
LLM-Guided Probabilistic Program Induction for
POMDP Model Estimation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Partially Observable Markov Decision Processes (POMDPs) model decision mak-1

ing under uncertainty. While there are many approaches to approximately solving2

POMDPs, we aim to address the problem of learning such models. In particular,3

we are interested in a subclass of POMDPs wherein the components of the model,4

including the observation function, reward function, transition function, and initial5

state distribution function, can be modeled as low-complexity probabilistic graphi-6

cal models in the form of a short probabilistic program. Our strategy to learn these7

programs uses an LLM as a prior, generating candidate probabilistic programs that8

are then tested against the empirical distribution and adjusted through feedback.9

We experiment on a number of classical toy POMDP problems, simulated Mini-10

Grid domains, and two real mobile-base robotics search domains involving partial11

observability. Our results show that using an LLM to guide in the construction12

of a low-complexity POMDP model can be more effective than tabular POMDP13

learning, behavior cloning, or direct LLM planning.14

1 Introduction15

Decision making under uncertainty is a central challenge in robotics, autonomous systems, and16

artificial intelligence more broadly. Partially Observable Markov Decision Processes (POMDPs)17

provide a principled framework for modeling and solving such problems by explicitly representing18

uncertainty in state perception, transitions, and rewards. Many prior works have used the POMDP19

formulation to solve real-world problems such as intention-aware decision-making for autonomous20

vehicles Song et al. (2016), collaborative control of smart assistive wheelchairs Ghorbel et al. (2018),21

robotic manipulation in cluttered environments Pajarinen and Kyrki (2017), and generalized object22

search Zheng et al. (2023). Despite their conceptual clarity, practical application of POMDPs is23

bottlenecked by difficulties in specifying accurate models of environments, which requires careful24

engineering and a thorough understanding of the theory and available solvers.25

In this work, we address the critical challenge of learning interpretable, low-complexity POMDP26

models directly from data. We specifically target a class of POMDPs whose components, namely27

the observation function, reward function, transition dynamics, and initial state distribution, can be28

succinctly represented as probabilistic graphical models encoded by short probabilistic programs.29

To efficiently identify these programs, we leverage recent advancements in Large Language Models30

(LLMs) to serve as informative priors, generating candidate probabilistic programs. These candidates31

are evaluated against empirical observations and iteratively refined through LLM-generated feedback.32

We evaluate our approach across several domains including classical POMDP problems, minigrid33

navigation and manipulation problems, and a real-world robotics setting involving a mobile-base robot34

searching for a target object. Our experimental results demonstrate that guiding model construction35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

with an LLM significantly enhances sample efficiency compared to traditional tabular model or36

behavior learning methods and achieves greater accuracy than directly querying an LLM.37

2 Related Work38

Learning world models for partially observable decision-making is a form of model-based rein-39

forcement learning Moerland et al. (2020), for which there are many methods. In this section, we40

focus on methods that emphasize extreme data efficiency through the use of explicit models and41

representations, such as probabilistic programs, that facilitate efficient learning. Additionally, we42

discuss methods that use LLMs to synthesize and refine these models, enabling the integration of43

human priors and domain-specific constraints to create world models for downstream solvers.44

POMDP Model Learning A substantial body of research has addressed the challenge of learning45

Partially Observable Markov Decision Process (POMDP) models from experience. For example,46

Mossel and Roch Mossel and Roch (2005) provide an average-case complexity result showing that47

estimating the parameters of certain Hidden Markov Models, an essential subproblem in POMDP48

learning, is computationally intractable in general. Despite these challenges, several approaches have49

made significant progress by introducing tractability under specific assumptions.50

Bayesian methods, such as Bayes-Adaptive POMDPs Ross et al. (2007), incorporate model un-51

certainty directly into decision-making by unifying model learning, information gathering, and52

exploitation. This, however, increases the overall complexity of the POMDP. In contrast, spectral53

techniques like Predictive State Representations (PSRs) Boots et al. (2009) offer computational54

efficiency by bypassing full Bayesian inference, although they require strong structural assumptions55

and extensive exploratory data.56

Recent work on optimism-based exploration algorithms has yielded theoretical guarantees for efficient57

learning in specific POMDP subclasses, even though these methods can be challenging to apply58

directly to real-world, complex domains Jin et al. (2020). Additionally, apprenticeship learning59

approaches estimate POMDP parameters by leveraging expert demonstrations, assuming that expert60

behavior encapsulates informative state-transition dynamics Makino and Takeuchi (2012). Such61

methods help reduce the burden of exploration but are sensitive to the quality of the expert demon-62

strations. In dialogue systems, for instance, these techniques have successfully learned user models63

without relying on manual annotations Thomson et al. (2010).64

Probabilistic Program Induction. Probabilistic programming provides a powerful framework65

for modeling complex systems using concise, symbolic representations Bingham et al. (2018);66

Cusumano-Towner et al. (2019); Goodman et al. (2012). Several works in probabilistic program67

induction have demonstrated that such representations can lead to markedly improved data efficiency68

and enable few-shot learning, in stark contrast to more data-intensive conventional methods Ellis69

et al. (2020); Lake et al. (2015). Nonetheless, the vast search space inherent to probabilistic programs70

can be a major computational bottleneck. Recent advances have attempted to address this issue by71

integrating language models with probabilistic programming, thereby infusing human priors into the72

model discovery process Li et al. (2024); Wong et al. (2023); Grand et al. (2024).73

LLM Model Learning for Decision-Making. The application of large language models (LLMs)74

to world-modeling for decision-making is an emerging and rapidly evolving area. Prior work has75

primarily focused on fully observable settings, where transition dynamics and reward structures76

are represented using frameworks such as Planning Domain Definition Language (PDDL) or code-77

based models Liang et al. (2025); Tang et al. (2024). Other approaches have utilized code-based78

representations as constraints or as part of optimization frameworks Curtis et al. (2024); Hao et al.79

(2024); Ye et al. (2024). To our knowledge, our work is the first to extend these techniques to the80

POMDP setting, thereby addressing the additional complexities introduced by partial observability.81

3 Background82

3.1 Partially Observable Markov Decision Processes83

Partially Observable Markov Decision Processes (POMDPs) provide a principled framework for se-84

quential decision making under uncertainty. A POMDP is defined by the tuple (S,A,O, T ,Z,R, γ),85

where S, A, and O denote the state, action, and observation spaces, respectively. In this work we86

2

Figure 1: An architecture diagram for our POMDP coder method

assume all these spaces are discrete, but the POMDP formulation supports continuous spaces in87

general. T (st+1 | st, at) indicates the distribution over next states expected when taking action at88

in state st. The observation model Z(ot+1 | st+1, at) represents the distribution over observations89

expected when executing action at resulting in a subsequent state st+1. R(st, at, st+1) is the reward90

function. Lastly, γ ∈ (0, 1) is the discount which weighs the value of current over future rewards.91

Since the agent does not have direct access to the true state st, it maintains a belief bt(s), or a92

probability distribution over possible states, which must be updated for replanning after each action93

is taken and new observation received. Given an action and observation, a belief can be updated94

via particle filtering Thrun et al. (2005). We use particle filtering as our belief-updating mechanism95

across all domains.96

The objective of a POMDP is to find a policy π that maximizes the expected discounted reward:97

max
π

Eb0,π

 ∞∑
t=0

γt
∑
s∈S

bt(s)
∑

st+1∈S
T (st+1 | s, at)R(s, at, st+1)

 (1)

To illustrate the POMDP formulation and serve as a running example, consider the classic Tiger98

problem Kaelbling et al. (1998). An agent faces two doors: one hides a tiger, the other a treasure. The99

true state s consisting of the the tiger’s location is hidden. The agent can listen to receive a noisy100

observation o of which door the tiger is behind, or open a door to gain a reward or incur a penalty.101

An ideal policy is to wait long enough to be confident in the tiger’s location before opening the door102

with the treasure.103

3.2 Probabilistic Programs104

Probabilistic programming offers an expressive and concise way to represent complex probabilistic105

models as executable code. In our work, each component of the POMDP including the initial106

state model, transition dynamics, observation function, and reward structure is encoded as a short107

probabilistic program. We leverage Pyro Bingham et al. (2018), a flexible probabilistic programming108

framework built on Python, to specify these models. Pyro enables us to define generative models109

with inherent stochastic behavior. In our tiger problem example, the below implementation would be110

a correct probabilistic program for the observation model.111

def tiger_observation_func(state: TigerState, act: TigerActions):
if act != TigerActions.LISTEN:

return TigerObservation(NONE)

correct = bool(pyro.sample("listen_correct", Bernoulli(torch.tensor(0.85))))

3

tiger_left = state.tiger_location == 0
hear_left = (correct and tiger_left) or (not correct and not tiger_left)
return TigerObservation(HEAR_LEFT if hear_left else HEAR_RIGHT)

3.3 POMDP Solvers112

While traditional offline solvers aim to compute a global policy over the entire belief space Mundhenk113

et al. (1997); Littman (1995); Cassandra et al. (2013), these methods often face scalability challenges114

in high-dimensional or continuous environments. In contrast, online solvers focus on finding a115

solution from a specific initial belief and replan after every step as new observations become available.116

Online approaches such as Partially Observable Monte Carlo Planning (POMCP) Silver and Veness117

(2010); Curtis et al. (2022) and Partially Observable Upper Confidence Trees (POUCT) Sunberg118

and Kochenderfer (2017) combine Monte Carlo sampling with tree search to approximate optimal119

policies in real time. Additionally, determinized belief space planners simplify the stochastic nature120

of the problem by converting it into a deterministic surrogate, thereby enabling rapid replanning Yoon121

et al. (2007); Kaelbling and Lozano-Perez (2013); Chatterjee et al. (2021); Curtis et al. (2024). In our122

work, we adopt the determinized belief space planning approach due to its computational efficiency123

in larger problems. Please refer to Appendix B for specifics on our solver implementation.124

4 POMDP Coder125

In our approach, which we call POMDP Coder, we decompose the problem into two major compo-126

nents: learning the probabilistic models that define the POMDP and using these learned models for127

online planning. The first part involves leveraging a Large Language Model (LLM) to generate, refine,128

and validate candidate probabilistic programs that represent the initial state, transition, observation,129

and reward functions. The second component uses these models within an online POMDP solver130

along with the current belief to find optimal actions to take in the environment.131

We assume the agent is provided access to an initial set of ten human-generated demonstrations D,132

where each demonstration consists of (st, at, ot+1, st+1) transitions. Since we are learning models133

instead of policies, there are no strict assumptions made about the optimality or correctness of these134

demonstrations. However, we do make an assumption of post-hoc full observability Pinto et al. (2017).135

That is, we assume the agent gets access to the intermediate states after an episode has terminated136

