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ABSTRACT

Existing training methods for Transformer-based large language models (LLMs)
rely on massive amounts of data training from scratch, which requires a high cost
in terms of compute and time. Recent studies have demonstrated the great poten-
tial of improving the LLM’s training efficiency by growing from small pre-trained
models to large ones—a technique known as model growth. There are two main
research problems associated with model growth: growth schedule and growth
operators. Existing research focuses on growth operators, detailing specific ma-
nipulations of potential dimensions to expand Transformer parameters. Few stud-
ies have investigated the optimal growth schedule, which involves integrating all
possible growth operators to create an optimal multi-staged growth path. This
work introduces SLOP, a Schedule Learning methodology via an Optimal Path for
multi-stage growth of models with minimal experimental training. SLOP utilizes
marginal utility as an appropriate measure for an optimal schedule that balances
training costs and model performance after multi-stage growth. With this mea-
surement, the objective of determining the optimal growth schedule is converted
into a dynamic programming problem, which is then solved mathematically in
polynomial time. Experimental results illustrate SLOP’s theoretical validity as
well as its efficiency, outperforming alternative schedules in a range of settings.

1 INTRODUCTION

Transformer-based large language models (LLMs), such as GPT (Radford et al., 2019) and T5 (Raf-
fel et al., 2020) have demonstrated impressive emergent abilities across various tasks. Existing LLM
training methods, on the other hand, require enormous amounts of data training from scratch, which
is both computationally and time costly. To save costs, there is a growing interest in effective pre-
training paradigms. One promising research direction (Chen et al., 2021; Wang et al., 2023; Yao
et al., 2023) is growing from small pre-trained models to large ones, known as model growth. In
practice, Li et al. (2023) trained a large-scale 100B-parameter model from a 16B-parameter model
utilizing model growth methods.

There are two main research problems associated with model growth: determining the optimal
growth schedule, and designing efficient growth operators (Yao et al., 2023). Existing works (Gu
et al., 2021; Chen et al., 2021; Wang et al., 2023; Chen et al., 2015) primarily focus on growth oper-
ators, detailing specific manipulations of potential dimensions (such as layers, hidden states, etc.) to
expand Transformer parameters. They also investigate ways to inherit knowledge from the smaller
model by developing initialization methods for the newly extended parameters and taking the entire
training state as input (e.g., the optimizer state, the learning rate schedule).

Research on the growth schedule is limited. The methodology involves integrating all possible
growth operators to create an optimal multi-staged growth path. At each stage, one dimension is ex-
panded to develop an intermediate structure until the entire target LLM structure is attained. Existing
works either adopt a single-stage growth without consideration for model schedules (Gong et al.,
2019; Gu et al., 2021), or focus on determining the optimal scheduling using empirical insights,
even though it may be theoretically suboptimal (Shen et al., 2022; Yao et al., 2023). Ultimately, es-
tablishing an optimal schedule for multi-staged model growth necessitates consideration of several
fundamental challenges. 1) What is an appropriate measurement for an optimal schedule? 2) How
are growth operators implemented sequentially, and what number of parameters are inserted at each

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

stage? 3) The exponential search space required for trial training makes it prohibitively expensive
to explore all possible growth paths (from the initial small model to the target large model) in order
to choose the most optimal one.

To address the aforementioned issues, we present a Schedule Learning methodology via Optimal
Path, abbreviated as SLOP, for multi-stage growth of models with limited experimental training ef-
forts. For Transformer-based LLMs, SLOP considers all possible expansion dimensions, expanding
one dimension per stage, but ignores more complex cases where several dimensions compound to
increase per stage, leading to a search space burst. It is worth noting that within our framework,
depth-only or width-only growth may be considered a specific case.

Specifically, we formulate the problem of finding the optimal schedule for multi-stage model growth.
The marginal utility (Samuelson, 1937) is used as an appropriate measure for an optimal schedule
that balances training costs and model performance after multi-stage growth. With this measure-
ment, we can consider the task of determining an optimal growth schedule as a dynamic program-
ming problem. Finally, we demonstrate that the dynamic programming problem enables the theoreti-
cal resolution of an optimal schedule in polynomial time, reducing the computational effort required
for trial training within the exponential search space.

To validate the correctness of SLOP’s theoretical reasoning results, we conduct experiments by
expanding various starting model sizes (e.g., 100M, 450M) to 1 billion decoder-only target LLMs.
It also shows that SLOP outperforms alternative schedules in a variety of scenarios, resulting in a
reduction in computational usage. Further ablation studies are conducted to evaluate our approach
on various growth scenarios.

2 RELATED WORK

Efficient LLM training. Efficient pretraining of large language models aims to reduce FLOPs.
Recent research focuses on stagewise efficient pretraining (Panigrahi et al., 2024), progressive pre-
training, or model reusing (Chen et al., 2015; 2021; Wang et al., 2023; Yao et al., 2023). Specifically,
model reusing involves maintaining the function of a pre-trained model as its size increases, result-
ing in an initial state that performs well even when scaled to a larger model. Net2Net (Chen et al.,
2015) is the first to introduce the concept of function-preserving transformations in model reusing,
expanding the width dimension by splitting neurons and increasing the depth by adding identity
layers. Bert2BERT (Chen et al., 2021) applies function-preservation to the Transformer structure,
extending Net2Net’s concept. LiGO (Wang et al., 2023) recently utilizes a trainable linear opera-
tor to develop an efficient expansion strategy. ELLE (Qin et al., 2022) employs function-preserving
model expansion within specific domains, leveraging pre-trained domain prompts to efficiently adapt
to emerging data over time. Our method concentrates on the model growth schedule, an area that
previous studies have rarely addressed.

