Under review as a conference paper at ICLR 2025

MODEL GROWTH SCHEDULE LEARNING VIA OPTIMAL
PATH (SLOP) FOR EFFICIENT LLM PRE-TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing training methods for Transformer-based large language models (LLMs)
rely on massive amounts of data training from scratch, which requires a high cost
in terms of compute and time. Recent studies have demonstrated the great poten-
tial of improving the LLM’s training efficiency by growing from small pre-trained
models to large ones—a technique known as model growth. There are two main
research problems associated with model growth: growth schedule and growth
operators. Existing research focuses on growth operators, detailing specific ma-
nipulations of potential dimensions to expand Transformer parameters. Few stud-
ies have investigated the optimal growth schedule, which involves integrating all
possible growth operators to create an optimal multi-staged growth path. This
work introduces SLOP, a Schedule Learning methodology via an Optimal Path for
multi-stage growth of models with minimal experimental training. SLOP utilizes
marginal utility as an appropriate measure for an optimal schedule that balances
training costs and model performance after multi-stage growth. With this mea-
surement, the objective of determining the optimal growth schedule is converted
into a dynamic programming problem, which is then solved mathematically in
polynomial time. Experimental results illustrate SLOP’s theoretical validity as
well as its efficiency, outperforming alternative schedules in a range of settings.

1 INTRODUCTION

Transformer-based large language models (LLMs), such as GPT (Radford et al.,|2019) and TS (Raf-
fel et al.; 2020) have demonstrated impressive emergent abilities across various tasks. Existing LLM
training methods, on the other hand, require enormous amounts of data training from scratch, which
is both computationally and time costly. To save costs, there is a growing interest in effective pre-
training paradigms. One promising research direction (Chen et al.| [2021; |Wang et al.| [2023; [Yao
et al.} 2023) is growing from small pre-trained models to large ones, known as model growth. In
practice, |L1 et al.| (2023) trained a large-scale 100B-parameter model from a 16B-parameter model
utilizing model growth methods.

There are two main research problems associated with model growth: determining the optimal
growth schedule, and designing efficient growth operators (Yao et al., 2023). Existing works (Gu
et al.| [2021;|Chen et al.,|2021; [Wang et al., 2023}, |Chen et al., 2015)) primarily focus on growth oper-
ators, detailing specific manipulations of potential dimensions (such as layers, hidden states, etc.) to
expand Transformer parameters. They also investigate ways to inherit knowledge from the smaller
model by developing initialization methods for the newly extended parameters and taking the entire
training state as input (e.g., the optimizer state, the learning rate schedule).

Research on the growth schedule is limited. The methodology involves integrating all possible
growth operators to create an optimal multi-staged growth path. At each stage, one dimension is ex-
panded to develop an intermediate structure until the entire target LLM structure is attained. Existing
works either adopt a single-stage growth without consideration for model schedules (Gong et al.,
2019; Gu et al|, [2021), or focus on determining the optimal scheduling using empirical insights,
even though it may be theoretically suboptimal (Shen et al., 2022} [Yao et al.| 2023). Ultimately, es-
tablishing an optimal schedule for multi-staged model growth necessitates consideration of several
fundamental challenges. 1) What is an appropriate measurement for an optimal schedule? 2) How
are growth operators implemented sequentially, and what number of parameters are inserted at each

Under review as a conference paper at ICLR 2025

stage? 3) The exponential search space required for trial training makes it prohibitively expensive
to explore all possible growth paths (from the initial small model to the target large model) in order
to choose the most optimal one.

To address the aforementioned issues, we present a Schedule Learning methodology via Optimal
Path, abbreviated as SLOP, for multi-stage growth of models with limited experimental training ef-
forts. For Transformer-based LLMs, SLOP considers all possible expansion dimensions, expanding
one dimension per stage, but ignores more complex cases where several dimensions compound to
increase per stage, leading to a search space burst. It is worth noting that within our framework,
depth-only or width-only growth may be considered a specific case.

Specifically, we formulate the problem of finding the optimal schedule for multi-stage model growth.
The marginal utility (Samuelson, [1937) is used as an appropriate measure for an optimal schedule
that balances training costs and model performance after multi-stage growth. With this measure-
ment, we can consider the task of determining an optimal growth schedule as a dynamic program-
ming problem. Finally, we demonstrate that the dynamic programming problem enables the theoreti-
cal resolution of an optimal schedule in polynomial time, reducing the computational effort required
for trial training within the exponential search space.