(see Section 7 for details).137

Additionally POMDP Coder is provided a code-based API defining the structure of the state, action,138

and observation space. Below is an example for the Tiger domain.139

class TigerActions(enum.IntEnum):
OPEN_LEFT = 0, OPEN_RIGHT = 1, LISTEN = 2

class TigerObservation(Observation):
obs: int # 0 = hear left, 1 = hear right, 2 = none

class TigerState(State):
tiger_location: int # 0 = left, 1 = right

In some cases, we additionally expose python libraries and deterministic helper functions alongside140

the API to help with more complex calculations (see Appendix D for details).141

Given these inputs, POMDP Coder proceeds as outlined in Algorithm 1. It proposes an initial142

set of models that comprise the POMDP problem (Line 3), using a learning procedure detailed in143

Section 4.1. After an initial set of models is decided on, these models are passed to a POMDP solver144

along with the initial belief (Line 6) to find an optimal first action to take in the environment (Line 7).145

After an action is taken and an observation received, the belief is updated using particle filtering to146

4

Algorithm 1 POMDP Coder
1: Input: A demo dataset D, max episodes E, num particles N , empty models θ = ∅
2: for episode = 1 to E do
3: θ = (θtrans, θrew, θobs, θinit)← LearnModels(D, θ) ▷ Update all models using D
4: b← N samples from θinit

5: while episode not terminated do
6: a← POMDPSolver(b, θ) ▷ Plan best next action, see Appendix B
7: Execute a in the world, observe o

8: b← ParticleFilter(b, a, o, θ) ▷ Update belief
9: Append (a, o) to trajectory τ

10: end while
11: D ← D ∪ τ ▷ Update demo data with new trajectory
12: end for
13: return θ

form a new belief (Line 8). This process continues until the episode terminates or times out. Lastly,147

at the end of each episode, the trajectory is added to the dataset (Line 8) and the learning process148

repairs any inaccuracies that the previous model may have had under the new data (Line 3).149

4.1 Learning Models150

We aim to learn four core components of a POMDP: the initial state distribution P (s0), the tran-151

sition model P (st+1 | st, at), the observation model P (ot+1 | st+1, at), and the reward model152

R(st, at, st+1). Each of these components is expressed as a short probabilistic program.153

The objective of our learning procedure is to maximize a dataset coverage metric, which we define to154

be the proportion of data in D that has support under the model as follows:155

coverage(Pθ,D) =
1

|D|

|D|∑
i=1

1
[
Pθ

(
yi | xi

)
> 0

]
. (2)

Although we experimented with other metrics such distributional distance metrics, we found that156

those were more prone to overfitting and less interpretable to an LLM than binary coverage feedback.157

Still, the coverage metric has its own limitations, which we discuss in Section 7.158

Our approach to learning these models builds on strategies previously developed for reward model159

learning Tang et al. (2024), but extends them to the more general setting of POMDP model learning160

across multiple stochastic components (transition, observation, initial state, and reward), replaces161

accuracy with coverage, and introduces the notion of a testing and training split to avoid overfitting.162

At its core, our model learning strategy uses two operations: (1) LLM program proposal given a model163

function template and a set of examples from the database and and (2) LLM program repair given164

a previous model and set of examples that the previous model failed to cover. We run a stochastic165

procedure for sampling which program to repair next, which is biased toward repairing programs that166

have high coverage. The pseudocode and additional details can be found in the Appendix A.167

5 Experiments168

5.1 Simulated Experiments169

Simulated experiments were conducted on two categories of problems: classical POMDP problems170

from the literature and MiniGrid tasks. The classical POMDP problems such as Tiger and Rock171

Sample Smith and Simmons (2012) serve as simplified benchmarks that capture the core challenges172

of decision making under uncertainty while keeping the problem domains small and tractable.173

5

����� ������� ���� ������
����

Figure 2: A visualization of the final belief state for each of the MiniGrid tasks. The green square is
the goal, the red triangle is the agent, and the blue squares are places that the agent has not viewed.

MiniGrid is a set of minimalistic gridworld tasks for testing navigation and planning under partial174

observability originally designed for reinforcement learning Chevalier-Boisvert et al. (2023). We175

evaluate on five of these environments shown in Figure 2. Detailed descriptions for each of these176

environments can be found in Appendix C. Each MiniGrid environment is modified from the original177

implementation Chevalier-Boisvert et al. (2023). This modification demonstrates the ability of our178

method to generalize to new environments not seen during LLM pretraining.179

5.2 Baselines180

In our experiments, we evaluate our method against several diverse baselines to comprehensively181

assess its performance in partially observable environments. One baseline, termed the oracle, uses182

POMDP models that are hardcoded to exactly match the true dynamics of the environment, thereby183

serving as an upper-bound on achievable performance. In contrast, the random baseline takes actions184

arbitrarily at every step, establishing a lower-bound benchmark for comparison.185

Another baseline, referred to as direct LLM, involves querying a large language model for the next186

action at each decision point. In this setup, the LLM is provided with all the same information187

provided to POMDP Coder during model learning. The exact prompt template used for this method188

is detailed in Appendix F.4. Next, our evaluation includes a behavior cloning baseline, where a policy189

is constructed by mapping states to actions using a dictionary learned from the demonstration dataset.190

In addition, we consider a tabular baseline in which the POMDP models are learned as conditional191

probability tables derived from counts in the demonstration dataset.192

Lastly, we test against two ablations of POMDP Coder. The first is the offline only ablation which193

only makes use of the human demonstrations and does not update the model with its own experiences.194

Conversely, the online only ablation does not make use of the expert demonstrations, learning only195

from its own experiences. All other baselines are given access to both offline and online data.196

5.3 Simulation Results197

We evaluate various methods using expected discounted reward defined in Section 3.1, measuring198

both total cumulative reward and efficiency. We use GPT-4o OpenAI (2024) with temperature 0 as199

the large language model across all experiments. The same ten demonstrations are provided to all200

methods. The results of our evaluations can be seen in Figure 3. We see POMDP Coder match or201

outperform all baseline methods across all domains.202

We observe that the behavior cloning and tabular baselines were fundamentally limited in their ability203

to generalize. This is because the set of possible initial states for many tasks was orders of magnitude204

larger than the training set. In contrast, the probabilistic programs written by POMDP Coder use205

symbolic abstraction to cover large portions of the state and observation spaces, allowing them to206

generalize to new situations. While the direct LLM approach was sometimes effective, such as in the207

rock sample domain, it frequently got stuck in infinite loops, failing to understand constraints such as208

obstacle obstruction despite the examples of collision it had access to in the dataset.209

POMDP Coder outperformed both the online-only and offline-only ablations across most environ-210

ments. A common failure mode of the offline-only ablation was missing transitions outside expert211

demonstrations. For example, it will run into lava without knowing it causes death. In contrast, the212

online-only ablation struggled to discover informative actions due to inefficient random exploration.213

6

Tiger RockSample Empty Corners Lava Rooms Unlock
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Di

sc
ou

nt
ed

 R
ew

ar
d

Episode Reward Across Environments & Approaches

Oracle Ours Ours (Offline) Ours (Online) Direct LLM Behavior Cloning Tabular Random

Figure 3: Experimental results for the MiniGrid and Classical POMDP domains. We show the
expected discounted returns (γ = 0.98) of each method across five learning seeds with ten episodes
per seed. The error bars show standard error across all episodes. We normalize the expected
discounted returns by the performance of Oracle.

For instance, in the unlock environment, if the agent never used the key, the model failed to learn that214

behavior, and random actions rarely uncovered it.215

In addition to success metrics, we record some additional runtime statistics such as the number of216

candidate programs generated during offline and online learning in Table 2 as well as the training and217

testing coverage scores after offline model learning in Table 3.218

5.4 Real Robot Experiments219

Our real robot experiments are conducted using a Boston Dynamics Spot robot. The robot carries220

an in-hand camera mounted on a 6-DoF arm at its back. April tags are distributed throughout the221

area, enabling precise localization. The goal is for the robot to find an pick up an apple placed222

within the scene. Before any demonstrations are gathered, we construct a map of the empty room by223

scanning it with PolyCam Polycam (2025). This scan is used to construct a scene representation that224

includes an object-centric scene graph, encoding “on” relationships derived from geometric cues,225

and an occupancy grid delineating forbidden zones corresponding to physical obstacles. For each226

real-world task, ten demonstrations are collected by commanding the robot via keyboard. The agent’s227

action space is discretized into fixed theta rotations to the left and right and movements in the four228

cardinal directions. Objects are detected online using Grounding SAM, an open vocabulary object229

detector Liu et al. (2023); Ren et al. (2024).230

We test our method in two distinct spaces. The first is a small, closed-off room, as shown in the top231

row of Figure 4, which contains a few tables, chairs, and drawer cabinets. The second is a large, open232

lobby area depicted in the bottom row of Figure 4, furnished with more than twenty pieces of furniture.233

Within these environments, task distributions are defined by varying the location of the apple. In the234

Small-Cabinets configuration, which takes place in the small room, the apple is consistently placed235

on top of one of the three drawer cabinets for each demonstration. In the Large-Tables setting within236

the large room, the apple is positioned on one of the five round tables.237

Our approach is compared against a subset of baselines evaluated in Section 5.2. The evaluation238

includes behavior cloning, direct LLM execution, and a hardcoded uniform baseline that assumes239

the object is placed uniformly throughout the search space. Although the uniform baseline requires240

additional task-specific human input and is not strictly an apples-to-apples comparison, it demonstrates241

that our method can outperform a naively designed initial state distribution.242

The results shown in Table 1 demonstrate that POMDP Coder achieves more efficient and accurate243

exploration by understanding and generalizing trends in initial state distribution seen in the training244

data. Specifically, our approach learns that objects are always on top of objects of a particular class,245

and constructs an initial state distribution that captures that without overfitting to specific initial states.246

7

���������������������� ����������������������������������� ���������
���������

��
�

�	
��

�
��

��
��
�	�
�

��
��
�

Figure 4: The two real-world experimental setups wherein a robot is searching for an apple in a
partially observable world. The blue cells represent the robot’s belief about where the apple could be
in the world. In the uniform initial belief, the robot thinks the apple could be anywhere it has not
looked yet. The learned initial belief found by POMDP Coder has a narrower initial belief leading to
more efficient exploration.

Ours Uniform Direct LLM BC Tabular

Small-Cabinets 0.89± 0.09 (10) 0.68± 0.21 (10) 0.25± 0.42 (3) 0.28± 0.39 (4) 0.35± 0.41 (5)
Large-Tables 0.73± 0.08 (10) 0.40± 0.26 (8) 0.15± 0.32 (2) 0.13± 0.28 (2) 0.13± 0.22 (3)

Table 1: Real-world experiment results on the small room domain in the top row of Figure 4 and the
large room domain in the bottom row of Figure 4. The table shows the mean and standard deviation
of expected discounted reward (with γ = 0.98) under the ground-truth reward model (1 if the agent is
holding the apple and 0 otherwise) along with the number of successes over ten runs in parenthesis.