Model growth schedule. The formulation of a model growth schedule is an essential research
topic due to the rising prominence of model reuse and progressed pre-training. Gong et al. (2019)
and Gu et al. (2021) utilize heuristics rules that divide the training steps into distinct expansion
stages to determine the training schedule. Shen et al. (2022) identifies optimal growth schedules that
maximize compute savings by applying scaling laws to initiate a new stage when training efficiency
decreases. The most relevant work for us is MSG (Yao et al., 2023), which provides empirical
insights for constructing an efficient schedule considering all possible growth dimensions. However,
they implement an empirical optimal solution that demonstrates practical efficiency, despite the fact
it may be theoretically suboptimal. Existing works have not systematically or theoretically explored
methodologies for identifying optimal growth schedules by relying instead on empirical results,
allowing more space for our method’s innovation in the field of optimal growth schedule learning.

3 METHODOLOGY

3.1 PRELIMINARY

We start by defining some key terms. Consider a model y =M(x, θ) that takes input x and outputs
y with parameters θ. M is the Transformer (Vaswani et al., 2017) within this study.
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Growth operators. Take the vanilla decoder-only Transformer architecture as an example. M is
composed of L decoder layers, each consisting of a multi-head self-attention sublayer and a feed-
forward sublayer. Each decoder layer takes an input embedding that is presented as hidden states.
As a result, there might be four Transformer dimensions to expand: layers, multi-head attention
(mha), feed-forward network (ffn), and hidden states (hidden). We define the corresponding growth
operators for these four dimensions as Φ = {ϕlayer, ϕmha, ϕffn, ϕhidden}. Each operator ϕ ∈ Φ
initializes the extended parameters of the dimension randomly and reuses the weights from smaller
models for the weights of larger models. According to (Karp et al., 2024), the behavior observed
at initialization may not be a reliable indicator of final performance. Therefore, the influence of
function-preserving is ignored. Appendix G contains more details about each growth operator.
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Figure 1: (a) Different growth paths for considering all the potential Transformer’s growth dimen-
sions. Each dimension’s growth operator is executed during a single stage. There could be A4

4
schedules by listing all potential growth operators’ orders. (b) The relationship between ppl and
training time affects the training efficiency of GPT2 with different depths. The ppl and training time
values are from our experiments. (c) The 1B parameter target model may have various structures,
including (2816, 7680, 8) and (1536, 4096, 32), which are arranged in a sequence with hidden states,
ffn, and depth. It could grow from the initial model through both single-stage and two-stage growth
in this example. Two-stage growth generates intermediate models such as (2816, 2048, 6) which
increase the hidden states from 768 to 2816 during Stage1.

Multi-staged model growth. Starting with a smaller model M1, one or more growth operators
ϕ ∈ Φ can be employed to expand one or more dimensions, facilitating the growth of M1 to a target
model Mk, where the model parameter grows from θ1 to θk. Traditional works (Chen et al., 2021;
Wang et al., 2023) typically utilize one or more operators within a single stage to accomplish the
goal, where k = 1 and no intermediary models arise. In the multi-stage scenario, the initial model
M1 increases by one dimension at each stage, ultimately achieving the target modelMk+1 following
k expansions. Figure 1 (a) provides examples of the Transformer’s four potential dimensions for
multi-stage growth. Figure 1 (c) presents examples that compare single-stage and multi-stage growth
options. The sequence from M1 to Mk+1 comprises multiple intermediary models, represented as
P = {M1,M2, . . . ,Mk+1}, where the maximum value of k is 4, determined by the complete set of
growth operators. It is worth noting that for a given magnitude of parameters, there exist multiple
distinct structures of the target model. Figure 1 (c) shows that the 1B model has different structures
(2816, 7680, 8) and (1536, 4096, 32) in a sequence with hidden states, ffn, and depth.
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3.2 TASK FORMULATION

A multi-stage model growth task can be formulated as below.

GrowthPathP :M1(x, θ1) =⇒M2(x, θ2) =⇒ · · · =⇒Mk+1(x, θk+1)

schedule : ϵ = {ϕ1, ϕ2, . . . , ϕk}
operator : θk+1 = ϕk(θk), ϕk ∈ Φ

(1)

ϕk is a growth operator during one growth stage for expanding one dimension to grow the Mk with
θk to M(k+1) with θk+1, and Φ is the growth operator set. M2, . . . ,Mk represent the intermediate
models generated at the end of each growth stage, corresponding to the application of each growth
operator aimed at increasing a specific dimension.

Each feasible Mk structure possesses A4
4 schedules by enumerating all possible Φ =

{ϕlayer, ϕmha, ϕffn, ϕhidden} combinations. Each operator is restricted to a single use at each
stage, thereby ignoring the occurrence of compound operator scenarios and reducing the schedule
search space. Finding an optimal multi-staged growth path, which consists of multiple growth op-
erators in a sequential order, to achieve better performance than other optional growth paths with
limited training time is not trivial.

Definition 1: Given a computing budget of C and the desired model parameter of N , an opti-
mal training schedule identifies the optimum sequence of growth operators and intermediate model
structures at each stage to use the least amount of computing power while maintaining target model
performance.

3.3 MEASUREMENT OF OPTIMAL SCHEDULE USING MARGINAL UTILITY

To find an optimal schedule, we need to answer the first question: what is an appropriate measure-
ment for an optimal schedule? We propose determining a good schedule measurement based on
model performance and training costs. The model performance is evaluated using loss or perplex-
ity (ppl) values, following most of the prior work for model optimization (Hoffmann et al., 2022).
Figure 1(b) shows the relationship between ppl and training time, which can reflect the training
efficiency of LLMs. It is non-trivial to find an appropriate objective function to optimize them
simultaneously.

