
GPT is becoming a Turing machine:
Here are some ways to program it

Anonymous ACL submission

Abstract
We demonstrate that, through appropriate001
prompting, GPT-3 can be triggered to perform002
iterative behaviors necessary to execute (rather003
than just write or recall) programs that involve004
loops, including several popular algorithms005
found in computer science curricula or software006
developer interviews. We trigger execution and007
description of iterations by regimenting self-008
attention (IRSA) in one (or a combination)009
of three ways: 1) Appropriately annotating an010
execution path of a target program for one par-011
ticular input, 2) Prompting with fragments of012
annotated execution paths, and 3) Explicitly013
forbidding (skipping) self-attention to parts of014
the generated text. On a dynamic program-015
ming task, IRSA leads to larger accuracy gains016
than replacing the model with the much more017
powerful GPT-4. Our findings hold implica-018
tions for evaluating LLMs, which typically tar-019
get in-context learning: We show that prompts020
that may not even cover one full task example021
can trigger algorithmic behavior, allowing solv-022
ing problems previously thought of as hard for023
LLMs, such as logical puzzles. Consequently,024
prompt design plays an even more critical role025
in LLM performance than previously recog-026
nized.027

1 Introduction028

Large language models (LLMs) (Brown et al.,029

2020; Rae et al., 2021; Chowdhery et al., 2022;030

OpenAI, 2023) still have limited performance on031

complex reasoning tasks, such as logical deduction032

and logical grid puzzles in BIG-bench Lite (Srivas-033

tava et al., 2022), even with advanced prompting034

methods, e.g. Chain-of-Thought (CoT) (Shwartz035

et al., 2020; Zelikman et al., 2022; Nye et al., 2021;036

Wei et al., 2022; Wang et al., 2022b; Zhou et al.,037

2022; Creswell et al., 2022; Wang et al., 2022a; Liu038

et al., 2022; Kojima et al., 2022; Li et al., 2022a).039

Typically, such reasoning tasks require iteration of040

many reasoning steps, and the models’ propensity041

to "intuit" the solution naturally falls short.042

LLMs generate tokens in order, each based on 043

previous tokens in the sequence, whether these are 044

part of the prompt or have just been generated by 045

the LLM itself. Such self-attention could allow an 046

LLM to use all previously generated tokens as a 047

store of information needed for tracking reason- 048

ing steps, states, etc. Such use of generated to- 049

kens would resemble a classical Turing Machine 050

with its memory tape (Turing, 1936). In principle, 051

an appropriately designed recurrent transformer 052

model with infinite attention and precision could be 053

Turing-complete (Pérez et al., 2019), and capable 054

of executing arbitrary routines, as long as the at- 055

tention mechanism can be controlled stringently 056

enough. But, even in relatively simple settings, 057

trained LLMs appear to resist strict controls, where 058

slight changes in prompts can yield dramatically 059

different responses (Liu et al., 2021; Malkin et al., 060

2022; Shi et al., 2023). Many recurrent patterns in 061

the training data are encoded into a single model, 062

and learned patterns overlap and vary in the con- 063

text size. Thus it is easy to mislead with a prompt 064

containing accidental alphabetical or numerical or- 065

dering, or other undetectable semantic bias (Zhao 066

et al., 2021; Lu et al., 2022; Min et al., 2022). 067

We discovered that by acknowledging and ex- 068

ploiting the autoregressive nature of self-attention, 069

we can dramatically reduce the uncertainty in un- 070

rolling the reasoning steps of an iterative procedure 071

with an initially undetermined length. Furthermore, 072

this is achieved by prompting GPT-3 without exter- 073

nal reasoning or interpretation mechanisms. The 074

prompted GPT-3 even determines when to stop it- 075

erating on its own. The key is stricter control of 076

self-attention, and so we refer to such prompting as 077

Iteration by Regimenting Self-Attention (IRSA). 078

The basic IRSA utilizes a highly structured prompt 079

with an example of an annotated execution path for 080

one example, as illustrated for Bubble Sort1 algo- 081

1LLMs can easily sort, but not by executing a specific

1

rithm in Prompt 1. As opposed to scratchpad (Nye082

et al., 2021) prompting, which involves execution083

traces only, IRSA prompts provide explanations084

and instructions meant to be read and followed left-085

to-right as the tokens are generated, which leads086

to dramatic outperformance (Table 3). Additional087

important contributions include fragmented IRSA088

prompting (Prompt 2), which combines multiple089

fragments of annotated execution paths, instead of090

full paths, leading to a reduction in prompt size and091

an increase in explanatory power, as well as skip at-092

tention, the strategy of skipping parts of generated093

text when performing self-attention, addressing the094

attention span limitations (memory tape size, es-095

sentially), and reducing the sensitivity to accidental096

misleading patterns in the token generation.097

We present results on a wide range of algorithms098

taught in computer science curricula and used to099

test software engineers in coding interviews, in-100

cluding string manipulations, dynamic program-101

ming, stack operations, and even interpretation of102

arbitrary programs given in a high-level language.103

Our findings demonstrate much higher accuracy104

in program execution than previously expected105

(Bieber et al., 2020; Nye et al., 2021), with IRSA-106

driven GPT-3 even beating GPT-4 (Section A.3.3).107

They also point out a critical issue in evaluating108

in-context learning, suggesting that current evalua-109

tions may underestimate prompted LLMs’ abilities110

on reasoning tasks that can be solved algorithmi-111

cally. E.g., IRSA increases the performance of the112

GPT-3 family on logical deduction puzzles from113

32% to 76%, with a single Prompt A.3 consisting114

of translation of the problem to a canonical form115

followed by a demonstration of iterating swapping116

steps. Should we then be testing prompted LLMs117

on tasks that instead can be solved by separating the118

LLM-driven translation from algorithm execution119

through a separate mechanism (Prompt A.8)?120

2 Iteration by Regimenting Self Attention121

Explain like I’m five autoregressive122

We start with the observation that prompting with123

execution traces (Nye et al., 2021) (shown in Ap-124

pendix in Prompt A.9) is not sufficient to trigger125

the correct execution of programs, as experimen-126

tally demonstrated in Table 3, and that even provid-127

ing inline explanations only helps if the explana-128

tions respect the autoregressive nature of the model.129

The more the model is expected to guess, rather130

algorithm and providing a measure of sequence disorder, such
as the number of swaps.

than clearly infer from the previously generated to- 131

kens, the more the potential errors will accumulate, 132

which is devastating for the correct generation of 133

long traces. 134

An effective prompting strategy should resemble 135

Prompt 12, which triggers execution of the Bub- 136

ble Sort algorithm on an arbitrary input sequence. 137

For one input sequence, the prompt shows all state 138

changes and explains each change before it occurs. 139

The explanation is using arbitrary but consistent 140

language. The structure is both rigid and repeti- 141

tive, strictly regimenting the attention to the rules 142

(corresponding to program instructions) and state 143

changes. This strategy hardens3 the attention suffi- 144

ciently to facilitate disciplined procedural reason- 145

ing, while leaving non-regimented content open to 146

interpretation4. 147

LLMs can often infer some of the steps without 148

detailed explanations. E.g., in Prompt A.1 in the 149

Appendix, we show a simpler version of the Bubble 150

Sort prompt, without the tracking of the iterator i, 151

leaving it to the LLM to determine that the iteration 152

is over once the last pair in the list was considered. 153

GPT-3 family indeed tends to infer this from con- 154

text, but this prompt leads to lower accuracy (Table 155

1). How much has to be explained depends on the 156

LLMs abilities: None of our prompts need to ex- 157

plain that symbol < means "less than," but both 158

GPT-3 and 4 benefit from an explanation of how to 159

compute the module of a negative number (Section 160

A.3.2). 161

The annotations of the trace need to respect the 162

token generation order: Instead of specifying the ef- 163

fect of a state change (swapping two elements), and 164

then explaining why it was done (because the two 165

were out of order), the ’why’ is given first. While 166

either order may be equally explanatory in prompt, 167

the difference becomes evident in generation, when 168

LLM attempts to follow the prompt’s blueprint. If 169

the explanation follows making a choice in the 170

prompt, then the generation will follow the same 171

pattern: make a cognitive leap to decide on a move, 172

2Try the prompt in the playground or see the response in
Prompt A.2 for a related Prompt A.1 in Appendix

3By hardening the attention, we mean that the model’s
attention mechanism is drawn to clear and noncontradicting
pieces of the generated token stream to continue to create
tokens in a consistent fashion. See Section A.3.2 for example,
how generation can go away by allowing attention to get drawn
to contradicting or random patterns.

4Sorting a sequence of 4 integers is demonstrated int he
prompt, but it can be used to sort characters alphabetically
or animals by size, and be applied to both shorter and longer
input lists.

2

Prompt 1. Basic IRSA example: This strongly annotated execution path prompt triggers analogous
execution of Bubble Sort on a new problem, producing not just the sorted sequence, but also the number
of needed element swaps. Correctness of this number demonstrates the execution of this algorithm, rather
than just sorting. Note that the target sequence is of a longer length than the example sequence. This
prompt achieved 100% accuracy on a dataset where all 100 sequences were of longer length, typically
requiring the production of larger numbers of iterations. The prompt is designed so that the explanation of
why precedes the decision (whether to swap or not, whether to start a new iteration or not, and whether
to stop iterating). The full state is displayed after every step, attracting self-attention to itself to aid the
execution of the next step. A related IRSA prompt A.1 does not track the iterator i in the state, leaving
it to the LLM to infer when the loop is finished based on the example. Playground link (use with 0
temperature).
Problem: 2, 3, 1, 5
EXECUTION

Length of the list: L=4
Number of pairs: P=3
a=[2 3 1 5]
set n_swaps=0. set i=P=3. set swap_flag=true.

<state> a=[2 3 1 5] i=3 P=3 n_swaps=0 swap_flag=true </state>
Since i=3 and P=3, i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration
Iteration:

set swap_flag=false. set i=0. The state is:
<state> a=[2 3 1 5] i=0 P=3 n_swaps=0 swap_flag=false </state>
Since i=0 and P=3, these two are different, so we continue
a[i]=a[0]=2 a[i+1]=a[1]=3
Because 2<3 is true we keep state as is and move on by increasing i
<state> a=[2 3 1 5] i=1 P=3 n_swaps=0 swap_flag=false </state>
Since i=1 and P=3, these two are different, so we continue
a[i]=a[1]=3 a[i+1]=a[2]=1
Because 3<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 3 1 5] swap 3 and 1,
and increase i, and keep P as is to get
<state> a=[2 1 3 5] i=2 P=3 n_swaps=1 swap_flag=true </state>
Since i=2 and P=3, these two are different, so we continue
a[i]=a[2]=3 a[i+1]=a[3]=5
Because 3<5 is true we keep state as is and move on by increasing i
<state> a=[2 1 3 5] i=3 P=3 n_swaps=1 swap_flag=true </state>
Since i=3 and P=3, these two are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
set swap_flag=false. set i=0. The state is:
<state> a=[2 1 3 5] i=0 P=3 n_swaps=1 swap_flag=false </state>
Since i=0 and P=3, these two are different, so we continue
a[i]=a[0]=2 a[i+1]=a[1]=1
Because 2<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 1 3 5] swap 2 and 1,
and increase i, and keep P as is to get
<state> a=[1 2 3 5] i=1 P=3 n_swaps=2 swap_flag=true </state>
Since i=1 and P=3, these two are different, so we continue
a[i]=a[1]=2 a[i+1]=a[2]=3
Because 2<3 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=2 P=3 n_swaps=2 swap_flag=true </state>
Since i=2 and P=3, these two are different, so we continue
a[i]=a[2]=3 a[i+1]=a[3]=5
Because 3<5 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=3 P=3 n_swaps=2 swap_flag=true </state>
Since i=3 and P=3, these two are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
set swap_flag=false. set i=0. The state is:
<state> a=[1 2 3 5] i=0 P=3 n_swaps=2 swap_flag=false </state>
Since i=0 and P=3, these two are different, so we continue
a[i]=a[0]=1 a[i+1]=a[1]=2
Because 1<2 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=1 P=3 n_swaps=2 swap_flag=false </state>
Since i=1 and P=3, these two are different, so we continue
a[i]=a[1]=2 a[i+1]=a[2]=3
Because 2<3 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=2 P=3 n_swaps=2 swap_flag=false </state>
Since i=2 and P=3, these two are different, so we continue
a[i]=a[2]=3 a[i+1]=a[3]=5
Because 3<5 is true we keep state as is and move on by increasing i
<state> a=[1 2 3 5] i=3 P=3 n_swaps=2 swap_flag=false </state>
Since i=3 and P=3, these two are equal, so this iteration is done, but swap_flag is false, so we are done

Final List: 1, 2, 3, 5
Number of swaps: 2
END OF EXECUTION

Problem: 3, 6, 8, 2, 7
EXECUTION

3

https://platform.openai.com/playground/p/NEpblKDY5x5YaRsLLTxXTx4l?model=code-davinci-002
https://platform.openai.com/playground/p/NEpblKDY5x5YaRsLLTxXTx4l?model=code-davinci-002

then rationalize that choice. If, instead, the reason-173

ing comes first, and it is further segmented into sub-174

steps, the new tokens inform the future choices as175

soon as possible: "Because 2<3 is " triggers the176

emission of the next token true or false, and that177

token triggers copying the pattern from the prompt178

leading to swapping the elements (or not). Simi-179

larly, a new iteration is triggered by first recalling180

the value of the swap flag. In Figure A.1, we illus-181

trate that following the appropriate order of expla-182

nations and decision-making not only increases the183

accuracy of execution of individual steps, but can184

reduce the observed generation entropy, even if185

the model generates at high temperature. As we186

noted, reduced uncertainty in generation (which187

may exist even at zero temperature due to other fac-188

tors in the training data and sensitivity to the input)189

is key for generations where any one intermediate190

mistake leads to incorrect output.191

We refer to such prompting to trigger iterations192

as Iteration by Regimenting Attention (IRSA), with193

the basic version of IRSA involving prompting with194

a single full (and appropriately annotated) execu-195

tion path. Examples of basic IRSA for single loop196

programs can be seen in Prompts A.6 and A.7, and197

for double loop programs in Prompts 1, A.1, and198

A.3. In each of these examples, a single prompt is199

provided for a task, which, when combined with a200

new instance of the task, triggers the execution of201

an iterative algorithm, with potentially an unknown202

number of iterations until the stopping condition is203

met.204

2.1 Fragmented prompting205

A disadvantage of prompting with a full execution206

path (or paths), annotated or not, is that chosen ex-207

ample(s) need to cover a variety of situations that208

execution on a new input may encounter. How-209

ever, we discovered that iterative behavior can also210

be triggered through fragmented prompting, illus-211

trated in Prompt 2), and which relies on complete212

state specification and fragmentation. Prompt 2213

does not fully cover the entire execution path of214

any single example. Instead, it follows the first215

three state changes5 for the sequence 2, 3, 1, 5, and216

then stops in the middle of a sentence. Then, it217

shows 6 additional fragments of execution paths218

for different problems.219

Interestingly, this prompt triggers iterative be-220

havior, where the language model accurately exe-221

cutes the algorithm on a given input and outputs222

5The full execution path in this style is shown in Prompt 1.

