Πii] = d2. (15)

Since the vectors {pm} are drawn i.i.d., the distribution of P is invariant under permutation of the
rows. Thus, E[Πii] must be the same for all i.

d1E[Πii] = d2 =⇒ E[Πii] =
d2
d1

. (16)

Step 2: Off-diagonal elements (i ̸= j). We show that E[Πij ] = 0 using a symmetry argument. The
entry Πij is given by p⊤i (P

⊤P )−1pj . Let S = P⊤P .

We examine the conditional expectation Epi [Πij |{pk}k ̸=i]. Let S−i =
∑
k ̸=i pkp

⊤
k and

S = S−i + pip
⊤
i . Since d1 > d2, we have d1 − 1 ≥ d2. As the distribution is continuous, S−i is

invertible (rank d2) with probability 1.

We use the Sherman-Morrison formula to analyze Πij = p⊤i S
−1pj .

S−1 = S−1
−i −

S−1
−i pip

⊤
i S

−1
−i

1 + p⊤i S
−1
−i pi

. (17)

Applying p⊤i from the left and pj from the right:

Πij = p⊤i S
−1
−i pj −

(p⊤i S
−1
−i pi)(p

⊤
i S

−1
−i pj)

1 + p⊤i S
−1
−i pi

= (p⊤i S
−1
−i pj)

(
1− p⊤i S

−1
−i pi

1 + p⊤i S
−1
−i pi

)

=
p⊤i S

−1
−i pj

1 + p⊤i S
−1
−i pi

.

Let A = S−1
−i (which is positive definite) and u = S−1

−i pj . Note that A and u are independent of pi.
We define the function h(pi) =

⟨pi,u⟩
1+⟨pi,Api⟩ .

We observe that h(pi) is an odd function of pi:

h(−pi) =
⟨−pi, u⟩

1 + ⟨−pi, A(−pi)⟩
=

−⟨pi, u⟩
1 + ⟨pi, Api⟩

= −h(pi). (18)

The distribution of pi (uniform on the sphere) is symmetric around the origin. The expectation of an
odd integrable function over a symmetric distribution is zero.

Epi [Πij |{pk}k ̸=i] = Epi [h(pi)] = 0. (19)
By the law of total expectation, E[Πij ] = 0 for i ̸= j.

Step 3: Finalizing. We combine the results for the diagonal and off-diagonal elements:

E[1⊤Π1] =
∑
i

E[Πii] +
∑
i ̸=j

E[Πij ]

= d1 ·
d2
d1

+ d1(d1 − 1) · 0 = d2.

Finally, the expected global error is:

E[Eglobal] = 1− 1

d1
E[1⊤Π1] = 1− d2

d1
. (20)
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D.4 Hardness of global learning under the LRH: main proposition and proof

We begin by stating the formal version of Proposition 1:
Proposition 10. Let c1 ≥ 0, σ ≲ 1, k ≍ dc1 , and s ≍ 1. Assume n ≳ exp(Ω(log d)2). Then
Equation (3) holds and there exists a polynomial-time algorithm A in its input, such that

sup
f⋆∈Fd,s,k

ED∥A(D)− f⋆∥L2(γd) ≤ 0.1.

Under the low-degree polynomial conjecture, this bound is tight, n ≳ exp(Ω(log d)2) samples are
required by any algorithm that relies on the Statistical Query (SQ) and the Low-Degree Polynomial
(LDP) frameworks. Furthermore, without the low-degree polynomial conjecture, one can show that
poly(n) samples are needed for any algorithm.

For further details on the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) frameworks,
we refer to Reyzin (2020).

Proof. Recalling the definition of Fd,s,k and using that s ≍ 1 and ∥f⋆∥L2(γd) ≍ 1, we obtain that

d1∑
i=1

∥∂if⋆∥21 ≲
s

d1
≲ log(1/d1)∥f⋆∥2L2(γd)

.

Paouris et al. (2022) showed

Var(Pt[f
⋆]) ≤ exp(2− 2t) ·Var(f⋆) · exp(−ct log(d)) ≲ exp(−ct log(d)), (21)

where Pt is the Ornstein-Uhlenbeck (OU) semigroup, i.e.