To address this problem, we borrow the concept of marginal utility in economics (Samuelson, 1937)
and propose using the marginal utility of schedule (MUS) as the optimization objective. MUS
evaluates the gains (reduction in ppl) that a model may obtain from an increase in cost (training
time). Formally, MUS represents the derivation of the reduction of ppl to training time, which is
calculated as:

4∑
k=1

∆pplϕk

∆t(ϕk)
, ϕk ∈ ϵ (2)

∆pplϕk
= ppl(Mk) − ppl(Mk+1) is a positive value, representing the reduction in ppl achieved

by the Mk+1 after training, when ϕk is selected as the operator for this expansion of Mk to Mk+1.
∆t(ϕk) means the training time from Mk to Mk+1 costs.

Clearly, a higher benefit-cost ratio corresponds to a larger MUS. Given this MUS feature, we can
shift our focus from finding an optimum schedule to establishing an optimal growth path that results
in the highest MUS. A simple solution is to enumerate all candidate paths. Despite its simplicity
and effectiveness, training all intermediate models and computing MUSs requires a significant cost.
To address this, we investigate a learning-based method, SLOP, with restricted trial training.

3.4 SCHEDULE LEARNING VIA OPTIMAL PATH

We treat finding an optimum growth schedule as a dynamic programming problem, searching for the
schedule in polynomial time. The goal is to find the optimal growth path from M1 to Mk+1 with the
highest MUS, as described in equation 2. Therefore, the objective of equation 2 can be transformed
as below. By theoretically solving the dynamic programming problem, we could significantly reduce
trial training costs, which include enumerating and assessing all feasible paths.

4
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argmax
ϕk∈ϵ

4∑
k=1

∆pplϕk

∆t(ϕk)
⇐⇒ argmax

ϕk∈ϵ

4∑
k=1

∆pplϕk

∆params(ϕk)
(3)

In equation 3, ∆params(ϕk) = params(Mk+1)− params(Mk) represents the parameter that in-
creases with each growth stage. Given that the natural logarithm, ln(·), is a monotonically increasing
function, equation equation 3 can be expressed as:

argmax
ϕk∈ϵ

4∑
k=1

∆pplϕk

∆params(ϕk)
⇐⇒ argmax

ϕk∈ϵ

4∑
k=1

ln
∆pplϕk

∆params(ϕk)

⇐⇒ argmax
ϕk∈ϵ

4∑
k=1

[ln (∆pplϕk
)− ln (∆params(ϕk))]

(4)

Optimizing the upper bound of equation 4 yields the re-formulation shown below (⇔ represents the
relaxation of solution space in this situation):

argmax
ϕk∈ϵ

4∑
k=1

[ln (∆pplϕk
)− ln (∆params(ϕk))] ⇐⇒

argmax
ϕk∈ϵ

4∑
k=1

ln (∆pplϕk
)− argmin

ϕk∈ϵ

4∑
k=1

ln (∆params(ϕk))

(5)

Following a series of derivations (refer to proof), the objective function in equation 5 is transformed
to:

argmax
ϕk∈ϵ

1

D

4∑
k=1

log (qM5(xi))︸ ︷︷ ︸
1⃝

− argmin
ϕk∈ϵ

4∑
k=1

ln (∆params(ϕk))︸ ︷︷ ︸
2⃝

(6)

where D is the number of samples in the test set; qM5
(xi) is the probability distribution predicted

by the M5 for any input xi in the test set.

Proofs: By utilizing just the first term of equation 5, we can get the following reformulation:

argmax
ϕk∈ϵ

4∑
k=1

ln (∆pplϕk
) ⇐⇒ argmax

ϕk∈ϵ
ln (

4∑
k=1

∆pplϕk
)

= argmax
ϕk∈ϵ

ln (ppl(M1)− ppl(M2) + ppl(M2)− ppl(M3) + · · ·+ ppl(M4)− ppl(M5))

= argmax
ϕk∈ϵ

ln (ppl(M1)− ppl(M5))

(7)

The relaxation of the upper bound in equation 7 benefits from the monotonically increasing property
of ln(·). Since the initial M1 before expansion is fixed, its corresponding ppl is a constant value,
and we can obtain:

argmax
ϕk∈ϵ

ln (ppl(M1)− ppl(M5)) ⇐⇒ argmax
ϕk∈ϵ

[ppl(M1)− ppl(M5)]

⇐⇒ argmax
ϕk∈ϵ

ppl(M1)− argmin
ϕk∈ϵ

ppl(M5)
(8)

Consequently, the objective of the first term of equation 5 is to pursue argmin
ϕk∈ϵ

ppl(M5):

argmin
ϕk∈ϵ

ppl(M5) ⇐⇒ argmin
ϕk∈ϵ

ln (ppl(M5)) = argmin
ϕk∈ϵ

ln (e
1
D

∑D
i=1 ECM5

(xi))

= argmin
ϕk∈ϵ

1

D

D∑
i=1

ECM5
(xi) = argmin

ϕk∈ϵ

1

D

D∑
i=1

[−PM5
(xi) log(qM5

(xi))]

⇐⇒ argmax
ϕk∈ϵ

1

D

D∑
i=1

log(qM5
(xi))

(9)
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where ppl(M5) = e
1
D

∑D
i=1 ECM5

(xi), and ECMk
(xi) = −PMk

(xi) log(qMk
(xi)) is used to calcu-

late cross-entropy. PMk
(xi) denotes the ground truth distribution, which is a constant value.

equation 6 splits the entire solution into two parts: 1) Finding the optimum target model with the
highest average probability of accurate token prediction; 2) Enumerating all schedules and selecting
the optimal one that satisfies equation 6. 2⃝.