END OF EXECUTION when the termination condi- 223

tion is met. Viewing this prompt as an instance of 224

in-context learning, it is challenging to classify it 225

in usual terms. It goes beyond 0-shot learning as 226

it contains explanations specific to the algorithmic 227

sorting task. Yet, as opposed to what the few-shot 228

CoT prompting might do, it does not work out any 229

single example of array sorting. Instead, it pro- 230

vides fragments of patterns that can be stitched to- 231

gether to execute the algorithm (and GPT-3 CODE- 232

DAVINCI-002 does execute it correctly for new 233

inputs). 234

The potential advantage of such fragmented 235

prompting is that the prompt can be shorter and 236

include a greater variety of situations that may be 237

encountered in new problems. A potential disad- 238

vantage is that the language model may get con- 239

fused by the fragmentation and start hallucinating 240

new independent fragments. In this case, we man- 241

aged to avoid that by having the first fragment start 242

from the start of execution, going through several 243

state transitions, and ending mid-sentence. Because 244

of this, when a new problem is given, the language 245

model starts running the execution path from the 246

beginning, and later refers to various cases in the 247

prompt for guidance on how to proceed. 248

2.2 Skip attention 249

Prompt 2 also illustrates another contribution of 250

this paper: attention skipping. Whether using a 251

single-execution or a fragmented prompt, if the 252

state in the <state>*</state> structure is com- 253

plete, the attention mechanism can generate the 254

next token without attending to all the generated 255

text. It is sufficient to attend to the prompt and 256

the text generated after and including the last 257

state. 258

If the skipping is implemented on the server 259

side, akin to stop word functionality, then skip- 260

ping unnecessary attention saves computation: The 261

state of the model at the end of the prompt is 262

cached and used to continue processing from the 263

latest generated <state> marker, ignoring the text 264

generated in-between. Skip-to-state can also be 265

implemented on the client side, iteratively up- 266

dating the original prompt by concatenating the 267

latest <state>*</state> structure to the origi- 268

nal prompt and calling the generative model with 269

</state> as a stop sequence (We did the latter in 270

our experiments). In both cases, the skip-to-state 271

strategy should increase the number of tokens that 272

can be generated, as self-attention, which grows lin- 273

4

Prompt 2. Fragments: An incomplete path for the first few Buble Sort state transitions for one sequence
is followed by state transitions involving different sequences at different execution points. Initial part of
the response is marked green. Skip attention: The part of the response up to the last state is not needed to
continue the generation. Only the prompt, the last <state>*</state>, and the text after it are necessary
to generate the next token. Playground link (use with 0 temperature)

A
tt

en
d

Problem: 2, 3, 1, 5
EXECUTION

Length of the list: L=4
Number of pairs: P=3
a=[2 3 1 5]
set n_swaps=0. set i=P=3. set swap_flag=true.

<state> a=[2 3 1 5] i=3 P=3 n_swaps=0 swap_flag=true </state>
Since i=3 and P=3, i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration
Iteration:

set swap_flag=false. set i=0. The state is:
<state> a=[2 3 1 5] i=0 P=3 n_swaps=0 swap_flag=false </state>
Since i=0 and P=3, these two are different, so we continue
a[i]=a[0]=2 a[i+1]=a[1]=3
Because 2<3 is true we keep state as is and move on by increasing i
<state> a=[2 3 1 5] i=1 P=3 n_swaps=0 swap_flag=false </state>
Since i=1 and P=3, these two are different, so we continue
a[i]=a[1]=3 a[i+1]=a[2]=1
Because 3<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 3 1 5]
swap 3 and 1, and increase i, and keep P as is to get
<state> a=[2 1 3 5] i=2 P=3 n_swaps=1 swap_flag=true </state>
Since i=2 and

<state> a=[6 5 8 9 1 2] i=2 P=5 n_swaps=5 swap_flag=false </state>
Since i=2 and P=5 i and P are different, so we continue
a[i]=a[2]=8 a[i+1]=a[3]=9
Because 8<9 is true we we keep state as is and move on by increasing i
<state> a=[6 5 8 9 1 2] i=3 P=5 n_swaps=5 swap_flag=false </state>

<state> a=[9 1] i=0 P=1 n_swaps=2 swap_flag=true </state>
Since i=0 and P=1 i and P are different, so we continue
a[i]=a[0]=9 a[i+1]=a[1]=1
Because 9<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[9 1] swap 9 and 1
and increase i, and keep P as is to get
<state> a=[1 9] i=1 P=1 n_swaps=3 swap_flag=true </state>

<state> a=[6 7 3 5] i=3 P=3 n_swaps=7 swap_flag=false </state>
Since i=3 and P=3 i and P are equal, so this iteration is done, swap_flag is false, so stop

Final List: 6, 7, 3, 5
Number of swaps: 7
END OF EXECUTION

<state> a=[3 5 6 8] i=3 P=3 n_swaps=1 swap_flag=true </state>
Since i=3 and P=3 i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
sset swap_flag=false. set i=0. The state is:
<state> a=[3 5 6 8] i=0 P=3 n_swaps=1 swap_flag=false </state>

<state> a=[2 8 1 3 5 7 4] i=1 P=6 n_swaps=5 swap_flag=false </state>
Since i=1 and P=6 i and P are different, so we continue
a[i]=a[1]=8 a[i+1]=a[2]=1
Because 8<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 8 1 3 5 7 4]
swap 8 and 1 and increase i, and keep P as is to get
<state> a=[2 1 8 3 5 7 4] i=2 P=6 n_swaps=6 swap_flag=true </state>

<state> a=[4 8] i=0 P=1 n_swaps=7 swap_flag=true </state>
Since i=0 and P=1 i and P are different, so we continue
a[i]=a[0]=4 a[i+1]=a[1]=8
Because 4<8 is true we we keep state as is and move on by increasing i
<state> a=[4 8] i=1 P=1 n_swaps=7 swap_flag=true </state>

Problem: 3, 1, 8, 9, 6
EXECUTION

D
on

’t
at

te
nd

Length of the list: L=5
Number of pairs: P=4
a=[3 1 8 9 6]
set n_swaps=0. set i=P=4. set swap_flag=true.

<state> a=[3 1 8 9 6] i=4 P=4 n_swaps=0 swap_flag=true </state>
Since i=4 and P=4 i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
set swap_flag=false. set i=0. The state is:

A
tt

en
d <state> a=[3 1 8 9 6] i=0 P=4 n_swaps=0 swap_flag=false </state>

Since i=

5

https://platform.openai.com/playground/p/R10IV9sCAfyU1D4dpiwZys4b?model=code-davinci-002

early with the generated text, is the primary cause274

for the token limitations. Skip-to-state strategy275

keeps the self-attention cost constant. As IRSA276

requires the unrolling of potentially long iterative277

algorithms, these savings are important. For exam-278

ple, running a dynamic program that keeps track of279

2D matrices is only practical in this manner. (See280

also (Schuurmans, 2023) on an external memory281

approach to dealing with limited attention length.282

Here, we deal with it by skipping parts of generated283

text, instead). Another advantage of skip-to-state284

attention is that by only attending to the necessary285

information, the generative model is less likely to286

get confused by accidental patterns created in its287

own generated text. (See more in Section A.3 and288

Figure A.2.)289

3 GPT as a machine language: Prompting290

to interpret/compile a program.291

A general-purpose computer can execute algo-292

rithms that convert the text of a program into its293

machine code. Analogously, we designed a frag-294

mented IRSA prompt that turn code in some lan-295

guage into an execution path that can then be used296

in prompting (Section A.1). We used a “GPT297

compiler” for an invented programming language298

in Prompt A.4 to generate an IRSA-like execu-299

tion path for the double-loop DP algorithm for the300

longest common subsequence problem, providing301

an LCS IRSA-prompt (Table 1). In order to com-302

pare with scratchpad prompting, we also created303

prompts containing code followed by 1, 2 or 3 full304

annotated execution paths (Prompt A.10), Table 3.305

4 Experiments306

We tested IRSA prompts for execution of various307

well-known algorithms, as well as on interpreta-308

tion of new random programs. Finally, we show309

how IRSA can solve logical deduction problems,310

demonstrating an application to reasoning tasks,311

where an LLM can be instructed with a single312

prompt to both "understand" the problem (trans-313

late it into a canonical form), and perform iterative314

reasoning to solve it.315

4.1 IRSA prompting for code execution316

Specific code execution experiments are summa-317

rized in Table 1 for basic IRSA. i.e., prompting with318

highly structured single execution path examples,319

and Table 2 for application of skip attention and320

fragmented prompting (where the prompt does not321

even contain one full example of an execution path).322

The execution path examples for each task were de- 323

liberately chosen to be slightly out-of-distribution 324

(e.g., the Bubble Sort prompt features a worked- 325

out example of sorting a four-number sequence in 326

just three passes, while the dataset consists of five- 327

number sequences requiring 2 to 5 iterations and 328

up to 20 state transitions, with varying complexity 329

across problems). Thus, in terms of the informa- 330

tion they provide, all these prompts can be seen 331

as somewhere between single-shot and zero-shot 332

prompts. 333

Baselines. To make fair comparisons and avoid 334

unnecessary recomputation, we reused existing 335

baselines from (Srivastava et al., 2022) wherever 336

possible, denoted by an asterisk (*): Logical de- 337

duction, Balanced parenthesis, and Longest com- 338

mon subsequences for long sequences. We created 339

our own datasets and ran baselines for the follow- 340

ing tasks: Bubble sort, Longest substring without 341

repeating characters, and Longest common subse- 342

quence for short sequences. We include the best 343

result from (Srivastava et al., 2022) for the GPT 344

family, as our experiments were mainly conducted 345

using GPT-3. Our baselines included zero, or few 346

(5) shot prompting with or without relevant code 347

added to the description of the task in the prompt 348

(e.g. Prompt A.12). Few shot baselines were made 349

with 5 different random choices of examples to be 350

included in the prompt. The ’Guessing’ strategy 351

refers to picking the most frequently correct answer 352

for a given task as a guess for each problem in the 353

task, which is different from truly random guess- 354

ing. Few-shot prompting could prime the answers 355

to pick the most frequently seen answer, even when 356

no understanding of the problem occurs, which 357

makes our ’Guessing’ strategy more reflective of 358

the task difficulty. 359

Models. We have briefly experimented with dif- 360

ferent members of the GPT-3 family, but ran com- 361

plete experiments with CODE-DAVINCI-002 for 362

two reasons: TEXT-DAVINICI-002 and 003 often 363

produced qualitatively similar results, and experi- 364

mentation with the CODE-DAVINCI-002 was easier 365

due to better combination of token quota and avail- 366

ability. Having been tuned on code, this model may 367

have slight advantages over models tuned for more 368

natural language tasks. Nevertheless, as we show 369

in the experiments and discuss in Section A.3, with- 370

out IRSA, CODE-DAVINCI-002 cannot solve the 371

problems discussed here, even when it can generate 372

the code that could. To induce iterative reasoning in 373

LLMs, it appears that attention needs to be highly 374

6

regimented through strong structure, and possibly375

additional attention control, such as the skip-to-376

state strategy we described in Section 2.2. This377

also applies to GPT-4 (OpenAI, 2023): In Section378

A.3.3 in Appendix, we show that prompting GPT-4379

with straight-forward Prompts A.13, A.14, A.15380

does not match the performance of IRSA in GPT-3.381

We test on a mix of reasoning tasks and chal-382

lenging programming tasks included in computer383

science curricula and coding interviews for soft-384

ware engineers:385

Bubble sort. We created a dataset of 100 ran-386

dom non-repeating digit sequences of length 5. The387

task is to predict the number of swaps needed to388

sort the sequence.389

Longest substring without repeating charac-390

ters. A classical coding interview question: Given391

a string of letters, find the length of the longest con-392

tiguous substring such that no letter appears more393

than once. We created a dataset of 100 random394

strings of length 7.395

Valid parentheses (Srivastava et al., 2022)396

from the cs-algorithms challenge in BIG-bench.397

The goal is to evaluate LLMs ability to perform398

reasoning equivalent to the classical stack manipu-399

lations needed to check if a sequence of parenthe-400

ses of different types is balanced. LLMs (including401

GPT) tend to do the same as chance (50%), except402

for PaLM with 3 shots, which gets around 75%403

accuracy.404

Longest common subsequence (long) (Sri-405

vastava et al., 2022) from the BIG-bench cs-406

algorithms challenge involves solving a classical407

dynamic programming problem. Defining a sub-408

sequence to be a sequence of symbols one could409

get by skipping arbitrary stretches in the origi-410

nal sequence, the task is to find the length of411

the longest subsequence common to two given se-412

quences. LLMs do not do much better than chance413

on this task (∼10%).414

Longest common subsequence (short). We415

created this dataset in the same manner as the above416

one, but limiting sequence lengths to be at most417

6. This allows us to evaluate IRSA on more cases,418

ensuring it does not run out-of-memory (tokens) in419

generation .420

Basic IRSA results. A summary is provided in421

Table 1. In Bubble Sort evaluations we show the422

results using Prompt A.1 (74%), and Prompt 1423

(100%). The latter tracks the full state, includ-424

ing a loop iterator. Note that while the execution425

path for the prompt example 2, 3, 1, 5 requires 3426

Table 1: IRSA compared with in-context learning base-
lines, and with the strategy of always guessing the most
frequent answer. (*) denotes the best result for GPT-3
from the BIG-bench.