Pt[f
⋆](x) = EZ∼γn [f

⋆(exp(−t)x+
√

1− exp(−2t)Z] =

∞∑
m=0

exp(−tm)Pm(f⋆),

and here Pm(f⋆) is the projection operator on the m-Hermite polynomials.

Using Equation (21), we conclude that for m ∈ 1, . . . , c log(d) (by choosing tm ≍ 1/m)

∥Pm(f⋆)∥2L2(γd)
≲ exp(−c1 log(d)/m)).

Now, recall that we assume k is polynomial in d, and note that up to a measure zero, for ∆t :=
Pt[f

⋆]− f⋆, it holds for any t ≪ 1 that

∀x ∈ Rd ∆t(x) ≲ 2
√

log(k) · s
√
t ≲

√
log(d1) · t,

where we used our assumption that there are k cells, the definition of the OU group, and the maximal
inequality of 2k-Gaussian. Therefore, we can choose t ≤ c/ log(d), for small enough c ≥ 0 and
obtain that

∥Pc/ log(d/n)f⋆∥L2(γd) ≥ 0.99.

If there were more than 0.1 L2
2(γn), energy in the m-coefficients for m ≥ C log(d/n) and C ≥ 0

large enough, we would obtain a contraction. As for t = c log(d), it holds that

exp(−mt) · ∥Pm(f⋆)∥2L2(γd)
≲ exp(−cm/ log(d))∥f⋆∥2L2(γd)

≤ 0.01 · ∥Pm(f⋆)∥2L2(γd)
,

which cannot align with the previous equation and our assumption of ∥f⋆∥L2(γn) = 1. In words, this
property says that f⋆ is far from being a “low degree” polynomial. Meaning that

0.1 ≤

∥∥∥∥∥∥Ef⋆ +
∑

c log(d/s)≤m≤C log(d)

Pm(f⋆)

∥∥∥∥∥∥
2

L2(γd)

≤ 0.9,

where c, c1 ∈ (0, 1), C ≥ 1 are absolute constants.

Therefore, to obtain a 0.1 approximation to f⋆, we need to learn the coefficients of at most (and
at least) the top Θ(log(d)) basis of the Hermite polynomials. Using the result of Bizeul & Klartag
(2025) (or the classical work of Kalai et al. (2008)), it can be done with

n ≲ s2 log(k) · dC log(k) ≍ s2 log(k) · klog(d)s2 ≍ exp(C log(d)2)
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samples. By definition, one can easily see that Fd,s,k is much harder to learn than the Gaussian Index
Model (GIM). Since the generative component of our functions satisfies k∗ ≍ log(d/n), it follows
that, under the low-degree polynomial conjecture, these classes require at least exp(Θ(log(d/n)2))
samples to even learn the GIM, see Damian et al. (2024) and references within, and the seminal work
of Arous et al. (2021).

Without the low-degree polynomial conjecture, one may use the result of (Klivans et al., 2008, Thms.
26 and 27), which shows that the learnability of the subclass of

{1K(x) : K is polytope in Rd with Poly(d) facets} ⊂ {Rd → R}
requires at least exp(Ω(log(d)) ≍ Poly(d) samples in the information theoretic sense. However, an
algorithmic gap remains in these classical works Klivans et al. (2008); Kalai et al. (2008), and there
is also a gap in the corresponding upper bound for the sample complexity.

E Additional ablations

While the improvement of TTT in image classification may seem small in terms of classification error,
we find that TTT can significantly reduce cross-entropy loss on the test set, as shown in Figure 6.
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Figure 6: Left: The average cross-entropy loss of the test samples of the globally trained MLP
head is lower compared to the test-time training (TTT) model. Right: TTT substantially lowers
cross-entropy loss on the test point compared to the global model when, to filter noisy labels, we filter
to test points where either the global model or TTT predict the correct label. This suggests that TTT
increases cross-entropy significantly on the noisy labels that are not predictable by the base model,
while lowering cross-entropy on the points which are predictable.