6 Discussion247

In this work, we have presented a novel approach to learning interpretable, low-complexity POMDP248

models by integrating LLM-guided probabilistic program induction with online planning. Our method249

leverages large language models to generate and iteratively refine candidate probabilistic programs250

that capture the dynamics, observation functions, initial state distributions, and reward structures of251

complex environments. Experimental results on simulated MiniGrid domains and real-world robotics252

scenarios demonstrate that our approach can significantly enhance sample efficiency and predictive253

accuracy compared to traditional tabular learning methods, behavior cloning, or direct LLM planning.254

Our findings further suggest that environments represented with structured scene graphs and other255

rich input representations can be better modeled by learning a world model within which a reasoning256

agent can operate, rather than by directly learning a policy that maps observation histories to actions257

or by attempting to apply a language model in a zero-shot setting. This is particularly evident in large,258

partially observable worlds where the belief space is considerably more complex and challenging259

to cover with training examples than the space of states itself. The use of code to represent these260

models is especially advantageous, as language models are adept at generating concise, executable261

snippets that can be interpreted, debugged, and evaluated post-hoc, thus providing an additional layer262

of transparency and robustness in model evaluation.263

8

7 Limitations264

Despite these promising results, several limitations remain. Our approach currently relies on human265

expertise to design the underlying representation over which the world model is learned, which may266

constrain its applicability to domains where such structured representations are not readily available.267

Additionally, due to our post-hoc observability assumption, collecting datasets outside of a simulator268

requires one of the following: human state annotation, complete robot exploration after the episode,269

or third-party perspectives such as externally mounted cameras. In our real robot experiments, this270

was not a challenge because the only state variability was in the position of the goal object, which is271

fully determined upon completion of the task. More complex problems with multiple dimensions of272

both task-relevant and task-irrelevant uncertainty would require more than just the agent’s perspective.273

Alleviating this assumption may require jointly reasoning about the interrelated structure of the274

constituent models, and is a valuable direction for future work.275

Moreover, the particle filter employed in our current implementation does not scale well to arbitrarily276

large state spaces. Future work may address this limitation by incorporating more advanced inference277

techniques, such as factored particle filters or other scalable methods, to improve performance in278

high-dimensional settings.279

Another area for improvement is in the sometimes overly broad distributions proposed by the LLM280

due to the coverage metric indirectly rewarding broader distributions. While this doesn’t make the281

problem infeasible, it can lead to less efficient behavior. A direction for future work could be to use282

inference methods on the hidden variables of the proposed probabilistic program to strike a balance283

between the empirical distribution and the overly broad model distribution.284

Lastly, our study focuses exclusively on discrete state and action spaces, despite robotics tasks285

requiring search over continuous spaces such as grasps and poses. Extending our learning strategy286

and adopting continuous-space POMDP solvers would broaden our framework to these domains,287

enabling more complex manipulation and navigation tasks.288

Ultimately, our work opens up exciting avenues for combining the strengths of probabilistic program-289

ming and large language models to construct robust, interpretable models for decision-making under290

uncertainty.291

9

References292

W. Song, G. Xiong, and H. Chen. Intention-aware autonomous driving decision-making in an293

uncontrolled intersection. Mathematical Problems in Engineering, 2016:1–15, 01 2016. doi:294

10.1155/2016/1025349.295

M. Ghorbel, J. Pineau, R. Gourdeau, S. Javdani, and S. Srinivasa. A decision-theoretic approach for296

the collaborative control of a smart wheelchair. International Journal of Social Robotics, 10, 01297

2018. doi: 10.1007/s12369-017-0434-7.298

J. Pajarinen and V. Kyrki. Robotic manipulation of multiple objects as a pomdp. Artificial Intelligence,299

247:213–228, 2017. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2015.04.001. URL300

https://www.sciencedirect.com/science/article/pii/S0004370215000570. Special301

Issue on AI and Robotics.302

K. Zheng, A. Paul, and S. Tellex. A system for generalized 3d multi-object search. In 2023 IEEE303

International Conference on Robotics and Automation (ICRA), pages 1638–1644, 2023. doi:304

10.1109/ICRA48891.2023.10161387.305

T. M. Moerland, J. Broekens, and C. M. Jonker. Model-based reinforcement learning: A survey.306

CoRR, abs/2006.16712, 2020. URL https://arxiv.org/abs/2006.16712.307

E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden markov models. CoRR,308

abs/cs/0502076, 2005. URL http://arxiv.org/abs/cs/0502076.309

S. Ross, B. Chaib-draa, and J. Pineau. Bayes-adaptive pomdps. In J. Platt, D. Koller, Y. Singer, and310

S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20. Curran As-311

sociates, Inc., 2007. URL https://proceedings.neurips.cc/paper_files/paper/2007/312

file/3b3dbaf68507998acd6a5a5254ab2d76-Paper.pdf.313

B. Boots, S. M. Siddiqi, and G. J. Gordon. Closing the learning-planning loop with predictive state314

representations, 2009. URL https://arxiv.org/abs/0912.2385.315

C. Jin, S. M. Kakade, A. Krishnamurthy, and Q. Liu. Sample-efficient reinforcement learning of316

undercomplete pomdps. CoRR, abs/2006.12484, 2020. URL https://arxiv.org/abs/2006.317

12484.318

T. Makino and J. Takeuchi. Apprenticeship learning for model parameters of partially observable319

environments, 2012. URL https://arxiv.org/abs/1206.6484.320

B. Thomson, F. Jurčíček, M. Gašić, S. Keizer, F. Mairesse, K. Yu, and S. Young. Parameter learning321

for pomdp spoken dialogue models. In 2010 IEEE Spoken Language Technology Workshop, pages322

271–276, 2010. doi: 10.1109/SLT.2010.5700863.323

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. A.324

Szerlip, P. Horsfall, and N. D. Goodman. Pyro: Deep universal probabilistic programming. CoRR,325

abs/1810.09538, 2018. URL http://arxiv.org/abs/1810.09538.326

M. F. Cusumano-Towner, F. A. Saad, A. K. Lew, and V. K. Mansinghka. Gen: a general-purpose327

probabilistic programming system with programmable inference. In Proceedings of the 40th328

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI329

2019, page 221–236, New York, NY, USA, 2019. Association for Computing Machinery. ISBN330

9781450367127. doi: 10.1145/3314221.3314642. URL https://doi.org/10.1145/3314221.331

3314642.332

N. D. Goodman, V. Mansinghka, D. M. Roy, K. A. Bonawitz, and J. B. Tenenbaum. Church: a333

language for generative models. CoRR, abs/1206.3255, 2012. URL http://arxiv.org/abs/334

1206.3255.335

K. Ellis, C. Wong, M. I. Nye, M. Sablé-Meyer, L. Cary, L. Morales, L. B. Hewitt, A. Solar-Lezama,336

and J. B. Tenenbaum. Dreamcoder: Growing generalizable, interpretable knowledge with wake-337

sleep bayesian program learning. CoRR, abs/2006.08381, 2020. URL https://arxiv.org/338

abs/2006.08381.339

10

https://www.sciencedirect.com/science/article/pii/S0004370215000570
https://arxiv.org/abs/2006.16712
http://arxiv.org/abs/cs/0502076
https://proceedings.neurips.cc/paper_files/paper/2007/file/3b3dbaf68507998acd6a5a5254ab2d76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/3b3dbaf68507998acd6a5a5254ab2d76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/3b3dbaf68507998acd6a5a5254ab2d76-Paper.pdf
https://arxiv.org/abs/0912.2385
https://arxiv.org/abs/2006.12484
https://arxiv.org/abs/2006.12484
https://arxiv.org/abs/2006.12484
https://arxiv.org/abs/1206.6484
http://arxiv.org/abs/1810.09538
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1145/3314221.3314642
http://arxiv.org/abs/1206.3255
http://arxiv.org/abs/1206.3255
http://arxiv.org/abs/1206.3255
https://arxiv.org/abs/2006.08381
https://arxiv.org/abs/2006.08381
https://arxiv.org/abs/2006.08381

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-340

bilistic program induction. Science, 350(6266):1332–1338, 2015. doi: 10.1126/science.aab3050.341

URL https://doi.org/10.1126/science.aab3050.342

M. Y. Li, E. B. Fox, and N. D. Goodman. Automated statistical model discovery with language343

models, 2024. URL https://arxiv.org/abs/2402.17879.344

L. Wong, G. Grand, A. K. Lew, N. D. Goodman, V. K. Mansinghka, J. Andreas, and J. B. Tenenbaum.345

From word models to world models: Translating from natural language to the probabilistic language346

of thought, 2023. URL https://arxiv.org/abs/2306.12672.347

G. Grand, V. Pepe, J. Andreas, and J. B. Tenenbaum. Loose lips sink ships: Asking questions in348

battleship with language-informed program sampling, 2024. URL https://arxiv.org/abs/349

2402.19471.350

Y. Liang, N. Kumar, H. Tang, A. Weller, J. B. Tenenbaum, T. Silver, J. F. Henriques, and K. Ellis. Vi-351

sualpredicator: Learning abstract world models with neuro-symbolic predicates for robot planning,352

2025. URL https://arxiv.org/abs/2410.23156.353

H. Tang, D. Key, and K. Ellis. Worldcoder, a model-based llm agent: Building world models by354

writing code and interacting with the environment, 2024. URL https://arxiv.org/abs/2402.355

12275.356

A. Curtis, N. Kumar, J. Cao, T. Lozano-Pérez, and L. P. Kaelbling. Trust the proc3s: Solving357

long-horizon robotics problems with llms and constraint satisfaction, 2024. URL https://arxiv.358

org/abs/2406.05572.359

Y. Hao, Y. Chen, Y. Zhang, and C. Fan. Large language models can plan your travels rigorously with360

formal verification tools. In arxiv preprint, 2024. URL https://arxiv.org/abs/2404.11891.361

X. Ye, Q. Chen, I. Dillig, and G. Durrett. Satlm: Satisfiability-aided language models using362

declarative prompting. Advances in Neural Information Processing Systems (NeurIPS), 2024. URL363

https://arxiv.org/pdf/2305.09656.364

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous365

Agents). The MIT Press, 2005. ISBN 0262201623.366

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable367

stochastic domains. Artificial Intelligence, 101(1):99–134, 1998. ISSN 0004-3702. doi: https://doi.368

org/10.1016/S0004-3702(98)00023-X. URL https://www.sciencedirect.com/science/369

article/pii/S000437029800023X.370

M. Mundhenk, J. Goldsmith, and E. Allender. The complexity of policy evaluation for finite-horizon371

partially-observable markov decision processes. In I. Prívara and P. Ružička, editors, Mathematical372

Foundations of Computer Science 1997, pages 129–138, Berlin, Heidelberg, 1997. Springer Berlin373

Heidelberg. ISBN 978-3-540-69547-9.374

M. Littman. The witness algorithm: Solving partially observable markov decision processes. 02375

1995.376

A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact377

method for partially observable markov decision processes. CoRR, abs/1302.1525, 2013. URL378

http://arxiv.org/abs/1302.1525.379

D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In J. Lafferty, C. Williams,380

J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing381

Systems, volume 23. Curran Associates, Inc., 2010.382

A. Curtis, L. Kaelbling, and S. Jain. Task-directed exploration in continuous pomdps for robotic383

manipulation of articulated objects, 2022. URL https://arxiv.org/abs/2212.04554.384

