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Abstract

Partially Observable Markov Decision Processes (POMDPs) model decision mak-
ing under uncertainty. While there are many approaches to approximately solving
POMDPs, we aim to address the problem of learning such models. In particular,
we are interested in a subclass of POMDPs wherein the components of the model,
including the observation function, reward function, transition function, and initial
state distribution function, can be modeled as low-complexity probabilistic graphi-
cal models in the form of a short probabilistic program. Our strategy to learn these
programs uses an LLM as a prior, generating candidate probabilistic programs that
are then tested against the empirical distribution and adjusted through feedback.
We experiment on a number of classical toy POMDP problems, simulated Mini-
Grid domains, and two real mobile-base robotics search domains involving partial
observability. Our results show that using an LLM to guide in the construction
of a low-complexity POMDP model can be more effective than tabular POMDP
learning, behavior cloning, or direct LLM planning.

1 Introduction

Decision making under uncertainty is a central challenge in robotics, autonomous systems, and
artificial intelligence more broadly. Partially Observable Markov Decision Processes (POMDPs)
provide a principled framework for modeling and solving such problems by explicitly representing
uncertainty in state perception, transitions, and rewards. Many prior works have used the POMDP
formulation to solve real-world problems such as intention-aware decision-making for autonomous
vehicles (Song et al.L |2016), collaborative control of smart assistive wheelchairs (Ghorbel et al.,2018)),
robotic manipulation in cluttered environments (Pajarinen and Kyrkil 2017)), and generalized object
search (Zheng et al.| 2023). Despite their conceptual clarity, practical application of POMDPs is
bottlenecked by difficulties in specifying accurate models of environments, which requires careful
engineering and a thorough understanding of the theory and available solvers.

In this work, we address the critical challenge of learning interpretable, low-complexity POMDP
models directly from data. We specifically target a class of POMDPs whose components, namely
the observation function, reward function, transition dynamics, and initial state distribution, can be
succinctly represented as probabilistic graphical models encoded by short probabilistic programs.
To efficiently identify these programs, we leverage recent advancements in Large Language Models
(LLMs) to serve as informative priors, generating candidate probabilistic programs. These candidates
are evaluated against empirical observations and iteratively refined through LLM-generated feedback.

We evaluate our approach across several domains including classical POMDP problems, minigrid
navigation and manipulation problems, and a real-world robotics setting involving a mobile-base robot
searching for a target object. Our experimental results demonstrate that guiding model construction
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with an LLM significantly enhances sample efficiency compared to traditional tabular model or
behavior learning methods and achieves greater accuracy than directly querying an LLM.

2 Related Work

Learning world models for partially observable decision-making is a form of model-based rein-
forcement learning (Moerland et al., [2020)), for which there are many methods. In this section, we
focus on methods that emphasize extreme data efficiency through the use of explicit models and
representations, such as probabilistic programs, that facilitate efficient learning. Additionally, we
discuss methods that use LLMs to synthesize and refine these models, enabling the integration of
human priors and domain-specific constraints to create world models for downstream solvers.

POMDP Model Learning A substantial body of research has addressed the challenge of learning
Partially Observable Markov Decision Process (POMDP) models from experience. For example,
Mossel and Roch (Mossel and Rochl 2005) provide an average-case complexity result showing that
estimating the parameters of certain Hidden Markov Models, an essential subproblem in POMDP
learning, is computationally intractable in general. Despite these challenges, several approaches have
made significant progress by introducing tractability under specific assumptions.

Bayesian methods, such as Bayes-Adaptive POMDPs (Ross et al., 2007), incorporate model un-
certainty directly into decision-making by unifying model learning, information gathering, and
exploitation. This, however, increases the overall complexity of the POMDP. In contrast, spectral
techniques like Predictive State Representations (PSRs) (Boots et al.| [2009) offer computational
efficiency by bypassing full Bayesian inference, although they require strong structural assumptions
and extensive exploratory data.

Recent work on optimism-based exploration algorithms has yielded theoretical guarantees for efficient
learning in specific POMDP subclasses, even though these methods can be challenging to apply
directly to real-world, complex domains (Jin et al., 2020). Additionally, apprenticeship learning
approaches estimate POMDP parameters by leveraging expert demonstrations, assuming that expert
behavior encapsulates informative state-transition dynamics (Makino and Takeuchi, [2012). Such
methods help reduce the burden of exploration but are sensitive to the quality of the expert demon-
strations. In dialogue systems, for instance, these techniques have successfully learned user models
without relying on manual annotations (Thomson et al.|[2010).

Probabilistic Program Induction. Probabilistic programming provides a powerful framework
for modeling complex systems using concise, symbolic representations (Bingham et al., 2018}
Cusumano-Towner et al.l [2019; |Goodman et al., 2012). Several works in probabilistic program
induction have demonstrated that such representations can lead to markedly improved data efficiency
and enable few-shot learning, in stark contrast to more data-intensive conventional methods (Ellis
et al.| [2020; |Lake et al.l2015). Nonetheless, the vast search space inherent to probabilistic programs
can be a major computational bottleneck. Recent advances have attempted to address this issue by
integrating language models with probabilistic programming, thereby infusing human priors into the
model discovery process (Li et al.l 2024} [Wong et al.} 2023} |Grand et al.| [2024).

LLM Model Learning for Decision-Making. The application of large language models (LLMs)
to world-modeling for decision-making is an emerging and rapidly evolving area. Prior work has
primarily focused on fully observable settings, where transition dynamics and reward structures
are represented using frameworks such as Planning Domain Definition Language (PDDL) or code-
based models (Liang et al.| 2025} Tang et al.,|2024). Other approaches have utilized code-based
representations as constraints or as part of optimization frameworks (Curtis et al., 2024} Hao et al.,
2024; |Ye et al., 2024). To our knowledge, our work is the first to extend these techniques to the
POMDP setting, thereby addressing the additional complexities introduced by partial observability.

3 Background

3.1 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) provide a principled framework for se-
quential decision making under uncertainty. A POMDP is defined by the tuple (S, 4, O, T, Z, R, ),
where S, A, and O denote the state, action, and observation spaces, respectively. In this work we
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Figure 1: An architecture diagram for our POMDP coder method

assume all these spaces are discrete, but the POMDP formulation supports continuous spaces in
general. T (s¢4+1 | st,a¢) indicates the distribution over next states expected when taking action a;
in state s;. The observation model Z (o011 | st+1, at) represents the distribution over observations
expected when executing action a; resulting in a subsequent state s¢11. R(S¢, az, s¢+1) is the reward
function. Lastly, v € (0, 1) is the discount which weighs the value of current over future rewards.

Since the agent does not have direct access to the true state s;, it maintains a belief b;(s), or a
probability distribution over possible states, which must be updated for replanning after each action
is taken and new observation received. Given an action and observation, a belief can be updated via
particle filtering (Thrun et al.l 2005). We use particle filtering as our belief-updating mechanism
across all domains.

The objective of a POMDP is to find a policy 7 that maximizes the expected discounted reward:

oo

max Ep, th th(S) Z T (st41 | 8,a:) R(s,a¢, 5¢41) (D

t=0 seS St4+1 €S

To illustrate the POMDP formulation and serve as a running example, consider the classic Tiger
problem (Kaelbling et al., [1998). An agent faces two doors: one hides a tiger, the other a treasure.
The true state s consisting of the the tiger’s location is hidden. The agent can 1isten to receive a
noisy observation o of which door the tiger is behind, or open a door to gain a reward or incur a
penalty. An ideal policy is to wait long enough to be confident in the tiger’s location before opening
the door with the treasure.

3.2 Probabilistic Programs

Probabilistic programming offers an expressive and concise way to represent complex probabilistic
models as executable code. In our work, each component of the POMDP including the initial
state model, transition dynamics, observation function, and reward structure is encoded as a short
probabilistic program. We leverage Pyro (Bingham et al.,[2018), a flexible probabilistic programming
framework built on Python, to specify these models. Pyro enables us to define generative models
with inherent stochastic behavior. In our tiger problem example, the below implementation would be
a correct probabilistic program for the observation model.

def tiger_observation_func(state: TigerState, act: TigerActions):
if act != TigerActions.LISTEN:
return TigerObservation(NONE)

correct = bool(pyro.sample("listen_correct", Bernoulli(torch.tensor(0.85))))



tiger_left = state.tiger_location ==
hear_left = (correct and tiger_left) or (not correct and not tiger_left)
return TigerObservation(HEAR_LEFT if hear_left else HEAR_RIGHT)

3.3 POMDP Solvers

While traditional offline solvers aim to compute a global policy over the entire belief space (Mundhenk
et al.l[1997; [Littman), [1995; |Cassandra et al.| 2013])), these methods often face scalability challenges
in high-dimensional or continuous environments. In contrast, online solvers focus on finding a
solution from a specific initial belief and replan after every step as new observations become available.
Online approaches such as Partially Observable Monte Carlo Planning (POMCP) (Silver and Veness|,
20105 |Curtis et al.l 2022) and Partially Observable Upper Confidence Trees (POUCT) (Sunberg and
Kochenderfer, |2017)) combine Monte Carlo sampling with tree search to approximate optimal policies
in real time. Additionally, determinized belief space planners simplify the stochastic nature of the
problem by converting it into a deterministic surrogate, thereby enabling rapid replanning (Yoon
et al.,|2007; | Kaelbling and Lozano-Perez, 2013} |Chatterjee et al., 2021 |Curtis et al., 2024). In our
work, we adopt the determinized belief space planning approach due to its computational efficiency
in larger problems. Please refer to Appendix [C]for specifics on our solver implementation.

4 POMDP Coder

In our approach, which we call POMDP Coder, we decompose the problem into two major compo-
nents: learning the probabilistic models that define the POMDP and using these learned models for
online planning. The first part involves leveraging a Large Language Model (LLM) to generate, refine,
and validate candidate probabilistic programs that represent the initial state, transition, observation,
and reward functions. The second component uses these models within an online POMDP solver
along with the current belief to find optimal actions to take in the environment.