To validate the correctness of SLOP’s theoretical reasoning results, we conduct experiments by
expanding various starting model sizes (e.g., 100M, 450M) to 1 billion decoder-only target LLMs.
It also shows that SLOP outperforms alternative schedules in a variety of scenarios, resulting in a
reduction in computational usage. Further ablation studies are conducted to evaluate our approach
on various growth scenarios.

2 RELATED WORK

Efficient LLM training. Efficient pretraining of large language models aims to reduce FLOPs.
Recent research focuses on stagewise efficient pretraining (Panigrahi et al., 2024]), progressive pre-
training, or model reusing (Chen et al.| 2015}2021; Wang et al.,|2023}|Yao et al.|[2023)). Specifically,
model reusing involves maintaining the function of a pre-trained model as its size increases, result-
ing in an initial state that performs well even when scaled to a larger model. Net2Net (Chen et al.,
2015)) is the first to introduce the concept of function-preserving transformations in model reusing,
expanding the width dimension by splitting neurons and increasing the depth by adding identity
layers. Bert2BERT (Chen et al., 2021)) applies function-preservation to the Transformer structure,
extending Net2Net’s concept. LiGO (Wang et al., 2023)) recently utilizes a trainable linear opera-
tor to develop an efficient expansion strategy. ELLE (Qin et al., 2022) employs function-preserving
model expansion within specific domains, leveraging pre-trained domain prompts to efficiently adapt
to emerging data over time. Our method concentrates on the model growth schedule, an area that
previous studies have rarely addressed.

Model growth schedule. The formulation of a model growth schedule is an essential research
topic due to the rising prominence of model reuse and progressed pre-training. (Gong et al.| (2019)
and |Gu et al.| (2021)) utilize heuristics rules that divide the training steps into distinct expansion
stages to determine the training schedule. Shen et al.|(2022)) identifies optimal growth schedules that
maximize compute savings by applying scaling laws to initiate a new stage when training efficiency
decreases. The most relevant work for us is MSG (Yao et al.| 2023), which provides empirical
insights for constructing an efficient schedule considering all possible growth dimensions. However,
they implement an empirical optimal solution that demonstrates practical efficiency, despite the fact
it may be theoretically suboptimal. Existing works have not systematically or theoretically explored
methodologies for identifying optimal growth schedules by relying instead on empirical results,
allowing more space for our method’s innovation in the field of optimal growth schedule learning.

3 METHODOLOGY

3.1 PRELIMINARY

We start by defining some key terms. Consider a model y = M («, #) that takes input z and outputs
y with parameters 6. M is the Transformer (Vaswani et al.,[2017) within this study.

Under review as a conference paper at ICLR 2025

Growth operators. Take the vanilla decoder-only Transformer architecture as an example. M is
composed of L decoder layers, each consisting of a multi-head self-attention sublayer and a feed-
forward sublayer. Each decoder layer takes an input embedding that is presented as hidden states.
As a result, there might be four Transformer dimensions to expand: layers, multi-head attention
(mha), feed-forward network (ffn), and hidden states (hidden). We define the corresponding growth
operators for these four dimensions as ® = {gblayer, Pmha Pf fns ®hidden - Bach operator ¢ € ®
initializes the extended parameters of the dimension randomly and reuses the weights from smaller
models for the weights of larger models. According to (Karp et al., |2024)), the behavior observed
at initialization may not be a reliable indicator of final performance. Therefore, the influence of
function-preserving is ignored. Appendix [G]contains more details about each growth operator.

multi-stages growth —
L >
Start Stagel Stage2 Stage3 Stage4
MODEL MODEL MODEL MODEL
Aparams4
Aparams3 / Aparams3
/ Aparams2 Aparams2 Aparams2
Aparamsl Aparamsl Aparamsl Aparamsl

(@)

Operators:

/ Aparams4
. Aparams3 Aparams3
FFN Hidden A % /

dimension / params. Pparamag Aparams2
Multi-head Aparams1

Layer Aparamsl Aparamsl Aparamsl

attention

+ perpiexityippi) Pre-training stage
GPT2apernia Stage, Stage,
— GPTupernz 1 (8162048.6)
— GPT2upers

rplc Initial Ms |
(7682045.6)