Z. Sunberg and M. J. Kochenderfer. POMCPOW: an online algorithm for pomdps with continuous385

state, action, and observation spaces. CoRR, abs/1709.06196, 2017. URL http://arxiv.org/386

abs/1709.06196.387

11

https://doi.org/10.1126/science.aab3050
https://arxiv.org/abs/2402.17879
https://arxiv.org/abs/2306.12672
https://arxiv.org/abs/2402.19471
https://arxiv.org/abs/2402.19471
https://arxiv.org/abs/2402.19471
https://arxiv.org/abs/2410.23156
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2406.05572
https://arxiv.org/abs/2406.05572
https://arxiv.org/abs/2406.05572
https://arxiv.org/abs/2404.11891
https://arxiv.org/pdf/2305.09656
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
http://arxiv.org/abs/1302.1525
https://arxiv.org/abs/2212.04554
http://arxiv.org/abs/1709.06196
http://arxiv.org/abs/1709.06196
http://arxiv.org/abs/1709.06196

S. W. Yoon, A. Fern, and R. Givan. Ff-replan: A baseline for probabilistic planning. In In-388

ternational Conference on Automated Planning and Scheduling, 2007. URL https://api.389

semanticscholar.org/CorpusID:15013602.390

L. Kaelbling and T. Lozano-Perez. Integrated task and motion planning in belief space. The Interna-391

tional Journal of Robotics Research, 32:1194–1227, 08 2013. doi: 10.1177/0278364913484072.392

I. Chatterjee, T. Kusnur, and M. Likhachev. Fast bounded suboptimal probabilistic planning with clear393

preferences on missing information. Proceedings of the International Symposium on Combinatorial394

Search, 12(1):37–45, Jul. 2021. doi: 10.1609/socs.v12i1.18549. URL https://ojs.aaai.org/395

index.php/SOCS/article/view/18549.396

A. Curtis, G. Matheos, N. Gothoskar, V. Mansinghka, J. Tenenbaum, T. Lozano-Pérez, and L. P.397

Kaelbling. Partially observable task and motion planning with uncertainty and risk awareness,398

2024. URL https://arxiv.org/abs/2403.10454.399

L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic for400

image-based robot learning. CoRR, abs/1710.06542, 2017. URL http://arxiv.org/abs/1710.401

06542.402

H. Tang, K. Hu, J. P. Zhou, S. Zhong, W.-L. Zheng, X. Si, and K. Ellis. Code re-403

pair with llms gives an exploration-exploitation tradeoff. In A. Globerson, L. Mackey,404

D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neu-405

ral Information Processing Systems, volume 37, pages 117954–117996. Curran Associates,406

Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/407

d5c56ec4f69c9a473089b16000d3f8cd-Paper-Conference.pdf.408

T. Smith and R. G. Simmons. Heuristic search value iteration for pomdps. CoRR, abs/1207.4166,409

2012. URL http://arxiv.org/abs/1207.4166.410

M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou, S. Pal, P. S. Castro,411

and J. Terry. Minigrid & miniworld: Modular & customizable reinforcement learning environments412

for goal-oriented tasks. CoRR, abs/2306.13831, 2023.413

OpenAI. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276. Accessed:414

2025-05-08.415

Polycam. Polycam – capture and share 3d models, 2025. URL https://poly.cam/. Accessed:416

2025-04-30.417

S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding418

dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint419

arXiv:2303.05499, 2023.420

T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang, Y. Chen, F. Yan, Z. Zeng, H. Zhang,421

F. Li, J. Yang, H. Li, Q. Jiang, and L. Zhang. Grounded sam: Assembling open-world models for422

diverse visual tasks, 2024.423

12

https://api.semanticscholar.org/CorpusID:15013602
https://api.semanticscholar.org/CorpusID:15013602
https://api.semanticscholar.org/CorpusID:15013602
https://ojs.aaai.org/index.php/SOCS/article/view/18549
https://ojs.aaai.org/index.php/SOCS/article/view/18549
https://ojs.aaai.org/index.php/SOCS/article/view/18549
https://arxiv.org/abs/2403.10454
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1710.06542
https://proceedings.neurips.cc/paper_files/paper/2024/file/d5c56ec4f69c9a473089b16000d3f8cd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d5c56ec4f69c9a473089b16000d3f8cd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d5c56ec4f69c9a473089b16000d3f8cd-Paper-Conference.pdf
http://arxiv.org/abs/1207.4166
https://arxiv.org/abs/2410.21276
https://poly.cam/

A Model Learning424

The learning algorithm follows the pseudocode in Algorithm 2. Firstly, in order to mitigate overfitting425

to spurious patterns, we split the demonstration dataset into separate training and test sets (Line 3).426

Given the training set and a code-based interface that specifies how states, actions, and observations427

are represented, we query an LLM to propose an initial code snippet for a given component (Line 4,428

see Appendix F.2 for prompt).429

Algorithm 2 LearnModel
1: Input: demonstration dataset D, initial model θprev, budget N , smoothing constant C
2: Output: Learned model θnew

3: Split D into Dtrain,Dtest

4: if θ = ∅ then θprev ← LLM Init using Dtrain ▷ Appendix F.2
5: coverage,Derrors ← Eval(θprev,Dtest,Dtrain) ▷ Discrepancy between model & empirical
6: beta← Beta(1 + C · coverage, 1 + C · (1− coverage))
7: M← {(θprev, beta,Derrors)}
8: while coverage < 1.0 and iterations < M do
9: (θnew,Beta(α, β),Derrors)← argmaxM(p ∼ beta) ▷ Thompson sampling

10: θ′new ← LLM refinement using θnew and Derrors ▷ Appendix F.3
11: coverage′,D′

errors ← Eval(θnew,Dtest,Dtrain)

12: beta′ ← Beta(α+ C · coverage′, β + C · (1− coverage′))
13: insert (θ′new, beta′, coverage′) intoM
14: end while
15: return argmaxM(coverage)[0] ▷ Return the model with the best overall coverage

Following the initial candidate model proposal, we evaluate them against the empirical conditional430

probability distributions observed in the demonstration data (Line 5). Determining if a particular431

outcome is possible under an arbitrary code model is not analytically possible in most probabilistic432

programming languages, including Pyro, so we use Monte Carlo approximation of the model density.433

Any empirical sample that is never produced is treated as a failure and recorded in an error set Derrors.434

During evaluation, we estimate the model’s coverage on a combination of the training and testing435

sets, evaluating models based on their ability to generalize beyond the training examples (Line 5).436

We proceed with an iterative learning procedure that uses a Thompson sampling exploration strategy437

to build out a tree of candidate models. In addition to a candidate code block, each node contains a438

Beta distribution capturing uncertainty over its true coverage performance. Initially, the root node439

contains the LLM’s first code proposal evaluated against the data (Line 7). At each iteration, we440

select a node to expand using Thompson sampling: we sample from each node’s Beta distribution441

and pick the node with the highest sampled value (Line 9).442

The selected node is refined by prompting the LLM with its associated training set coverage mismatch443

errorsDerrors, encouraging the LLM to generate a corrected or improved version of the model (Line 10,444

see Appendix F.3 for prompt). This produces a child node with updated code, which is re-evaluated445

to obtain new train and test coverage statistics (Line 11). The parent’s Beta distribution is updated446

using a smoothing constant C to encourage stable learning from finite samples, and the child node is447

added to the tree (Line 13).448

This iterative process continues until the overall coverage across the empirical distribution is suffi-449

ciently high, or until a pre-defined iteration budget is exhausted. Ultimately, we return the candidate450

model with the highest empirical coverage among all nodes (Line 26).451

B Belief-Space Planner452

Our online planning routine conducts forward search directly in belief space, determinizing the453

stochastic dynamics to enable an A*-style expansion strategy that balances exploitation (reward) and454

exploration (information gain). Algorithm 3 provides the complete procedure.455

13

Algorithm 3 BeliefPlanner
1: Input: initial belief b0, models T , O,R, horizon H , action cost c, hyper-parameters λ, α
2: Output: best first action a∗

3: Open← {(b0, g=0)}, Closed← ∅, Cost← {b0 : 0}
4: while Open ̸= ∅ and iterations < H do
5: (b, g)← pop_lowest(Open)
6: if b is terminal then
7: continue
8: end if
9: if b ∈ Closed then

10: continue
11: end if
12: add b to Closed
13: for each action a ∈ A do
14: Draw n state particles s′ ∼ T (s, a) for s ∼ b

15: Draw observations o ∼ O(s′, a)
16: Form child belief b′ = Branch(b, a, o)
17: r̂ ← Es,s′ [R(s, a, s′)]
18: p̂← Pr[o | b, a], ĥ← H(b′)

19: g′ ← g − r̂ − λ log p̂+ αĥ+ c

20: if b′ /∈ Cost or g′ < Cost[b′] then
21: Cost[b′]← g′

22: insert (b′, g′) into Open
23: end if
24: end for
25: end while
26: return first action in the path to the node in Open ∪ Closed with minimal g

We begin by inserting the initial belief b0 into an open priority queue with zero cost-to-come and456

initializing an empty closed set (Line 3). Each queue element stores the belief, its cumulative cost g,457

and bookkeeping metadata such as depth. During each iteration (Line 4), we pop the node with the458

lowest priority value; if it is terminal or has already been expanded (i.e., in the closed set), we skip459

further expansion (Lines 6–9).460

Otherwise, for every action a (Line 13), we draw next-state particles from the transition model T461

(Line 14) and sample the corresponding observations through the observation model O (Line 15).462

Conditioning on the sampled observation yields a child belief b′ (Line 16). We estimate the expected463

reward r̂ underR, the likelihood p̂ of the observation, and the entropy ĥ of b′ (Lines 17–18). These464

statistics define the child’s cost465

g′ = g − r̂ − λ log p̂ + αĥ + cost(a), (3)

where λ and α trade off risk sensitivity and information gain (Line 19). The child node is inserted into466

the queue only if it is not yet discovered or has a lower cumulative cost than a previously seen version467

(Line 20). The process continues until the queue is empty or a computational budget is exhausted.468

Finally, we return the first action in the path from b0 to the node with the minimum accumulated cost469

(Line 26), thereby maximizing the composite objective of long-term reward, low risk, and maximal470

information gathering.471

While this planner is similar in many ways to POUCT Sunberg and Kochenderfer (2017), it has the472

additional feature that enables graph-based search rather than strictly tree-based search, which proved473

computationally necessary for many of our larger MiniGrid problems. It is important to note that this474

14

planner is not optimal, but it suffices for all of the problems we tested, and can easily be substituted475

for other planning methods in the POMDP Coder framework.476

C Minigrid Environment Details477

In the empty environment, the agent is deterministically placed in the top left cell of a 5×5 grid478

and must navigate to the green square in the bottom right. In the corners environment, the agent is479

randomly positioned with an arbitrary orientation in a 10×10 grid while the green square appears480

in a randomly selected corner. In the lava environment, the agent starts in the upper left corner of a481