We assume the agent is provided access to an initial set of ten human-generated demonstrations D,
where each demonstration consists of (s, at, 0¢11, S¢+1) transitions. Since we are learning models
instead of policies, there are no strict assumptions made about the optimality or correctness of these
demonstrations. However, we do make an assumption of post-hoc full observability (Pinto et al.|
2017). That is, we assume the agent gets access to the intermediate states after an episode has
terminated (see Section [/|for details).

Additionally POMDP Coder is provided a code-based API defining the structure of the state, action,
and observation space. Below is an example for the Tiger domain.

class TigerActions(enum.IntEnum) :
OPEN_LEFT = O, OPEN_RIGHT = 1, LISTEN = 2

class TigerObservation(Observation):
obs: int # 0 = hear left, 1 = hear right, 2 = none

class TigerState(State):
tiger_location: int # 0 = left, 1 = right

In some cases, we additionally expose python libraries and deterministic helper functions alongside
the API to help with more complex calculations (see Appendix [E] for details).

Given these inputs, POMDP Coder proceeds as outlined in Algorithm [T} It proposes an initial
set of models that comprise the POMDP problem (Line [3)), using a learning procedure detailed in
Section @ After an initial set of models is decided on, these models are passed to a POMDP solver
along with the initial belief (Line[6) to find an optimal first action to take in the environment (Line [7).
After an action is taken and an observation received, the belief is updated using particle filtering to
form a new belief (Line[8). This process continues until the episode terminates or times out. Lastly,
at the end of each episode, the trajectory is added to the dataset (Line[8]) and the learning process
repairs any inaccuracies that the previous model may have had under the new data (Line[3).



Algorithm 1 POMDP Coder
1: Input: A demo dataset D, max episodes F, num particles N, empty models 6 = ()
2: for episode = 1 to E do
3: 0 = (Branss Orew, Oobs, Oinit) < LearnModels(D, 0) > Update all models using D

4: b < N samples from 6;,;
5: while episode not terminated do
6: a < POMDPSolver(b, §) > Plan best next action, see Appendix [C]
7: Execute a in the world, observe o
8: b < ParticleFilter(b,a,o0,0) > Update belief
9: Append (a, 0) to trajectory 7
10: end while
11: D+~DuUr > Update demo data with new trajectory
12: end for
13: return ¢

4.1 Learning Models

We aim to learn four core components of a POMDP: the initial state distribution P(sg), the tran-
sition model P(s:1+1 | st,a:), the observation model P(0¢41 | St41,a:), and the reward model
R(st, at, s¢+1). Each of these components is expressed as a short probabilistic program.

The objective of our learning procedure is to maximize a dataset coverage metric, which we define to
be the proportion of data in D that has support under the model as follows:

1 |D|

coverage(Py, D) = ﬁ Z 1{P9 (yi | xq;) > O}. 2)
i=1

Although we experimented with other metrics such distributional distance metrics, we found that
those were more prone to overfitting and less interpretable to an LLM than binary coverage feedback.
Still, the coverage metric has its own limitations, which we discuss in Section

Our approach to learning these models builds on strategies previously developed for reward model
learning (Tang et al.|[2024)), but extends them to the more general setting of POMDP model learning
across multiple stochastic components (transition, observation, initial state, and reward), replaces
accuracy with coverage, and introduces the notion of a testing and training split to avoid overfitting.

At its core, our model learning strategy uses two operations: (1) LLM program proposal given a model
function template and a set of examples from the database and and (2) LLM program repair given
a previous model and set of examples that the previous model failed to cover. We run a stochastic
procedure for sampling which program to repair next, which is biased toward repairing programs that
have high coverage. The pseudocode and additional details can be found in the Appendix [B]

S Experiments

5.1 Simulated Experiments

Simulated experiments were conducted on two categories of problems: classical POMDP problems
from the literature and MiniGrid tasks. The classical POMDP problems such as Tiger and Rock
Sample (Smith and Simmons| 2012) serve as simplified benchmarks that capture the core challenges
of decision making under uncertainty while keeping the problem domains small and tractable.

MiniGrid is a set of minimalistic gridworld tasks for testing navigation and planning under partial
observability originally designed for reinforcement learning (Chevalier-Boisvert et al., [2023). We
evaluate on five of these environments shown in Figure 2] Detailed descriptions for each of these
environments can be found in Appendix [D] Each MiniGrid environment is modified from the original
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Figure 2: A visualization of the final belief state for each of the MiniGrid tasks. The green square is
the goal, the red triangle is the agent, and the blue squares are places that the agent has not viewed.

implementation (Chevalier-Boisvert et al., 2023). This modification demonstrates the ability of our
method to generalize to new environments not seen during LLM pretraining.

5.2 Baselines

In our experiments, we evaluate our method against several diverse baselines to comprehensively
assess its performance in partially observable environments. One baseline, termed the oracle, uses
POMDP models that are hardcoded to exactly match the true dynamics of the environment, thereby
serving as an upper-bound on achievable performance. In contrast, the random baseline takes actions
arbitrarily at every step, establishing a lower-bound benchmark for comparison.

Another baseline, referred to as direct LLM, involves querying a large language model for the next
action at each decision point. In this setup, the LLM is provided with all the same information
provided to POMDP Coder during model learning. The exact prompt template used for this method is
detailed in Appendix [G.4] Next, our evaluation includes a behavior cloning baseline, where a policy
is constructed by mapping states to actions using a dictionary learned from the demonstration dataset.
In addition, we consider a tabular baseline in which the POMDP models are learned as conditional
probability tables derived from counts in the demonstration dataset.

Lastly, we test against two ablations of POMDP Coder. The first is the offfine only ablation which
only makes use of the human demonstrations and does not update the model with its own experiences.
Conversely, the online only ablation does not make use of the expert demonstrations, learning only
from its own experiences. All other baselines are given access to both offline and online data.

5.3 Simulation Results

We evaluate various methods using expected discounted reward defined in Section[3.1] measuring
both total cumulative reward and efficiency. We use GPT-40 (OpenAll, 2024) with temperature O as
the large language model across all experiments. The same ten demonstrations are provided to all
methods. The results of our evaluations can be seen in Figure[3] We see POMDP Coder match or
outperform all baseline methods across all domains.

We observe that the behavior cloning and tabular baselines were fundamentally limited in their ability
to generalize. This is because the set of possible initial states for many tasks was orders of magnitude
larger than the training set. In contrast, the probabilistic programs written by POMDP Coder use
symbolic abstraction to cover large portions of the state and observation spaces, allowing them to
generalize to new situations. While the direct LLM approach was sometimes effective, such as in the
rock sample domain, it frequently got stuck in infinite loops, failing to understand constraints such as
obstacle obstruction despite the examples of collision it had access to in the dataset.

POMDP Coder outperformed both the online-only and offline-only ablations across most environ-
ments. A common failure mode of the offline-only ablation was missing transitions outside expert
demonstrations. For example, it will run into lava without knowing it causes death. In contrast, the
online-only ablation struggled to discover informative actions due to inefficient random exploration.
For instance, in the unlock environment, if the agent never used the key, the model failed to learn that
behavior, and random actions rarely uncovered it.



Episode Reward Across Environments & Approaches

. t
7 |
- . III o II

RockSample Empty Corners Unlock

-
o

o
@

o
IS

Normalised Discounted Reward
o o
o Y

o
)

B Oracle EEE Ours M Ours (Offine) MM Ours (Online) WM Direct LLM Behavior Cloning Tabular Random

Figure 3: Experimental results for the MiniGrid and Classical POMDP domains. We show the
expected discounted returns (y = 0.98) of each method across five learning seeds with ten episodes
per seed. The error bars show standard error across all episodes. We normalize the expected
discounted returns by the performance of Oracle.

In addition to success metrics, we record some additional runtime statistics such as the number of
candidate programs generated during offline and online learning in Table[2]as well as the training and
testing coverage scores after offline model learning in Table 3]

5.4 Real Robot Experiments

Our real robot experiments are conducted using a Boston Dynamics Spot robot. The robot carries
an in-hand camera mounted on a 6-DoF arm at its back. April tags are distributed throughout the
area, enabling precise localization. The goal is for the robot to find an pick up an apple placed
within the scene. Before any demonstrations are gathered, we construct a map of the empty room by
scanning it with PolyCam (Polycam, |2025)). This scan is used to construct a scene representation that
includes an object-centric scene graph, encoding “on” relationships derived from geometric cues,
and an occupancy grid delineating forbidden zones corresponding to physical obstacles. For each
real-world task, ten demonstrations are collected by commanding the robot via keyboard. The agent’s
action space is discretized into fixed theta rotations to the left and right and movements in the four
cardinal directions. Objects are detected online using Grounding SAM, an open vocabulary object
detector (Liu et al., 2023} Ren et al.| [2024).

We test our method in two distinct spaces. The first is a small, closed-off room, as shown in the top
row of Figure@ which contains a few tables, chairs, and drawer cabinets. The second is a large, open
lobby area depicted in the bottom row of Figure[d} furnished with more than twenty pieces of furniture.
Within these environments, task distributions are defined by varying the location of the apple. In the
Small-Cabinets configuration, which takes place in the small room, the apple is consistently placed
on top of one of the three drawer cabinets for each demonstration. In the Large-Tables setting within
the large room, the apple is positioned on one of the five round tables.

Our approach is compared against a subset of baselines evaluated in Section[5.2] The evaluation
includes behavior cloning, direct LLM execution, and a hardcoded uniform baseline that assumes
the object is placed uniformly throughout the search space. Although the uniform baseline requires
additional task-specific human input and is not strictly an apples-to-apples comparison, it demonstrates
that our method can outperform a naively designed initial state distribution.

The results shown in Table [Tl demonstrate that POMDP Coder achieves more efficient and accurate
exploration by understanding and generalizing trends in initial state distribution seen in the training
data. Specifically, our approach learns that objects are always on top of objects of a particular class,
and constructs an initial state distribution that captures that without overfitting to specific initial states.