A Singe Stage Growth

(b) = (c) Examples with detailed parameters

Figure 1: (a) Different growth paths for considering all the potential Transformer’s growth dimen-
sions. Each dimension’s growth operator is executed during a single stage. There could be A}
schedules by listing all potential growth operators’ orders. (b) The relationship between ppl and
training time affects the training efficiency of GPT2 with different depths. The ppl and training time
values are from our experiments. (c) The 1B parameter target model may have various structures,
including (2816, 7680, 8) and (1536, 4096, 32), which are arranged in a sequence with hidden states,
ffn, and depth. It could grow from the initial model through both single-stage and two-stage growth
in this example. Two-stage growth generates intermediate models such as (2816, 2048, 6) which
increase the hidden states from 768 to 2816 during Stage;.

Multi-staged model growth. Starting with a smaller model M7, one or more growth operators
¢ € ® can be employed to expand one or more dimensions, facilitating the growth of M; to a target
model My, where the model parameter grows from 6; to 6. Traditional works (Chen et al., [2021}
Wang et al.| 2023) typically utilize one or more operators within a single stage to accomplish the
goal, where £ = 1 and no intermediary models arise. In the multi-stage scenario, the initial model
M increases by one dimension at each stage, ultimately achieving the target model M} ; following
k expansions. Figure [I| (a) provides examples of the Transformer’s four potential dimensions for
multi-stage growth. Figure[T](c) presents examples that compare single-stage and multi-stage growth
options. The sequence from M; to Mj; comprises multiple intermediary models, represented as
P ={My, Ms,..., M1}, where the maximum value of k is 4, determined by the complete set of
growth operators. It is worth noting that for a given magnitude of parameters, there exist multiple
distinct structures of the target model. Figure[T](c) shows that the 1B model has different structures
(2816, 7680, 8) and (1536, 4096, 32) in a sequence with hidden states, ffn, and depth.

Under review as a conference paper at ICLR 2025

3.2 TASK FORMULATION

A multi-stage model growth task can be formulated as below.

Growth Path P : Mi(x,6h) = Ms(z,0:) = -+ = Mpy1(x,0k41)
schedule : € = {¢1, pa, ..., bk} M
operator : Op11 = ¢ (0k), o, € ©

¢y, is a growth operator during one growth stage for expanding one dimension to grow the M} with
0 to M1, 41) with 041, and ® is the growth operator set. Mo, ..., M} represent the intermediate
models generated at the end of each growth stage, corresponding to the application of each growth
operator aimed at increasing a specific dimension.

Each feasible M), structure possesses A} schedules by enumerating all possible ® =
{Giayers Omha, O fns Phidden } combinations. Each operator is restricted to a single use at each
stage, thereby ignoring the occurrence of compound operator scenarios and reducing the schedule
search space. Finding an optimal multi-staged growth path, which consists of multiple growth op-
erators in a sequential order, to achieve better performance than other optional growth paths with
limited training time is not trivial.

Definition 1: Given a computing budget of C' and the desired model parameter of N, an opti-
mal training schedule identifies the optimum sequence of growth operators and intermediate model
structures at each stage to use the least amount of computing power while maintaining target model
performance.

3.3 MEASUREMENT OF OPTIMAL SCHEDULE USING MARGINAL UTILITY

To find an optimal schedule, we need to answer the first question: what is an appropriate measure-
ment for an optimal schedule? We propose determining a good schedule measurement based on
model performance and training costs. The model performance is evaluated using loss or perplex-
ity (ppl) values, following most of the prior work for model optimization (Hoffmann et al., [2022).
Figure [T(b) shows the relationship between ppl and training time, which can reflect the training
efficiency of LLMs. It is non-trivial to find an appropriate objective function to optimize them
simultaneously.

To address this problem, we borrow the concept of marginal utility in economics (Samuelson, |1937)
and propose using the marginal utility of schedule (MUS) as the optimization objective. MUS
evaluates the gains (reduction in ppl) that a model may obtain from an increase in cost (training
time). Formally, MUS represents the derivation of the reduction of ppl to training time, which is
calculated as:

= Apply,
= At(or)
Apply, = ppl(My) — ppl(My.41) is a positive value, representing the reduction in ppl achieved

by the My, after training, when ¢ is selected as the operator for this expansion of My, to My 1.
At () means the training time from M}, to M1 costs.