Task IRSA Baseline Guessing

Bubble sort
- Prompt A.1 0.74 0.27 0.23

- Prompt 1 1.00 0.27 0.23

Longest substring 1.00 0.60 0.59

Logical deduction 0.76 0.32∗ 0.2

Parentheses 0.96 0.56∗ 0.5

Table 2: IRSA with skip-attention, Bubble Sort, and
Longest Common Subsequence problems. Fragmented
prompting, Bubble Sort problems. (*) denotes the best
GPT results in BIG-bench

Baselines Bubble Sort LCS-S LCS-L

0-shot 0.20 0.09 0.14∗

0-shot + code 0.20 0.11 -
few shot 0.25±0.05 0.07±0.01 0.16∗

few shot + code 0.23±0.03 0.06±0.02 -
Guessing 0.23 0.44 0.10

IRSA skip-to-state

single path 0.95 0.93 0.28

7 fragments 0.99±0.02 - -
13 fragments 0.97±0.03 - -
19 fragments 0.99±0.02 - -
25 fragments 0.97±0.03 - -

Table 3: Interpretation of 100 synthetic Python pro-
grams with arithmetics, if clauses and nested loops

Interpreter Prompts 1-shot 2-shot 3-shot

Scratchpad (Nye et al., 2021) 0.55 0.54 0.59

IRSA 0.85 0.86 0.91

iterations of the outer loop and 3 iterations in each 427

inner loop, the dataset, with sequences of length 428

5, requires four iterations in the inner loop and a 429

variable number of iterations of the outside loop – 430

anywhere from 2 to 5 – and yet the model can exe- 431

cute the correct number of iterations based on the 432

stoppage criterion. The longest substring without 433

repeating characters problems is solved with IRSA 434

Prompt A.6 explained in Section A.2). To address 435

the parentheses problem, we used Prompt A.7 in 436

Section A.2.1. Logical deduction task is discussed 437

in Section 4.3. 438

Skip-to-state attention results. The longest 439

common subsequence (LCS) problem requires a 440

state including a M ×N matrix with solutions for 441

all prefixes of the two sequences of lengths M and 442

7

N . Without skip-to-state attention (Section 2.2),443

the API calls can run out of tokens. Using the ap-444

proach described in Section 3, A.1, we compiled445

an execution path in Prompt A.5, and then used it446

to induce IRSA on LCS short (LCS-S) and LCS447

long (LCS-L) problems. Even with skip attention,448

the state was too large to fit the token limit for most449

of the problems in LCS-L from BIG-bench. Yet,450

IRSA with skip attention still beats the state-of-the-451

art significantly (Table 2). On shorter problems452

in LCS-S, where IRSA with skip-attention does453

not run out of tokens, the performance was a re-454

spectable 93%. Note that GPT-4, without IRSA,455

only has 69% accuracy on LCS-S (Section A.3.3).456

We tested fragmented prompting of Bubble457

Sort execution (Table 2). For each selected number458

of fragments – 7, 13, 19, 25 – at least one of five459

randomly generated prompts achieved 100% accu-460

racy. These prompts followed the format in Prompt461

2, starting with the few state transitions from the462

beginning for the sequence [2, 3, 1, 5] and then list-463

ing additional 6, 12, 18, or 24 fragments. Bubble464

Sort has 6 different transitions, and fully balanced465

instruction listing one, two, three, or four of each466

type, with a random sequence in the state, leads467

to a slightly better performance than having com-468

pletely randomly chosen execution path fragments.469

These six basic transitions, illustrated in Prompt 2,470

involve two ways of ending an iteration depending471

on the swap flag and four ways of changing the472

state: two possibilities for inequality being true or473

not, combined with two possible previous values of474

the swap flag. We found that the prompt sensitivity475

causes different prompts to fail for different test476

cases: Each of the fragmented prompt collections477

yields 100% as an ensemble.478

4.2 Interpretation of random programs479

As discussed in Sections 3, A.1, IRSA-style480

prompting can take code in a high-level language481

as the input and produce IRSA-like annotated exe-482

cution paths, which will then also include the result483

of the execution in the end. We compare IRSA484

with the few-shot scratchpad prompts in (Nye et al.,485

2021) on interpreting and executing 100 synthetic486

(randomly generated) Python programs involving487

arithmetic operations and nested while and if state-488

ments as in (Bieber et al., 2020; Nye et al., 2021).489

See Section A.1 for an example of such a program.490

Table 3 compares the (Nye et al., 2021) prompts491

containing execution traces for one to three pro-492

grams (illustrated in Prompt A.9), with the corre-493

sponding IRSA-style prompts (Prompt A.10). 494

4.3 Boosting GPT’s reasoning with IRSA 495

In addition to program execution, iterative rea- 496

soning is required in solving a number of word 497

problems, e.g., (Srivastava et al., 2022), where the 498

BIG-bench Logical Deduction task requires order- 499

ing several objects (5 in our experiments), such as 500

books on the shelf, birds on a branch, cars, golfers, 501

etc., given several clues in natural language, e.g., 502

"robin is standing to the right of raven, but spar- 503

row is the left-most." Even for a small number of 504

objects, LLMs struggle to solve such puzzles in 505

zero- or few-shot settings, much like how human 506

solvers cannot just see the correct answer instantly 507

without scratch paper. We developed a prompt that 508

combines a translation of one problem into a form 509

on which a variant of BubbleSort is applied to dis- 510

cover a solution by triggering iterative swapping of 511

items, Prompt A.3. Note that the iterative reason- 512

ing logic there is faulty as it may enter an infinite 513

loop. When that happens, the generation runs out 514

of tokens, and we simply use the answer after the 515

4th iteration in evaluation. 516

Still, this basic IRSA prompt achieves accuracy 517

of 76%, while in-context learning with LLMs con- 518

sistently solves less than 35% of puzzles (Table 519

1). A recent combination of GPT-3 and proba- 520

bilistic reasoning (Ozturkler et al., 2023) was able 521

to solve 77% of the puzzles. We reach a similar 522

performance through IRSA, without an additional 523

external reasoning mechanism. 524

5 Conclusion 525

Prompted GPT-3 can be triggered to execute it- 526

erative algorithms, including double loops with 527

variable termination conditions, much more consis- 528

tently than previously expected. Consequences are 529

discussed in Appendix (Section A.3). For exam- 530

ple, IRSA may find applications in software engi- 531

neering as well as in education. If LLMs are pro- 532

grammable (in addition to being natural language 533

translators/paraphrasers), their evaluation probably 534

needs to be rethought, esp. in cases where models 535

are expected to make inferences for which algo- 536

rithms exist, as in-context learning would cover 537

IRSA prompts designed to execute them, as in Sec- 538

tion 4.3. Regimenting self-attention for a given 539

task may require a level of effort (Section A.3.2, 540

but even GPT-4 cannot execute programs consis- 541

tently without IRSA (Section A.3.3). 542

8

References543

Yoshua Bengio. 2017. The consciousness prior. arXiv544
preprint arXiv:1709.08568.545

David Bieber, Charles Sutton, Hugo Larochelle, and546
Daniel Tarlow. 2020. Learning to execute programs547
with instruction pointer attention graph neural net-548
works. In Advances in Neural Information Process-549
ing Systems, volume 33, pages 8626–8637. Curran550
Associates, Inc.551

Tom Brown, Benjamin Mann, Nick Ryder, Melanie552
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind553
Neelakantan, Pranav Shyam, Girish Sastry, Amanda554
Askell, Sandhini Agarwal, Ariel Herbert-Voss,555
Gretchen Krueger, Tom Henighan, Rewon Child,556
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens557
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-558
teusz Litwin, Scott Gray, Benjamin Chess, Jack559
Clark, Christopher Berner, Sam McCandlish, Alec560
Radford, Ilya Sutskever, and Dario Amodei. 2020.561
Language models are few-shot learners. Neural In-562
formation Processing Systems (NeurIPS).563

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-564
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-565
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,566
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,567
and Yi Zhang. 2023. Sparks of artificial general in-568
telligence: Early experiments with gpt-4.569

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming570
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-571
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,572
Greg Brockman, Alex Ray, Raul Puri, Gretchen573
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-574
try, Pamela Mishkin, Brooke Chan, Scott Gray,575
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz576
Kaiser, Mohammad Bavarian, Clemens Winter,577
Philippe Tillet, Felipe Petroski Such, Dave Cum-578
mings, Matthias Plappert, Fotios Chantzis, Eliza-579
beth Barnes, Ariel Herbert-Voss, William Hebgen580
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie581
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,582
William Saunders, Christopher Hesse, Andrew N.583
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan584
Morikawa, Alec Radford, Matthew Knight, Miles585
Brundage, Mira Murati, Katie Mayer, Peter Welinder,586
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya587
Sutskever, and Wojciech Zaremba. 2021. Evaluating588
large language models trained on code.589

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,590
Maarten Bosma, Gaurav Mishra, Adam Roberts,591
Paul Barham, Hyung Won Chung, Charles Sutton,592
Sebastian Gehrmann, et al. 2022. PaLM: Scaling593
language modeling with pathways. arXiv preprint594
arXiv:2204.02311.595

Antonia Creswell, Murray Shanahan, and Irina Higgins.596
2022. Selection-inference: Exploiting large language597
models for interpretable logical reasoning. arXiv598
preprint arXiv:2205.09712.599

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 600
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 601
ham Neubig. 2022. Pal: Program-aided language 602
models. arXiv preprint arXiv:2211.10435. 603

Anirudh Goyal and Yoshua Bengio. 2020. Inductive 604
biases for deep learning of human cognition. arXiv 605
preprint arXiv:2011.15091. 606

Daniel Kahneman. 2011. Thinking, fast and slow. 607
Macmillan. 608

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao 609
Fu, Kyle Richardson, Peter Clark, and Ashish Sab- 610
harwal. 2022. Decomposed prompting: A modular 611
approach for solving complex tasks. arXiv preprint 612
arXiv:2210.02406. 613

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 614
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 615
guage models are zero-shot reasoners. arXiv preprint 616
arXiv:2205.11916. 617

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, 618
Jian-Guang Lou, and Weizhu Chen. 2022a. On the 619
advance of making language models better reasoners. 620
arXiv preprint arXiv:2206.02336. 621

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 622
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 623
James Keeling, Felix Gimeno, Agustin Dal Lago, 624
et al. 2022b. Competition-level code generation with 625
alphacode. Science, 378(6624):1092–1097. 626

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, 627
Lawrence Carin, and Weizhu Chen. 2021. What 628
makes good in-context examples for gpt-3? arXiv 629
preprint arXiv:2101.06804. 630

Zihan Liu, Mostofa Patwary, Ryan Prenger, Shrimai 631
Prabhumoye, Wei Ping, Mohammad Shoeybi, and 632
Bryan Catanzaro. 2022. Multi-stage prompting for 633
knowledgeable dialogue generation. In Findings of 634
the Association for Computational Linguistics: ACL 635
2022, pages 1317–1337, Dublin, Ireland. Association 636
for Computational Linguistics. 637

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, 638
and Pontus Stenetorp. 2022. Fantastically ordered 639
prompts and where to find them: Overcoming few- 640
shot prompt order sensitivity. In Proceedings of the 641
60th Annual Meeting of the Association for Compu- 642
tational Linguistics (Volume 1: Long Papers), pages 643
8086–8098, Dublin, Ireland. Association for Compu- 644
tational Linguistics. 645

Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. 2022. 646
Coherence boosting: When your pretrained language 647
model is not paying enough attention. In Proceedings 648
of the 60th Annual Meeting of the Association for 649
Computational Linguistics (Volume 1: Long Papers), 650
pages 8214–8236. 651

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, 652
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle- 653
moyer. 2022. Rethinking the role of demonstra- 654
tions: What makes in-context learning work? arXiv 655
preprint arXiv:2202.12837. 656

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/62326dc7c4f7b849d6f013ba46489d6c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/62326dc7c4f7b849d6f013ba46489d6c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/62326dc7c4f7b849d6f013ba46489d6c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/62326dc7c4f7b849d6f013ba46489d6c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/62326dc7c4f7b849d6f013ba46489d6c-Paper.pdf
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.18653/v1/2022.findings-acl.104
https://doi.org/10.18653/v1/2022.findings-acl.104
https://doi.org/10.18653/v1/2022.findings-acl.104
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,657
Henryk Michalewski, Jacob Austin, David Bieber,658
David Dohan, Aitor Lewkowycz, Maarten Bosma,659
David Luan, et al. 2021. Show your work: Scratch-660
pads for intermediate computation with language661
models. arXiv preprint arXiv:2112.00114.662

OpenAI. 2023. Gpt-4 technical report.663

Batu Ozturkler, Nikolay Malkin, Zhen Wang, and Nebo-664
jsa Jojic. 2023. Thinksum: Probabilistic reasoning665
over sets using large language models. In Proceed-666
ings of the 61st Annual Meeting of the Association667
for Computational Linguistics.668

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,669
Hannaneh Hajishirzi, Luke Zettlemoyer, and670
Marco Tulio Ribeiro. 2023. Art: Automatic multi-671
step reasoning and tool-use for large language mod-672
els. arXiv preprint arXiv:2303.09014.673

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:674
Tool augmented language models. arXiv preprint675
arXiv:2205.12255.676

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert677
Demirer. 2023. The impact of ai on developer pro-678
ductivity: Evidence from github copilot.679

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,680
Noah A Smith, and Mike Lewis. 2022. Measuring681
and narrowing the compositionality gap in language682
models. arXiv preprint arXiv:2210.03350.683