6 Discussion

In this work, we have presented a novel approach to learning interpretable, low-complexity POMDP
models by integrating LLM-guided probabilistic program induction with online planning. Our method
leverages large language models to generate and iteratively refine candidate probabilistic programs
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Figure 4: The two real-world experimental setups wherein a robot is searching for an apple in a
partially observable world. The blue cells represent the robot’s belief about where the apple could be
in the world. In the uniform initial belief, the robot thinks the apple could be anywhere it has not
looked yet. The learned initial belief found by POMDP Coder has a narrower initial belief leading to
more efficient exploration.

Ours Uniform Direct LLM BC Tabular

Small-Cabinets  0.89 £ 0.09 (10) 0.68 +0.21 (10) 0.25+0.42 (3) 0.28+0.39 (4) 0.35+0.41 (5)
Large-Tables  0.73+0.08 (10)  0.40+0.26 (8) 0.15+0.32 (2) 0.13+£0.28 (2) 0.13+0.22 (3)

Table 1: Real-world experiment results on the small room domain in the top row of Figure @ and the
large room domain in the bottom row of Figure[d] The table shows the mean and standard deviation
of expected discounted reward (with v = 0.98) under the ground-truth reward model (1 if the agent is
holding the apple and O otherwise) along with the number of successes over ten runs in parenthesis.

that capture the dynamics, observation functions, initial state distributions, and reward structures of
complex environments. Experimental results on simulated MiniGrid domains and real-world robotics
scenarios demonstrate that our approach can significantly enhance sample efficiency and predictive
accuracy compared to traditional tabular learning methods, behavior cloning, or direct LLM planning.

Our findings further suggest that environments represented with structured scene graphs and other
rich input representations can be better modeled by learning a world model within which a reasoning
agent can operate, rather than by directly learning a policy that maps observation histories to actions
or by attempting to apply a language model in a zero-shot setting. This is particularly evident in large,
partially observable worlds where the belief space is considerably more complex and challenging
to cover with training examples than the space of states itself. The use of code to represent these
models is especially advantageous, as language models are adept at generating concise, executable
snippets that can be interpreted, debugged, and evaluated post-hoc, thus providing an additional layer
of transparency and robustness in model evaluation.

7 Limitations

Despite these promising results, several limitations remain. Our approach currently relies on human
expertise to design the underlying representation over which the world model is learned, which may
constrain its applicability to domains where such structured representations are not readily available.

Additionally, due to our post-hoc observability assumption, collecting datasets outside of a simulator
requires one of the following: human state annotation, complete robot exploration after the episode,
or third-party perspectives such as externally mounted cameras. In our real robot experiments, this
was not a challenge because the only state variability was in the position of the goal object, which is
fully determined upon completion of the task. More complex problems with multiple dimensions of
both task-relevant and task-irrelevant uncertainty would require more than just the agent’s perspective.



Alleviating this assumption may require jointly reasoning about the interrelated structure of the
constituent models, and is a valuable direction for future work.

Moreover, the particle filter employed in our current implementation does not scale well to arbitrarily
large state spaces. Future work may address this limitation by incorporating more advanced inference
techniques, such as factored particle filters or other scalable methods, to improve performance in
high-dimensional settings.

Another area for improvement is in the sometimes overly broad distributions proposed by the LLM
due to the coverage metric indirectly rewarding broader distributions. While this doesn’t make the
problem infeasible, it can lead to less efficient behavior. A direction for future work could be to use
inference methods on the hidden variables of the proposed probabilistic program to strike a balance
between the empirical distribution and the overly broad model distribution.

Lastly, our study focuses exclusively on discrete state and action spaces, despite robotics tasks
requiring search over continuous spaces such as grasps and poses. Extending our learning strategy
and adopting continuous-space POMDP solvers would broaden our framework to these domains,
enabling more complex manipulation and navigation tasks.

Ultimately, our work opens up exciting avenues for combining the strengths of probabilistic program-
ming and large language models to construct robust, interpretable models for decision-making under
uncertainty.
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A Code Release

The full code for this paper is available at this |GitHub repository.

B Model Learning

The learning algorithm follows the pseudocode in Algorithm 2] Firstly, in order to mitigate overfitting
to spurious patterns, we split the demonstration dataset into separate training and test sets (Line[3)).
Given the training set and a code-based interface that specifies how states, actions, and observations
are represented, we query an LLM to propose an initial code snippet for a given component (Line 4]
see Appendix [G.2]for prompt).

Algorithm 2 LearnModel
1: Input: demonstration dataset D, initial model 8y, budget IV, smoothing constant C'

2: Output: Learned model 6,y

3. Split D into Dyain, Drest

4: if 6 = () then 6y, < LLM Init using Dyrain > Appendix
5: coverage, Derrors — Eva1(9prev, Diests Dirain) > Discrepancy between model & empirical
6: beta <— Beta(1 + C - coverage, 1 + C - (1 — coverage))

7: M <= {(Oprev, beta, Derrors) }

8: while coverage < 1.0 and iterations < M do

9: (Onew, Beta(a, 8), Derrors) — argmax ,(p ~ beta) > Thompson sampling
10: 0w < LLM refinement using €new and Degrors > Appendix
11: coverage’, D, .« < Eval(bhew, Drests Dirain)
12: beta’ + Beta(a + C - coverage’, 8 + C - (1 — coverage’))
13:  insert (¢, beta’, coverage’) into M
14: end while
15: return argmax ,,(coverage)|[0] > Return the model with the best overall coverage

Following the initial candidate model proposal, we evaluate them against the empirical conditional
probability distributions observed in the demonstration data (Line [5). Determining if a particular
outcome is possible under an arbitrary code model is not analytically possible in most probabilistic
programming languages, including Pyro, so we use Monte Carlo approximation of the model density.
Any empirical sample that is never produced is treated as a failure and recorded in an error set Derors.
During evaluation, we estimate the model’s coverage on a combination of the training and testing
sets, evaluating models based on their ability to generalize beyond the training examples (Line[3).

We proceed with an iterative learning procedure that uses a Thompson sampling exploration strategy
to build out a tree of candidate models. In addition to a candidate code block, each node contains a
Beta distribution capturing uncertainty over its true coverage performance. Initially, the root node
contains the LLM’s first code proposal evaluated against the data (Line[7). At each iteration, we
select a node to expand using Thompson sampling: we sample from each node’s Beta distribution
and pick the node with the highest sampled value (Line [J).

The selected node is refined by prompting the LLM with its associated training set coverage mismatch
errors Derrors, encouraging the LLM to generate a corrected or improved version of the model (Line[I0}
see Appendix [G.3|for prompt). This produces a child node with updated code, which is re-evaluated
to obtain new train and test coverage statistics (Line[IT). The parent’s Beta distribution is updated
using a smoothing constant C' to encourage stable learning from finite samples, and the child node is
added to the tree (Line[T3).

This iterative process continues until the overall coverage across the empirical distribution is suffi-
ciently high, or until a pre-defined iteration budget is exhausted. Ultimately, we return the candidate
model with the highest empirical coverage among all nodes (Line [26).
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C Belief-Space Planner

Algorithm 3 BeliefPlanner
1: Input: initial belief by, models 7, O, R, horizon H, action cost ¢, hyper-parameters \, «v
2: Output: best first action a*
3: Open + {(bg, g=0)}, Closed+ @, Cost« {bg : 0}
4: while Open # () and iterations < H do
5: (b,g) < pop_lowest(Open)

6 if b is terminal then
7: continue
8 end if
9: if b € Closed then
10: continue
11: end if

12: add b to Closed
13: for each action a € A do

14: Draw n state particles s’ ~ 7 (s,a) for s ~ b
15: Draw observations o ~ O(s', a)

16: Form child belief b’ = Branch(b, a, 0)
17: 7+ Es o/ [R(s,a,s")]

18: pPrlo|bal, h< H®)

19: g —g—7—Nogp+ah+c

20: if b’ ¢ Cost or ¢’ < Cost[v'] then

21: Cost[b'] + ¢

22: insert (b', ¢') into Open

23: end if

24: end for

25: end while
26: return first action in the path to the node in Open U Closed with minimal g

Our online planning routine conducts forward search directly in belief space, determinizing the
stochastic dynamics to enable an A*-style expansion strategy that balances exploitation (reward) and
exploration (information gain). Algorithm 3] provides the complete procedure.

We begin by inserting the initial belief by into an open priority queue with zero cost-to-come and
initializing an empty closed set (Line [3). Each queue element stores the belief, its cumulative cost g,
and bookkeeping metadata such as depth. During each iteration (Line @), we pop the node with the
lowest priority value; if it is terminal or has already been expanded (i.e., in the closed set), we skip
further expansion (Lines [6HJ).

Otherwise, for every action a (Line E]) we draw next-state particles from the transition model 7
(Line and sample the corresponding observations through the observation model O (Line [I5)).
Conditioning on the sampled observation yields a child belief b’ (Line[16). We estimate the expected
reward 7 under R, the likelihood p of the observation, and the entropy h of b’ (Lines . These
statistics define the child’s cost

g/ =g — P )\lOg]ﬁ + O[}AL + COSt(CL), (3)

where \ and o trade off risk sensitivity and information gain (Line[T9). The child node is inserted into
the queue only if it is not yet discovered or has a lower cumulative cost than a previously seen version
(Line[20). The process continues until the queue is empty or a computational budget is exhausted.
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Finally, we return the first action in the path from by to the node with the minimum accumulated cost
(Line [26)), thereby maximizing the composite objective of long-term reward, low risk, and maximal
information gathering.

While this planner is similar in many ways to POUCT [Sunberg and Kochenderfer| (2017), it has the
additional feature that enables graph-based search rather than strictly tree-based search, which proved
computationally necessary for many of our larger MiniGrid problems. It is important to note that this
planner is not optimal, but it suffices for all of the problems we tested, and can easily be substituted
for other planning methods in the POMDP Coder framework.