In part. 1⃝ of equation 6, for a model M , when the parameters N and computation cost C are fixed,
the optimal loss can be predicted through the scaling law (Hoffmann et al., 2022), which is solely
related to the model’s parameters N rather than its structure. Therefore, part. 1⃝ in equation 6 can be
taken as a constant. Then the optimization goal of equation 6 becomes:

argmin
ϕk∈ϵ

4∑
k=1

ln (∆params(ϕk)) = argmin
ϕk∈ϵ

[ln (∆params(ϕ1)) + · · ·+ ln (∆params(ϕ4))]

= argmin
ϕk∈ϵ

ln[∆params(ϕ1) ∗ · · · ∗∆params(ϕ4)]

(10)
Setup of optimal path. Note that equation 10 has the same form as the objective function in the
optimal path. To solve equation 10, given a directed graphG = (V,E) where V is the set of vertices
and E is the set of edges. Each edge eij = (vi, vj) has a non-negative weight w(vi, vj). The goal
of equation 10 is to find a path from the source to the target vertex that meets certain conditions.

In this scenario, the vertices represent all of the potential intermediate model structures that could
emerge as the model grows. The weights w(vi, vj) of the edges in E illustrate the variations in
parameters at every stage of growth between the two vertices in V . Our objective is to find a path
from the source vertex (vM1

source) to the destination vertex (vM5 ) in four stages, ensuring that the
product of the edge weights is minimized:

min

4∏
k=1

wk(vi, vj) (11)

Although the destination vertex is not unique, they share the same number of M5’s parameters N5.
Formally, such constraints are defined as:

params(vM5) = N5,

∀vM5 ∈ V settarget = (vM5
1 , vM5

2 , . . . , vM5
t )

(12)

Now, we can use optimal path algorithms, such as the Dijkstra algorithm, to efficiently obtain the
optimal schedule without trial training. Our algorithm details are shown in Algorithm 1, which
outputs optimal schedules satisfying equation 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For pre-training, we use the redpajama (Computer, 2023) dataset and create 65B token
training data using Llama’s(Touvron et al., 2023a) training data mixture ratio. Among these, 25B
tokens are used for initial model training and 10B tokens for model growth training at each stage.

Downstream benchmarks. For downstream task assessment, we use a set of common LLM evalua-
tion benchmarks that include commonsense reasoning (PIQA (Bisk et al., 2020), Hellaswag (Zellers
et al., 2019)), common aggregated benchmarks (BBH (Suzgun et al., 2022), Lambada (Paperno
et al., 2016)), and math (GSM8K (Cobbe et al., 2021)).

Model growth settings. All of the models in our studies use vannila decode-only Transformer
architectures. During model growth, we adhere to a few simple constraints contained in the existing
LLM structure, as detailed in their published technical report, such as llama(Touvron et al., 2023a),
qwen(Bai et al., 2023; Yang et al., 2024), baichuan(Yang et al., 2023), and mistral(Jiang et al.,
2023). The constraints include: 1) The hidden dimension size is a multiple of 128. 2) The hidden
dimension is either 8/3 or 4 times the ffn dimension. 3) The number of attention heads should

6
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Algorithm 1 SLOP
Input: G = (V,E), vM1

source, V settarget = {vM5
1 , vM5

2 , . . . , vM5
t }

Output: Traverse vM5
t ∈ V settarget, find the top K smallest dist[vM5

t ], and output its path (predecessor
vertices) according to prev[vM5

t ]

1: Initialize: Create vertex set Q = ∅
2: for each v in V do
3: dist[v]←∞ //initial distance is set to infinity
4: prev[v]← Undefined // Undefined V ’s predecessor vertex
5: Add v to Q
6: end for
7: dist[vM1

source] = 1
8: while Q ̸= ∅ do
9: Find vertex u satisfying min(dist) = dist[u]

10: Extract u from Q: Q = Q− u
11: end while
12: for each adjacent vertex v of u do
13: if dist[v]>dist[u] ∗ w(u, v) then
14: dist[v]← dist[u] ∗ w(u, v)
15: prev[v]← u
16: end if
17: end for

be divisible by the hidden dimension; nevertheless, this has no effect on the model’s size. Check
Appendix F for more details. With these constraints, we randomly select parameter N = 100M for
the initial beginning point model with the structure (768, 2048, 6, 6), which corresponds to the four
dimensions of (hidden, ffn, layer, and mha). Due to computational constraints, the target’s N value
is limited to 1B. The settings details for the growth operator are illustrated in Appendix G.

4.2 RESULTS AND ANALYSIS

Table 1: Training time for SLOP and other potential schedules on same training data over growth
stages. Training time refers to the number of GPU hours required by the schedules to grow a model
within the same data size. Since the attention head numbers do not lead to changes in parameters,
we only consider the three dimensions (hidden-ffn-layer). To simplify the representation of schedule
sequences, the abbreviations are used in table: l for layer, f for ffn, and h for hidden. SLOP utilizes
minimal GPU time for training while maintaining superior performance in terms of perplexity.

Schedules Initial stage1 stage2 stage3 Sum
Target structure sequence

∏
∆params PPL Wall time (GPU hours)

(2816,7680,8)

layer hidden ffn
l-h-f 6.59E+24 31.43 34.38 8.65 27.53 43.39 113.94

ffn hidden layer
f-h-l 4.14E+25 33.48 34.38 11.21 34.01 43.39 123.09

hidden ffn layer
h-f-l 1.81E+26 39.84 34.38 22.12 34.01 43.39 133.89

(1280,3584,40)

hidden ffn layer
h-f-l 4.66E+24 31.1 34.38 10.32 11.80 45.22 101.72

layer hidden ffn
l-h-f 1.65E+26 38.65 34.38 19.66 35.39 45.22 134.66

(1536,4096,32)

ffn hidden layer
f-h-l 4.24E+24 31.43 34.38 9.14 14.1 49.94 107.62

layer hidden ffn
l-h-f 1.52E+26 39.85 34.38 16.91 37.36 49.94 138.59

(2560,6912,10)

ffn layer hidden
f-l-h 8.53E+24 32.99 34.38 10.76 14.01 44.40 103.55

hidden ffn layer
h-f-l 1.24E+26 38.65 34.38 19.66 29.00 44.40 127.44

(2816,7680,8) layer ffn hidden
SLOP l-f-h 1.69E+24 30.61 34.38 8.65 12.97 43.39 99.39