Jorge Pérez, Javier Marinković, and Pablo Barceló.684
2019. On the turing completeness of modern neural685
network architectures. In International Conference686
on Learning Representations.687

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie688
Millican, Jordan Hoffmann, Francis Song, John689
Aslanides, Sarah Henderson, Roman Ring, Susan-690
nah Young, et al. 2021. Scaling language models:691
Methods, analysis & insights from training Gopher.692
arXiv preprint arXiv:2112.11446.693

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta694
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola695
Cancedda, and Thomas Scialom. 2023. Toolformer:696
Language models can teach themselves to use tools.697
arXiv preprint arXiv:2302.04761.698

Dale Schuurmans. 2023. Memory augmented large lan-699
guage models are computationally universal. arXiv700
preprint arXiv:2301.04589.701

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan702
Scales, David Dohan, Ed Chi, Nathanael Schärli, and703
Denny Zhou. 2023. Large language models can be704
easily distracted by irrelevant context. arXiv preprint705
arXiv:2302.00093.706

Vered Shwartz, Peter West, Ronan Le Bras, Chandra707
Bhagavatula, and Yejin Choi. 2020. Unsupervised708
commonsense question answering with self-talk. In709
Proceedings of the 2020 Conference on Empirical710

Methods in Natural Language Processing (EMNLP), 711
pages 4615–4629, Online. Association for Computa- 712
tional Linguistics. 713

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 714
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, 715
Adam R Brown, Adam Santoro, Aditya Gupta, 716
Adrià Garriga-Alonso, et al. 2022. Beyond the 717
imitation game: Quantifying and extrapolating the 718
capabilities of language models. arXiv preprint 719
arXiv:2206.04615. 720

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 721
bastian Gehrmann, Yi Tay, Hyung Won Chung, 722
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny 723
Zhou, et al. 2022. Challenging big-bench tasks and 724
whether chain-of-thought can solve them. arXiv 725
preprint arXiv:2210.09261. 726

Alan M. Turing. 1936. On computable numbers, with an 727
application to the Entscheidungsproblem. Proceed- 728
ings of the London Mathematical Society, 2(42):230– 729
265. 730

Amos Tversky and Daniel Kahneman. 1974. Judgment 731
under uncertainty: Heuristics and biases: Biases in 732
judgments reveal some heuristics of thinking under 733
uncertainty. Science, 185(4157):1124–1131. 734

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc 735
Le, Ed Chi, and Denny Zhou. 2022a. Rationale- 736
augmented ensembles in language models. arXiv 737
preprint arXiv:2207.00747. 738

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 739
Ed Chi, and Denny Zhou. 2022b. Self-consistency 740
improves chain of thought reasoning in language 741
models. arXiv preprint arXiv:2203.11171. 742

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 743
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022. 744
Chain of thought prompting elicits reasoning in large 745
language models. arXiv preprint arXiv:2201.11903. 746

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 747
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 748
React: Synergizing reasoning and acting in language 749
models. arXiv preprint arXiv:2210.03629. 750

Eric Zelikman, Yuhuai Wu, and Noah D Goodman. 751
2022. STaR: Bootstrapping reasoning with reasoning. 752
arXiv preprint arXiv:2203.14465. 753

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and 754
Sameer Singh. 2021. Calibrate before use: Improv- 755
ing few-shot performance of language models. In In- 756
ternational Conference on Machine Learning, pages 757
12697–12706. PMLR. 758

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 759
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 760
Olivier Bousquet, Quoc Le, and Ed Chi. 2022. 761
Least-to-most prompting enables complex reason- 762
ing in large language models. arXiv preprint 763
arXiv:2205.10625. 764

10

http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/ARXIV.2302.06590
https://doi.org/10.48550/ARXIV.2302.06590
https://doi.org/10.48550/ARXIV.2302.06590
https://openreview.net/forum?id=HyGBdo0qFm
https://openreview.net/forum?id=HyGBdo0qFm
https://openreview.net/forum?id=HyGBdo0qFm
https://doi.org/10.18653/v1/2020.emnlp-main.373
https://doi.org/10.18653/v1/2020.emnlp-main.373
https://doi.org/10.18653/v1/2020.emnlp-main.373
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf

A Appendix765

A.1 GPT as a machine language: Prompting766

to interpret/compile a program.767

A general-purpose computer can execute algo-768

rithms that convert the text of a program into its ma-769

chine code. Analogously, we can design prompts770

with instructions on how to turn code in some lan-771

guage into execution paths that can then be used in772

prompting.773

An example is shown in Prompt A.4 (Appendix),774

where several examples of hypothetical syntax775

for transforming states are given, including set-776

ting values of variables and matrices, printing777

them, a single loop program execution, and the778

detailed_max function that breaks down steps and779

explains them. Then, the double loop dynamic780

programming algorithm for finding the longest781

common subsequence (LCS) is also presented in782

this new language. This prompt successfully trig-783

gers the correct execution of the algorithm, com-784

plete with detailed explanations and state transi-785

tions (green shaded in Prompt A.5). This can then786

be used as a prompt to execute the LCS algorithm787

on arbitrary inputs (Section 4.1). We should note788

that GPT-3 is still sensitive to small alterations in789

text, and Prompt A.4 does not always lead to good790

interpretations of the algorithm. The performance791

may depend on accidental deceptive patterns and792

inconsistencies in the prompt, as well as the input.793

Nevertheless, once the output has been verified as794

correct, the Prompt A.4 together with the response795

in Prompt A.5 became the prompt – IRSA ’machine796

code’ for GPT — to execute (mostly correctly) the797

LCS algorithm for new inputs, as long as they are798

appended in the same format:799
LCS:800

Input: <seq1> <seq2> End of input801

LCS Prep:802

Most of the main paper is concerned with exe-803

cuting IRSA prompts, assuming that such prompts804

are written correctly for a given program to be exe-805

cuted on arbitrary inputs. I.e. IRSA is tested as a806

way of programming GPT, which may be involved807

in prompting techniques for reasoning problems, or808

an entry point to procedural instructions for those809

who are not trained as programmers (yet). The ex-810

periments are also meant to demonstrate that GPT811

is capable of disciplined execution of a given pro-812

gram.813

If instead we want to turn a high-level program-814

ming language into IRSA for some input – which815

will then contain the output at the end, too – the 816

testing wold need to involve interpretation of many 817

programs given in that programming language, as 818

attempted in (Bieber et al., 2020; Nye et al., 2021). 819

To demonstrate that IRSA is a good programming 820

strategy to writing its own compilers, we chose 821

the task studied in (Nye et al., 2021), where ran- 822

dom synthetic python programs and their execution 823

traces were used to train and evaluate transformer 824

models. As we do not tune models, but study the in- 825

struction strategies, we compare with the in-context 826

learning task proposed in (Nye et al., 2021). They 827

used a ’scratchpad prompt’ (their Appendix C) with 828

three examples of Python code with its execution 829

trace to trigger generation of similar traces for syn- 830

thetic Python programs. We used the same three 831

examples and modified the prompt with an IRSA- 832

style explanation between each line and state pair 833

in the trace so that it follows the IRSA recipe, but 834

is still in the few-shot format, rather than in gradual 835

and fragmented format of Prompt A.4. 836

As in (Nye et al., 2021), we generated random 837

Python programs following the recipe in (Bieber 838

et al., 2020) in their Supplemental material B, Fig- 839

ure 6, to include arithmetic manipulation of the 840

input variable v0 as well as if statements involv- 841

ing it, and the (possibly nested) while loops with 842

additional counter variables with randomly chosen 843

names from v1-v9. We additionally limited the 844

complexity of the dataset to include 0-2 control 845

structures, although those structures could be con- 846

secutive or nested and they need not be the same. 847

Here is a sample program: 848

def f(v0): 849

v0 -= 0 850

v0 *= 1 851

v2 = 1 852

while (v2 > 0): 853

v2 -= 1 854

v0 -= 2 855

if (v0 % 10 < 3): 856

v0 += 3 857

v0 += 2 858

v0 -= 3 859

v0 += 3 860

return v0 861

862

output = f(9) 863

We tested scratchpad style prompts (e.g. Prompt 864

A.9) and their corresponding IRSA prompts 865

(Prompt A.10) with the first, the first two, and all 866

11

three examples described in Appendix C of (Nye867

et al., 2021). As we see in Table 3, in terms of868

generating the correct output for 100 random pro-869

grams, the number of shots affects the accuracy of870

interpretation much less than the prompting style:871

The error rate for IRSA is on the order of ∼10%,872

while for the scratchpad it is ∼40%. Although873

the few-shot trace approach is sufficient for simple874

arithmetic manipulations of variables, it struggles875

more when it comes to executing control structures,876

which have multiple reasoning steps: when to test877

the condition, whether the condition is met, and878

where to go next to continue the trace. With a sim-879

ple trace, these three components must be inferred880

implicitly, but the addition of the IRSA-style an-881

notation explicitly outlines how to approach each882

of those steps in an auto-regressive fashion rather883

than making logical leaps.884

A.2 The longest substring without repeating885

characters886

To solve the longest substring without repeating887

characters problems with basic IRSA, we devel-888

oped Prompt A.6 based on the 1-index version889

of the following single-pass algorithm. Interest-890

ingly, this algorithm trades computation for mem-891

ory by creating one variable per unique letter in892

the sequence for storing the location where the let-893

ter was last seen in the sequence during the pass894

(last_ind):895

s contains the given string896

last_ind = {}897

m_len = 0898

899

window start900

st_ind = 0901

902

for i in range(0, len(s)):903

if s[i] in last_ind:904

st_ind=max(st_ind,last_ind[s[i]]+1)905

906

Update result if window is longer907

m_len = max(m_len, i-st_ind + 1)908

909

Update last index of the character910

last_ind[s[i]] = i911

return m_len912

A.2.1 Balanced parentheses913

To address the parentheses problem, we used the914

single execution path that demonstrates stack op-915

erations for determining whether the sequence is916

balanced or not. The beginning and the end are 917

shown in Prompt A.7. For brevity, we have omit- 918

ted certain portions (represented by ellipses). Note 919

that creating long prompts is made easier by GPT’s 920

completion capabilities, i.e., by starting with a de- 921

scription of a few steps and asking the model to 922

finish it. Wherever we want the prompt to differ 923

from the model’s guess, we erase the generated 924

text from that point and continue typing our cor- 925

rection/instruction and try to autocomplete again. 926

(See also Sections A.3, A.1 in the Appendix). But 927

interestingly, as discussed in Section 2.1 on frag- 928

mented prompting, parts of the execution paths can 929

be omitted: Prompt A.7 as is, with the ellipsis in- 930

stead of 10 steps in the algorithm, still achieves 931

91% accuracy! 932

A.3 Full discussion section 933

Iteration by Regimenting Self-Attention (IRSA) is 934

a technique for triggering code execution in GPT-3 935

models. Note that the goal is different from the 936

goal of Alphacode (Li et al., 2022b) and Copilot 937

(Chen et al., 2021; Peng et al., 2023), which are 938

meant to write the code, without necessarily under- 939

standing what it outputs. While there are indeed 940

examples of rather impressive code generation and 941

even, anecdotally, execution path generation using 942

minimal prompting in the latest Codex and GPT-3 943

models, the lack of control in current LLMs pre- 944

vents the consistent achievement of these feats with 945

precision, which is why the code generation appli- 946

cations involve humans in the loop. For instance, 947

as illustrated in zero-shot bubble sort code Prompt 948

A.11, when relying on Codex alone to attempt code 949

execution, the generated samples are intuitively 950

close to the correct solution, but a bit off, prevent- 951

ing correct execution. IRSA, on the other hand, can 952

produce consistently accurate outputs. 953

In algorithm design, trading computation for 954

memory use is a recurrent idea. IRSA as a tech- 955

nique for LLM inference can be seen in a similar 956

light: We could train a bigger model on more data, 957

with attention spanning deeper into the past tokens, 958

hoping that it could answer a simple yet computa- 959

tionally complex query in just a couple of tokens 960

directly; or we can devise a prompting strategy in- 961

structing a smaller LLM to use its token stream as a 962

memory tape, allowing it to reach similar function- 963

ality with increased token usage. By triggering and 964

controlling iterative behaviour, we can, in principle, 965

execute arbitrary algorithms, which further raises 966

interesting questions: What are the consequences 967

12

of LLMs becoming Turing-complete? And how968

difficult is it to program via IRSA? Will larger GPT969

models become capable of executing programs cor-970

rectly without IRSA? Based on our experience in971

designing the prompts we showed here, we specu-972

late on these three questions in this section.973

A.3.1 Possible consequences974

(Teaching) Coding. The integration of LLMs’975

code generation capabilities with IRSA leads to in-976

novative applications in code generation. Some of977

it is implied in the interpreter/compiler Prompt A.4,978

which instructs GPT how to interpret and execute979

code. Following these ideas, exploring program980

verification and automatic debugging could be a981

promising direction. Another obvious application982

of IRSA is in computer science education, where983

we often expect students to execute programs on984

paper to determine what the state will be at some985

point during the execution. Furthermore, IRSA986

may also point to new ways of programming by987

example.988

Adversarial applications. Any time a computa-989

tional medium is Turing-complete, a variety of ma-990

licious uses may become possible, such as creating991

and executing malware, exploiting system vulnera-992

bilities, conducting cryptographic attacks, causing993

resource exhaustion, etc. Thus we should be aware994

of the double-edged sword with the increased ver-995

satility and computational power of GPT models.996

In-context learning and LLM evaluation.997

Prompting with IRSA must be considered a zero-998

or one-shot learning technique, analogous to chain-999

of-thought prompting. If, via IRSA, LLMs can1000

be disciplined with a regimented prompt to exe-1001

cute arbitrary algorithms involving (double) loops,1002

they may be able to solve arbitrary problems NLP1003

researchers can compose, incorporating natural lan-1004

guage understanding and iterative reasoning like1005

belief propagation, constraint satisfaction, search,1006

etc. This renders many of the hard BIG-bench1007

tasks easier than they initially appear, as already1008

suggested by (Suzgun et al., 2022) using classical1009

CoT prompting. Many CoT results can be further1010

improved with IRSA (as logical deductions with1011

Prompt A.3).1012

However, triggering such iterative behaviour1013

may still be hampered by the same sensitivity of in-1014

context learning to accidental misleading patterns,1015

already observed in classical prompting (Lu et al.,1016

2022; Zhao et al., 2021), where there may exist a1017

“fantastical” crafting of the prompt that significantly1018

improves the accuracy of the task. In fact, itera- 1019

tive reasoning may further amplify the fantastical 1020

choices. Thus, if one LLM successfully solves a 1021

hard logical reasoning task using a suitable prompt 1022

while another does not, this might imply that the 1023

optimal prompt has not yet been found. In fact, it 1024

would not be surprising if better prompts are even- 1025

tually found that enable the LLM we used here 1026

(GPT-3, CODE-DAVINCI-002) to solve all tasks 1027

with 100% accuracy. Thus, evaluating LLMs on 1028

their in-context learning abilities is of questionable 1029

value: Some of the hard tasks in BIG-bench may 1030

be better suited to evaluating the skills of prompt 1031

engineers rather than the LLMs themselves. 1032

Hybrid models – LLMs as translators. If 1033

LLMs are Turing-complete and can transform prob- 1034

lems described in natural language into algorithmi- 1035

cally solvable programs, the decision to let them 1036

execute the program or not becomes a practical mat- 1037

ter of computational cost. With the apparent magic 1038

of savant-like guessing gone, it is much more practi- 1039

cal to run the algorithms on a classical computer, an 1040

approach taken by, for example, (Ozturkler et al., 1041

2023) where the external computational mecha- 1042

nism performs probabilistic inference, or (Khot 1043

et al., 2022) that involves external control flows, 1044

and many other recent published and unpublished 1045

experiments combining LLMs with external calls 1046

and tools (Parisi et al., 2022; Gao et al., 2022; Yao 1047

et al., 2022; Press et al., 2022; Schick et al., 2023; 1048

Paranjape et al., 2023). Such hybrid models could 1049

separate the higher level reasoning “System 2” – 1050

to use an analogy with models of human cognitive 1051

processes (Tversky and Kahneman, 1974; Kahne- 1052

man, 2011) – from the lower-level “knee-jerk reac- 1053

tion” reasoning “System 1”, however savant-like 1054

it might be. In such systems, LLMs can dramati- 1055

cally improve traditional artificial intelligence algo- 1056

rithms simply by translating the problems into an 1057

appropriate form: see Prompt A.8 where the log- 1058

ical deduction task is solved by creating a call to 1059

the Solve command in Wolfram language (Mathe- 1060

matica) for an example. The artificial intelligence 1061

community is increasingly interested in research- 1062

ing such systems, e.g., (Bengio, 2017; Goyal and 1063

Bengio, 2020), and the developer community is 1064

already developing and deploying hybrid language 1065

models (Bing-ChatGPT integration, for instance). 1066

Self-attention control in training and infer- 1067

ence. To paraphrase an old adage on parenting, 1068

researchers have spent a lot of effort teaching GPTs 1069

to pay attention to everything in the text, and now 1070

13

IRSA is an attempt to stop it from attending to ev-1071

erything. We accomplish it both by drawing atten-1072

tion with a strong repetitive structure and by brute1073

force through skip attention (Section 2.2). More1074

flexible ways of determining what the model should1075

attend to may be needed both in model building1076

and inference.1077

A.3.2 Pitfalls of programming in GPT-31078

Prompts we experimented with induce single loop1079

or double loop program execution. Generally, con-1080

trolling double loop algorithms, such as Bubble1081

Sort and Longest Common Subsequence, is more1082

challenging. The difficulty lies not in understand-1083

ing the double loop logic, but rather in the increased1084

probability of running into some of the problems1085

described below. These problems are not always1086

obvious, but can result in a wide range of accura-1087

cies achieved by seemingly similar prompts. For1088

example, the two prompt designs for Bubble Sort1089

both worked surprisingly well, but showed a big1090

gap in performance between them (74% and 100%).1091

Here are some tips for attempting IRSA.1092

Keep a complete state. While it is often possi-1093

ble to instruct by analogy without fully accounting1094

for all decisions, keeping the full state (i.e., show-1095

ing it repeatedly after each transition) is usually1096

preferable. For example, Prompt 2 contains the it-1097

erator variable in the state, while Prompt A.1 does1098

not. Not only does keeping full state help regiment1099

the attention, but it makes fragmented prompting1100

and skip-to-state attention possible.1101

Explain why before the instruction, not af-1102

ter. LLMs are autoregressive, which makes1103

them easier to prompt in order: from left1104

to right. Thus, instead of instructing with1105

‘We now swap 4 and 2 because 2<4’, we in-1106

struct with:1107

Because 4<2 is false we swap 4 and 21108

Then later in generation, e.g., ‘Becasue 5<3 is’1109

will trigger generation of token false and it, in1110

turn, will trigger generation of ‘we swap’, and so1111

on.1112

To illustrate this numerically, we generated1113

100 random Python programs with a single1114

if/else statement with a condition of the form1115

(z - y) % 10 + 1 > 5 and a simple command1116

x = 1 or x = 2 in each branch respectively. The1117

dataset contained an equal number of programs1118

where each branch was entered. We tested two1119

prompts that differed only in the order of the an-1120

swer (x = 1 or 2) and the reasoning. The prompts1121

contained the same 4 examples, two that enter the 1122

if branch and two that enter the else branch, in the 1123

following format with either answer first: 1124

z = 11 1125

y = 27 1126

if (z - y) % 10 + 2 > 8: 1127

x = 1 1128

else: 1129

x = 2 1130

Execute: 1131

{x = 2} 1132

because 1133

z - y = 11 - 27 = -16 1134

-16 % 10 = ? 1135

-16 is negative, so the result is 10 - 6 1136

-16 % 10 = 4 1137

4 + 2 = 6 1138

Therefore, 1139

(z - y) % 10 + 2 = 6 1140

6 > 8 is false 1141

or reasoning first: 1142

z = 11 1143

y = 27 1144

if (z - y) % 10 + 2 > 8: 1145

x = 1 1146

else: 1147

x = 2 1148

Execute: 1149

because 1150

z - y = 11 - 27 = -16 1151

-16 % 10 = ? 1152

-16 is negative, so the result is 10 - 6 1153

-16 % 10 = 4 1154

4 + 2 = 6 1155

Therefore, 1156

(z - y) % 10 + 2 = 6 1157

6 > 8 is false 1158

{x = 2} 1159

(IRSA recipe requires entering the reasoning first 1160

in the prompt). Although the token length and in- 1161

formation in the prompts are identical, with just 1162

the order being switched, the generation is very 1163

different. When the answer is generated first, the 1164

model must make a guess (x = 1 or 2) and then 1165

rationalize that guess, whereas when the reason- 1166

ing is generated first, the model has the benefit of 1167

that reasoning in generating its answer. On 100 1168

programs using 4-shot prompts, this leads to 52% 1169

accuracy for the answer-first prompt and 99% for 1170

the reasoning-first prompt. This is crucial for con- 1171

trol structures like if statements and while loops 1172

14

that inform what is executed next through multiple1173

layers of indirection because the prompt needs to1174

instruct the LLM to react at the right time in the1175

right way.1176

Empirical entropy in generation can be re-1177

duced by IRSA prompting. GPT models are con-1178

ditional token samplers, trained to approximate the1179

training data distribution. In generation, the token1180

distribution depends both on the temperature pa-1181

rameter and the previous tokens in the stream. With1182

careful IRSA prompting, we expect the generator1183

to be not only more accurate, but also more certain.1184

This should be characteristic of all autoregressive1185

models, though better ones may be more robust to1186

prompt design pitfalls discussed here.1187

To test, we further simplified the exam-1188

ple above and ran an experiment using both1189

text-davinci-003 and gpt-4 with two almost1190

identical 2-shot prompts for evaluating 20 expres-1191

sions of the form (a +- b) % 10 + c.1192

The two prompts contain identical information,1193

differing only in two characters in total. They both1194

explain the reasoning steps needed to reach the1195

answer. As in the previous ablation, one prompt1196

shows the answer first, followed by an explanation,1197

which then repeats the answer. Concretely, the1198

prompt contains two examples in this form:1199

(12 + 24) % 10 + 1 = 71200

12 + 24 = 361201

36 % 10 = ?1202

36 is positive so1203

36 % 10 = 61204

(12 + 24) % 10 + 1 = 71205

[DONE]1206

We refer to this prompting style as "guess then ra-1207