D Minigrid Environment Details

In the empty environment, the agent is deterministically placed in the top left cell of a 5x5 grid
and must navigate to the green square in the bottom right. In the corners environment, the agent is
randomly positioned with an arbitrary orientation in a 10x10 grid while the green square appears
in a randomly selected corner. In the lava environment, the agent starts in the upper left corner of a
10x10 grid that features a randomly positioned column of lava with a gap forming a narrow passage
to the green square. In the unlock environment, the agent is randomly placed in the left room of a
two-room layout, must collect a randomly placed key to open a locked door, and then proceeds to the
green square fixed at the center of the right room. In the rooms environment, the agent is initialized
in the upper right-hand corner of a multi-room setting and must traverse through the rooms to reach
the green square randomly located in the bottom right room.

E API Interfaces

E.1 Tiger
from __future__ import annotations

import copy

import enum

import random

from dataclasses import dataclass

from typing import Any, Dict, List, Tuple

from uncertain_worms.structs import (
Environment,
Heuristic,
InitialModel,
Observation,
ObservationModel,
RewardModel,
State,
TransitionModel,

class TigerObservationEnum(enum.IntEnum) :
"""Possible observations the agent can recezve."""
HEAR_LEFT = O, HEAR_RIGHT = 1, NONE = 2

class TigerActions(enum.IntEnum) :
"""Jgent actions in the classic Tiger problem."""
OPEN_LEFT = 0O
OPEN_RIGHT = 1
LISTEN = 2
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@dataclass(frozen=True)
class TigerObservation(Observation):
""r"observation dataclass."""
obs: int # 0 = hear left, 1 = hear right, 2 = none

@dataclass(frozen=True)

class TigerState(State):
"nhinderlying hidden state: tiger behind LEFT (0) or RIGHT (1) door."""
tiger_location: int # 0 = left, 1 = right

E.2 Rock Sample

import copy

import enum

import random

from dataclasses import dataclass

from typing import Any, Dict, List, Tuple

from uncertain_worms.structs import (

Environment,

Heuristic,

InitialModel,

Observation,

ObservationModel,

RewardModel,

State,

TransitionModel,
)
B e
# Domain parameters (feel free to tweak)
#
NUM_ROCKS =2
GRID_SIZE =5

ROCK_POSITIONS = [(1, 1), (1, 4)] # len == NUM_ROCKS

class RockSampleActions(enum.IntEnum) :
"""They can be added directly to the state position."""
MOVE_NORTH =
MOVE_SOUTH
MOVE_EAST
MOVE_WEST =
SAMPLE
EXIT

o nn
g wWwN = O

Il
(o))

CHECK_ROCK_O
CHECK_ROCK_1

Il
3

CHECK_ACTIONS: List[int] = [
RockSampleActions.CHECK_ROCK_O,
RockSampleActions.CHECK_ROCK_1,



# Observation

@dataclass
class RockSampleObservation(Observation):
"""Observation after an action.

Always embeds the rover pose (z, y).
For sensor actions:
* ““rock_tdz " - index of inspected rock
* "“4s_good " - notisy reading (True = GOOD, False = BAD)
For all other actions both fields are " “None
mnn
x: int
y: int
rock_idx: int | None
is_good: bool | None

@dataclass
class RockSampleState(State):
"mEyll underlying state (fully observable to the simulator)."""
x: int
y: int
rocks: Tuple[bool, ...] # immutable tuple of good/bad flags

# --- Equality / RASRING -------- - - - oo
def __eq__(self, other: object) -> bool: # type:
— ignore[override]
return (
isinstance (other, RockSampleState)
and self.x == other.x
and self.y == other.y
and self.rocks == other.rocks
)

2 CopURTIENER cocoooocoocooo0cooo000o050C000000c000000500000500C000050000000
def at_rock(self) -> int | None:
"""Return the index of the rock at the agent's (m,y) or "~ “None~
try:
return ROCK_POSITIONS.index((self.x, self.y))
except ValueError:
return None

S ownnn

E.3 Minigrid

from dataclasses import dataclass
from enum import IntEnum
from typing import Any, List, Optional, Tuple

import numpy as np
from numpy.typing import NDArray

AGENT_DIR_TO_STR = {0: ">", 1: "y", 2: "<" 3: "~"}
DIR_TO_VEC = [

# Pointing right (positive X)

np.array((1, 0)),

# Down (positive Y)

np.array((0, 1)),

# Pointing left (negative X)

np.array((-1, 0)),
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# Up (negative Y)
np.array((0, -1)),

SEE_THROUGH_WALLS = True

class ObjectTypes(IntEnum) :
unseen = 0
empty = 1
wall = 2
open_door =
closed_door = 5

i

locked_door = 6
key = 7

ball = 8

box = 9

goal = 10

lava = 11

agent = 12

class Direction(IntEnum) :
facing_right = 0
facing_down 1
facing_left
facing_up =

I

w |

class Actions(IntEnum) :
left = 0 # Turn left
right = 1 # Turn right

forward = 2 # Move forward

pickup = 3 # Pick up an object

drop = 4 # Drop an object

toggle = 5 # Toggle/activate an object

done = 6 # Done completing the task
Q@dataclass

class MinigridObservation(Observation):
mnn
Args:
“tmage: field of wview in front of the agent.

‘agent_pos’: agent's position in the real world. It differs from the
— position

in the observation grid.
‘agent_dir : agent's direction in the real world. It differs from the
— direction

of the agent in the observation grid.

‘carrying ": what the agent is carrying at the moment.
nnn

image: NDArray[np.int8]
agent_pos: Tuple[int, int]
agent_dir: int

carrying: Optional[int] = None

@dataclass
class MinigridState(State):
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"""An agent exists in an indoor multi-room environment represented by a
grzd. nmnn

grid: NDArray[np.int8]
agent_pos: Tuple[int, int]
agent_dir: int

carrying: Optional[int]

Q@property
def front_pos(self) -> Tuplel[int, int]:
"""Get the position of the cell that is right in front of the agent."""

return (
np.array(self.agent_pos) + np.array(DIR_TO_VEC[self.agent_dir])
) .tolist ()

G@property
def width(self) -> int:
return self.grid.shape[0]

Q@property
def height(self) -> int:
return self.grid.shape[1]

def get_type_indices(self, type: int) -> List[Tuplelint, int]]:
idxs = np.where(self.grid == type) # Returns (row_indices, col_indices)
return list(zip(idxs[0], idxs[1])) # Combine row and column indices

def get_field_of_view(self, view_size: int) -> NDArray[np.int8]:
"""Returns the field of view in front of the agent.

DO NOT modify this function.

mwmun

# Get the extents of the square set of tiles visible to the agent
# Facing right
if self.agent_dir ==
topX = self.agent_pos[0]
topY = self.agent_pos[1] - view_size // 2
# Facing down
elif self.agent_dir ==
topX = self.agent_pos[0] - view_size // 2
topY = self.agent_pos[1]
# Facing left
elif self.agent_dir ==
topX = self.agent_pos[0] - view_size + 1
topY = self.agent_pos[1] - view_size // 2
# Facing up
elif self.agent_dir ==
topX = self.agent_pos[0] - view_size // 2
topY = self.agent_pos[1] - view_size + 1
else:
assert False, "invalid agent direction"

fov = np.full((view_size, view_size), ObjectTypes.wall,
< dtype=self.grid.dtype)

# Compute the overlapping region in the grid.
gx0 = max(topX, 0)

gy0 = max(topY, 0)

gxl = min(topX + view_size, self.grid.shapel[0])
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gyl = min(topY + view_size, self.grid.shapel[1])

# Determine where the overlapping region goes in the padded array.
px0 = max(0, -topX)
py0 = max(0, -topY)

# Copy the overlapping slice.

fov[px0 : px0 + (gx1l - gx0), py0 : pyO + (gyl - gy0)] = self.gridl
gx0:gx1, gy0:gyl

]

for _ in range(self.agent_dir + 1):
# Rotate left
fov = np.rot90(fov.T, k=1).T

agent_pos = (self.grid.shape[0] // 2, self.grid.shapel[1] - 1)
self .grid[agent_pos] = ObjectTypes.agent

return fov

E.4 Spot exploration

import copy

import logging

import math

import random

from dataclasses import dataclass, field
from enum import IntEnum

from typing import Any, List, Optional, Tuple

import numpy as np
from numpy.typing import NDArray
from scipy.spatial.transform import Rotation as R

import uncertain_worms.environments.spot.pb_utils as pbu
from uncertain_worms.environments.spot.spot_constants import *
from uncertain_worms.structs import Observation, State

log = logging.getLogger (__name__)

NAVIGATION_STEP_SIZE = 5 # size of each step in the navigation

FRUSTUM_DEPTH = 3.0

ROTATION_ANGLE = [i * np.pi / 4.0 for i in range(8)] # 4ngles for the robot to
— rotate

PICKUP_DISTANCE_THRESHOLD = 2.0 # Adjust this value as needed

class SpotActions(IntEnum) :
move_left = 0O
move_right =
move_forward 2
move_backward = 3
rotate_left = 4
rotate_right = 5
pickup = 6 # pick up the object if the object ©s in the camera's view

1

ARM_CONF = "ARM_STOW"

@dataclass
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class AABB:
lower: List[float, float, float]
upper: List[float, float, float]

def pose_to_se2(pose):
return [pose[0][0], pose[0][1], pbu.euler_from_quat(pose[1])[2]]

def se2_to_pose(se2):
return pbu.Pose(point=pbu.Point (x=se2[0], y=se2[1]),
— euler=pbu.Euler(yaw=se2[2]))

def transformation_matrix(

translation: NDArray[np.float64], quat: NDArray[np.float64]
) -> NDArray[np.float64]:

r = R.from_quat(quat)

rotation_matrix = r.as_matrix()

T = np.eye(4)

T[:3, :3] = rotation_matrix

T[:3, 3] = translation

return T

class SpotActions(IntEnum):
move_left = 0
move_right =
move_forward = 2
move_backward = 3
rotate_left = 4
rotate_right = 5
arm_stow = 6
arm_left = 7
arm_right = 8
arm_down = 9
pickup = 10 # pick up the object if the object is in the camera's view