Evaluate the theoretical validity of SLOP. Table 1 shows a comparison of the pre-training perfor-
mance of the SLOP recommended optimal schedule and other optional schedules. There may be
multiple model structures for a 1B parameter model. The experiment includes all possible target
model structures adhering to the previously stated structural constraints. For example, in Table 1,

7
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one of the target structures is designated as (2816, 7680, 8), corresponding to the parameters (hid-
den, ffn, layer). We will apply this model structure notation uniformly throughout this section. The
growth path ignores the expansion of attention head numbers, as it does not alter the parameters. The
schedules in Table 1 cover all the possible sequences of the growth dimensions. Considering that the
increased parameters at each stage are also part of the objectives for optimization, it is impractical
to list all potential combinations of ∆params for each stage because of computational and time
limitations. For each path, the minimal

∏
∆params are chosen as a representation, guaranteeing

that the experiment includes all suboptimal possibilities.

We have the following observations from Table 1. SLOP demonstrates superior performance com-
pared to alternative schedules in terms of perplexity, achieving a reduction in computational usage
ranging from 2.74% to 35.48%. The outcomes of stage3 further confirm the principle of the scaling
law(Hoffmann et al., 2022), indicating that a model’s performance is primarily influenced by its
parameters and the training data while being less dependent on its structure.
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Figure 2: Validation loss vs. training time for different schedules during different growth stages.
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Figure 3: Correlation heatmap between differ-
ent schedules

Figure 2 presents the loss results corresponding
to different training schedules utilizing the target
structure specified as (2816, 7680, 6, 8) in terms
of (hidden, ffn, layer, head number). During the
first growth stages, the intermediate model struc-
ture selected by SLOP fails to achieve optimal per-
formance as a result of its comparatively limited
parameters. Upon completion of the growth stages,
SLOP demonstrates a significantly reduced train-
ing time compared to alternative schedules while
preserving similar or superior loss values.

Additional experiments are being designed to fur-
ther illustrate the capabilities of SLOP visually. We
compute the correlation between the training times
of various schedules and present the correlation
heatmap shown in Figure 3. We can see a clear
phase between these schedules. For a variety of

schedules, the closer the
∏

∆params are, the higher the correlation of the training times. From a
different point of view, this shows that the LLM training costs are positively related to

∏
∆params.

This supports our experimental setup that uses the minimal
∏

∆params to represent the potential
growth sequence.
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Figure 4: The performance of target models generated by various schedules following multi-stage
model growth on representative downstream tasks. Blue line represents SLOP.

Evaluate with other baselines. We conduct a comparison of various growth schedule baselines
to evaluate the effectiveness of SLOP, which are listed as follows. 1) SCHL-from scratch: We
train from scratch to obtain the target 1B parameter model using the previously specified 65b token
pre-training dataset. 2) SCHL-single stage: The initial model with 100M parameters is expanded
to the target model of 1B parameters through a single-stage growth strategy. 3) SCHL-MSG: The
most recent proposed growth schedule by MSG (Yao et al., 2023) is also compared. 4) ELLE: To
assess the overall performance of model growth, we conduct a comparison with the model growth
method ELLE, which allows for the incremental expansion of both the width and depth of the LLMs.
Table 2 demonstrates that SLOP exhibits a reduction of 22.6% in training time when compared to
SCHL-MSG and ELLE, while the perplexity remains nearly equivalent. Compared with SCHL-
from scratch and SCHL-single stage, although the perplexity increased, SLOP saves 183.74% in
training time.

Table 2: Evaluation of perplexity and training time for
SLOP compared to alternative baseline schedules, growing
from identical initial models to target models.

Target
structure Model PPL Wall time (GPU hours)

(2816,7680,8)

SCHL-from scratch 26.43 282.01
SCHL-single stage 28.76 207.92
SCHL-MSG 31.18 101.96
ELLE 30.6 121.86
SLOP 30.61 99.39

Performance on the downstream
tasks. As shown in Figure 4, we eval-
uate the target LLM’s performance
across a suite of popular bench-
marks(Touvron et al., 2023b). It can
be concluded that, in comparison to
alternative schedules, SLOP demon-
strates enhanced performance in most
downstream tasks. This suggests
that the knowledge gained through
the optimal schedule during model
growth can be effectively utilized for
downstream tasks.

4.3 ABLATION STUDY

Effect of different initial models. We evaluate the impact of different initial models for SLOP.
The initial model M1 consists of 450M parameters, structured as (1024, 4096, 16, 24), whereas the
target model M5 contains 1B parameters. The performance of different schedules, after multi-stage
growth, is detailed in Table 3. The SLOP schedule offers significant computational savings while
maintaining high performance, regardless of initial model changes.
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Table 3: Training time for SLOP and other schedules on same data in the pre-training stage, utilizing
a different initial model.