F Experiment details

In this section, we provide additional details about our experimental setup. These include the experi-
ments used to validate sparsity (§3) as well as those designed to analyze and illustrate the implications
of our theoretical results (§4). Our code is available at https://github.com/patrikwolf/ttt_
theory.

F.1 SAE framework

The SAE encoder projects a dense input vector Ψ(x) ∈ Rd2 to a learned high-dimensional, sparse
representation Φ̂(x) ∈ Rd1 :

Φ̂(x) := tops(E ·Ψ(x)), E ∈ Rd1×d2 ,
where the tops operator retains the s highest values and sets all others to zero. A linear decoder then
reconstructs the original vector from this sparse representation:

Ψ̂(x) := D · Φ̂(x), D ∈ Rd2×d1 .
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The encoder E and decoder D (here for simplicity without bias terms) are optimized to minimize the
reconstruction error:

Ex∥Ψ(x)− Ψ̂(x)∥22 → min
E,D

.

To mitigate the issue of “dead features” (elements of Φ̂(x) that are never activated), we incorporate
a ghost gradient auxiliary loss (Gao et al., 2025), which resulted in only 4% inactive concepts in
our experiments.

F.2 Comparison of logits (Figure 3)

We start by introducing the related notation. Define the top-10 probabilities for TTT in the sparse
concept space for the test point x⋆ as a vector pΦ̂(x⋆) ∈ [0, 1]10, similarly, pΨ̂(x⋆) for dense
reconstructions. In this notation, we implicitly assume that the probabilities pΦ̂(x⋆) are scaled by
some optimal factor τx⋆ . In particular, define the logits corresponding to pΦ̂(x⋆) (i.e., before the
softmax application) by logitΦ̂(x⋆). Then, for each test point x⋆, we “calibrate” (cf. (Xie et al.,
2024)) the concept space probabilities pΦ̂(x⋆) by finding the optimal scale τx⋆ which aligns them
closer. Namely, we choose τx⋆ to minimize the following KL-divergence term:

KL
(
pΨ̂(x⋆)

∣∣∣∣∣∣ p̄Φ̂(x⋆))→ min
τx⋆

,

p̄Φ̂(x⋆) := softmax

(
logitΦ̂(x⋆)

τx⋆

)
.

We note that although the temperature τx⋆ is adjusted on a sample-by-sample basis, the variation
is not significant. Specifically, we find the temperature has a mean of around 0.8 and a standard
deviation of around 0.1. This mean value (τx⋆ < 1) indicates that the predictive distribution pΨ̂(x⋆)
in the dense space has a slightly sharper profile than the baseline.

We now introduce a metric to quantify the remaining discrepancy between the calibrated sparse
distribution and the dense distribution. The relative total variation at position i ∈ {1, . . . , 10} is
defined as follows:

relTVi(Ψ̂, Φ̂) := Ex⋆


∣∣∣pΨ̂i (x⋆)− pΦ̂i (x

⋆)
∣∣∣

1
2 ·
(
Ex⋆ [pΨ̂i (x

⋆)] + Ex⋆ [pΦ̂i (x
⋆)]
)
 ,

where the absolute difference is normalized by the average magnitude of the corresponding probabili-
ties. Incorporating both averages into the denominator ensures the robustness of the quantity to noisy
observations, since both the scale of pΦ̂i and pΨ̂i are taken into account.

F.3 SAE on MNIST data

We evaluate the SAE setup on the MNIST dataset (10k test samples, 60k training samples). To obtain
a sparse concept vector Φ̂(xi) for each image xi ∈ DMNIST, we employ a Gemma-Scope-style SAE
(Lieberum et al., 2024). The only conceptual difference from regular SAE applications is that our
encoder has a convolutional architecture, i.e., it is LeNet-like (LeCun et al., 1998) and maps each
image to a representation vector Ψ(xi) ∈ Rd2 with d2 = 256, which is then lifted to a sparse concept
vector Φ̂(xi). However, the decoder is still linear to force linearity of the concept space. We also
directly reconstruct the inputs, i.e., images x, which means that the reconstruction error takes the
following form:

Ex∈D∥x−D · Φ̂(x)∥2, D ∈ R28·28×d1 .