,Qr €€ 2

Clearly, a higher benefit-cost ratio corresponds to a larger MUS. Given this MUS feature, we can
shift our focus from finding an optimum schedule to establishing an optimal growth path that results
in the highest MUS. A simple solution is to enumerate all candidate paths. Despite its simplicity
and effectiveness, training all intermediate models and computing MUSs requires a significant cost.
To address this, we investigate a learning-based method, SLOP, with restricted trial training.

3.4 SCHEDULE LEARNING VIA OPTIMAL PATH

We treat finding an optimum growth schedule as a dynamic programming problem, searching for the
schedule in polynomial time. The goal is to find the optimal growth path from M; to M}, with the
highest MUS, as described in equation [2] Therefore, the objective of equation 2] can be transformed
as below. By theoretically solving the dynamic programming problem, we could significantly reduce
trial training costs, which include enumerating and assessing all feasible paths.

Under review as a conference paper at ICLR 2025

4

l Appl
arg maxz Apply, <= arg max _ TPPler
preEE At(dx) = — Aparams(dx)

In equation 3] Aparams(¢y) = pamms(MkH) — params(Mj},) represents the parameter that in-
creases with each growth stage. Given that the natural logarithm, In(-), is a monotonically increasing
function, equation equation [3|can be expressed as:

3)

4

Appl, Appl g,
argmax y —————-—— < argmax —_—
B R pramsige) L 2 R o) “
4
= argmaxz [In (Apply,) — In (Aparams(¢x))]
oK EE k=1

Optimizing the upper bound of equation 4|yields the re-formulation shown below (<> represents the
relaxation of solution space in this situation):

4
arg max Z[ln (Apply,) — In (Aparams(¢y))] <=
PREE k=1
4 4 &)
arg maxz In (Appl,,) — arg mlnz In (Aparams(¢y))
PrEE k=1 PrEE k=1

Following a series of derivations (refer to proof), the objective function in equation [3]is transformed
to:

4 4
argmax — Z log (qus (z;)) — arg min Z In (Aparams(¢yr)) (6)
PrEE PrEE k=1
@ @

where D is the number of samples in the test set; gaz, (x;) is the probability distribution predicted
by the M5 for any input z; in the test set.

Proofs: By utilizing just the first term of equation[5] we can get the following reformulation:

4 4
argmalen Apply,) <= argmaxln ZAppl%)
PREE ko1 PrEe k=1
= argmaxn (ppl(My) — ppl(Mz) + ppl(Ms) — ppl(Ms) + - - - + ppl(My) — ppl(Ms)) (1)
KEE
= argmax In (ppl(My) — ppl(Ms))
LEE

The relaxation of the upper bound in equation[7|benefits from the monotonically increasing property
of In(-). Since the initial M; before expansion is fixed, its corresponding ppl is a constant value,
and we can obtain:
arg max In (ppl(M1) — ppl(Ms)) <= arg max[ppl(M;) — ppl(Ms)]
br €€ ¢ EE
<= arg max ppl(M;) — arg min ppl(Ms5)
PrEE drEE
Consequently, the objective of the first term of equation |5|is to pursue argmin ppl(Ms):
PrEE

®)

arg min ppl(Ms) <= arg minIn (ppl(M5)) = arg minIn (e% XL BCum, (@)
PrEE PrEE oK EE
1
—argmm— EC), (z;) = argmin —
PrEE Z o pwee D im1

D

<= arg max — Z log(qnzs (i)
Prce i=1

N

[— P () log(qar, (74))] 9)

Under review as a conference paper at ICLR 2025

where ppl(Ms) = eb %1 ECxs (20, and EC yy (2:) = —Pag, (2) log(qar, (1)) is used to calcu-
late cross-entropy. Py, (z;) denotes the ground truth distribution, which is a constant value.

equation [6] splits the entire solution into two parts: 1) Finding the optimum target model with the
highest average probability of accurate token prediction; 2) Enumerating all schedules and selecting
the optimal one that satisfies equation [6}@).