Schedules Initial stage1 stage2 stage3 Sum
Target structure sequence

∏
∆params PPL Wall time (GPU hours)

(1152,3072,50)

ffn layer hidden
f-l-h 1.59E+17 35.08 102.67 8.55 28.02 44.61 183.85

layer hidden ffn
l-h-f 1.53E+26 35.48 102.67 23.10 37.24 44.61 207.62

ffn hidden layer
SLOP f-h-l 4.76E+8 32.2 102.67 8.55 10.54 44.61 166.37

(1152,4608,40)

hidden ffn layer
h-f-l 4.71E+24 33.01 102.67 9.66 11.87 45.71 169.92

layer hidden ffn
l-h-f 5.54E+25 34.02 102.67 19.66 29.49 45.71 197.54

ffn hidden layer
SLOP f-h-l 2.28E+24 33.01 102.67 9.44 11.87 45.71 169.69

Compatible to the special cases of two-dimensional expansion. Existing studies on model growth
often investigate expanding in depth and width dimensions (Yao et al., 2023; Yang et al., 2020; Shen
et al., 2022; Wang et al., 2023). To validate the universality of SLOP, we limit the growth operators
to ψ = {φlayer, φhidden}. We set the structures of the initial model M1 to (768, 2048, 6, 6), and the
target model M5 to (2816, 7680, 8, 22). Table 4 compares the performance of different schedules
after two expansion stages for width and depth. The results presented the utility of SLOP in specific
cases. The appendix provides more experimental details.

Table 4: Training time for SLOP and other schedules, growing with depth and width.

Schedules Initial stage1 stage2 Sum
Target structure sequence

∏
∆params PPL Wall time (GPU hours)

(2816,7680,8)

hidden layer
h-l 1.41E+17 38.65 34.38 68.03 43.39 145.8

layer hidden
SLOP l-h 1.38E+16 38.65 34.38 8.65 86.77 139.8

Table 5: The percentage savings in computing time pertains
to the positioning of the φmha at various growth stages in
relation to the baseline, which involves expanding the φmha

at stage1.

Schedules stage1 stage2 stage3 stage4 Sum
computational savings (%)

f-head-h-l 0.56 -0.19 -2.09 -0.37 -0.51
f-h-head-l 0.56 -23.56 0.20 0.52 -2.86
f-h-l-head 0.56 -23.56 -210.67 -1.58 -39.77

The impact of multi-head atten-
tion. Table 5 shows the effect
of inserting φmha on various posi-
tions within the SLOP recommended
schedule (h-f-l, corresponding with
Table 1). The target model struc-
ture is (1536, 4096, 32). Expand-
ing the multi-head at stage1 serves as
the baseline. The placement of φmha

within the first three stages appears to
have a small impact on training time.
Positioning φmha as the final stage
will result in increased fluctuations in
performance throughout the model growth process. We further investigate how varying the number
of attention heads affects the target model’s performance and downstream experiments, as detailed
in Appendix C.2.

5 CONCLUSION

This study examines optimal model growth schedule learning problems, concentrating on determin-
ing a suitable sequence that integrates several operators to enhance performance for the target LLM.
We present a cost-effective optimal path learning method within the framework of a multi-stage
model growth scenario that could attain theoretically optimal results. Observe that we examine a
straightforward scenario in which each growth dimension occurs just once along the path. We will
leave more complex scenarios for future work.
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A LIMITATIONS

In this work, we propose a theoretical solution for finding the optimal growth schedules for multi-
stage growth involving all possible dimensions. However, we do not consider complex cases when
multiple growth dimensions can combine at the same stage and execute more than once. Our work
establishes a starting point for the development of self-adaptive growth schedules, vital to the ef-
ficient pre-training of LLMs. Another limitation is that, due to limited computing capacity and
budget, the largest models in our experiments have 1 billion parameters, which is a significant dif-
ference from existing LLMs. This constraint is present in the vast majority of research projects,
according to our knowledge.

B EXPERIMENTAL DETAILS

B.1 DETAILS FOR THE EXPERIMENTS SET UP

Datasets: The training dataset mixture, comprising 65 billion tokens, adheres to the mixture ratio
established by LLAMA(Touvron et al., 2023a), as detailed below:

Table 6: The pre-training data mixture ratio

Dataset ratio
CommonCrawl 67.0%

C4 15.0%
Github 4.5%

Wikipedia 4.5%
Books 4.5%
Arxiv 2.5%

StackExchange 2.0%

Tokenizer: We tokenize the data with the byte pair encoding (BPE) algorithm (Sennrich et al.,
2016), using the implementation from SentencePiece (Kudo & Richardson, 2018).

Optimization: Our models are trained using the AdamW optimizer, with the following hyper-
parameters: β1 = 0.9, β2 = 0.95. We implement a cosine learning rate schedule, with the final
learning rate set to 10% of the maximum value. Our weight decay is 0.1, and we apply gradient
clipping at 1.0. We configure the batch size to 256K and use a warmup period of 2,000 steps. The
details of the hyperparameters for our different models are given in Table 7.

Table 7: Model sizes, structures, and optimization hyper-parameters

params structure learning rate batch size n tokens
1B (dhidden, dffn,Nlayer,Nhead) 3.0e−4 256K 65B

Implementation: Our code handles approximately 50K tokens per second per GPU on 2048 A100
GPUs with 80GB of RAM. Training for the final growth stage on our dataset, which includes 65B
tokens, takes about 15 days in total.

B.2 MORE DETAILS FOR THE GROWTH SCHEDULES IN THE MAIN EXPERIMENT

We present some sample schedule details (sch1, sch2, and sch3) for their respective expansion se-
quences, as shown in Table 8.
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Table 8: Growth schedules expand in one dimension in each stage. The schedules listed are part of
the main experiment used.