10×10 grid that features a randomly positioned column of lava with a gap forming a narrow passage482

to the green square. In the unlock environment, the agent is randomly placed in the left room of a483

two-room layout, must collect a randomly placed key to open a locked door, and then proceeds to the484

green square fixed at the center of the right room. In the rooms environment, the agent is initialized485

in the upper right-hand corner of a multi-room setting and must traverse through the rooms to reach486

the green square randomly located in the bottom right room.487

D API Interfaces488

D.1 Tiger489

from __future__ import annotations

import copy
import enum
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Tuple

from uncertain_worms.structs import (
Environment,
Heuristic,
InitialModel,
Observation,
ObservationModel,
RewardModel,
State,
TransitionModel,

)

--------------------------- Enums & Dataclasses -----------------------------#

class TigerObservationEnum(enum.IntEnum):
"""Possible observations the agent can receive."""
HEAR_LEFT = 0, HEAR_RIGHT = 1, NONE = 2

class TigerActions(enum.IntEnum):
"""Agent actions in the classic Tiger problem."""
OPEN_LEFT = 0
OPEN_RIGHT = 1
LISTEN = 2

@dataclass(frozen=True)
class TigerObservation(Observation):

"""Observation dataclass."""
obs: int # 0 = hear left, 1 = hear right, 2 = none

@dataclass(frozen=True)

15

class TigerState(State):
"""Underlying hidden state: tiger behind LEFT (0) or RIGHT (1) door."""
tiger_location: int # 0 = left, 1 = right

D.2 Rock Sample490

import copy
import enum
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Tuple

from uncertain_worms.structs import (
Environment,
Heuristic,
InitialModel,
Observation,
ObservationModel,
RewardModel,
State,
TransitionModel,

)

---#
Domain parameters (feel free to tweak)
---#
NUM_ROCKS = 2
GRID_SIZE = 5
ROCK_POSITIONS = [(1, 1), (1, 4)] # len == NUM_ROCKS

---#
Actions
---#
class RockSampleActions(enum.IntEnum):

"""They can be added directly to the state position."""
MOVE_NORTH = 0
MOVE_SOUTH = 1
MOVE_EAST = 2
MOVE_WEST = 3
SAMPLE = 4
EXIT = 5

CHECK_ROCK_0 = 6
CHECK_ROCK_1 = 7

CHECK_ACTIONS: List[int] = [
RockSampleActions.CHECK_ROCK_0,
RockSampleActions.CHECK_ROCK_1,

]

---#
Observation
---#
@dataclass
class RockSampleObservation(Observation):

"""Observation after an action.

16

Always embeds the rover pose (x, y).
For sensor actions:

* ``rock_idx`` – index of inspected rock
* ``is_good`` – noisy reading (True = GOOD, False = BAD)

For all other actions both fields are ``None``.
"""
x: int
y: int
rock_idx: int | None
is_good: bool | None

---#
State
---#
@dataclass
class RockSampleState(State):

"""Full underlying state (fully observable to the simulator)."""
x: int
y: int
rocks: Tuple[bool, ...] # immutable tuple of good/bad flags

--- Equality / hashing --
def __eq__(self, other: object) -> bool: # type:

ignore[override]↪→
return (

isinstance(other, RockSampleState)
and self.x == other.x
and self.y == other.y
and self.rocks == other.rocks

)

Convenience ---
def at_rock(self) -> int | None:

"""Return the index of the rock at the agent's (x,y) or ``None``."""
try:

return ROCK_POSITIONS.index((self.x, self.y))
except ValueError:

return None

D.3 Minigrid491

from dataclasses import dataclass
from enum import IntEnum
from typing import Any, List, Optional, Tuple

import numpy as np
from numpy.typing import NDArray

AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
DIR_TO_VEC = [

Pointing right (positive X)
np.array((1, 0)),
Down (positive Y)
np.array((0, 1)),
Pointing left (negative X)
np.array((-1, 0)),
Up (negative Y)
np.array((0, -1)),

]

SEE_THROUGH_WALLS = True

17

class ObjectTypes(IntEnum):
unseen = 0
empty = 1
wall = 2
open_door = 4
closed_door = 5
locked_door = 6
key = 7
ball = 8
box = 9
goal = 10
lava = 11
agent = 12

class Direction(IntEnum):
facing_right = 0
facing_down = 1
facing_left = 2
facing_up = 3

class Actions(IntEnum):
left = 0 # Turn left
right = 1 # Turn right
forward = 2 # Move forward
pickup = 3 # Pick up an object
drop = 4 # Drop an object
toggle = 5 # Toggle/activate an object
done = 6 # Done completing the task

@dataclass
class MinigridObservation(Observation):

"""
Args:

`image`: field of view in front of the agent.

`agent_pos`: agent's position in the real world. It differs from the
position↪→

in the observation grid.
`agent_dir`: agent's direction in the real world. It differs from the

direction↪→
of the agent in the observation grid.

`carrying`: what the agent is carrying at the moment.
"""

image: NDArray[np.int8]
agent_pos: Tuple[int, int]
agent_dir: int
carrying: Optional[int] = None

@dataclass
class MinigridState(State):

"""An agent exists in an indoor multi-room environment represented by a
grid."""

grid: NDArray[np.int8]
agent_pos: Tuple[int, int]
agent_dir: int
carrying: Optional[int]

18

@property
def front_pos(self) -> Tuple[int, int]:

"""Get the position of the cell that is right in front of the agent."""

return (
np.array(self.agent_pos) + np.array(DIR_TO_VEC[self.agent_dir])

).tolist()

@property
def width(self) -> int:

return self.grid.shape[0]

@property
def height(self) -> int:

return self.grid.shape[1]

def get_type_indices(self, type: int) -> List[Tuple[int, int]]:
idxs = np.where(self.grid == type) # Returns (row_indices, col_indices)
return list(zip(idxs[0], idxs[1])) # Combine row and column indices

def get_field_of_view(self, view_size: int) -> NDArray[np.int8]:
"""Returns the field of view in front of the agent.

DO NOT modify this function.
"""

Get the extents of the square set of tiles visible to the agent
Facing right
if self.agent_dir == 0:

topX = self.agent_pos[0]
topY = self.agent_pos[1] - view_size // 2

Facing down
elif self.agent_dir == 1:

topX = self.agent_pos[0] - view_size // 2
topY = self.agent_pos[1]

Facing left
elif self.agent_dir == 2:

topX = self.agent_pos[0] - view_size + 1
topY = self.agent_pos[1] - view_size // 2

Facing up
elif self.agent_dir == 3:

topX = self.agent_pos[0] - view_size // 2
topY = self.agent_pos[1] - view_size + 1

else:
assert False, "invalid agent direction"

fov = np.full((view_size, view_size), ObjectTypes.wall,
dtype=self.grid.dtype)↪→

Compute the overlapping region in the grid.
gx0 = max(topX, 0)
gy0 = max(topY, 0)
gx1 = min(topX + view_size, self.grid.shape[0])
gy1 = min(topY + view_size, self.grid.shape[1])

Determine where the overlapping region goes in the padded array.
px0 = max(0, -topX)
py0 = max(0, -topY)

Copy the overlapping slice.
fov[px0 : px0 + (gx1 - gx0), py0 : py0 + (gy1 - gy0)] = self.grid[

gx0:gx1, gy0:gy1

19

]

for _ in range(self.agent_dir + 1):
Rotate left
fov = np.rot90(fov.T, k=1).T

agent_pos = (self.grid.shape[0] // 2, self.grid.shape[1] - 1)
self.grid[agent_pos] = ObjectTypes.agent

return fov

D.4 Spot exploration492

import copy
import logging
import math
import random
from dataclasses import dataclass, field
from enum import IntEnum
from typing import Any, List, Optional, Tuple

import numpy as np
from numpy.typing import NDArray
from scipy.spatial.transform import Rotation as R

import uncertain_worms.environments.spot.pb_utils as pbu
from uncertain_worms.environments.spot.spot_constants import *
from uncertain_worms.structs import Observation, State

log = logging.getLogger(__name__)

NAVIGATION_STEP_SIZE = 5 # size of each step in the navigation
FRUSTUM_DEPTH = 3.0
ROTATION_ANGLE = [i * np.pi / 4.0 for i in range(8)] # Angles for the robot to

rotate↪→
PICKUP_DISTANCE_THRESHOLD = 2.0 # Adjust this value as needed

class SpotActions(IntEnum):
move_left = 0
move_right = 1
move_forward = 2
move_backward = 3
rotate_left = 4
rotate_right = 5
pickup = 6 # pick up the object if the object is in the camera's view

ARM_CONF = "ARM_STOW"

@dataclass
class AABB:

lower: List[float, float, float]
upper: List[float, float, float]

def pose_to_se2(pose):
return [pose[0][0], pose[0][1], pbu.euler_from_quat(pose[1])[2]]

20

def se2_to_pose(se2):
return pbu.Pose(point=pbu.Point(x=se2[0], y=se2[1]),

euler=pbu.Euler(yaw=se2[2]))↪→

def transformation_matrix(
translation: NDArray[np.float64], quat: NDArray[np.float64]

) -> NDArray[np.float64]:
r = R.from_quat(quat)
rotation_matrix = r.as_matrix()
T = np.eye(4)
T[:3, :3] = rotation_matrix
T[:3, 3] = translation
return T

class SpotActions(IntEnum):
move_left = 0
move_right = 1
move_forward = 2
move_backward = 3
rotate_left = 4
rotate_right = 5
arm_stow = 6
arm_left = 7
arm_right = 8
arm_down = 9
pickup = 10 # pick up the object if the object is in the camera's view

@dataclass
class SceneObject:

name: str
location: List[int]
aabb: AABB = None

def __hash__(self) -> int:
return hash((self.name, tuple(self.location)))

def __eq__(self, other: Any) -> bool:
return hash(other) == hash(self)

def __repr__(self) -> str:
return (

'SceneObject(name="'
+ str(self.name)
+ '", location='
+ str(self.location)
+ ", aabb="
+ str(self.aabb)
+ ")"

)

@dataclass
class SpotState(State):

body_location: List[
int

] # x voxel index, y voxel index, rotation index into ROTATION_ANGLE
occupancy_grid: OccupancyGrid
visibility_grid: VisibilityGrid
movable_objects: List[SceneObject] = field(default_factory=list)
fixed_objects: List[SceneObject] = field(default_factory=list)
carry_object: Optional[SceneObject] = None

21

ons: List[Tuple[str, str]] = field(
default_factory=list

) # what object is on what other object

def __repr__(self) -> str:
return f"SpotState(body_location={self.body_location},

movable_objects={str([o for o in self.movable_objects])},
carry_object={self.carry_object}, ons={self.ons},
fixed_objects={str([o for o in self.fixed_objects])})"

↪→
↪→
↪→

@property
def camera_pose(self):

return pbu.multiply(
se2_to_pose(self.occupancy_grid.to_world(self.body_location)),
CAMERA_POSES[ARM_CONF],

)

@dataclass
class SpotObservation(Observation):

body_location: List[
int

] # x voxel index, y voxel index, rotation index into ROTATION_ANGLE
visible_movable_objects: List[SceneObject] = field(default_factory=list)
carry_object: Optional[SceneObject] = None

def __repr__(self) -> str:
return f"SpotObservation(body_location={self.body_location},

carry_object={self.carry_object}, visible_movable_objects={str([o for
o in self.visible_movable_objects])})"

↪→
↪→

@property
def camera_pose(self):

return CAMERA_POSES[ARM_CONF]

class OccupancyGrid:
def check_collision(self, body_location: Tuple[int, int, int]) -> bool:

"""Returns the collision result for the given robot body location."""
...

def from_world(
self, world_state: Tuple[float, float, float]

) -> Tuple[int, int, int]:
"""Converts a world state (x, y, theta) into a discrete occupancy grid
state (row, col, theta_index)."""
...

def to_world(
self, occupancy_grid_state: Tuple[int, int, int]

) -> Tuple[float, float, float]:
"""Converts an occupancy grid state (row, col, theta_index) to world
coordinates."""
...