1

@dataclass

class SceneObject:
name: str
location: List[int]
aabb: AABB = None

def __hash__(self) -> int:
return hash((self.name, tuple(self.location)))

def __eq__(self, other: Any) -> bool:
return hash(other) == hash(self)

def __repr__(self) -> str:
return (
'Scenelbject (name=""
+ str(self.name)
'" location='
str(self.location)
", aabb="
str(self.aabb)
|I)||

+ 4+ + + o+
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@dataclass
class SpotState(State):
body_location: List[
int
] # =z vozel indez, y vozel index, rotation index into ROTATION_ANGLE
occupancy_grid: OccupancyGrid
visibility_grid: VisibilityGrid
movable_objects: List[SceneObject] = field(default_factory=list)
fixed_objects: List[SceneObject] = field(default_factory=1list)
carry_object: Optional[SceneObject] = None
ons: List[Tuplel[str, str]] = field(
default_factory=list
) # what object is on what other object

def __repr__(self) -> str:
return f"SpotState(body_location={self.body_location},
< movable_objects={str([o for o in self.movable_objects])},
< carry_object={self.carry_object}, ons={self.ons}, fixed_objects={str([o
< for o in self.fixed_objects])})"

Q@property
def camera_pose(self):
return pbu.multiply(
se2_to_pose(self.occupancy_grid.to_world(self.body_location)),
CAMERA_POSES [ARM_CONF] ,

@dataclass
class SpotObservation(Observation) :
body_location: List[
int
] # z vozel indez, y vozel index, rotation index into ROTATION_ANGLE
visible_movable_objects: List[SceneObject] = field(default_factory=list)
carry_object: Optional[SceneObject] = None

def __repr__(self) -> str:
return f"SpotObservation(body_location={self.body_location},
— carry_object={self.carry_object}, visible_movable_objects={str([o for o
< in self.visible_movable_objects])})"

Q@property
def camera_pose(self):
return CAMERA_POSES [ARM_CONF]

class OccupancyGrid:
def check_collision(self, body_location: Tuple[int, int, int]) -> bool:
"""Returns the collision result for the given robot body location.”"""

def from_world(
self, world_state: Tuple[float, float, float]

) -> Tuple[int, int, int]:
""Converts a world state (z, y, theta) into a discrete occupancy grid
state (row, col, theta_indez)."""

def to_world(
self, occupancy_grid_state: Tuple[int, int, int]

) -> Tuple[float, float, float]:
"""Converts an occupancy grid state (row, col, theta_indexz) to world
coordinates. """
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Q@property
def grid_size(self) -> Tuplel[int, int]:

"""Beturns the size of the occupancy grid."""

class VisibilityGrid:

F

def from_world(

self, world_state: Tuple[float, float, float]

) -> Tuple[int, int, int]:

""iConverts a world coordinates (z, y, theta) into a discrete

visibility grid state (row, col, theta_indexz)."""

def to_world(self, grid_state: Tuple[int, int, int]) -> Tuple[float, float,

< float]:

"hConverts a vistbility grid state (row, col, theta_indez) to world

coordinates. """

def get_voxels_above_aabb(self, aabb: AABB) -> NDArray[np.int64]:
"""Returns the indices of wozels in the visibility grid whose centers

are directly above the given aabb.

IMPORTANT: You must use this function to get the location of a goal that is

— on top of a fized object.

mmn

Q@property

def grid_size(self) -> Tuple[int, int, int]:
"""Returns the size of the occupancy grid."""

Hyperparameters

Table [Hshows the hyperparameters used per domain for both planning and learning. The planning
hyperparameters (in grey) were tuned to work best for the ground truth models used in oracle. With
the exception of Thompson smoothing coefficient which was selected based on (2024),
the other hyperparameters were selected to be as large as possible under computational and budgetary

constraints.
Hyperparameter Classical MiniGrid Spot Robot
Action cost penalty 0.01 0.01 0.01
« (Entropy coefficient) 0.0 0.0 1.0
A (log-prob reward shaping) 0.1 0.1 0.1
Rollouts per stochastic model query 5 1 1
H (Max expansions) 50 5000 5000
N (Num initial particles), 50 10 10
Max particle rejuvenations, 2,500,00 500,000 25,000
M Max refinements 25 25 25
C Thompson smoothing 25 25 25
N D (# datapoints shown - initial, 5 5 5
NC (# conditions shown - refinement, 5 5 5
NS (# samples per condition - refinement, 5 5 5
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G Prompts

G.1 Function Templates

def initial_func(empty_state:MiniGridState):
mmnn
Input:
empty_state (MiniGridState): An empty state with only the walls filled into
— the grid
Returns:
state (MiniGridState): the initial state of the environment

mmn

raise NotImplementedError

def observation_func(state, action, empty_obs):

nnn

Args:
state (MiniGridState): the state of the environment
action (int): the previous action that was taken
empty_obs (MiniGridObservation): an empty observation that needs to be
— filled and returned

Returns:
obs (MiniGridObservation): observation of the agent

mwmn

raise NotImplementedError

def reward_func(state, action, next_state):
nmnn
Args:
state (MiniGridState): the state of the environment
action (int): the action to be ezecuted
next_state (MiniGridState): the next state of the environment
Returns:
reward (float): the reward of that state
done (bool): whether the episode is done

mmn

raise NotImplementedError

def transition_func(state, action):

mwmnn

Args:
state (MiniGridState): the state of the environment
action (int): action to be taken in state “state’
Returns:

new_state (MiniGridState): the new state of the environment
mnn

raise NotImplementedError

G.2 Initial Prompt
You are a robot exploring its environment.
Environment Description: {env_description}

Goal Description: {goal_description}
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Your goal is to model the {what_to_model}.

You need to implement the python code to model the world, as seen in the provided
— experiences.

Please follow the template to implement the code.

The code needs to be directly runnable {model_input} and return {model_output}.

Below are a few samples from the environment distribution. These are only samples
— from a larger distribution that your should model.

{exp}

Here is the template for the {model_name} function. Please implement
the reward function following the template. The code needs to be directly
runnable.

X4

{code_api}

{code_template}

e

Explain what you believe is the {what_to_model} in english.

Additionally, please implement code to model the logic of the world. Please
— implement the

code following the template. Only output the definition for ¢ {model_name} ¢.
You must implement the ¢ {model_name} ¢ function.

Create any helper function inside the scope of ¢ {model_name} ¢.

Do not create any helper function outside the scope of ¢ {model_name} °.

Do not output examples usage.

Do not create any new classes.

Do not rewrite existing classes.

Do not import any new modules from anywhere.

Do not overfit to the specific samples.

Put the ¢ {model_name} ¢ function in a python code block.

Implement any randomness with “pyro.sample”

G.3 Refinement Prompt

You are a robot exploring its environment.

{env_description}

Your goal is to model {what_to_model} of the world in python.

You have tried it before and came up with one partially correct solution, but it is
— not perfect.

The observed distribution disagrees with the generated model in several cases.
You need to improve your code to come closer to the true distribution.

Environment Description: {env_description}
Goal Description: {goal_description}

Here is a solution you came up with before.

{code_api}

{code}
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{experiences}

Explain what you believe is {what_to_model} in english, then improve your code to
— better model the true distribution.

Please implement the code for the following the template.
You must implement the ¢ {model_name} ¢ function.

The code needs to be directly runnable {model_input} and return {model_output}.

Do
Do
Do
Do
Do

not
not
not
not
not

output examples.

create any new classes.

rewrite existing classes.

import any new modules from anywhere.

list out specific indices that overfit to the examples, but include ranges.

Put the ¢ {model_name} ¢ function in a python code block.
Implement any randomness with “pyro.sample”

The experiences in the refinement prompt are structured as follows. First, we sample conditions
for which there is coverage less than 1. For example, in the transition model P(s;11]|s¢, at), we
search through the set of (s, a;) tuples in the database and we find the set of those tuples where the
distribution over (s;4.1) contains at least 1 element that can not be achieved by the LLM-generated
model. We select out NC of those conditions. Then, given those conditions, we select V.S samples
that were not covered by the model to show as examples to the LLM. An example template for a

single condition and an V.S = 3 is shown below. The values we used for NC, N S are in Table[E

Here are some samples from the real world that were impossible under your model
{condition} -> {dataset_outcome}
{condition} -> {dataset_outcome}
{condition} -> {dataset_outcome}

And here are some samples from your code under the same conditions
{condition} -> {model_outcome}
{condition} -> {model_outcome}
{condition} -> {model_outcome}

G.4 Direct LLM Baseline Prompt

You are a robot exploring its environment.

{env_description}

Your goal is to predict the next best action to take to reach the goal and maximize

— reward.

Here is the template for the reward function. Please implement
the reward function following the template. The code needs to be directly
runnable on the inputs of (state) and return (reward) in python.

1113

{code_api}

ccc

Here are some example rollouts from the environment

{exp}

Here is the current episode history for the task that you are doing right now
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{current_episode}

Output the next aciton in the form where you fill in <action-here> with the action
— that is best for reaching the goal and maximizing reward.
For example, your code will look like this:

next_action:int = 0

The action should be an integer with no additional code. Explan your reasoning in
— one sentence.