Schedule sequence initial stage1 stage2 stage3
sch1 h-f-l (768,2048,6) (2816,2048,6) (2816,7680, 6) (2816, 7680, 8)
sch2 f-h-l (768,2048,6) (768,4096, 6) (1536,4096, 6) (1536, 4096, 32)
sch3 l-f-h (768,2048,6) (768,2048,16) (768,5632,16) (2048,5632,16)

SLOP l-f-h (768,2048,6) (768,2048,8) (768,7680,8) (2816,7680,8)

C ABLATION STUDY

C.1 THE IMPACT OF EXPANDING MHA IN DIFFERENT SEQUENCES

The experiments depicted in Figure 5 further back up our conclusion, demonstrating that the se-
quence of φmha has minimal impact on the model’s overall performance. In comparison, expanding
the head as the final stage results in suboptimal performance in downstream tasks.
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Figure 5: The target LLM’s performance after multi-stage model growth pre-training on representa-
tive downstream tasks with φmha in different sequences.

C.2 THE IMPACT OF VARYING THE NUMBER OF HEADS.

Table 9 indicates a positive correlation between the number of heads and the increase in ppl.

Table 9: Perplexity of the target model with the head number increasing from 6 to 48 values, main-
taining a fixed schedule of head-ffn-hidden-laye.

stage1 stage2 stage3 stage4 Avg.
head number Perplexity (PPL)

head6 107.53 104.87 70.48 31.29 78.54
head8 117.89 111.15 68.77 30.80 82.15
head12 117.87 110.25 70.27 30.61 82.25
head16 118.76 111.98 68.71 31.10 82.64
head24 120.30 116.81 68.69 31.64 84.41
head32 126.02 120.54 69.10 32.24 86.98
head48 126.40 126.02 71.17 32.99 89.15
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We also investigate the influence of different numbers of attention heads on downstream task per-
formance. As depicted in Figure 6, the optimal overall results are achieved with a head number of
48.
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Figure 6: After multi-stage model growth, the performance of the target LLMs varies with different
head numbers over representative downstream tasks.

C.3 THE IMPACT OF DIFFERENT TARGET MODEL STRUCTURE.

To demonstrate the applicability of our method to all target structures, we conduct a supplemental
experiment to evaluate the effectiveness of SLOP with an additional target structure (2048, 5632,
16), compared to baseline MSG. As shown in Table 10, the results further corroborate the versatility
of SLOP across various target structures.

Table 10: Evaluation of perplexity and training time for SLOP compared to alternative baseline
schedules, growing from identical initial models to target model (2048,5632,16).

Target
structure Model PPL Wall time (GPU hours)

(2048, 5632, 16)

SCHL-single stage 32 172
SCHL-MSG 36 119
ELLE 34 114
SLOP 34 108

C.4 THE IMPACT OF SMALLER PARAMETERS.

We further verify the generality of SLOP on smaller models, from 27M to 105M parameters. For
a comparison, SLOP-105M and ELLE-105M employ different schedules and operators for model
growth, progressively increasing from an initial model of 27M parameters with dimensions (384,
1024, 6) to a target model of 105M parameters with dimensions(768, 2048, 12). GPT-105M fixes
the number of parameters at 105M and maintains a constant model size throughout each training
stage. As presented in Table 11, the experimental results presented in the table demonstrate that our
method is equally applicable to models with smaller parameter sizes.
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Table 11: Evaluation of FLOPs and training time for SLOP compared to alternative baseline sched-
ules in smaller models, growing from an initial model (384, 1024, 6) to a target model (768, 2048,
12).

Target
structure Model FLOPs(e18) Wall time (GPU hours)

(768, 2048, 12)
GPT-105M 4.46 3.10
ELLE-105M 6.64 4.60
SLOP-105M 4.08 2.83

D PERFORMANCE ON THE DOWNSTREAM TASKS

We conduct additional experiments comparing SLOP to the model growth baseline MSG, mentioned
in Table 2, on some of the downstream tasks specified in Section 4.1 to assess SLOP’s effectiveness.
Table 12 below shows the results of the representative downstream tasks, demonstrating SLOP’s
robust performance on downstream tasks.

Table 12: The performance of SLOP compared to baseline MSG on representative downstream
task.

Target structure Models Lambada acc Lambada ppl BBH Hellaswag

(2816,7680,8) SCHL-MSG 42.90 90.77 6.89 22.90
SLOP 59.2 66.73 15.00 20.69

E CASES FOR THE GROWTH SCHEDULE PATHS

Figure 7 illustrates that the expansion of the Transformer model is configured with four dimensions:
hidden dim, ffn dim, head number, and layer number. We select one dimension for each expansion,
resulting in a total of four expansions. The number of parameters in the model expands from a to b.
For more complex scenarios in which each dimension can undergo multiple repetitions during the
expansion process, such as hidden dim, ffn dim, head number, hidden dim, and layer number, the
entire search space becomes significantly larger and more complicated. In this paper, we omit this
case, focusing only on expanding each dimension once along the expansion path.

As an example depicted in Figure 7, let’s assume the initial model’s four-dimensional parameters
are set to (384, 1024, 6, 6), and through four rounds of expansion, the target parameter for the target
model is achieved at 1B. If the target model’s four-dimensional parameters are (768, 2048, 12, 12),
we can calculate the number of possible path choices for the expansion schedule by multiplying the
factorial of the number of steps in each dimension, which comes out to 4 ∗ 3 ∗ 2 ∗ 1 = 24. It is
essential to recognize that various configurations exist for the structure of the target model. Another
possible configuration is (1536, 4096, 32).

It is obviously impractical to traverse each schedule and select the final optimal one. Therefore,
our goal is to transform this into an optimization problem of model metrics. Through a series of
derivations, we can select the most suitable schedule before training to reduce the computational
cost of achieving the optimal model.

F EXPLANATION FOR THE MODEL STRUCTURE CONSTRAINS

We acquire the structure of the LLaMA series and Qwen2 from their technical report, which is
displayed in Table 13. The hidden dimension size of the LLaMA series (Touvron et al., 2023a;b;
Dubey et al., 2024) and Qwen2 (Yang et al., 2024) is a multiple of 128. Furthermore, the hidden
dimension of LLaMA1 65B is 8/3 of the ffn dimension. And the number of attention heads for all
LLMs shown in Table 13 can be divided by the hidden dimension.
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(a) General (b) Special case

Figure 7: Examples for all the potential paths with special cases growth only width and depth.