@property
def grid_size(self) -> Tuple[int, int]:

"""Returns the size of the occupancy grid."""
...

class VisibilityGrid:
def from_world(

self, world_state: Tuple[float, float, float]
) -> Tuple[int, int, int]:

22

"""Converts a world coordinates (x, y, theta) into a discrete
visibility grid state (row, col, theta_index)."""
...

def to_world(self, grid_state: Tuple[int, int, int]) -> Tuple[float, float,
float]:↪→
"""Converts a visibility grid state (row, col, theta_index) to world
coordinates."""
...

def get_voxels_above_aabb(self, aabb: AABB) -> NDArray[np.int64]:
"""Returns the indices of voxels in the visibility grid whose centers
are directly above the given aabb.

IMPORTANT: You must use this function to get the location of a goal that
is on top of a fixed object.↪→

"""
...

@property
def grid_size(self) -> Tuple[int, int, int]:

"""Returns the size of the occupancy grid."""
...

E Hyperparameters493

Table E shows the hyperparameters used per domain for both planning and learning. The planning494

hyperparameters (in grey) were tuned to work best for the ground truth models used in oracle. With495

the exception of Thompson smoothing coefficient which was selected based on Tang et al. (2024),496

the other hyperparameters were selected to be as large as possible under computational and budgetary497

constraints.498

Hyperparameter Classical MiniGrid Spot Robot
Action cost penalty 0.01 0.01 0.01
α (Entropy coefficient) 0.0 0.0 1.0
λ (log-prob reward shaping) 0.1 0.1 0.1
Rollouts per stochastic model query 5 1 1
H (Max expansions) 50 5000 5000
N (Num initial particles), 50 10 10
Max particle rejuvenations, 2,500,00 500,000 25,000
M Max refinements 25 25 25
C Thompson smoothing 25 25 25
ND (# datapoints shown - initial, F.2) 5 5 5
NC (# conditions shown - refinement, F.3) 5 5 5
NS (# samples per condition - refinement, F.3) 5 5 5

F Prompts499

F.1 Function Templates500

def initial_func(empty_state:MiniGridState):
"""
Input:

empty_state (MiniGridState): An empty state with only the walls filled
into the grid↪→

23

Returns:
state (MiniGridState): the initial state of the environment

"""
raise NotImplementedError

def observation_func(state, action, empty_obs):
"""
Args:

state (MiniGridState): the state of the environment
action (int): the previous action that was taken
empty_obs (MiniGridObservation): an empty observation that needs to be

filled and returned↪→
Returns:

obs (MiniGridObservation): observation of the agent
"""
raise NotImplementedError

def reward_func(state, action, next_state):
"""
Args:

state (MiniGridState): the state of the environment
action (int): the action to be executed
next_state (MiniGridState): the next state of the environment

Returns:
reward (float): the reward of that state
done (bool): whether the episode is done

"""
raise NotImplementedError

def transition_func(state, action):
"""
Args:

state (MiniGridState): the state of the environment
action (int): action to be taken in state `state`

Returns:
new_state (MiniGridState): the new state of the environment

"""
raise NotImplementedError

F.2 Initial Prompt501

You are a robot exploring its environment.

Environment Description: {env_description}
Goal Description: {goal_description}

Your goal is to model the {what_to_model}.
You need to implement the python code to model the world, as seen in the provided

experiences.↪→

24

Please follow the template to implement the code.
The code needs to be directly runnable {model_input} and return {model_output}.

Below are a few samples from the environment distribution. These are only samples
from a larger distribution that your should model.↪→

{exp}

Here is the template for the {model_name} function. Please implement
the reward function following the template. The code needs to be directly
runnable.

“‘
{code_api}

{code_template}
“‘

Explain what you believe is the {what_to_model} in english.
Additionally, please implement code to model the logic of the world. Please

implement the↪→
code following the template. Only output the definition for ‘ {model_name} ‘.
You must implement the ‘ {model_name} ‘ function.
Create any helper function inside the scope of ‘ {model_name} ‘.
Do not create any helper function outside the scope of ‘ {model_name} ‘.
Do not output examples usage.
Do not create any new classes.
Do not rewrite existing classes.
Do not import any new modules from anywhere.
Do not overfit to the specific samples.
Put the ‘ {model_name} ‘ function in a python code block.
Implement any randomness with `pyro.sample`

F.3 Refinement Prompt502

You are a robot exploring its environment.

{env_description}

Your goal is to model {what_to_model} of the world in python.

You have tried it before and came up with one partially correct solution, but it
is not perfect.↪→

The observed distribution disagrees with the generated model in several cases.
You need to improve your code to come closer to the true distribution.

Environment Description: {env_description}
Goal Description: {goal_description}

Here is a solution you came up with before.

```
{code_api}

{code}
```

25

{experiences}

Explain what you believe is {what_to_model} in english, then improve your code to
better model the true distribution.↪→

Please implement the code for the following the template.
You must implement the ‘ {model_name} ‘ function.

The code needs to be directly runnable {model_input} and return {model_output}.

Do not output examples.
Do not create any new classes.
Do not rewrite existing classes.
Do not import any new modules from anywhere.
Do not list out specific indices that overfit to the examples, but include ranges.
Put the ‘ {model_name} ‘ function in a python code block.
Implement any randomness with `pyro.sample`

The experiences in the refinement prompt are structured as follows. First, we sample conditions503

for which there is coverage less than 1. For example, in the transition model P (st+1|st, at), we504

search through the set of (st, at) tuples in the database and we find the set of those tuples where the505

distribution over (st+1) contains at least 1 element that can not be achieved by the LLM-generated506

model. We select out NC of those conditions. Then, given those conditions, we select NS samples507

that were not covered by the model to show as examples to the LLM. An example template for a508

single condition and an NS = 3 is shown below. The values we used for NC, NS are in Table E.509

Here are some samples from the real world that were impossible under your model
{condition} -> {dataset_outcome}
{condition} -> {dataset_outcome}
{condition} -> {dataset_outcome}

And here are some samples from your code under the same conditions
{condition} -> {model_outcome}
{condition} -> {model_outcome}
{condition} -> {model_outcome}

F.4 Direct LLM Baseline Prompt510

You are a robot exploring its environment.

{env_description}

Your goal is to predict the next best action to take to reach the goal and
maximize reward.↪→

Here is the template for the reward function. Please implement
the reward function following the template. The code needs to be directly
runnable on the inputs of (state) and return (reward) in python.

“‘
{code_api}
“‘

Here are some example rollouts from the environment

{exp}

Here is the current episode history for the task that you are doing right now

26

{current_episode}

Output the next aciton in the form where you fill in <action-here> with the action
that is best for reaching the goal and maximizing reward.↪→

For example, your code will look like this:

```
next_action:int = 0
```

The action should be an integer with no additional code. Explan your reasoning in
one sentence.↪→

F.5 Runtime Statistics511

Approach Tiger RockSample Empty Corners Lava Rooms Unlock

Offline Transition 2.00 ± 0.00 2.60 ± 0.24 2.20 ± 0.20 2.00 ± 0.00 2.00 ± 0.00 2.60 ± 0.24 4.60 ± 0.81
Online Transition 0.00 ± 0.00 0.06 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.40 ± 0.15
Offline Reward 2.40 ± 0.24 11.80 ± 4.33 2.00 ± 0.00 2.00 ± 0.00 2.20 ± 0.20 2.00 ± 0.00 2.20 ± 0.20
Online Reward 0.05 ± 0.05 0.05 ± 0.05 0.00 ± 0.00 0.00 ± 0.00 0.19 ± 0.09 0.00 ± 0.00 0.00 ± 0.00
Offline Observation 2.20 ± 0.20 5.80 ± 1.46 10.40 ± 4.01 7.80 ± 4.61 2.40 ± 0.24 17.25 ± 5.71 15.00 ± 3.63
Online Observation 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.05 0.08 ± 0.06 0.00 ± 0.00 0.28 ± 0.17 0.05 ± 0.05
Offline Initial 2.00 ± 0.00 2.60 ± 0.24 2.00 ± 0.00 2.80 ± 0.37 22.60 ± 3.40 1.75 ± 0.25 18.80 ± 4.59
Online Initial 0.00 ± 0.00 0.02 ± 0.02 0.00 ± 0.00 0.17 ± 0.09 0.86 ± 0.21 0.06 ± 0.06 0.49 ± 0.15

Table 2: The average and standard deviation of the number of nodes, or LLM-generated candidate
programs, sampled during the online and offline phases of model learning.

Approach Tiger RockSample Empty Corners Lava Rooms Unlock

Transition Train 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Transition Test 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Reward Train 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Reward Test 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Observation Train 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.08 0.81 ± 0.19 1.00 ± 0.00 0.94 ± 0.06 0.94 ± 0.06
Observation Test 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.08 0.88 ± 0.12 1.00 ± 0.00 0.93 ± 0.06 0.94 ± 0.06
Initial Train 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.68 ± 0.16 0.75 ± 0.25 0.88 ± 0.12
Initial Test 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.56 ± 0.18 0.75 ± 0.25 0.24 ± 0.19

Table 3: The average and standard deviation of coverages achieved after the offline model learning
step has completed running split into training and testing coverages.

G Example Rollout512

Below is an example of a full rollout from the unlock minigrid environment for the version of our513

method that includes both offline and online learning of the initial state distribution. This rollout is514

only a single leaf node in the tree that is formed by Algorithm 2. This particular rollout required three515

iterations to reach full coverage and did not require additional online learning iterations. We remove516

duplicate code api definitions for clarity.517

G.1 Iteration 0 Input518

#define system
You are a robot exploring its environment.

Environment Description: Unlock door with key to reach the goal square

27

Goal Description:

Your goal is to model the the distribution of initial states .
You need to implement the python code to model the world, as seen in the provided

experiences.↪→
Please follow the template to implement the code.
The code needs to be directly runnable an empty state with the walls of the grid

pre-filled and return a sample initial state.↪→

Below are a few samples from the environment distribution. These are only samples
from a larger distribution that your should model.↪→

Output MinigridState:
agent_pos=(2, 3)
agent_dir=3
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 7, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(1, 1)
agent_dir=2
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 7, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(3, 2)
agent_dir=3
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 7, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],

28

[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(4, 3)
agent_dir=3
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 7, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(1, 4)
agent_dir=2
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 7, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Here is the template for the initial_func function. Please implement
the reward function following the template. The code needs to be directly
runnable.