G.5 Runtime Statistics

Approach Tiger RockSample Empty Corners Lava Rooms Unlock

Offline Transition 2.00 £ 0.00 2.60 &£ 0.24 220 £ 0.20 2.00 &£ 0.00 2.00 & 0.00  2.60 &£ 0.24  4.60 £ 0.81
Online Transition 0.00 &£ 0.00  0.06 £ 0.06  0.00 & 0.00  0.00 £ 0.00 0.00 £ 0.00  0.00 &£ 0.00  0.40 & 0.15
Offline Reward 2.40 £ 0.24 11.80 £ 4.33  2.00 £ 0.00 2.00 £ 0.00 2.20 &£ 0.20  2.00 £ 0.00 ~ 2.20 £ 0.20
Online Reward 0.05 £ 0.05  0.05 £ 0.05  0.00 &= 0.00  0.00 £ 0.00 0.19 £ 0.09  0.00 & 0.00  0.00 & 0.00
Offline Observation 2.20 = 0.20 5.80 + 1.46  10.40 + 4.01 7.80 + 4.61 240 £ 0.24 17.25 + 5.71 15.00 £ 3.63
Online Observation  0.00 & 0.00  0.00 & 0.00  0.05 &£ 0.05 0.08 + 0.06 0.00 £ 0.00  0.28 & 0.17  0.05 & 0.05
Offline Initial 2.00 £ 0.00 2.60 £0.24  2.00 £ 0.00 2.80 £ 0.37 22.60 £ 3.40 1.75 £ 0.25  18.80 & 4.59
Online Initial 0.00 £ 0.00 0.02 £0.02 0.00 £ 0.00 0.17 +£0.09 0.86 +0.21 0.06 = 0.06 0.49 &+ 0.15

Table 2: The average and standard deviation of the number of nodes, or LLM-generated candidate
programs, sampled during the online and offline phases of model learning.

Approach Tiger RockSample Empty Corners Lava Rooms Unlock

Transition Train 1.00 £ 0.00 1.00 &£ 0.00 1.00 + 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
Transition Test 1.00 £ 0.00 1.00 & 0.00 1.00 + 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £+ 0.00 1.00 £ 0.00
Reward Train 1.00 £ 0.00 0.99 & 0.01 1.00 & 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
Reward Test 1.00 £ 0.00 0.99 &£ 0.01 1.00 & 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
Observation Train  1.00 £ 0.00 1.00 £ 0.00 0.92 £ 0.08 0.81 & 0.19 1.00 & 0.00 0.94 £ 0.06 0.94 £ 0.06
Observation Test ~ 1.00 £ 0.00 1.00 £ 0.00 0.92 & 0.08 0.88 & 0.12 1.00 & 0.00 0.93 £ 0.06 0.94 £ 0.06
Initial Train 1.00 £ 0.00 1.00 & 0.00 1.00 + 0.00 1.00 £ 0.00 0.68 £ 0.16 0.75 £ 0.25 0.88 &+ 0.12
Initial Test 1.00 £ 0.00 1.00 & 0.00 1.00 + 0.00 1.00 £ 0.00 0.56 £ 0.18 0.75 £ 0.25 0.24 £+ 0.19

Table 3: The average and standard deviation of coverages achieved after the offline model learning
step has completed running split into training and testing coverages.

H Example Rollout

Below is an example of a full rollout from the unlock minigrid environment for the version of our
method that includes both offline and online learning of the initial state distribution. This rollout is
only a single leaf node in the tree that is formed by Algorithm[2] This particular rollout required three
iterations to reach full coverage and did not require additional online learning iterations. We remove
duplicate code api definitions for clarity.

H.1 Iteration 0 Input

#define system
You are a robot exploring its environment.

Environment Description: Unlock door with key to reach the goal square
Goal Description:

Your goal is to model the the distribution of initial states
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You need to implement the python code to model the world, as seen in the provided
— experiences.

Please follow the template to implement the code.

The code needs to be directly runnable an empty state with the walls of the grid
— pre-filled and return a sample initial state.

Below are a few samples from the environment distribution. These are only samples
— from a larger distribution that your should model.

Output MinigridState:
agent_pos=(2, 3)
agent_dir=3
carrying=None

grid=[

[2, 2, 2, 2, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 7, 1, 2,1,
[2, 2, 2, 6, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 10, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 2, 2, 2, 2, 2,1,
]

Output MinigridState:
agent_pos=(1, 1)
agent_dir=2
carrying=None

grid=[

[2, 2, 2, 2, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 7, 1, 1, 2,1,
[2, 2, 2, 6, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1,10, 1, 2,1,
L2, 1, 1, 1, 1, 2,1,
[2, 2, 2, 2, 2, 2,1,
]

Output MinigridState:
agent_pos=(3, 2)
agent_dir=3
carrying=None

grid=[

[2, 2, 2, 2, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
L2, 7, 1, 1, 1, 2,1,
[2, 2, 2, 6, 2, 2,1,
L2, 1, 1, 1, 1, 2,1,
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4, 3)

3
None

Output MinigridState:

agent_pos
agent_dir
carrying

R N . T S N N N P N
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NN NN NN
I R R R I
N A doadg A
2,7,1,1,1,2,1,1,1,1,2,
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1, 4

2
None

Output MinigridState:

carrying

agent_pos
agent_dir

L N N . ST SN

Lo I s I e O s e O s e I s A e O s B |
NaNNNNNN NN
N A AN
N Ao dg =
2,7,1,1,1,2,1,1,1,1,2,

AN A A A ANA A A AN

Here is the template for the initial_func function. Please implement

the reward function following the template.

runnable.

The code needs to be directly

import annotations

ignore
future

# type:
from

e

from dataclasses import dataclass
from typing import Any, List, Optional, Tuple

from enum import IntEnum
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import numpy as np
from numpy.typing import NDArray

AGENT_DIR_TO_STR = {0: ">", 1: "y", 2: "<" 6 3: "~"}
DIR_TO_VEC = [

# Pointing right (positive X)

np.array((1, 0)),

# Down (positive Y)

np.array((0, 1)),

# Pointing left (negative X)

np.array((-1, 0)),

# Up (negative Y)

np.array((0, -1)),

SEE_THROUGH_WALLS = True

class ObjectTypes(IntEnum) :
unseen = 0

empty = 1

wall = 2
open_door = 4
closed_door = 5
locked_door = 6
key = 7

ball = 8

box = 9

goal = 10

lava = 11

agent = 12

class Direction(IntEnum):
facing_right = 0
facing_down = 1
facing_left = 2
facing_up = 3

class Actions(IntEnum) :
left = 0 # Turn left

right = 1 # Turn right

forward = 2 # Move forward

pickup = 3 # Pick up an object

drop = 4 # Drop an object

toggle = 5 # Toggle/activate an object
done = 6 # Done completing the task

@dataclass

class MinigridState(State):
"""An agent exists in an indoor multi-room environment represented by a
grid‘ nnn

grid: NDArray[np.int8]
agent_pos: Tuple[int, int]
agent_dir: int

carrying: Optional[int]

def __hash__(self) -> int:
return hash(
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tuple(self.agent_pos),
self.agent_dir,
self.carrying,
self.grid.tobytes(),

def __eq__(self, other: object) -> bool:
return (
isinstance(other, MinigridState)
and np.allclose(self.grid, other.grid)

and tuple(self.agent_pos) == tuple(other.agent_pos)
and self.agent_dir == other.agent_dir
and self.carrying == other.carrying
)
@property

def front_pos(self) -> Tuplel[int, int]:
"""Get the position of the cell that is right in front of the agent."""

return (
np.array(self.agent_pos) + np.array(DIR_TO_VEC[self.agent_dir])
) .tolist()

@property
def width(self) -> int:
return self.grid.shape[0]

Q@property
def height(self) -> int:
return self.grid.shape[1]

def get_type_indices(self, type: int) -> List[Tuple[int, int]]:
idxs = np.where(self.grid == type) # Returns (row_indices, col_indices)
return list(zip(idxs[0], idxs[1])) # Combine row and column indices

def get_field_of_view(self, view_size: int) -> NDArray[np.int8]:
"""Returns the field of view in front of the agent.

DO NOT modify this function.

# Get the extents of the square set of tiles visible to the agent
# Facing right
if self.agent_dir == O:
topX = self.agent_pos[0]
topY = self.agent_pos[1] - view_size // 2
# Facing down
elif self.agent_dir ==
topX = self.agent_pos[0] - view_size // 2
topY = self.agent_pos[1]
# Facing left
elif self.agent_dir ==
topX = self.agent_pos[0] - view_size + 1
topY = self.agent_pos[1] - view_size // 2
# Facing up
elif self.agent_dir ==
topX = self.agent_pos[0] - view_size // 2
topY = self.agent_pos[1] - view_size + 1
else:
assert False, "invalid agent direction"
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fov = np.full((view_size, view_size), ObjectTypes.wall,
< dtype=self.grid.dtype)

# Compute the overlapping region in the grid.
gx0 = max(topX, 0)

gy0 = max(topY, 0)

gxl = min(topX + view_size, self.grid.shape[0])
gyl = min(topY + view_size, self.grid.shape[1])

# Determine where the overlapping region goes in the padded array.
px0 = max(0, -topX)
py0 = max(0, -topY)

# Copy the overlapping slice.

fov[px0 : px0 + (gxl - gx0), pyO : pyO + (gyl - gy0)] = self.grid[
gx0:gx1, gy0:gyl

]

for _ in range(self.agent_dir + 1):
# Rotate left
fov = np.rot90(fov.T, k=1).T

return fov

def __repr__(self) -> str:
"""Returns a string representation of the grid with agent position."""

print_agent = False

print_state = "agent_pos={}\n".format (self.agent_pos)
print_state += "agent_dir={}\n".format(self.agent_dir)
print_state += "carrying={}\n".format (self.carrying)
print_state += "grid=[\n"

for x in range(self.width):

row = " [II
for y in range(self.height):
if [x, y] == list(self.agent_pos) and print_agent:
row += f" {AGENT_DIR_TO_STR[self.agent_dir]}, "
else:

row += f"{self.grid[x, yl:2d}, "
row += "],\n"
print_state += row
print_state += "]\n"
return print_state

@dataclass

class MinigridObservation(Observation):
nnn
Represents the non-centered field of view of the agent.
The agent is NOT in the center of the observation grid.
Observation grids are always square-sizes (i.e. 3x3, 5x5, 7x7).
The width and height of the observation grid are called view size.
The agent is ALWAYS in the observation and ALWAYS at the same spot
in the observation “image”, independent of the observation.
The experiences are printed through the ~__repr__" function.
Args:

“image”: field of view in front of the agent.