In this setup, Φ̂(xi) ∈ Rd1 where d1 = 1024 and the average sparsity of the concept vector is

Ex[∥Φ̂(x)∥0] ≈ 18.9.

In the Gemma-Scope-style SAE, the sparsity constraint is enforced via a thresholding activation, i.e.,
inputs v ∈ Rd1 are passed through

ṽ := ReLU(v − θ),
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where ReLU is applied component-wise for some thresholds θ ∈ Rd1 independent of v. Consequently,
all active components of the sparse vector ṽ are positive. In addition to thresholding, the Gemma-
Scope-style SAE implicitly enforces the desired sparsity level via an L0 penalty on concept vectors
Φ̂(x) and uses straight-through estimator for the gradient estimate.

The procedure of searching for the optimal mask m stays the same as per Section 3, however, we
note that in this setup the penalty λ is set to 10−3. For this experiment, the average resulting sparsity
of the mask m is Ex∗ [∥m∥0] ≈ 24.5.

For a dense base model (i.e., a counterpart of CLIP embeddings in the case of ImageNet), we train
a variant of LeNet (LeCun et al., 1998) with a scale of 0.5. The resulting feature dimension before
the final linear classification layer is equal to 50. This model is clearly underparameterized with test
accuracy 94.51%.

For the base CNN TTT model, we perform 100 full-batch steps of Adam with learning rate of 10−1

(increasing budget does not affect the performance). For TTT with the adaptive mask in the concept
space, we do 200 full-batch steps of Adam with learning rate 5 · 10−2. The neighborhood size for
TTT is set to n = 100.

The resulting accuracies are:

• LeNet CNN TTT: 97.62,

• Masked SAE TTT: 97.72.

Auxiliary observations. We use the same notation for active sets for concept vectors as in Section 3.
However, for better clarity, we will recap the notation. For each sparse vector Φ(x) ∈ Rd1 we define
its active set as the set of vector components that are non-zero, i.e.,

m(Φ(x)) = {ℓ : (Φ(x))ℓ > 0} .
In this spirit, we define the active set for the current test point x⋆ as follows:

mx⋆ := m(Φ(x⋆)).

Similarly, active components of neighbors are defined as

mi := m(Φ(xi)), xi ∈ DΦ
x⋆ .

In this context, the “intersection” analysis reveals the following properties of the adaptive mask m,
active set of the test point mx⋆ and neighbors’ active sets mi:

• Ex| ∪i mi| ≈ 144.5, Ex|mx⋆ ∩m| ≈ 7.9,

• Ex| ∪i (mi ∩m)| ≈ 7.1, Ex| ∪i (mi ∩mx⋆)| ≈ 8.3.

In particular, one might be tempted to draw the following simplifying conclusion:

m ≡ ∪i(mi ∩mx⋆),

that is, to define the mask m so that it only selects indices appearing in both the test point and its
neighbors. However, this approach fails on more complex datasets (e.g., ImageNet, see Section 3),
because additional slack components in the mask are necessary to capture “non-spurious” test features.

F.4 SAE on ImageNet CLIP embeddings

We train another SAE on the ImageNet-1K dataset (Deng et al., 2009). The dense vectors Ψ(x) are
normalized CLIP embeddings (Radford et al., 2021) of dimension d2 = 512 (we use only the <CLS>
component). We set the sparse dimension to d1 = 8× d2 = 4096 and the sparsity level to s = 16.
For our analysis, we use the SAE’s reconstructions Ψ̂(x) rather than the original CLIP embeddings
Ψ(x). This choice aligns our experiments more closely with our theoretical model and circumvents
known challenges in training SAEs on raw, complex embeddings. This comes at the cost of a mild
6% drop in accuracy for a global linear classifier trained on the embeddings.3

3Note that the SAE is trained in an unsupervised way, without explicitly retaining classification accuracy, yet
using the SAE’s features leads only to a minor drop in accuracy.
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Top-k SAE training. Obtaining a sparse autoencoder with meaningful features (with a mild amount
of non-active neurons) is a task with multiple caveats. We employ several common techniques to
improve the training procedure, which we describe below.