Table 13: The model structure from different LLMs.

Model D Hidden dimension D FFN N Heads N Layers
LLaMA1 65B 8192 22016 64 80
LLaMA2 70B 8192 28672 64 80
LLaMA3 70B 8192 28672 64 80

Qwen2 72B 8192 29568 64 80

G THE GROWTH OPERATORS

In this study, we focus on the Transformer structure that is prevalent in existing LLMs. Trans-
former’s possible growth dimensions are introduced below, while the operators of these dimensions
are listed subsequently.

Hidden states H l−1 represents the input for the Transformer layer l, which is a bi-dimensional
tensor with s and h being the sequence and hidden dimension. When the h changes, it affects every
module of the Transformer structure. We overlook the position embedding in this work as it does
not affect the expansion process. The hidden states are iteratively passing through the Transformer
layers: H l

s×h
= Transl(H

l−1

s×h
), l ∈ [1, L], where L denotes the total number of the Transformer

layers.

Each Transformer layer l contains the modules that are important for the growth approach, which
are described below:
Multi-head attention (MHA): Multiple parallel self-attention heads make up MHA. The input H
of each layer is fed into the MHA mechanism, which can be formulated as follows:

Ki
s×d

/Qi
s×d

/ Vi
s×d

= H
s×h

× W
K/Q/V
headi
h×d

Hheadi
s×d

= Attention(Qi, Ki, Vi) = softmax(
1
√
d

× Qi × K
T
i ) × Vi

H
MHA

s×h
= MHA(H) = [Hhead1

, ..., Hheada ] × W
O

(a×d)×h

(13)

where H is applied to linear projection for generating queries, keys and values(Q/K/V ), utilizing
different weights(WK/Q/V ) for each transformation respectively. Hheadi

signifies the output of the
i-th attention head with a being the total number of heads. The output linear matrix WO generates
the final result HMHA, which is then delivered to the Feed-forward network.

Feed-forward network (FFN) is a Multi-Layer Perceptron responsible for applying a non-linear
transformation to HMHA (f is FFN’s dimension of its internal representation):

H
FFN

s×h
= FFN(H

MHA
) = GELU(H

MHA

s×h
× W

l1

h×f
+ b

l1

s×f
) × W

l2

f×h
+ b

l2

s×h
(14)

MHA growth operator φmha refers to the act of introducing new heads within the multi-head
attention module. As mentioned in Eq.13, the hyper-parameter a controls the scaling of the multi-
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head attention dimension. When the head number increases from a1 to a2, we keep the weights of
the former heads fixed while assigning random values to the weights of the new heads.

W
K/Q/V
i =

{
W

K/Q/V
i i ≤ a1

random ai < 1 ≤ a2
(15)

As the number of heads increases, alterations are also observed in the size of the corresponding
weight matrix WO in Eq.13. We set the expanded portion of WO to be a random matrix R as
below:

W
O

(a1×d)×h
⇒ (W

O
)
′

(a2×d)×h

=

 WO

(a1×d)×h

R
((a2−a1)×d)×h

 (16)

FFN growth operator φffn can be scaled up by increasing its internal representation’s dimen-
sionality. In Eq.14, the scaling of FFN expansion is controlled by the hyper-parameter f . Given a
Transformer layer as an example, when the FFN’s hidden dimension is increasing from f1 to f2, the
extended part of W l1 , W l2 and bl1 are initialized arbitrarily, written as R:

W
l1

h×f1
⇒ (W

l1

h×f2
)
′
=

[
W l1
h×f1

R
Wl1

h×(f2−f1)

]
b
l1

s×f1
⇒ ( b

l1

s×f2
)
′
=

[
bl1

s×f1
R

Wl1
s×(f2−f1)

]

W
l2

f1×h
⇒ (W

l2

f2×h
)
′
=

 W l2
f1×h

R
(f2−f1)×h

 (17)

Hidden dimension growth operator φhidden is used to expand the dimension of the representation,
which is originally sent into the Transformer layers. The scaling of hidden dimension expansion is
controlled by the hyper-parameter h. When the hidden dimension of the representation is increasing
from h1 to h2, we set the extended portion of H to be random:

H
s×h1

⇒ H
′

s×h2
=

[
H

s×h1
R

s×(h2−h1)

]
(18)

Then each module in Transformer exhibits variations in the scaling for the parameters with hidden
dimension expansion.

In the MHA module, we set the extended portion ofWO to be random, and also the extended weight
matrices of K, Q, and V for each head are initialized randomly:

W
K/Q/V

h1×d
⇒ (W

K/Q/V
)
′

h2×d

=

WK/Q/V

h1×d

R
(h2−h1)×d


W

O

(a×d)×h1

⇒ ( W
O

(a×d)×h2

)
′
=

[
WO

(a×d)×h1

R
(a×d)×(h2−h1)

] (19)

In the FFN module, the extended portion of W l1 ,W l2 and bl2 are initialized randomly:

W
l1

h1×f
⇒ (W

l1

h2×f
)
′
=

 W l1
h1×f

R
(h2−h1)×f


W

l2

f×h1
⇒ (W

l2

f×h2
)
′
=

[
W l2
f×h1

N
f×(h2−h1)

]
b
l2

s×h1
⇒ ( b

l2

s×h2
)
′
=

[
bl2

s×h1
R

s×(h2−h1)

] (20)

Layer operator For the layer operator, we adopt the stacking method proposed in StackBERT
(Deshpande et al., 2021).
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