“agent_pos”: agent's position in the real world. It differs from the
— position
in the observation grid.
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“agent_dir”: agent's direction in the real world. It differs from the
— direction
of the agent in the observation grid.

“carrying : what the agent is carrying at the moment.
nnn

image: NDArray[np.int8]
agent_pos: Tuplel[int, int]
agent_dir: int

carrying: Optional[int] = None

def __eq__(self, other: object) -> bool:
return (
isinstance(other, MinigridObservation)
and np.allclose(self.image, other.image)
and tuple(self.agent_pos) == tuple(other.agent_pos)
and self.agent_dir == other.agent_dir
and self.carrying == other.carrying

def __hash__(self) -> int:
return hash(
(self.image.tobytes(), tuple(self.agent_pos), self.agent_dir,
— self.carrying)

def __repr__(self) -> str:
return str(
MinigridState(
self.image,
agent_pos=self.agent_pos,
agent_dir=self.agent_dir,
carrying=self.carrying,

def initial_func(empty_state:MinigridState):
nnn
Input:
empty_state (MinigridState): An empty state with only the walls filled into
— the grid
Returns:
state (MinigridState): the initial state of the environment

raise NotImplementedError

Explain what you believe is the the distribution of initial states in english.
Additionally, please implement code to model the logic of the world. Please

— implement the

code following the template. Only output the definition for
You must implement the ¢ initial_func ¢ function.
Create any helper function inside the scope of ¢
Do not create any helper function outside the scope of
Do not output examples usage.

Do not create any new classes.

Do not rewrite existing classes.

Do not import any new modules from anywhere.

Do not overfit to the specific samples.

Put the ¢ initial_func ¢ function in a python code block.

¢ initial_func ¢.

initial_func ¢.

¢ initial_func ¢.
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H.2 Iteration 0 OQutput

The distribution of initial states describes an environment where the agent is
placed on a grid surrounded predominantly by walls. There is a locked door that
blocks the path, and a key is placed somewhere in the grid for the agent to
collect. The initial states vary primarily in the starting position and
direction of the agent, and the position of the key. The door is initially
locked, and the agent must pick up the key before it can pass through the door
to reach the goal.

(AT T

The observed patterns in the sample outputs:

1. The grid is 11x6 in size with outer walls filling the entire perimeter,
«» represented by '2'.
2. Within the grid:
- The locked door is always at position (5,3), represented by '6'.
- The goal is always at position (8,3), represented by '10'.
- The goal is behind the locked door.
- The key can be at any of the positions marked as '7'. Mainly, rows containing
— the agent.
3. The agent's initial position and direction vary but are within the traversable
— area within the outer walls.
4. The agent is always initially not carrying any object (carrying=None).

The below code “initial_func™ aims to reflect this analysis by placing the agent,
— door, goal, and key consistent with the described logic.
T “python
def initial_func(empty_state: MinigridState):
nnn
Input:
empty_state (MinigridState): An empty state with only the walls filled into
— the grid
Returns:

state (MinigridState): the initial state of the environment
nnn

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 2, 2, 6, 2, 21,
[2, 1, 1, 1, 1, 2],
2, 1, 1, 1, 1, 21,
[2, 1, 1, 10, 1, 2],
2, 1, 1, 1, 1, 21,
[2, 2, 2, 2, 2, 21,

], dtype=np.int8)

# Random choice for the agent's position within the traversable area (ensuring
< mno overlapping with door and goal)
possible_initial_positions = [(1, 1), (1, 2), (1, 3), (1, 4),
2, 1, 2, 20, (2, 3), (2, D,
@3, 1, @, 2), @&, 3), @G, 4,
4, 1), 4, 3]
agent_pos =
< possible_initial_positions[np.random.choice(len(possible_initial_positions))]

# Random choice for the agent's initial direction (facing one of four possible
— directions)

34



agent_dir = np.random.choice([0, 1, 2, 3])

# Place the key randomly in one of the valid initial positiomns
key_position_options = [(1, 1), (1, 2), (1, 3), (1, 4),

(2, 1, (2, 2), (2, 3), (2, 9,

@, 1, @, 2), @, 3, @, D,

4, 1, 4, 3]

key_position = key_position_options[np.random.choice(len(key_position_options))]

grid[key_position] = ObjectTypes.key

# Return the initial state with the agent randomly positioned on the grid,
— initially carrying nothing
return MinigridState(

grid=grid,

agent_pos=agent_pos,

agent_dir=agent_dir,

carrying=None

H.3 Iteration 1 Input

#define system

You are a robot exploring its environment.
Unlock door with key to reach the goal square

Your goal is to model the distribution of initial states of the world in python.

You have tried it before and came up with one partially correct solution, but it is

— not perfect.

The observed distribution disagrees with the generated model in several cases.
You need to improve your code to come closer to the true distribution.

Environment Description: Unlock door with key to reach the goal square
Goal Description:

Here is a solution you came up with before.

{code_api}

def initial_func(empty_state: MinigridState):

Input:

empty_state (MinigridState): An empty state with only the walls filled into

— the grid
Returns:

state (MinigridState): the initial state of the environment
nnn

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 21,
2, 1, 1, 1, 1, 21,
[2, 1, 1, 1, 1, 2],
2, 1,1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 2, 2, 6, 2, 21,
2, 1, 1, 1, 1, 21,
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(2, 1,1, 1, 1, 2],
(2, 1, 1, 10, 1, 2],
2, 1,1, 1, 1, 2],

(2, 2, 2, 2, 2, 2],
], dtype=np.int8)

# Random choice for the agent's position within the traversable area (ensuring
— mno overlapping with door and goal)
possible_initial_positions = [(1, 1), (1, 2), (1, 3), (1, 4),
2, 1, (2, 2), 2, 3), (2, 4,
3, 1, @&, 2), @, 3, @, D,
(4, 1, 4, 3]
agent_pos =
— possible_initial_positions[np.random.choice(len(possible_initial_positions))]

# Random choice for the agent's initial direction (facing one of four possible
— directions)
agent_dir = np.random.choice([0, 1, 2, 3])

# Place the key randomly in one of the valid initial positioms
key_position_options = [(1, 1), (1, 2), (1, 3), (1, 4),

2, 1, (2, 2), (2, 3), (2, D,

3, 1, @3, 2), @B, 3), @G, 4,

(4, 1, 4, 3]
key_position = key_position_options[np.random.choice(len(key_position_options))]
grid[key_position] = ObjectTypes.key

# Return the initial state with the agent randomly positioned on the grid,
— 1nitially carrying nothing
return MinigridState(

grid=grid,

agent_pos=agent_pos,

agent_dir=agent_dir,

carrying=None

Here are some samples from the real world that were impossible under your model
Output MinigridState:

agent_pos=(1, 1)

agent_dir=2

carrying=None

grid=[

[2, 2, 2, 2, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[z, 1, 7, 1, 1, 2,1,
[2, 2, 2, 6, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 10, 1, 2,1,
L2, 1, 1, 1, 1, 2,1,
[2, 2, 2, 2, 2, 2,1,
]

And here are some samples from your code under the same conditions
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1, 3)

1
None

Output MinigridState:

agent_pos
agent_dir
carrying
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NaNNNNNN NN
Nedd AN o
ZLLLL&LL&LL
ZLLKLZLLLLZ

AN A AN AN

@3, 3

1
None

Output MinigridState:

agent_pos
agent_dir
carrying

R N . T S N N NP N

L I e Y e I e B e e N e T o Y e I s B e |
NaNNdNN NN NN
I R R o |
N Ao a0
LLLLLLLLLLZ

AN A1 AN A A AN

1, 2)

1
None

Output MinigridState:

agent_pos
agent_dir
carrying

R N . T S N N P NN
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NaNNNNNN NN
N AN oo
%LLLL&LL&LZ
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1, 2)

Output MinigridState:

agent_pos
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agent_dir=2
carrying=None

grid=[

“ e

2:

[PV

NNNNDNDNDNDNDNDN

2, 2, 2, 2, 2,1,
1, 1, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
7, 1, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
2, 2, 6, 2, 2,1,
i, 1, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
i, 1, 10, 1, 2,1,
1, 1, 1, 1, 2,1,
2, 2, 2, 2, 2,1,

Output MinigridState:
agent_pos=(2, 1)
agent_dir=1
carrying=None

grid=[

“ AP

2,

“ v .

NDNDNDNNDDNDNDNDNDDN

™

2, 2, 2, 2, 2,1,
i, 7, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
2, 2, 6, 2, 2,1,
1, 1, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
i, 1, 10, 1, 2,1,
1, 1, 1, 1, 2,1,
2, 2, 2, 2, 2,1,

Explain what you believe is the distribution of initial states in english, then
improve your code to better model the true distribution.

—

Please implement the code for the following the template.

You must implement the

¢ initial_func ¢ function.

The code needs to be directly runnable an empty state with the walls of the grid
— pre-filled and return a sample initial state.

Do
Do
Do
Do
Do

not
not
not
not
not

output examples.

create any new classes.

rewrite existing classes.

import any new modules from anywhere.

list out specific indices that overfit to the examples, but include ranges.

Put the ¢ initial_func ¢ function in a python code block.
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H.4 Iteration 1 OQutput

The distribution of initial states in this environment should consider the grid's
layout and the constraints on various object placements. The initial state
should not only randomly position the agent within specific traversable tiles,
but it should also place the key within valid tiles, excluding the agent's
initial position. My previous implementation missed this exclusion condition.
The initial world state should allow the key to be anywhere in the agent's
reachable area, except where the agent itself is positioned.