We use a learning rate warm-up to ensure that the concept space is properly explored at the start of
training, preventing neurons from deactivating and becoming trapped in suboptimal configurations.
We warm up the learning rate linearly to the value 3 · 10−4 for T0 = 5000 steps. After this, we
employ a typical cosine decay with a horizon of T = 105. In particular, let i be the current step,
then at each step the initial learning (in this case 3 · 10−4) is multiplied by the value of λi, which is
computed as follows:

λi := 0.5 ·
(
1 + cos

(
π · λ̃

))
with λ̃i := (i− T0)/(T − T0).

In addition to the learning rate schedule, we also gently ramp up the sparsity of the concept vector to
the desired value of k = 16 as follows: let k0 = 128 be the initial sparsity of the concept vector and
K = 10000 be the number of warm-up steps, then

ki := k0 − (k0 − k) · γi with γi := i/K.

Once the target sparsity of k = 16 is reached, the value remains at the respective level until the end
of the training.

We now describe the implementation of the ghost gradients (Gao et al., 2025) used in our ImageNet
run. In a nutshell, ghost loss ensures that features that are not activated in the top-k are still getting
learning signal during training. This is very important as non-convexity of the optimization landscape
often leads to a suboptimal configuration for which considerable amount of units is inactive. The
ghost gradient method aims at “shaking” these units up to make them active again. Thus, we first
need to define which units are considered inactive during the training. Let fi ∈ Rd1 denote the vector
of unit activation frequencies after iteration i, where

(fi)j =
number of times unit j is active after i processed samples

i
.

Then the unit j is considered “almost inactive” if (fi)j ≤ 10−4. Thus, we define the corresponding
“inactivity” binary mask as (mi)j = I{(fi)j ≤ 10−4}. Ghost gradient uses these features to
improve the current reconstruction Ψ̂(x) − Ψ(x). Namely, the inactive features are decoded, i.e.,
Ψ̃(x) = D · (mi ⊙ (E ·Ψ(x))), as if they were present and used to minimize:

1

d2
· ∥Ψ̂(x)−Ψ(x)− Ψ̃(x)∥22. (22)

We add the ghost loss (22) to the initial reconstruction objective with weight of 106.

We also employ gradient clipping for more stable iterations to the norm range of [0, 1], and introduce
additional dropout with rate 0.5 for the pre-activations E ·Ψ(x) to foster the diversity of concepts.
We use column-wise normalization for the decoder weights to enjoy a more stable training. Note
that, since CLIP embeddings have unit norm, such restriction does not hinder the expressivity of the
decoder. We also initialize the decoder to be the transpose of the encoder, which is common practice
in SAEs. As for generic hyperparameters for the Adam optimizer (Kingma & Ba, 2015), we fix them
to the following values: batch size of 4096, weight decay of 0, number of epochs 100, and Adam’s
β1 of 0.9 and β2 of 0.999.

Global training. To train the global concept space and CLIP reconstruction models, we perform
100 epochs of batch size 512 using Adam optimizer with learning rate 0.001 and weight decay of
5 · 10−9.

TTT baseline. We define the neighborhood of a test point x⋆, denoted Dx⋆ , as its k = 50 nearest
neighbors within the training set. Proximity is measured by the L2-distance in a given feature space.
For example, DΨ

x⋆ denotes the neighborhood found in the space of CLIP embeddings. Since the CLIP
embeddings are normalized, this is equivalent to using cosine similarity. The TTT procedure involves
training a local linear classifier Wx⋆ on the neighborhood of x⋆:

Wx⋆ := argmin
W∈R1000×d2

1

k

∑
(x,y)∈DΨ̂

x⋆

L(W Ψ̂(x), y), (23)
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where L is the standard cross-entropy loss for the 1000 ImageNet classes. TTT in the estimated
concept space is defined analogously using Φ̂(x) and neighborhoods DΦ̂

x⋆ .