tionalize," because when a model is prompted with1208

examples in this form followed by a new problem,1209

it immediately generates the answer as the very1210

first token after =, possibly helped with making that1211

leap by the explanations in the prompt, but before1212

generating its own problem-specific reasoning/ex-1213

planation, and finally confirming or correcting the1214

answer with its last generated token. As we show1215

below, the model sometimes fails to use detailed ex-1216

planations to make a correct initial guess and then1217

the confirmation bias often gets the better of the1218

model at the end, even if the generated reasoning1219

should lead to a different conclusion.1220

The second style of prompting in this ablation1221

differs from the first in just one character per exam-1222

ple: Instead of having the correct final answer (here,1223

7) both at the beginning and at the end, the example 1224

contains the question mark at the beginning: 1225

(12 + 24) % 10 + 1 = ? 1226

12 + 24 = 36 1227

36 % 10 = ? 1228

36 is positive so 1229

36 % 10 = 6 1230

(12 + 24) % 10 + 1 = 7 1231

[DONE] 1232

We refer to such prompting as "reason then an- 1233

swer," because when a model is prompted with 1234

examples in this form, it generates the question 1235

mark first, instead of an answer, regardless of the 1236

problem, then generates the explanation (or reason- 1237

ing) and then generates the answer without being 1238

burdened by a concrete initial guess, which may 1239

be incorrect. In other words, the attention is regi- 1240

mented to focus on the reasoning only, developing 1241

the answer in a linear fashion. 1242

We tested both styles of prompting with prompts 1243

containing the same two worked-out examples, one 1244

containing (a + b) and one with (a - b) in 1245

the expression, the first example explaining how 1246

to evaluate modulo of a positive number and the 1247

other of a negative number. (Modulo of a nega- 1248

tive number alone often "confuses" GPT models 1249

unless there are instructions in the prompt). Each 1250

prompt is tested on the same test set of 20 ran- 1251

domly generated expressions. Each test expression 1252

is added to the prompt and evaluated 20 times at 1253

each of the five different temperatures, allowing us 1254

to compute both the average accuracy and empir- 1255

ical entropy over the 20 answers (which for both 1256

prompting techniques are found as the last token in 1257

generation). 1258

As opposed to the previous ablation, where sim- 1259

ilar expression evaluations were part of making a 1260

decision in an if block, here we focused on eval- 1261

uation of the expression alone, and made the rea- 1262

soning/explanation parts of both prompts shorter 1263

by one step: the last addition (6+1=7 in the ex- 1264

ample above). When a model is following such 1265

instructions, it may insert that step in its generation 1266

anyhow, or it may follow the recipe and just write 1267

the original expression and the answer by perform- 1268

ing that last addition "in its head," if it "decides" to 1269

do so. Both prompting styles require this mental 1270

leap, but it is harder in case of "guess then reason" 1271

prompting style. Because of the repetition of the 1272

problem at the end, when the last token (the answer) 1273

is being generated, the model’s attention is drawn 1274

15

to the first token generated right after the expres-1275

sion (the initial guess in "guess then rationalize" or1276

the question mark in "reason then answer"). And1277

the attention is also drawn to the worked out evalu-1278

ation of the modulo operation, to which a number1279

is to be added to produce the correct answer. In the1280

"reason then answer" case, the attention to the unin-1281

formative question mark does not compete with the1282

attention to the reasoning, but in the "guess then1283

rationalize" case it does. Thus, we hypothesized1284

that the entropy of the generations would differ1285

significantly.1286

Indeed, as we show in Fig A.1, running the same1287

expression 20 times, the entropy increases for the1288

"guess then rationalize" prompt on both GPT3 and1289

GPT4 as the temperature increases, and the accu-1290

racy stays low, at less than 40% for GPT3 and just1291

above 60% for GPT4. For the "reason then answer"1292

prompt, both GPT3 and GPT4 have consistently1293

near-zero entropy (sitting at 0 for GPT4) and a near1294

100% accuracy (sitting at 100% for GPT4). The1295

style of forcing the reasoning before determining1296

an answer sufficiently regiments the attention to1297

reduce the effect of temperature (and potentially1298

other sources of uncertainty due to training data)1299

while still maintaining high accuracy.1300

As the previous ablation, this experiment illu-1301

minates the advantages of IRSA over the original1302

scratchpad prompting that we numerically demon-1303

strated in the main text (Table 3). But, it also further1304

demonstrates how IRSA prompting can create cor-1305

rect long execution traces where any single token1306

could ruin the answer. Even though GPT is a statis-1307

tical model, where the sampling of each can derail1308

the generation into a "hallucination", regimented1309

attention can dramatically reduce the uncertainty,1310

here created through variation of the temperature,1311

but also inherently present in the model even at zero1312

temperature due to the large training data falling1313

into many different categories and often contain-1314

ing contradictions. The experiment also demon-1315

strates that although most of our experiments are1316

performed with GPT-3 family, the newest (for now)1317

GPT-4 also benefits from IRSA (see also Section1318

A.3.3)1319

Avoid unnecessary variation, follow strong1320

structure. We used the term regimenting attention1321

in the naming of the technique to emphasize that1322

strong structure is even more important in IRSA1323

than in other prompting applications. It is usually1324

crucial to order the variables in the state always in1325

the same order, utilize the same keywords to des-1326

ignate the state, use the same language to explain 1327

the transitions, and ensure consistent capitalization, 1328

punctuation, and even spacing/tabulation. We ex- 1329

perimented with several variants of the Bubble Sort 1330

prompt, and even when using the same worked-out 1331

example, the accuracy can vary dramatically (Al- 1332

though better models are more forgiving than the 1333

older ones). 1334

Generate as much of the prompt with LLM 1335

itself. One way to create such a strong structure 1336

is to let the model continue the prompt we are de- 1337

signing after every few lines (going back to correct 1338

the incorrectly generated continuation). The model 1339

is more likely to stay faithful to the pattern human 1340

started than the human is (with spacing, typos, and 1341

so on). Because of this, using the interpreter/com- 1342

piler Prompt A.4 to create an LCS execution path 1343

to serve as a prompt is a safer way of generating an 1344

IRSA-inducing prompt (as long as we verify that 1345

the exemplary execution path is correct). 1346

Overlapping patterns can be problematic. 1347

When generating the next token, an LLM has to 1348

balance many influences of patterns both in the 1349

prompt and the so-far generated text. For ex- 1350

ample, in the LCS algorithm execution Prompt 1351

A.5, the model has to balance the long-range 1352

self-attention when deciding the next token after 1353

C[1,1]= with the short-range influences, which 1354

make the token 1 most likely after two 1s in a 1355

row regardless of the longer context. At times, 1356

short-range influences prevail and cause an incor- 1357

rect execution. But, long-range self-attention can 1358

also inappropriately overrule correct short-range 1359

reasoning. For instance, when generating based 1360

on the Bubble Sort Prompt 2, the model generates 1361

repetitive text that includes many statements of 1362

the form ‘Because n<m is true/false ...,’ 1363

which can create strong pattern overruling local 1364

evaluation of the next inequality. To demon- 1365

strate that, we evaluated the likelihood of the 1366

next token after ‘Because 2<1 is’ for different 1367

lengths of context preceding this text. The con- 1368

text had between 1 and 15 lines of text in the form 1369

‘Because 2<m is true we ...’ with m ∈ [3..9] 1370

randomly chosen, e.g. 1371

Because 2<3 is true we ... 1372

Because 2<7 is true we ... 1373

Because 2<5 is true we ... 1374

Because 2<1 is 1375

As we show in Fig A.2, although the preced- 1376

ing context is correct when evaluating the in- 1377

16

Figure A.1: The average entropy and correctness calculated across 20 trials of 20 expressions on both GPT3 and
GPT4 with either a guess first or reason first prompt. We show that the reason first prompt leads to low entropy
and high accuracy regardless of model and temperature, while the guess first prompt leads to increased entropy as
temperature increases and lower accuracy.

equalities, the log odds of an incorrect evalua-1378

tion of 2<1 increase by over six orders of mag-1379

nitude with the length of this context. The longer1380

this context is, the more it reinforces the pattern1381

‘Because 2< ... true’: If 2 was smaller than a1382

variety of numbers, then it is smaller than 1, too!1383

Furthermore, there is a large variation due to the1384

random selection of m in the examples in the con-1385

text, indicating a variety of other patterns that drive1386

the generation (The figure shows the band between1387

the maximum and minimum log odds over 20 runs).1388

For the contexts of length 7 the odds of picking1389

true over false become roughly even. IRSA can1390

drive probabilities to be so taut that rerunning the1391

same API call with zero temperature can some-1392

times return a different result (The code behind the1393

API presumably always adds a very small constant1394

to log probabilities before sampling). Skip-to-state1395

strategy in Section 2.2 is thus less sensitive to pat-1396

terns that result from program execution.1397

This fragility further emphasizes the difficulty1398

in evaluating LLMs on in-context learning tasks:1399

Improving accuracy may simply be a matter of1400

spending more time designing a prompt (becoming1401

a GPT whisperer). Still, getting GPT to execute the1402

algorithms studied here was not excessively hard,1403

2 4 6 8 10 12 14
-4

-3

-2

-1

0

1

2

3

4

Figure A.2: The difference between GPT Codex log
probabilities of tokens true and false after ‘Because
2<1 is’, which was preceded by a long context of
variable length (x-axis). The context contains between 1
and 15 lines of text comparing number 2 with randomly
chosen larger numbers and declaring, e.g., Because
2<6 is true ... We show the band between the
maximum and minimum log odds over 20 trials, as well
as the mean of the difference. When the preceding
context does not have too many comparisons of 2 with
larger numbers, the model overwhelmingly prefers the
correct evaluation false, but when the context is longer
than 7 statements, the model usually prefers true.

17

and it may even become easier on newer models.1404

A.3.3 And what about GPT-4?1405

A recent qualitative analysis of GPT-4 abilities1406

(Bubeck et al., 2023) includes one example of de-1407

tailed execution of a Python program for one input1408

(in their Fig. 3.7). The LCS algorithm is well-1409

known, so would the newer and better GPT-4 model1410

execute it correctly and consistently across differ-1411

ent inputs? In Prompt A.13, we show a prompt that1412

simply asks GPT-4 to show the LCS algorithm, exe-1413

cute it, and report the result. On our LCS-S dataset,1414

using this prompt design and sampling with zero1415

temperature, GPT-4 gets the correct answer 49%1416

of the times, just slightly better than the ’Guessing’1417

baseline (Table 1). An alternative prompt shown1418

in Prompt A.14, asks for intermediate steps of exe-1419

cution to be shown before the answer is generated,1420

moving the prompting strategy closer to IRSA. This1421

prompt can be thought of as a version of Prompt1422

A.4, but lighter and more straightforward, expect-1423

ing GPT-4 to be able to show program execution1424

without strict specifications. This prompt leads to1425

the accuracy of 69% on LCS-S, still behind IRSA1426

result with codex (93%, Table 2). To illustrate why1427

this may be, in Prompt A.15 we show the same1428

prompt asking for intermediate steps, but for a dif-1429

ferent input. The inputs in Prompts A.14 and A.151430

were processed differently, even though everything1431

else in the prompts was the same, and API calls1432

were made with zero temperature. In one case,1433

only the initial and end states of the “dp” matrix1434

are shown, while in the other, several steps (but not1435

all!) are shown. Therefore, it seems that GPT-41436

is still hard to control without regimenting self-1437

attention more strictly.1438

A.4 Full set of prompts1439

Here we list the prompts used in all tasks and dis-1440

cussed above. The caption of each prompt contains1441

a saved link to the OpenAI playground.1442

18

Prompt A.1. Another IRSA Bubble Sort prompt which describes iterative state evolution, including
counting swaps, and making the determination when to stop, but without the iterator i in the state to track
the position in the sequence, as used in Prompt 1. This prompt is shorter and it still works, as GPT can
deduce that the end of sequence is reached without the iterator, albeit with lower accuracy due to greater
cognitive leaps required. But also, this style of prompting is incompatible with fragmented prompting and
skip-attention, as individual fragments and states may not definitively indicate where in the inner loop
they come from. Playground link (use with 0 temperature)

Problem: 2, 3, 1, 5
EXECUTION

Prep
Length of the list: 4
Number of consecutive pairs: 3
a=[2 3 1 5]
set n_swaps=0
EndPrep
Iteration:

set swap_flag=false. The state is:
State: a=[2 3 1 5], n_swaps=0, swap_flag=false EndState
Pair a[1,2] = [2 3] Check if 2<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[2 3 1 5], n_swaps=0, swap_flag=false
Pair a[2,3]= [3 1] Check if 3<1. Is it true? No.

Thus, we swap_flag=true, increase n_swaps by one,
and in the latest a=[2 3 1 5]
swap 3 and 1 to get into state:

State: a=[2 1 3 5], n_swaps=1, swap_flag=true EndState
Pair a[3,4]= [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is
State: a=[2 1 3 5], n_swaps=1, swap_flag=true EndState
swap_flag is true, so do another iteration

Iteration:
set swap_flag=false. The state is:
State: a=[2 1 3 5], n_swaps=1, swap_flag=false EndState
Pair a[1,2] = [2 1] Check if 2<1. Is it true? No.

Thus, we set swap_flag=true, increase n_swaps by one,
and in the latest a=[2, 1, 3, 5]
swap 2 and 1 to get into state:

State: a=[1 2 3 5], n_swaps=2, swap_flag=true EndState
Pair a[2,3] = [2 3] Check if 2<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=true EndState
Pair a[3,4] = [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=true EndState
swap_flag is true, so do another iteration

Iteration:
set swap_flag=false. The state is:
State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
Pair a[1,2] = [1 2] Check if 1<2. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
Pair a[2,3] = [2 3] Check if 2<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
Pair a[3,4] = [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is
State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
swap_flag is false, so stop the iteration

Final List: 1, 2, 3, 5
Number of swaps: 2
END OF EXECUTION

Problem: 0, 3, 8, 5, 6
EXECUTION

19

https://platform.openai.com/playground/p/TBXnrq1eEreegSknw8wpXh9e?model=code-davinci-002

Prompt A.2. Response (shaded green) to Prompt A.1, whose ending part is shown.
...

State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState
swap_flag is false, so stop the iteration

Final List: 1, 2, 3, 5
Number of swaps: 2
END OF EXECUTION

Problem: 0, 3, 8, 5, 6
EXECUTION

Prep
Length of the list: 5
Number of consecutive pairs: 4
a=[0 3 8 5 6]
set n_swaps=0
EndPrep
Iteration:

set swap_flag=false. The state is:
State: a=[0 3 8 5 6], n_swaps=0, swap_flag=false EndState
Pair a[1,2] = [0 3] Check if 0<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 8 5 6], n_swaps=0, swap_flag=false EndState
Pair a[2,3] = [3 8] Check if 3<8. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 8 5 6], n_swaps=0, swap_flag=false EndState
Pair a[3,4] = [8 5] Check if 8<5. Is it true? No.

Thus, we set swap_flag=true, increase n_swaps by one,
and in the latest a=[0 3 8 5 6]
swap 8 and 5 to get into state:

State: a=[0 3 5 8 6], n_swaps=1, swap_flag=true EndState
Pair a[4,5] = [8 6] Check if 8<6. Is it true? No.

Thus, we set swap_flag=true, increase n_swaps by one,
and in the latest a=[0 3 5 8 6]
swap 8 and 6 to get into state:

State: a=[0 3 5 6 8], n_swaps=2, swap_flag=true EndState
swap_flag is true, so do another iteration

Iteration:
set swap_flag=false. The state is:
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
Pair a[1,2] = [0 3] Check if 0<3. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
Pair a[2,3] = [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
Pair a[3,4] = [5 6] Check if 5<6. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
Pair a[4,5] = [6 8] Check if 6<8. Is it true? Yes.

Because of that, we leave state as is
State: a=[0 3 5 6 8], n_swaps=2, swap_flag=false EndState
swap_flag is false, so stop the iteration

Final List: 0, 3, 5, 6, 8
Number of swaps: 2
END OF EXECUTION

20

Prompt A.3. Logical deduction puzzle IRSA prompt. Playground link (use with 0 temperature)

PUZZLE: The following objects need to be ordered. obj1 is the biggest. obj2 is smaller than obj3.
obj1 is bigger than obj2. QUESTION: Which object is the biggest?
START
Parsing step:

Items: obj1, obj2, obj3
Numbe of items: 3
Statement 1: obj1 is the biggest.
Statement 2: obj2 is smaller than obj3.
Statement 3: obj1 is bigger than obj2.

Scoring identification step:
Scores will refer to size.
Since we have 3 items, let's assume that the biggest gets a score of 3 pounds
and the smallest gets the score of 1 pound.

Translation step:
Available variable names: x, y, z, a, b, c
Map item scores of 'obj1', 'obj2', 'obj3' to variable names x, y, z
obj1 score is x; obj2 score is y; obj3 is z;
Statement 1: 'x' is the biggest.
Statement 2: 'y' is smaller than 'z'.
Statement 3: 'x' is bigger than 'y'.

Initialization step:
Words used to qualify the realtionsips: smaller, bigger, biggest
Orientation step:

the biggest: refers to the score of 3
smaller: refers to smaller score
bigger: refers to larger score

Initialize so that all scores are different numbers between 1 and 3
Score_assignment_A:
x=2, y=3, z=1

Iterative reasoning
Iteration 1:

update_flag=false
Statement 1: 'x' is the biggest, meaning: x should be 3
In Score_assignment_A, x is 2
x is not what it should be, so we need to make a change, so we set update_flag=true and we need to make a swap.
In the statement there is only one variable and it is x. We need to find another. We want x to be 3,
but we see that in Score_assignment_A that 3 is assigned to y, so we swap values of x and y to make
Score_assignment_B:
x=3, y=2, z=1
Statement 2: 'y' is smaller than 'z', meaning: y<z
In Score_assignment_B, y is 2 and z is 1, so y<z maps to 2<1
2<1 is false, so we need to make a change, so we set update_flag=true and we need ot make a swap.
In the statement there are two variables and those are y and z so we swap in Score_assignment_B to make
Score_assignment_C:
x=3, y=1, z=2
Statement 3: ' x' is bigger than 'y', meaning x>y
In Score_assignment_C, x is 3 and y is 1, so x>y maps to 3>1
3>1 is true, so we don't need to make a change.

End of iteration. Since update_flag is true, we need more iterations.
Iteration 2:

update_flag=false
Statement 1: 'x' is the biggest, meaning: x=3
In Score_assignment_C, x is 3, so x=3 maps to 3=3
3=3 is true, so we don't need to make a change.
Statement 2: 'y' is smaller than z, meaning: y<z
In Score_assignment_C, y is 1 and z is 2, so y<z maps to 1<2
1<2 is true, so we don't need to make a change.
Statement 3: 'x' is bigger than y, meaning x>y
In Score_assignment_C, x is 3 and y is 1, so x>y maps to 3>1
3>1 is true, so we don't need to make a change.