“‘
type: ignore
from __future__ import annotations

from dataclasses import dataclass
from enum import IntEnum
from typing import Any, List, Optional, Tuple

import numpy as np

29

from numpy.typing import NDArray

AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
DIR_TO_VEC = [

Pointing right (positive X)
np.array((1, 0)),
Down (positive Y)
np.array((0, 1)),
Pointing left (negative X)
np.array((-1, 0)),
Up (negative Y)
np.array((0, -1)),

]

SEE_THROUGH_WALLS = True

class ObjectTypes(IntEnum):
unseen = 0
empty = 1
wall = 2
open_door = 4
closed_door = 5
locked_door = 6
key = 7
ball = 8
box = 9
goal = 10
lava = 11
agent = 12

class Direction(IntEnum):
facing_right = 0
facing_down = 1
facing_left = 2
facing_up = 3

class Actions(IntEnum):
left = 0 # Turn left
right = 1 # Turn right
forward = 2 # Move forward
pickup = 3 # Pick up an object
drop = 4 # Drop an object
toggle = 5 # Toggle/activate an object
done = 6 # Done completing the task

@dataclass
class MinigridState(State):

"""An agent exists in an indoor multi-room environment represented by a
grid."""

grid: NDArray[np.int8]
agent_pos: Tuple[int, int]
agent_dir: int
carrying: Optional[int]

def __hash__(self) -> int:
return hash(

(
tuple(self.agent_pos),
self.agent_dir,

30

self.carrying,
self.grid.tobytes(),

)
)

def __eq__(self, other: object) -> bool:
return (

isinstance(other, MinigridState)
and np.allclose(self.grid, other.grid)
and tuple(self.agent_pos) == tuple(other.agent_pos)
and self.agent_dir == other.agent_dir
and self.carrying == other.carrying

)

@property
def front_pos(self) -> Tuple[int, int]:

"""Get the position of the cell that is right in front of the agent."""

return (
np.array(self.agent_pos) + np.array(DIR_TO_VEC[self.agent_dir])

).tolist()

@property
def width(self) -> int:

return self.grid.shape[0]

@property
def height(self) -> int:

return self.grid.shape[1]

def get_type_indices(self, type: int) -> List[Tuple[int, int]]:
idxs = np.where(self.grid == type) # Returns (row_indices, col_indices)
return list(zip(idxs[0], idxs[1])) # Combine row and column indices

def get_field_of_view(self, view_size: int) -> NDArray[np.int8]:
"""Returns the field of view in front of the agent.

DO NOT modify this function.
"""

Get the extents of the square set of tiles visible to the agent
Facing right
if self.agent_dir == 0:

topX = self.agent_pos[0]
topY = self.agent_pos[1] - view_size // 2

Facing down
elif self.agent_dir == 1:

topX = self.agent_pos[0] - view_size // 2
topY = self.agent_pos[1]

Facing left
elif self.agent_dir == 2:

topX = self.agent_pos[0] - view_size + 1
topY = self.agent_pos[1] - view_size // 2

Facing up
elif self.agent_dir == 3:

topX = self.agent_pos[0] - view_size // 2
topY = self.agent_pos[1] - view_size + 1

else:
assert False, "invalid agent direction"

fov = np.full((view_size, view_size), ObjectTypes.wall,
dtype=self.grid.dtype)↪→

Compute the overlapping region in the grid.

31

gx0 = max(topX, 0)
gy0 = max(topY, 0)
gx1 = min(topX + view_size, self.grid.shape[0])
gy1 = min(topY + view_size, self.grid.shape[1])

Determine where the overlapping region goes in the padded array.
px0 = max(0, -topX)
py0 = max(0, -topY)

Copy the overlapping slice.
fov[px0 : px0 + (gx1 - gx0), py0 : py0 + (gy1 - gy0)] = self.grid[

gx0:gx1, gy0:gy1
]

for _ in range(self.agent_dir + 1):
Rotate left
fov = np.rot90(fov.T, k=1).T

return fov

def __repr__(self) -> str:
"""Returns a string representation of the grid with agent position."""

print_agent = False
print_state = "agent_pos={}\n".format(self.agent_pos)
print_state += "agent_dir={}\n".format(self.agent_dir)
print_state += "carrying={}\n".format(self.carrying)
print_state += "grid=[\n"
for x in range(self.width):

row = "["
for y in range(self.height):

if [x, y] == list(self.agent_pos) and print_agent:
row += f" {AGENT_DIR_TO_STR[self.agent_dir]}, "

else:
row += f"{self.grid[x, y]:2d}, "

row += "],\n"
print_state += row

print_state += "]\n"
return print_state

@dataclass
class MinigridObservation(Observation):

"""
Represents the non-centered field of view of the agent.
The agent is NOT in the center of the observation grid.
Observation grids are always square-sizes (i.e. 3x3, 5x5, 7x7).
The width and height of the observation grid are called view size.
The agent is ALWAYS in the observation and ALWAYS at the same spot
in the observation `image`, independent of the observation.
The experiences are printed through the `__repr__` function.
Args:

`image`: field of view in front of the agent.

`agent_pos`: agent's position in the real world. It differs from the
position↪→

in the observation grid.
`agent_dir`: agent's direction in the real world. It differs from the

direction↪→
of the agent in the observation grid.

`carrying`: what the agent is carrying at the moment.
"""

image: NDArray[np.int8]

32

agent_pos: Tuple[int, int]
agent_dir: int
carrying: Optional[int] = None

def __eq__(self, other: object) -> bool:
return (

isinstance(other, MinigridObservation)
and np.allclose(self.image, other.image)
and tuple(self.agent_pos) == tuple(other.agent_pos)
and self.agent_dir == other.agent_dir
and self.carrying == other.carrying

)

def __hash__(self) -> int:
return hash(

(self.image.tobytes(), tuple(self.agent_pos), self.agent_dir,
self.carrying)↪→

)

def __repr__(self) -> str:
return str(

MinigridState(
self.image,
agent_pos=self.agent_pos,
agent_dir=self.agent_dir,
carrying=self.carrying,

)
)

def initial_func(empty_state:MinigridState):
"""
Input:

empty_state (MinigridState): An empty state with only the walls filled
into the grid↪→

Returns:
state (MinigridState): the initial state of the environment

"""
raise NotImplementedError

“‘

Explain what you believe is the the distribution of initial states in english.
Additionally, please implement code to model the logic of the world. Please

implement the↪→
code following the template. Only output the definition for ‘ initial_func ‘.
You must implement the ‘ initial_func ‘ function.
Create any helper function inside the scope of ‘ initial_func ‘.
Do not create any helper function outside the scope of ‘ initial_func ‘.
Do not output examples usage.
Do not create any new classes.
Do not rewrite existing classes.
Do not import any new modules from anywhere.
Do not overfit to the specific samples.
Put the ‘ initial_func ‘ function in a python code block.

G.2 Iteration 0 Output519

33

The distribution of initial states describes an environment where the agent is
placed on a grid surrounded predominantly by walls. There is a locked door
that blocks the path, and a key is placed somewhere in the grid for the agent
to collect. The initial states vary primarily in the starting position and
direction of the agent, and the position of the key. The door is initially
locked, and the agent must pick up the key before it can pass through the door
to reach the goal.

↪→
↪→
↪→
↪→
↪→
↪→

The observed patterns in the sample outputs:

1. The grid is 11x6 in size with outer walls filling the entire perimeter,
represented by '2'.↪→

2. Within the grid:
- The locked door is always at position (5,3), represented by '6'.
- The goal is always at position (8,3), represented by '10'.
- The goal is behind the locked door.
- The key can be at any of the positions marked as '7'. Mainly, rows containing

the agent.↪→
3. The agent's initial position and direction vary but are within the traversable

area within the outer walls.↪→
4. The agent is always initially not carrying any object (carrying=None).

The below code `initial_func` aims to reflect this analysis by placing the agent,
door, goal, and key consistent with the described logic.↪→

```python
def initial_func(empty_state: MinigridState):

"""
Input:

empty_state (MinigridState): An empty state with only the walls filled
into the grid↪→

Returns:
state (MinigridState): the initial state of the environment

"""

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 6, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 10, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 2, 2, 2],

], dtype=np.int8)

# Random choice for the agent's position within the traversable area (ensuring
no overlapping with door and goal)↪→

possible_initial_positions = [(1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 2), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 3), (3, 4),
(4, 1), (4, 3)]

agent_pos =
possible_initial_positions[np.random.choice(len(possible_initial_positions))]↪→

# Random choice for the agent's initial direction (facing one of four possible
directions)↪→

agent_dir = np.random.choice([0, 1, 2, 3])

# Place the key randomly in one of the valid initial positions

34



key_position_options = [(1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 2), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 3), (3, 4),
(4, 1), (4, 3)]

key_position =
key_position_options[np.random.choice(len(key_position_options))]↪→

grid[key_position] = ObjectTypes.key

# Return the initial state with the agent randomly positioned on the grid,
initially carrying nothing↪→

return MinigridState(
grid=grid,
agent_pos=agent_pos,
agent_dir=agent_dir,
carrying=None

)
```

G.3 Iteration 1 Input520

#define system
You are a robot exploring its environment.

Unlock door with key to reach the goal square

Your goal is to model the distribution of initial states of the world in python.

You have tried it before and came up with one partially correct solution, but it
is not perfect.↪→

The observed distribution disagrees with the generated model in several cases.
You need to improve your code to come closer to the true distribution.

Environment Description: Unlock door with key to reach the goal square
Goal Description:

Here is a solution you came up with before.

```
{code_api}

def initial_func(empty_state: MinigridState):
"""
Input:

empty_state (MinigridState): An empty state with only the walls filled
into the grid↪→

Returns:
state (MinigridState): the initial state of the environment

"""

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 6, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],

35



[2, 1, 1, 10, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 2, 2, 2],

], dtype=np.int8)

# Random choice for the agent's position within the traversable area (ensuring
no overlapping with door and goal)↪→

possible_initial_positions = [(1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 2), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 3), (3, 4),
(4, 1), (4, 3)]

agent_pos =
possible_initial_positions[np.random.choice(len(possible_initial_positions))]↪→

# Random choice for the agent's initial direction (facing one of four possible
directions)↪→

agent_dir = np.random.choice([0, 1, 2, 3])

# Place the key randomly in one of the valid initial positions
key_position_options = [(1, 1), (1, 2), (1, 3), (1, 4),

(2, 1), (2, 2), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 3), (3, 4),
(4, 1), (4, 3)]

key_position =
key_position_options[np.random.choice(len(key_position_options))]↪→

grid[key_position] = ObjectTypes.key

# Return the initial state with the agent randomly positioned on the grid,
initially carrying nothing↪→

return MinigridState(
grid=grid,
agent_pos=agent_pos,
agent_dir=agent_dir,
carrying=None

)

```

Here are some samples from the real world that were impossible under your model
Output MinigridState:
agent_pos=(1, 1)
agent_dir=2
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 7, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

And here are some samples from your code under the same conditions
Output MinigridState:
agent_pos=(1, 3)

36

agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 7, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(3, 3)
agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 7, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(1, 2)
agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 7, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(1, 2)
agent_dir=2
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],

37

[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 7, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(2, 1)
agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 7, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Explain what you believe is the distribution of initial states in english, then
improve your code to better model the true distribution.↪→

Please implement the code for the following the template.
You must implement the ‘ initial_func ‘ function.