For each TTT point, we do 80 full-batch steps (batch size 50) of Adam with learning rate 0.02 and
zero weight decay. The latter hyperparameter set is used for TTT both in concept space and in
CLIP reconstructions. Unless otherwise specified, Adam’s parameters follow the default values in
PyTorch (Paszke et al., 2019).

F.5 Scaling experiments on MNIST

In the scaling experiments reported in Section 4, we trained multiple LeNet (LeCun et al., 1998)
convolutional neural networks (CNNs) at different model scales. The architecture comprises two
convolutional layers, each with ReLU activation and 2×2 max-pooling, followed by a fully connected
classification head. The reference models of varying sizes were trained with the hyperparameters
listed in Table 2, obtained by tuning on the validation set. Optimization was performed with Adam
(Kingma & Ba, 2015).

Model parameters
Hyperparameter 280 600 1268 1976 2985 4430 6386 11770 24294 40818

Learning Rate 6e-3 2e-3 1e-3 8e-4 6e-4 6e-4 2e-3 2e-3 2e-3 6e-4
Batch Size 500 200 400 600 300 300 400 300 300 100
Epochs 50 50 100 100 100 100 100 100 100 50

Table 2: Hyperparameters for globally trained CNNs.

For the model scaling plot in Figure 4, we trained each reference model across five random seeds and
applied both TTT and majority voting. For TTT, all model parameters were frozen except for the
final linear layer, which was fine-tuned from its pre-trained initialization using the hyperparameters
in Table 3. Majority voting was performed with neighborhood sizes specified in Table 4. As the
experiments were repeated over five seeds, we used 200 bootstrap iterations per seed to compute
confidence intervals.

Model parameters
Hyperparameter 280 600 1268 1976 2985 4430 6386 11770 24294 40818
Learning rate 0.05 5e-3 0.01 0.01 5e-3 5e-3 1e-3 5e-3 1e-3 1e-3
Epochs 50 200 200 200 200 200 200 200 200 200
Number of neighbors 200 50 10 200 200 200 50 100 50 200

Table 3: Hyperparameters for TTT on the linear head of the CNNs.

Model parameters
Hyperparameter 280 600 1268 1976 2985 4430 6386 11770 24294 40818

Number of neighbors 8 5 8 5 3 4 6 4 4 4

Table 4: Hyperparameters for majority voting based on last-hidden-layer features of the CNNs.

To generate the dataset scaling plot in Figure 5, we randomly subsampled the training set while
explicitly ensuring a uniform distribution across the 10 class labels. Here, TTT was performed by
minimizing the cross-entropy loss over the k = 80 nearest neighbors. Optimization was performed
using Adam with a learning rate of 0.02 for 500 epochs.

F.6 TTT improves predictions locally

To validate that TTT improves predictions locally, we globally evaluate some TTT heads. As shown
in Table 5, while improving accuracy on the test point and neighborhood, the global accuracy of these
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fixed TTT heads is significantly lower than that of the model trained on the entire dataset without
TTT. These results confirm that, while TTT can provide localized performance improvements when
adapted individually at test time, such benefits do not generalize when the same adaptation is applied
globally. We further hypothesize that the neighborhood needs to be sufficiently large and diverse
to span all relevant concepts. At the same time, the neighborhood needs to be sufficiently local to
focus on only those concepts that are relevant to the test point. In Figure 5 (right), we support this
hypothesis by varying the neighborhood size for TTT on ImageNet, and finding that the optimal
neighborhood size trades off locality and diversity.

Global TTT on Test Sample TTT on Neighborhood Global TTT
MNIST 98.57 ± 0.12 99.01 ± 0.10 100.00 ± 0.00 36.38 ± 0.16

ImageNet 78.33 ± 0.19 79.39 ± 0.18 95.19 ± 0.00 77.04 ± 0.06

Table 5: Accuracy of a linear model trained on the full dataset (global), TTT evaluated on the test
sample, TTT evaluated on the neighborhood, and of ten randomly selected local TTT heads evaluated
on the entire test set (global TTT). We select ten TTT heads to keep the evaluation computationally
tractable. The table reports bootstrap standard errors.