L8 L8

Below is the improved code addressing the observed discrepancies:
* T “python
def initial_func(empty_state: MinigridState):
nnn
Input:
empty_state (MinigridState): An empty state with only the walls filled into
— the grid
Returns:

state (MinigridState): the initial state of the environment
nnn

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 2, 2, 6, 2, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 1, 1, 10, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 2, 2, 2, 2, 21,

1, dtype=np.int8)

# Generate possible positions for the agent and key

possible_positions = [(x, y) for x in range(l, 5) for y in range(1l, 5)]
possible_positions.remove((4, 2)) # Remove fixed key position for example
— compatibility

# Randomly choose the agent's position
agent_pos = possible_positions[np.random.choice(len(possible_positions))]

# If the agent's position overlaps with the key's recognizable positions, choose
— again for the key

key_position_options = [pos for pos in possible_positions if pos != agent_pos]
key_position = key_position_options[np.random.choice(len(key_position_options))]
grid[key_position] = ObjectTypes.key

# Random choice for the agent's initial direction (facing one of four possible
— directions)
agent_dir = np.random.choice([0, 1, 2, 3])

# Return the initial state with the agent randomly positioned on the grid,
— initially carrying nothing
return MinigridState(

grid=grid,

agent_pos=agent_pos,

agent_dir=agent_dir,

carrying=None
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This code improves on the initial model by correctly simulating the distribution of
— 1initial states, ensuring that the key is placed at a viable location in the
< environment, distinct from the agent's initial position.

H.5 Iteration 2 Input

#define system
You are a robot exploring its environment.

Unlock door with key to reach the goal square
Your goal is to model the distribution of initial states of the world in python.

You have tried it before and came up with one partially correct solution, but it is
— not perfect.

The observed distribution disagrees with the generated model in several cases.
You need to improve your code to come closer to the true distribution.

Environment Description: Unlock door with key to reach the goal square
Goal Description:

Here is a solution you came up with before.

{code_api}

def initial_func(empty_state: MinigridState):
nnn
Input:
empty_state (MinigridState): An empty state with only the walls filled into
— the grid
Returns:

state (MinigridState): the initial state of the environment
nnn

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 21,
[2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 21,
[2, 2, 2, 6, 2, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 1, 1, 10, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 2, 2, 2, 2, 21,

], dtype=np.int8)

# Generate possible positions for the agent and key

possible_positions = [(x, y) for x in range(l, 5) for y in range(l, 5)]
possible_positions.remove((4, 2)) # Remove fixed key position for example
— compatibility

# Randomly choose the agent's position
agent_pos = possible_positions[np.random.choice(len(possible_positions))]

# If the agent's position overlaps with the key's recognizable positions, choose
— again for the key
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key_position_options = [pos for pos in possible_positions if pos != agent_pos]
key_position = key_position_options[np.random.choice(len(key_position_options))]
grid[key_position] = ObjectTypes.key

# Random choice for the agent's initial direction (facing one of four possible
— directions)
agent_dir = np.random.choice([0, 1, 2, 3])

# Return the initial state with the agent randomly positioned on the grid,
— 1nitially carrying nothing
return MinigridState(

grid=grid,

agent_pos=agent_pos,

agent_dir=agent_dir,

carrying=None

)

are some samples from the real world that were impossible under your model

ut MinigridState:

t_pos=(1, 1)

t_dir=2

carrying=None

=
2, 2, 2, 2, 2,1,
i, 1, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
1, 7, 1, 1, 2,1,
2, 2, 6, 2, 2,1,
1, 1, 1, 1, 2,1,
1, 1, 1, 1, 2,1,
i, 1, 10, 1, 2,1,
1, 1, 1, 1, 2,1,
2, 2, 2, 2, 2,1,

™

“ AP
NDNNDNDNDNDNDDNDNDNDDN

And here are some samples from your code under the same conditions
Output MinigridState:

agent_pos=(2, 2)

agent_dir=1

carrying=None

grid=[

[2, 2, 2, 2, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
L2, 7, 1, 1, 1, 2,1,
L2, 1, 1, 1, 1, 2,1,
L2, 1, 1, 1, 1, 2,1,
[2, 2, 2, 6, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1,10, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 2, 2, 2, 2, 2,1,
]
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Output MinigridState:

=(4, 1)
2
None

agent_pos

agent_dir
carrying
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Output MinigridState:

=(3, 2)
1
None

agent_pos

agent_dir
carrying
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Output MinigridState:

=(2, 1)
1
None

agent_pos

agent_dir
carrying
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L T e W e W e e I e T s B e W e W e B e |
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N AN dod a0
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Output MinigridState:
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agent_pos=(4, 4)
agent_dir=0
carrying=None

grid=[

[2, 2, 2, 2, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 7, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 2, 2, 6, 2, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 1, 1, 10, 1, 2,1,
[2, 1, 1, 1, 1, 2,1,
[2, 2, 2, 2, 2, 2,1,
]

Explain what you believe is the distribution of initial states in english, then
— 1improve your code to better model the true distribution.

Please implement the code for the following the template.
You must implement the ¢ initial_func ¢ function.

The code needs to be directly runnable an empty state with the walls of the grid
— pre-filled and return a sample initial state.

Do not output examples.

Do not create any new classes.

Do not rewrite existing classes.

Do not import any new modules from anywhere.

Do not list out specific indices that overfit to the examples, but include ranges.
Put the ¢ initial_func ¢ function in a python code block.

H.6 Iteration 2 Output

#define system
You are a robot exploring its environment.

Unlock door with key to reach the goal square
Your goal is to model the distribution of initial states of the world in python.

You have tried it before and came up with one partially correct solution, but it is
— not perfect.

The observed distribution disagrees with the generated model in several cases.
You need to improve your code to come closer to the true distribution.

Environment Description: Unlock door with key to reach the goal square
Goal Description:

Here is a solution you came up with before.

{code_api}
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def initial_func(empty_state: MinigridState):
nnn
Input:
empty_state (MinigridState): An empty state with only the walls filled into
— the grid
Returns:

state (MinigridState): the initial state of the environment
nnn

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 2, 2, 6, 2, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 1, 1, 10, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 2, 2, 2, 2, 21,

1, dtype=np.int8)

# Generate possible positions for the agent and key

possible_positions = [(x, y) for x in range(l, 5) for y in range(1l, 5)]
possible_positions.remove((4, 2)) # Remove fixed key position for example
— compatibility

# Randomly choose the agent's position
agent_pos = possible_positions[np.random.choice(len(possible_positions))]

# If the agent's position overlaps with the key's recognizable positions, choose
— again for the key

key_position_options = [pos for pos in possible_positions if pos != agent_pos]
key_position = key_position_options[np.random.choice(len(key_position_options))]
grid[key_position] = ObjectTypes.key

# Random choice for the agent's initial direction (facing one of four possible
— directions)
agent_dir = np.random.choice([0, 1, 2, 3])

# Return the initial state with the agent randomly positioned on the grid,
— initially carrying nothing
return MinigridState(

grid=grid,

agent_pos=agent_pos,

agent_dir=agent_dir,

carrying=None

Here are some samples from the real world that were impossible under your model
Output MinigridState:
agent_pos=(1, 1)
agent_dir=2
carrying=None

grid=[

(2, 2, 2, 2, 2, 2
[2, 1, 1, 1, 1, 2,1,
2, 1, 1, 1, 1, 2
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And here are some samples from your code under the same conditions

Output MinigridState:

=(2, 2)
1
None

agent_pos

agent_dir

carrying=

grid

N

N
—
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Output MinigridState:

=(4, 1)
2
None

agent_pos

agent_dir

carrying

Output MinigridState:

=(3, 2)
1
None

agent_pos

agent_dir

carrying

[

grid
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Output MinigridState:

=(2, 1)
1
None

agent_pos

agent_dir

carrying

C

grid
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Output MinigridState:

=(4, 4)
0
None

agent_pos

agent_dir

carrying

in english, then

Explain what you believe is the distribution of initial states

improve your code to better model the true distribution.

—

Please implement the code for the following the template.

¢ function.

initial_func

You must implement the ¢

The code needs to be directly runnable an empty state with the walls of the grid

— pre-filled and return a sample initial state.
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Do
Do
Do
Do
Do
Put

not output examples.

not create any new classes.

not rewrite existing classes.

not import any new modules from anywhere.

not list out specific indices that overfit to the examples, but include ranges.
the ¢ initial_func ¢ function in a python code block.

H.7 Iteration 2 Output

[0]

R A A =

Her

def

initial distribution of states in the environment involves a grid with walls
enclosing the playing area and a locked door blocking access to the goal. Inside
the grid, the agent and the key are randomly placed, with the stipulation that
they don't overlap. The agent's position is chosen randomly from the walkable
area within the grid, and its facing direction can be any one of the four
cardinal directions (right, down, left, up). The key's position is also selected
randomly but must be different from the agent's position.

e's the improved code to better model this distribution:

python
initial_func(empty_state: MinigridState) -> MinigridState:
nnn
Input:
empty_state (MinigridState): An empty state with only the walls filled into
— the grid
Returns:

state (MinigridState): the initial state of the environment
nnn

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
2, 1,1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 2, 2, 6, 2, 21,
2, 1, 1, 1, 1, 21,
2, 1, 1, 1, 1, 21,
[2, 1, 1, 10, 1, 21,
2, 1, 1, 1, 1, 21,
2, 2, 2, 2, 2, 21,

], dtype=np.int8)

# Generate possible positions for the agent and key
possible_agent_positions = [(x, y) for x in range(1, 5) for y in range(1, 5)]

# Randomly choose the agent's position
agent_pos =
< possible_agent_positions[np.random.choice(len(possible_agent_positions))]

# Generate possible positions for the key (must not overlap with agent)
possible_key_positions = [(x, y) for x in range(l, 5) for y in range(l, 5) if
— (x, y) != agent_pos]

# Randomly choose the key's position
key_pos = possible_key_positions[np.random.choice(len(possible_key_positions))]

grid[key_pos] = ObjectTypes.key

# Random choice for the agent's initial direction (facing one of four possible
— directions)
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agent_dir = np.random.choice([0, 1, 2, 3])

# Return the initial state with the agent randomly positioned on the grid,
— initially carrying nothing
return MinigridState(

grid=grid,

agent_pos=agent_pos,

agent_dir=agent_dir,

carrying=None
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