End of iteration. Since update_flag is false, we have finished all iterations and found the correct order.
The correct score assignment is the last (Score_assignment_C):
x=3, y=1, z=2
Reverse translation step:
Map items 'obj1', 'obj2', 'obj3' to variable names x, y, z
so we replace x by obj1, y by obj2, and z by obj3 to get size scores:
obj1 has the score 3; obj2 has the score 1; obj3 has the score 2

Question: Which object is the biggest?
Answer: obj1
Sorting all by score starting with obj1:
with score 3, obj1
with score 2, obj3
with score 1, obj2
END

PUZZLE: On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.
The red book is to the right of the gray book. The black book is to the left of the blue book.
The blue book is to the left of the gray book. The purple book is the second from the right.
QUESTION: Which is leftmost?
START

21

https://platform.openai.com/playground/p/xAOcPKewG2yK4bEwQbz8lzuj?model=code-davinci-002

Prompt A.4. Interpreter/Compiler prompt that can
execute LCS algorithm. Playground link (use 0
temperature)
Matrix C contains values, e.g:
C[0,0]=1 C[0,1]=6 C[0,2]=11 C[0,3]=16 C[0,4]=21
C[1,0]=2 C[1,1]=7 C[1,2]=12 C[1,3]=17 C[1,4]=22

To query a value:
Show(C[1,2])
<state> C[1,2]=12 </state>

Query an undefined variable
Show(a)
<state> a=0 </state>

To set a value:
C[0,1]:=8
C[0,1] was 6. Now C[0,1]=8.
a:=5
a was 0. Now a=5.

To query multiple variables:
Show(a, C[0:1,0:4])
<state>
a=5
C[0,0]=1 C[0,1]=8 C[0,2]=11 C[0,3]=16 C[0,4]=21
C[1,0]=2 C[1,1]=7 C[1,2]=12 C[1,3]=17 C[1,4]=22
</state>

Program:
N:=1
for i from 0 to N

C[i,i]=-3
Execute:
i:=0
C[0,0]:=-3
i:=1
C[1,1]:=-3
Finished with i=N, so done with i loop

Show(C)
<state>
C[0,0]=-3 C[0,1]=8 C[0,2]=11 C[0,3]=16 C[0,4]=21
C[1,0]=2 C[1,1]=-3 C[1,2]=12 C[1,3]=17 C[1,4]=22
</state>

Program:
if a<C[0,4]

C[0,0]:=5
else

C[0,1]:=2
Execute:
Check if a<C[0,1]? a is 5 C[0,1] is 8 Is 5<8?...
... Yes. C[0,0]:=5

Done

Show(C[0,0])
<state> C[0,0]=5 </state>

Program:
C[0,2]:=detailed_max(C[0,3],C[0,4])
Execute:
C[0,3] is 16, C[0,4] is 21. C[0,2] is the greater of...
...them. C[0,2]:=21

Done

LCS:
Input: TA ATA End of input
LCS Prep:
a[1]=T a[2]=A
b[1]=A b[2]=T b[3]=A
M=2 N=3

LCS program:
Show(a,b,M,N)
for i from 1 to M

for j from 1 to N
if a[i]==b[j]

C[i,j]:=C[i-1,j-1]+1
else

C[i,j]:=detailed_max(C[i,j-1],C[i-1,j])
Show(i, j, M, N, C[0:i,0:N])

Show('END')
Execute:

Prompt A.5. In response to Prompt A.4, the model
returns the correct LCS execution path shown here
...

Execute:

<state>
a[1]=T a[2]=A
b[1]=A b[2]=T b[3]=A
M=2 N=3
</state>
i:=1
j:=1
Check if a[1]==b[1]? a[1] is T b[1] is A Is T==A?...
... No. C[1,1]:=detailed_max(C[1,0],C[0,1])
... C[1,0] is 0, C[0,1] is 0. C[1,1] is the greater of
...them. C[1,1]:=0

<state>
i=1 j=1 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=0 C[1,3]=0
</state>
j:=2
Check if a[1]==b[2]? a[1] is T b[2] is T Is T==T?...
... Yes. C[1,2]:=C[0,1]+1
... C[0,1] is 0. C[1,2]:=1

<state>
i=1 j=2 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=0
</state>
j:=3
Check if a[1]==b[3]? a[1] is T b[3] is A Is T==A?...
... No. C[1,3]:=detailed_max(C[1,2],C[0,3])
... C[1,2] is 1, C[0,3] is 0. C[1,3] is the greater of
...them. C[1,3]:=1

<state>
i=1 j=3 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=1
</state>
i:=2
j:=1
Check if a[2]==b[1]? a[2] is A b[1] is A Is A==A?...
... Yes. C[2,1]:=C[1,0]+1
... C[1,0] is 0. C[2,1]:=1

<state>
i=2 j=1 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=1
C[2,0]=0 C[2,1]=1 C[2,2]=0 C[2,3]=0
</state>
j:=2
Check if a[2]==b[2]? a[2] is A b[2] is T Is A==T?...
... No. C[2,2]:=detailed_max(C[2,1],C[1,2])
... C[2,1] is 1, C[1,2] is 1. C[2,2] is the greater of
...them. C[2,2]:=1

<state>
i=2 j=2 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=1
C[2,0]=0 C[2,1]=1 C[2,2]=1 C[2,3]=0
</state>
j:=3
Check if a[2]==b[3]? a[2] is A b[3] is A Is A==A?...
... Yes. C[2,3]:=C[1,2]+1
... C[1,2] is 1. C[2,3]:=2

<state>
i=2 j=3 M=2 N=3
C[0,0]=0 C[0,1]=0 C[0,2]=0 C[0,3]=0
C[1,0]=0 C[1,1]=0 C[1,2]=1 C[1,3]=1
C[2,0]=0 C[2,1]=1 C[2,2]=1 C[2,3]=2
</state>
<state>
END
</state>

22

https://platform.openai.com/playground/p/zCvCyEvZv21fQ7944009aFb3?model=code-davinci-002
https://platform.openai.com/playground/p/zCvCyEvZv21fQ7944009aFb3?model=code-davinci-002

Prompt A.6. Prompt that triggers execution of the
search for the longest substring without repeating
characters. Playground link (use 0 temperature)
Input: s = c, b, c, a, b, b
START
Unique letters: a, b, c
Define variables last_a=0, last_b=0, last_c=0
Length of sequence s: L=6
Because L is 6, the needed number of iterations is 6
set st_ind=1
st m_len=0
set i=1
Iteration 1:

s(1) is c, so use last_c
last_c is 0, so nothing to do here.
max(m_len, i-st_ind+1) is max(0, 1-1+1) which is...
...max(0,1)=1, so we set m_len=1
since i is 1, and the letter is c, set last_c=1
increase i by one
i=2, st_ind=1, m_len=1, last_a=0, last_b=0, last_c=1

End of iteration 1. But we need to do 6 iterations,...
...so we do another one
Iteration 2:

s(2) is b, so use last_b
last_b is 0, so nothing to do here.
max(m_len, i-st_ind+1) is max(1, 2-1+1) which is...
...max(1, 2)=2, so we set m_len=2
since i is 2, and the letter is b, set last_b=2
increase i by one
i=3, st_ind=1, m_len=2, last_a=0, last_b=2, last_c=1

End of iteration 2. But we need to do 6 iterations,...
...so we do another one
Iteration 3:

s(3) is c, so use last_c
last_c is greater than 0, so we reason...
...max(st_ind, last_c+1) is max(1, 2)=2...
...so we set st_ind=2
max(m_len, i-st_ind+1) is max(2, 3-2+1) which is...
...max(2, 2)=2, so we set m_len=2
since i is 3, and the letter s(3) is c, set last_c=3
increase i by one
i=4, st_ind=2, m_len=2, last_a=0, last_b=2, last_c=3

End of iteration 2. But we need to do 6 iterations,...
...so we do another one
Iteration 4:

s(4) is a, so use last_a
last_a is 0, so nothing to do here.
max(m_len, i-st_ind+1) is max(2, 4-2+1) which is...
...max(2, 3)=3, so we set m_len=3
since i is 4, and the letter s(4) is a, set last_a=4
increase i by one
i=5, st_ind=2, m_len=3, last_a=4, last_b=2, last_c=3

End of iteration 4. But we need to do 6 iterations,...
...so we do another one
Iteration 5:

s(5) is b, so use last_b
last_b is greater than 0, so we reason...
...max(st_ind, last_b+1) is max(2, 2+1) which is...
...max(2, 3)=3 so we set st_ind=3
max(m_len, i-st_ind+1) is max(3, 5-3+1) which is...
...max(3, 3)=3, so we set m_len=3
since i is 5, and the letter s(5) is b, set last_b=5
increase i by one
i=6, st_ind=3, m_len=3, last_a=4, last_b=5, last_c=3

End of iteration 5. But we need to do 6 iterations,...
...so we do another one
Iteration 6:

s(6) is b, so use last_b
last_b is greater than 0, so we reason...
...max(st_ind, last_b+1) is max(3, 5+1) which is...
...max(3, 6)=6 so we set st_ind=6
max(m_len, i-st_ind+1) is max(3, 6-6+1) which is...
...max(3, 1)=3, so we set m_len=3
since i is 6, and the letter s(6) is b, set last_b=6
increase i by one
i=7, st_ind=6, m_len=3, last_a=4, last_b=6, last_c=3

End of iteration 6. We needed to do 6 iterations,...
...so we are done

The solution is: m_len=3
END

Input: s = p, w, w, k, e, p, z
START

Prompt A.7. Prompt that triggers evaluation of
parentheses using a stack. Full prompt in play-
ground, and Prompt as here (with 10 steps missing)
in playground. Meant to be used with 0 tempera-
ture.
input:) [{ }] ({ }) [({ })] } {
input wriritten as a sequence of symbols:
s= ')', '[', '{', '}', ']', '(', '{','}', ')', '[',
'(', '{', '}', ')',']', '}', '{'
length(s)= 17
stack is initialized as empty
i=0
there is nothing in stack, so push s(0)= ')' on stack
stack=)
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=1
we push s(1)='[' on the stack
stack=) [
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=2
we push s(2)='{' to the stack
stack=) [{
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=3
we push s(3)='}' to the stack
stack=) [{ }
are the last two symbols an open and a closed
parenthesis of the same type? Yes, they are { },
opening then closing.
We pop the last two symbols from the stack.
stack=) [
i=4
we push s(4)=']' to the stack
stack=) []
are the last two symbols an open and a closed
parenthesis of the same type? Yes, they are [],
opening then closing.
We pop the last two symbols from the stack
stack=)
i=5
we push s(5)='(' to the stack
stack=) (

...

i=15
we push s(15)='}' to the stack
stack=) }
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=16
we push s(16)='{' to the stack
stack=) } {
are the last two symbols an open and a closed
parenthesis of the same type? No. Stack stays same.
i=17
we have reached the end of the input string.
If the stack has some parenthesis left in it,
the sequence is invalid, otherwise,
if the stack is empty, it is valid.
Sequence is: invalid
END

input:

23

https://platform.openai.com/playground/p/0i2eLLI1xnjy9txtx5j4gZgR?model=code-davinci-002
https://platform.openai.com/playground/p/xovdKeaBx0Gq7hDmSfoUsYEg?model=code-davinci-002
https://platform.openai.com/playground/p/xovdKeaBx0Gq7hDmSfoUsYEg?model=code-davinci-002
https://platform.openai.com/playground/p/yUfZNSxZCn6nqryido2Tdeus?model=code-davinci-002
https://platform.openai.com/playground/p/yUfZNSxZCn6nqryido2Tdeus?model=code-davinci-002

Prompt A.8. A prompt (white background) for translating logical deduction puzzles from BIG-bench
into a Wolfram language (Mathematica) call. The response from GPT-3 Codex is shown green-shaded.
Playground link (use 0 temperature)

Puzzle: The following objects need to be ordered. obj1 is the biggest. obj2 is smaller than obj3.
obj1 is bigger than obj2.

Question: Which object is the biggest?

Parsing step:
Items: obj1, obj2, obj3
Numbe of items: 3
Statement 1: obj1 is the biggest.
Statement 2: obj2 is smaller than obj3.
Statement 3: obj1 is bigger than obj2.

Scoring identification step:
Scores will refer to size.
Since we have 3 items, let's assume that the biggest gets a score of 3 pounds and the smallest gets
the score of 1 pound.

Translation step:
Available variable names: x, y, z, a, b, c
Map item scores of 'obj1', 'obj2', 'obj3' to variable names x, y, z
obj1 score is x; obj2 score is y; obj3 is z;
Statement 1: 'x' is the biggest.
Statement 2: 'y' is smaller than 'z'.
Statement 3: 'x' is bigger than 'y'.
Domain constraints: 1<=x<=3, 1<=y<=3, 1<=z<=3
Statemets as a set of inequalities or equalities: x==3, y<z, x>y
All varaibles are different: x!=y, x!=z, y!=z

Call to WolframAlpha:
Solve[{1<=x<=3, 1<=y<=3, 1<=z<=3, x==3, y<z, x>y, x!=y, x!=z, y!=z }, {x, y, z}, Integers]

END

Puzzle: A fruit stand sells five fruits: kiwis, pears, peaches, loquats, and apples.
The loquats are more expensive than the kiwis. The pears are more expensive than the peaches.
The apples are more expensive than the loquats. The apples are less expensive than the peaches.

Question: Which is the most expensive?

Parsing step:
Items: kiwis, pears, peaches, loquats, apples
Numbe of items: 5
Statement 1: The loquats are more expensive than the kiwis.
Statement 2: The pears are more expensive than the peaches.
Statement 3: The apples are more expensive than the loquats.
Statement 4: The apples are less expensive than the peaches.

Scoring identification step:
Scores will refer to price.
Since we have 5 items, let's assume that the most expensive gets a score of 5 dollars
and the least expensive gets the score of 1 dollar.