F.7 Connection to MoEs

Given an underparameterized global model, a natural alternative to specializing to each test-time task
as in TTT is to instead specialize individual “expert” models to subsets of tasks, routing test-time
tasks to few of these experts. Such mixture of experts (MoEs; Shazeer et al., 2017; Fedus et al., 2022;
Bertolissi et al., 2025) have been shown to be an effective architecture for foundation models (e.g.,
Dai et al., 2024).
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Figure 7: Classification error on MNIST.
We compare the global classifier, TTT,
and the MoE. Increasing the number of
experts allows MoE to approach TTT
performance with inference cost compa-
rable to the global model.

To see whether our findings extend to MoEs, we train
multiple experts (each being a different linear head) based
on the MoE architecture of Bertolissi et al. (2025), and
evaluate accuracy as we scale the number of experts. We
find that a larger number of experts increases the capacity
of the model and improves accuracy, highlighting that
MoEs are a promising approach to specialization without
increasing inference cost.

We used a pre-trained CNN to extract last-layer embed-
dings from MNIST images. Following Bertolissi et al.
(2025), for a given number of experts, each expert was
associated with a cluster centroid obtained by partitioning
the training set into clusters via k-means. Expert train-
ing was performed by fine-tuning the pre-trained linear
head on the nearest neighbors of the assigned centroid in
embedding space. The fine-tuning hyperparameters are
provided in Table 6. At test time, inputs were first mapped through the CNN encoder, after which the
single closest cluster centroid was selected based on L2-distance. The corresponding expert head
then produced the final prediction.

F.8 Scaling experiments on ImageNet

In our scaling experiments on ImageNet, we systematically vary the dimensionality and architecture
of downstream classifiers, enabling a thorough analysis of scalability and representation quality. The
following subsections detail our embedding extraction procedure, the dataset partitioning scheme,
and the training protocols used for all baselines and scaling methods.

Embedding Extraction. For the ImageNet experiments, we use image embeddings derived from
the CLIP vision-language model (Radford et al., 2021). Specifically, we employ the ViT-B/32 variant
of CLIP, as provided by the HuggingFace Transformers library. Images are first preprocessed by
applying resizing, center cropping, and pixel normalization to match CLIP’s training setup. The
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Number of experts
Hyperparameter 1 3 10 30 100 300 1e3 3e3 10e3 20e3 50e3

Learning rate 6e-4 2e-4 6e-4 1e-3 8e-4 4e-4 6e-4 4e-4 6e-4 4e-4 4e-4
Epochs 2 1 2 1 2 3 10 30 20 50 40
Number of neighbors 60 50 30 60 30 40 30 20 30 30 20

Table 6: Hyperparameters for the mixture of experts (MoE) model based on last-hidden-layer features
of the CNN.

preprocessed images are then passed through the CLIP vision encoder, yielding 512-dimensional
representation vectors. To ensure stability and scale invariance, we normalize each embedding to unit
length using the L2 norm.

Dataset Splits. Since ImageNet’s official test labels are held out, we report results on the official
validation set, treating it as our test set. For training purposes, we partitioned the 1.28M-image
training set into a reduced training set and an artificial validation set. The artificial validation set
was constructed by stratified sampling 50000 images to ensure a balanced class distribution, giving
it the same size as the official validation set. The remaining images were used for training. Unless
otherwise stated, all reported results are based on evaluation on the official validation set.

Baseline Linear Classifier. As a first baseline, we trained a linear classifier on the 512-dimensional
normalized CLIP embeddings. The linear head is a fully connected layer mapping the embeddings to
1000 output classes, corresponding to the ImageNet labels. Training was performed with the Adam
optimizer at a learning rate of 0.001, using a batch size of 250 for 50 epochs. The model was trained
with standard categorical cross-entropy loss, without additional regularization, and achieved a test
accuracy of 78.33 %.