The code needs to be directly runnable an empty state with the walls of the grid
pre-filled and return a sample initial state.↪→

Do not output examples.
Do not create any new classes.
Do not rewrite existing classes.
Do not import any new modules from anywhere.
Do not list out specific indices that overfit to the examples, but include ranges.
Put the ‘ initial_func ‘ function in a python code block.

G.4 Iteration 1 Output521

38

The distribution of initial states in this environment should consider the grid's
layout and the constraints on various object placements. The initial state
should not only randomly position the agent within specific traversable tiles,
but it should also place the key within valid tiles, excluding the agent's
initial position. My previous implementation missed this exclusion condition.
The initial world state should allow the key to be anywhere in the agent's
reachable area, except where the agent itself is positioned.

↪→
↪→
↪→
↪→
↪→
↪→

Below is the improved code addressing the observed discrepancies:

```python
def initial_func(empty_state: MinigridState):

"""
Input:

empty_state (MinigridState): An empty state with only the walls filled
into the grid↪→

Returns:
state (MinigridState): the initial state of the environment

"""

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 6, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 10, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 2, 2, 2],

], dtype=np.int8)

# Generate possible positions for the agent and key
possible_positions = [(x, y) for x in range(1, 5) for y in range(1, 5)]
possible_positions.remove((4, 2)) # Remove fixed key position for example

compatibility↪→

# Randomly choose the agent's position
agent_pos = possible_positions[np.random.choice(len(possible_positions))]

# If the agent's position overlaps with the key's recognizable positions,
choose again for the key↪→

key_position_options = [pos for pos in possible_positions if pos != agent_pos]
key_position =

key_position_options[np.random.choice(len(key_position_options))]↪→
grid[key_position] = ObjectTypes.key

# Random choice for the agent's initial direction (facing one of four possible
directions)↪→

agent_dir = np.random.choice([0, 1, 2, 3])

# Return the initial state with the agent randomly positioned on the grid,
initially carrying nothing↪→

return MinigridState(
grid=grid,
agent_pos=agent_pos,
agent_dir=agent_dir,
carrying=None

)
```

39

This code improves on the initial model by correctly simulating the distribution
of initial states, ensuring that the key is placed at a viable location in the
environment, distinct from the agent's initial position.

↪→
↪→

G.5 Iteration 2 Input522

#define system
You are a robot exploring its environment.

Unlock door with key to reach the goal square

Your goal is to model the distribution of initial states of the world in python.

You have tried it before and came up with one partially correct solution, but it
is not perfect.↪→

The observed distribution disagrees with the generated model in several cases.
You need to improve your code to come closer to the true distribution.

Environment Description: Unlock door with key to reach the goal square
Goal Description:

Here is a solution you came up with before.

```
{code_api}

def initial_func(empty_state: MinigridState):
"""
Input:

empty_state (MinigridState): An empty state with only the walls filled
into the grid↪→

Returns:
state (MinigridState): the initial state of the environment

"""

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 6, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 10, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 2, 2, 2],

], dtype=np.int8)

# Generate possible positions for the agent and key
possible_positions = [(x, y) for x in range(1, 5) for y in range(1, 5)]
possible_positions.remove((4, 2)) # Remove fixed key position for example

compatibility↪→

# Randomly choose the agent's position
agent_pos = possible_positions[np.random.choice(len(possible_positions))]

# If the agent's position overlaps with the key's recognizable positions,
choose again for the key↪→

40



key_position_options = [pos for pos in possible_positions if pos != agent_pos]
key_position =

key_position_options[np.random.choice(len(key_position_options))]↪→
grid[key_position] = ObjectTypes.key

# Random choice for the agent's initial direction (facing one of four possible
directions)↪→

agent_dir = np.random.choice([0, 1, 2, 3])

# Return the initial state with the agent randomly positioned on the grid,
initially carrying nothing↪→

return MinigridState(
grid=grid,
agent_pos=agent_pos,
agent_dir=agent_dir,
carrying=None

)

```

Here are some samples from the real world that were impossible under your model
Output MinigridState:
agent_pos=(1, 1)
agent_dir=2
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 7, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

And here are some samples from your code under the same conditions
Output MinigridState:
agent_pos=(2, 2)
agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 7, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

41

Output MinigridState:
agent_pos=(4, 1)
agent_dir=2
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 7, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(3, 2)
agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 7, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(2, 1)
agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 7, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(4, 4)
agent_dir=0
carrying=None

42

grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 7, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Explain what you believe is the distribution of initial states in english, then
improve your code to better model the true distribution.↪→

Please implement the code for the following the template.
You must implement the ‘ initial_func ‘ function.

The code needs to be directly runnable an empty state with the walls of the grid
pre-filled and return a sample initial state.↪→

Do not output examples.
Do not create any new classes.
Do not rewrite existing classes.
Do not import any new modules from anywhere.
Do not list out specific indices that overfit to the examples, but include ranges.
Put the ‘ initial_func ‘ function in a python code block.

G.6 Iteration 2 Output523

#define system
You are a robot exploring its environment.

Unlock door with key to reach the goal square

Your goal is to model the distribution of initial states of the world in python.

You have tried it before and came up with one partially correct solution, but it
is not perfect.↪→

The observed distribution disagrees with the generated model in several cases.
You need to improve your code to come closer to the true distribution.

Environment Description: Unlock door with key to reach the goal square
Goal Description:

Here is a solution you came up with before.

```
{code_api}

def initial_func(empty_state: MinigridState):
"""

43



Input:
empty_state (MinigridState): An empty state with only the walls filled

into the grid↪→
Returns:

state (MinigridState): the initial state of the environment
"""

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 6, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 10, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 2, 2, 2],

], dtype=np.int8)

# Generate possible positions for the agent and key
possible_positions = [(x, y) for x in range(1, 5) for y in range(1, 5)]
possible_positions.remove((4, 2)) # Remove fixed key position for example

compatibility↪→

# Randomly choose the agent's position
agent_pos = possible_positions[np.random.choice(len(possible_positions))]

# If the agent's position overlaps with the key's recognizable positions,
choose again for the key↪→

key_position_options = [pos for pos in possible_positions if pos != agent_pos]
key_position =

key_position_options[np.random.choice(len(key_position_options))]↪→
grid[key_position] = ObjectTypes.key

# Random choice for the agent's initial direction (facing one of four possible
directions)↪→

agent_dir = np.random.choice([0, 1, 2, 3])

# Return the initial state with the agent randomly positioned on the grid,
initially carrying nothing↪→

return MinigridState(
grid=grid,
agent_pos=agent_pos,
agent_dir=agent_dir,
carrying=None

)

```

Here are some samples from the real world that were impossible under your model
Output MinigridState:
agent_pos=(1, 1)
agent_dir=2
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 7, 1, 1, 2,],

44

[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

And here are some samples from your code under the same conditions
Output MinigridState:
agent_pos=(2, 2)
agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 7, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(4, 1)
agent_dir=2
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 7, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(3, 2)
agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 7, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],

45

[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(2, 1)
agent_dir=1
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 7, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Output MinigridState:
agent_pos=(4, 4)
agent_dir=0
carrying=None
grid=[
[2, 2, 2, 2, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 7, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 6, 2, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 1, 1, 10, 1, 2,],
[2, 1, 1, 1, 1, 2,],
[2, 2, 2, 2, 2, 2,],
]

Explain what you believe is the distribution of initial states in english, then
improve your code to better model the true distribution.↪→

Please implement the code for the following the template.
You must implement the ‘ initial_func ‘ function.

The code needs to be directly runnable an empty state with the walls of the grid
pre-filled and return a sample initial state.↪→

Do not output examples.
Do not create any new classes.
Do not rewrite existing classes.
Do not import any new modules from anywhere.

46

Do not list out specific indices that overfit to the examples, but include ranges.
Put the ‘ initial_func ‘ function in a python code block.

G.7 Iteration 2 Output524

The initial distribution of states in the environment involves a grid with walls
enclosing the playing area and a locked door blocking access to the goal.
Inside the grid, the agent and the key are randomly placed, with the
stipulation that they don't overlap. The agent's position is chosen randomly
from the walkable area within the grid, and its facing direction can be any
one of the four cardinal directions (right, down, left, up). The key's
position is also selected randomly but must be different from the agent's
position.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Here's the improved code to better model this distribution:

```python
def initial_func(empty_state: MinigridState) -> MinigridState:

"""
Input:

empty_state (MinigridState): An empty state with only the walls filled
into the grid↪→

Returns:
state (MinigridState): the initial state of the environment

"""

# Create the grid with walls, locked door, key, and goal
grid = np.array([

[2, 2, 2, 2, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 6, 2, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 1, 1, 10, 1, 2],
[2, 1, 1, 1, 1, 2],
[2, 2, 2, 2, 2, 2],

], dtype=np.int8)

# Generate possible positions for the agent and key
possible_agent_positions = [(x, y) for x in range(1, 5) for y in range(1, 5)]

# Randomly choose the agent's position
agent_pos =

possible_agent_positions[np.random.choice(len(possible_agent_positions))]↪→

# Generate possible positions for the key (must not overlap with agent)
possible_key_positions = [(x, y) for x in range(1, 5) for y in range(1, 5) if

(x, y) != agent_pos]↪→

# Randomly choose the key's position
key_pos =

possible_key_positions[np.random.choice(len(possible_key_positions))]↪→
grid[key_pos] = ObjectTypes.key

# Random choice for the agent's initial direction (facing one of four possible
directions)↪→

agent_dir = np.random.choice([0, 1, 2, 3])

47



# Return the initial state with the agent randomly positioned on the grid,
initially carrying nothing↪→

return MinigridState(
grid=grid,
agent_pos=agent_pos,
agent_dir=agent_dir,
carrying=None

)
```

48

	Introduction
	Related Work
	Background
	Partially Observable Markov Decision Processes
	Probabilistic Programs
	POMDP Solvers

	POMDP Coder
	Learning Models

	Experiments
	Simulated Experiments
	Baselines
	Simulation Results
	Real Robot Experiments

	Discussion
	Limitations
	Model Learning
	Belief-Space Planner
	Minigrid Environment Details
	API Interfaces
	Tiger
	Rock Sample
	Minigrid
	Spot exploration

	Hyperparameters
	Prompts
	Function Templates
	Initial Prompt
	Refinement Prompt
	Direct LLM Baseline Prompt
	Runtime Statistics

	Example Rollout
	Iteration 0 Input
	Iteration 0 Output
	Iteration 1 Input
	Iteration 1 Output
	Iteration 2 Input
	Iteration 2 Output
	Iteration 2 Output