Translation step:
Available variable names: x, y, z, a, b, c
Map item scores of 'kiwis', 'pears', 'peaches', 'loquats', 'apples' to variable names x, y, z, a, b
kiwis score is x; pears score is y; peaches is z; loquats is a; apples is b;
Statement 1: 'a' is more expensive than 'x'.
Statement 2: 'y' is more expensive than 'z'.
Statement 3: 'b' is more expensive than 'a'.
Statement 4: 'b' is less expensive than 'z'.
Domain constraints: 1<=x<=5, 1<=y<=5, 1<=z<=5, 1<=a<=5, 1<=b<=5
Statemets as a set of inequalities or equalities: a>x, y>z, b>a, b<z
All varaibles are different: x!=y, x!=z, x!=a, x!=b, y!=z, y!=a, y!=b, z!=a, z!=b, a!=b

Call to WolframAlpha:
Solve[{1<=x<=5, 1<=y<=5, 1<=z<=5, 1<=a<=5, 1<=b<=5, a>x, y>z, b>a, b<z, x!=y, x!=z, x!=a, x!=b,
y!=z, y!=a, y!=b, z!=a, z!=b, a!=b}, {x, y, z, a, b}, Integers]

24

https://platform.openai.com/playground/p/n1Uo1tpHK7plGTAqYpZyydvu?model=code-davinci-002

Prompt A.9. The (Nye et al., 2021) execution trace prompt for interpreting synthetic Python programs.
For two- and three-shot traces, the additional examples were added in the gray shaded area. 1-shot
Playground link, 2-shot Playground link, 3-shot Playground link (use 0 temperature)

Consider the following Python function:

def f(v0):
v0 += 0
v4 = 2
while v4 > 0:

v4 -= 1
v0 *= 2

return v0

output = f(6)

What is the execution trace?

[BEGIN]

state: {}
line: def f(v0):
state: {"f": "<callable_object f>"}
line: output = f(6)
state: {"v0": 6}
line: v0 += 0
state: {"v0": 6}
line: v4 = 2
state: {"v0": 6, "v4": 2}
line: while v4 > 0:
state: {"v0": 6, "v4": 2}
line: v4 -= 1
state: {"v0": 6, "v4": 1}
line: v0 *= 2
state: {"v0": 12, "v4": 1}
line: while v4 > 0:
state: {"v0": 12, "v4": 1}
line: v4 -= 1
state: {"v0": 12, "v4": 0}
line: v0 *= 2
state: {"v0": 24, "v4": 0}
line: while v4 > 0:
state: {"v0": 24, "v4": 0}
line: return v0
state: {"f": "<callable_object f>", "output": 24}

[DONE]

...

Consider the following Python function:

25

https://platform.openai.com/playground/p/a1d9RXpU0MbPxHE6mFUoYpkK?model=text-davinci-003
https://platform.openai.com/playground/p/a1d9RXpU0MbPxHE6mFUoYpkK?model=text-davinci-003
https://platform.openai.com/playground/p/pIjAj3Npbk1KPacGtBVg0RO7?model=text-davinci-003
https://platform.openai.com/playground/p/kQgRbXJ1y381BQB4X2E3q79m?model=text-davinci-003

Prompt A.10. The execution trace prompts with IRSA-style explanations added in between line and state
for interpreting synthetic Python programs. For two- and three-shot traces, the additional examples were
added in the gray shaded area. 1-shot Playground link, 2-shot Playground link, 3-shot Playground link
(use 0 temperature)

Consider the following Python function:

def f(v0):
v0 += 0
v4 = 2
while v4 > 0:

v4 -= 1
v0 *= 2

return v0

output = f(6)

What is the execution trace?

[BEGIN]

state: {}
line: def f(v0):
explanation: definition of function f that takes an initial value for the variable v0
state: {"f": "<callable_object f>"}
line: output = f(6)
explanation: execute the code under the definition of function f and initialize variable v0 with initial value 6
state: {"v0": 6}
line: v0 += 0
explanation: v0 += 0 means v0 = v0 + 0. v0 is 6, so v0 + 0 = 6 + 0 = 6. Now v0 is 6
state: {"v0": 6}
line: v4 = 2
explanation: initialize variable v4 with initial value 2
state: {"v0": 6, "v4": 2}
line: while v4 > 0:
explanation: Check v4 > 0. v4 was 2. Is 2 > 0? Yes, so we enter the while loop
state: {"v0": 6, "v4": 2}
line: v4 -= 1
explanation: v4 -= 1 means v4 = v4 - 1. v4 is 2, so v4 - 1 = 2 - 1 = 1. Now v4 is 1
state: {"v0": 6, "v4": 1}
line: v0 *= 2
explanation: v0 *= 2 means v0 = v0 * 2. v0 is 6, so v0 * 2 = 6 * 2 = 12. Now v0 is 12
state: {"v0": 12, "v4": 1}
line: while v4 > 0:
explanation: Check v4 > 0. v4 was 1. Is 1 > 0? Yes, so we enter the while loop
state: {"v0": 12, "v4": 1}
line: v4 -= 1
explanation: v4 -= 1 means v4 = v4 - 1. v4 is 1, so v4 - 1 = 1 - 1 = 0. Now v4 is 0
state: {"v0": 12, "v4": 0}
line: v0 *= 2
explanation: v0 *= 2 means v0 = v0 * 2. v0 is 12, so v0 * 2 = 12 * 2 = 24. Now v0 is 24
state: {"v0": 24, "v4": 0}
line: while v4 > 0:
explanation: Check v4 > 0. v4 was 0. Is 0 > 0? No, so we are done with the loop
state: {"v0": 24, "v4": 0}
line: return v0
explanation: Return the current value of v0, which is 24, to replace the initial function call
state: {"f": "<callable_object f>", "output": 24}

[DONE]

...

Consider the following Python function:

26

https://platform.openai.com/playground/p/QMTY5m3bUu6FkCoB7JF5Ng6u?model=text-davinci-003
https://platform.openai.com/playground/p/6FoqYKDcTGNsNoYrwL9iuJx7?model=text-davinci-003
https://platform.openai.com/playground/p/1UZH5kh0jhS0sripilgtObly?model=text-davinci-003

Prompt A.11. A zero-shot code prompt (white background) which, when temperature is carefully chosen
may trigger code execution (shaded green) by Codex. Although the sequence gets sorted, the execution
goes awry after that. Importantly, the number of swaps is not tracked, even though the code contains
appropriate instructions. In contrast, IRSA prompts consistently and repeatedly trigger correct program
execution. See also Prompts A.14 and A.15 for examples of inconsistent behaviour of GPT-4 with
zero-shot code prompting.

Here is the code for Bubble Sort algorithm that keeps track of the number of needed swaps:
def bubbleSort(arr):

n = len(arr)
initiate the number of swaps to 0
n_swaps=0;
Traverse through all array elements
for i in range(n):

Last i elements are already in place
for j in range(0, n-i-1):

traverse the array from 0 to n-i-1
Swap if the element found is greater
than the next element
if arr[j] > arr[j+1] :

arr[j], arr[j+1] = arr[j+1], arr[j]
n_swaps = n_swaps+1

Problem: 8, 7, 6, 4, 9
EXECUTION:

i=0
j=0
8 > 7
7, 8, 6, 4, 9
j=1
8 > 6
7, 6, 8, 4, 9
j=2
8 > 4
7, 6, 4, 8, 9
j=3
8 > 9
7, 6, 4, 8, 9
j=4
i=1
j=0
7 > 6
6, 7, 4, 8, 9
j=1
7 > 4
6, 4, 7, 8, 9
j=2
7 > 8
6, 4, 7, 8, 9
j=3
i=2
j=0
6 > 4
4, 6, 7, 8, 9
j=1
6 > 7
4, 6, 7, 8, 9
j=2
i=3
j=0
4 > 6
4, 6, 7, 8, 9
j=1
i=4
j=0
i=5
j=0
i=6
j=0
i=7
j=0
i=8
...

27

Prompt A.12. An example of a baseline prompt design. Prompts with and without the code, shaded in
gray, were used. Zero shot prompts omitted the examples, also shaded in gray. Other than the (buggy)
algorithm we adopted for the logical deduction puzzle, the algorithms we tested are known to Codex, and
we based the codes used in the prompts on the ones generated by Codex itself.

Python3 program to find the length
of the longest substring
without repeating characters in string s
the maximum length of such a substring will be returned in m_len

def longestUniqueSubsttr(s):
last index of every character
last_idx = {}
m_len = 0
starting index of current
window to calculate m_len
start_idx = 0
for i in range(0, len(s)):

Find the last index of str[i]
Update start_idx (starting index of current window)
as maximum of current value of start_idx and last
index plus 1
if s[i] in last_idx:

start_idx = max(start_idx, last_idx[s[i]] + 1)

Update result if we get a larger window
m_len = max(m_len, i-start_idx + 1)
Update last index of current char.
last_idx[s[i]] = i

return m_len

What would the algorithm above, which looks for the longest substring with non repeating characters
compute for a given problem? Use this format:

Input: s = ...
START
The solution is: m_len= ...
END

Input: s = a, a, c, a, d, b, b
START
The solution is: m_len=4
END

Input: s = b, b, a, a, d, b, b
START
The solution is: m_len=3
END

Input: s = c, a, d, c, b, c, a
START
The solution is: m_len=4
END

Input: s = a, c, b, a, c, d, d
START
The solution is: m_len=4
END

Input: s = b, b, d, d, a, d, b
START
The solution is: m_len=3
END

Input: s = a, c, d, c, a, c, a
START

28

Prompt A.13. Given the non-shaded text as a prompt, GPT-4 (0 temperature) returns the green shaded
response.

We need to compute the longest common subsequence for two sequences

s1=bccba
s2=ccaa

using the dynamic programming algorithm. Show the python code for the algorithm, and then execute it.
Finally, output the length of the longest common subsequence bracketed with <answer> and </answer>.

Here's the Python code for the dynamic programming algorithm to find the longest common subsequence:

```python
def longest_common_subsequence(s1, s2):

m = len(s1)
n = len(s2)
dp = [[0] * (n + 1) for _ in range(m + 1)]

for i in range(1, m + 1):
for j in range(1, n + 1):

if s1[i - 1] == s2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1

else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

return dp[m][n]

s1 = "bccba"
s2 = "ccaa"
lcs_length = longest_common_subsequence(s1, s2)
print(f"<answer>{lcs_length}</answer>")
```

Now, let us execute the code and find the length of the longest common subsequence:

```python
s1 = "bccba"
s2 = "ccaa"
lcs_length = longest_common_subsequence(s1, s2)
print(f"<answer>{lcs_length}</answer>")
```

Output:

```
<answer>3</answer>
```

29

Prompt A.14. Given the non-shaded text as a prompt, GPT-4 (0 temperature) returns the green shaded
response. The prompt attempts to trigger tracking steps of program execution, but only the initial and
final matrix are shown.

We need to compute the longest common subsequence for two sequences

s1=bccba
s2=ccaa

using the dynamic programming algorithm. Show the python code for the algorithm, and then write down its
execution with intermediate steps. Finally, output the length of the longest common subsequence bracketed
with <answer> and </answer>.

Here's the Python code for the dynamic programming algorithm to find the longest common subsequence:

```python
def longest_common_subsequence(s1, s2):

m = len(s1)
n = len(s2)
dp = [[0] * (n + 1) for _ in range(m + 1)]

for i in range(1, m + 1):
for j in range(1, n + 1):

if s1[i - 1] == s2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1

else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

return dp[m][n]

s1 = "bccba"
s2 = "ccaa"
print(longest_common_subsequence(s1, s2))
```

Now let us s go through the execution with intermediate steps:

1. Initialize the 'dp' table with dimensions (m+1) x (n+1), where m and n are the lengths of
s1 and s2, respectively. The table will look like this:

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2. Iterate through the table, comparing characters from s1 and s2. Update the table based
on the dynamic programming formula:

0 0 0 0 0
0 0 1 1 1
0 1 1 1 1
0 1 2 2 2
0 1 2 2 2
0 1 2 2 3

3. The length of the longest common subsequence is in the bottom-right cell of the table, which is 3.

So, the length of the longest common subsequence is <answer>3</answer>.

30

Prompt A.15. Given the same non-shaded text as in Prompt A.14 as a prompt, just for a different
input, GPT-4 (0 temperature) returns the green shaded response that this time does list more (but not all!)
intermediate steps. This style of prompting GPT-4 reaches accuracy of 69% on LCS-S, compared to 93%
achieved with IRSA in GPT-3.

We need to compute the longest common subsequence for two sequences

s1=aaca
s2=abab

using the dynamic programming algorithm. Show the python code for the algorithm, and then write down its
execution with intermediate steps. Finally, output the length of the longest common subsequence bracketed
with <answer> and </answer>.

Here is the Python code for the dynamic programming algorithm to compute the longest common subsequence:
```python
def longest_common_subsequence(s1, s2):

m = len(s1)
n = len(s2)

dp = [[0]*(n+1) for _ in range(m+1)]

for i in range(m+1):
for j in range(n+1):

if i == 0 or j == 0:
dp[i][j] = 0

elif s1[i-1] == s2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1

else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])

return dp[m][n]

s1 = "aaca"
s2 = "abab"
result = longest_common_subsequence(s1, s2)
print(result)
```
Here is the execution with intermediate steps:

1. Initialize the 'dp' table with dimensions (m+1) x (n+1). For the given sequences, it will look like:

0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2. Fill in the 'dp' table by iterating through each cell and apply the algorithm rules:

For i, j = 1, 1: s1[i-1] != s2[j-1], so dp[i][j] = max(dp[i-1][j], dp[i][j-1]) = max(0, 0) = 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

For i, j = 1, 2: s1[i-1] != s2[j-1], so dp[i][j] = max(dp[i-1][j], dp[i][j-1]) = max(0, 0) = 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

For i, j = 1, 3: s1[i-1] == s2[j-1], so dp[i][j] = dp[i-1][j-1] + 1 = 0 + 1 = 1
0 0 0 0 0

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Continue filling in the table with the same rules:

0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 1 1 0
0 0 1 1 2 0

3. The value in the bottom-right cell contains the length of the longest common subsequence:

<answer>2</answer>

31

	Introduction
	Iteration by Regimenting Self Attention Explain like I'm five autoregressive
	Fragmented prompting
	Skip attention

	GPT as a machine language: Prompting to interpret/compile a program.
	Experiments
	IRSA prompting for code execution
	Interpretation of random programs
	Boosting GPT's reasoning with IRSA

	Conclusion
	Appendix
	GPT as a machine language: Prompting to interpret/compile a program.
	The longest substring without repeating characters
	Balanced parentheses

	Full discussion section
	Possible consequences
	Pitfalls of programming in GPT-3
	And what about GPT-4?

	Full set of prompts