TTT for Base Model. Building upon the baseline linear classifier, we apply a test-time training
procedure to adapt the model at inference-time. Specifically, we fine-tune this linear head for each test
sample by minimizing the cross-entropy loss over the set of k = 600 nearest neighbors retrieved in
the original CLIP embedding space. Optimization proceeds for 50 epochs using the Adam optimizer
with a learning rate of 0.02 and a batch size equal to the number of neighbors.

Two-Layer MLP Projections. To assess the impact of embedding dimensionality, we trained
two-layer multi-layer perceptrons (MLPs) as classification heads on top of the CLIP embeddings. The
first hidden layer had variable size, ranging from 250 to 4000 neurons, followed by a ReLU activation.
The second layer maps the hidden representation to the 1000 ImageNet classes. Dropout is applied
before the final layer to mitigate overfitting. Training was conducted with the Adam optimizer, using
the hyperparameters specified in Table 7.

Model parameters
Hyperparameter 3.8e5 7.6e5 1.1e6 1.5e6 1.9e6 2.3e6 3.0e6 3.8e6 4.5e6 6.1e6

Hidden dimension 250 500 750 1000 1250 1500 2000 2500 3000 4000
Learning Rate 4.0e-4 3.5e-4 3.0e-4 4.0e-4 3.5e-4 4.0e-4 4.0e-4 3.5e-4 4.5e-4 4.5e-4
Weight Decay 0 0 0 0 0 0 0 0 0 0
Batch Size 450 350 300 450 350 300 400 450 450 650
Num Epochs 50 50 50 50 50 50 50 50 50 50
Dropout Rate 0.05 0.25 0.3 0.35 0.45 0.55 0.6 0.65 0.7 0.7

Table 7: Hyperparameters for globally training the MLP heads across different model sizes.

After training, we freeze the first hidden layer and project the original 512-dimensional embeddings
into this hidden space. The resulting hidden representations, taken after the ReLU activation, serve
as our scaled embeddings for test-time training. Specifically, we fine-tune the pre-trained linear
MLP head on the set of k nearest neighbors by minimizing the cross-entropy loss using Adam. This
setup allows us to systematically examine how performance and representation quality vary with
embedding dimensionality. We used a set of universal hyperparameters that are nearly optimal across
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all model sizes, as reported in Table 8. Loss optimization was performed in a full-batch setting, with
the batch size equal to the number of neighbors.

Hyperparameter Value
Number of neighbors 100
Learning rate 5e-3
Batch size 100
Epochs 50

Table 8: Hyperparameters for TTT on the linear head of the MLPs.

Majority Voting. As an alternative baseline, we leverage the learned feature spaces of the two-layer
MLPs and apply a simple majority voting protocol based on nearest neighbors. Specifically, we first
map the original 512-dimensional CLIP embeddings into the MLP’s hidden feature space and then
identify its k = 10 nearest neighbors for any given test sample. The predicted class is assigned as the
most frequent (majority) class label among these neighbors. This approach parallels the neighbor
selection used in test-time training (TTT) but replaces fine-tuning with a straightforward plurality
vote. Majority voting thus serves as a simple, non-parametric baseline to assess the quality of the
scaled embeddings, providing insight into the clustering and class separability properties of the
learned feature space.

F.9 Scaling experiments for language modeling

We use the open-source implementation4 of Hardt & Sun (2024) and evaluate the Qwen2.5 family
of base models (Qwen et al., 2025). We summarize hyperparameters in Table 9. Sequences in the
neighborhood that exceed the maximum sequence length are split into chunks of the maximum
length. This means that a single neighbor can result in multiple gradient steps during TTT.

Hyperparameter Value
Number of neighbors 50
Learning rate 2e-4
Adam’s ϵ-value 1e-8
Max. sequence length in tokens 1024
LoRA rank 64

Table 9: Hyperparameters for language modeling on the Pile.

4https://github.com/socialfoundations/tttlm
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