In part.(D) of equation[6] for a model M, when the parameters N and computation cost C' are fixed,
the optimal loss can be predicted through the scaling law (Hoffmann et al.| |2022), which is solely
related to the model’s parameters N rather than its structure. Therefore, part.(D) in equation[6|can be
taken as a constant. Then the optimization goal of equation [6|becomes:

4

arg min Z In (Aparams(¢y)) = arg min[ln (Aparams(é1)) + - - - + In (Aparams(és))]
¢k €e k=1 ¢k €e
= arg min In[Aparams(¢y) * - - - x Aparams(¢y)]
PrEE
(10)
Setup of optimal path. Note that equation [I0 has the same form as the objective function in the
optimal path. To solve equation given a directed graph G = (V, E') where V is the set of vertices
and F is the set of edges. Each edge e;; = (v;,v;) has a non-negative weight w(v;, v;). The goal
of equation[I0]is to find a path from the source to the target vertex that meets certain conditions.

In this scenario, the vertices represent all of the potential intermediate model structures that could
emerge as the model grows. The weights w(v;,v;) of the edges in F illustrate the variations in
parameters at every stage of growth between the two vertices in V. Our objective is to find a path
from the source vertex (vM1) to the destination vertex (v*?) in four stages, ensuring that the
product of the edge weights is minimized:

4

minHwk(vi,vj) (11)

k=1

Although the destination vertex is not unique, they share the same number of Mj5’s parameters N5.
Formally, such constraints are defined as:

params(v™Ms) = N,

M Ms | M M
Yo't € Vi _setigrget = (V7 2,05 7, ..., 05 ")

(12)
Now, we can use optimal path algorithms, such as the Dijkstra algorithm, to efficiently obtain the
optimal schedule without trial training. Our algorithm details are shown in Algorithm [I] which
outputs optimal schedules satisfying equation 2]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For pre-training, we use the redpajama (Computer, 2023) dataset and create 65B token
training data using Llama’s(Touvron et al.l [2023a) training data mixture ratio. Among these, 25B
tokens are used for initial model training and 10B tokens for model growth training at each stage.

Downstream benchmarks. For downstream task assessment, we use a set of common LLM evalua-
tion benchmarks that include commonsense reasoning (PIQA (Bisk et al., [2020), Hellaswag (Zellers
et al., |2019)), common aggregated benchmarks (BBH (Suzgun et al.| 2022)), Lambada (Paperno
et al.,[2016)), and math (GSMS8K (Cobbe et al., [2021))).

Model growth settings. All of the models in our studies use vannila decode-only Transformer
architectures. During model growth, we adhere to a few simple constraints contained in the existing
LLM structure, as detailed in their published technical report, such as llama(Touvron et al.| 2023a)),
gwen(Bai et al.| 2023} [Yang et al., 2024), baichuan(Yang et al.| 2023), and mistral(Jiang et al.,
2023). The constraints include: 1) The hidden dimension size is a multiple of 128. 2) The hidden
dimension is either 8/3 or 4 times the ffn dimension. 3) The number of attention heads should

Under review as a conference paper at ICLR 2025

Algorithm 1 SLOP

Input: G = (V, E), v, .., V_setiarges = {0175, 03", ... v} %}
Output: Traverse v? s ¢ V _setiarget, find the top K smallest dist[viv [5], and output its path (predecessor

: . M
vertices) according to prev(v, °|

1: Initialize: Create vertex set Q = 0)

2: for eachvin V do
3: dist[v] + oo //initial distance is set to infinity
4 prev|v] < Undefined // Undefined Vs predecessor vertex
5. Addvto@
6: end for

7: dist[vXl,] =1

8: while Q # () do

9: Find vertex wu satisfying min(dist) = dist[u]
10: Extractufrom Q: Q = Q —u

11: end while

12: for each adjacent vertex v of u do

13: if dist[v]>dist[u] * w(u,v) then

14: dist[v] < dist[u] * w(u,v)
15: prev[v] + u

16: endif

17: end for

be divisible by the hidden dimension; nevertheless, this has no effect on the model’s size. Check
Appendix [F for more details. With these constraints, we randomly select parameter N = 100M for
the initial beginning point model with the structure (768, 2048, 6, 6), which corresponds to the four
dimensions of (hidden, ffn, layer, and mha). Due to computational constraints, the target’s N value
is limited to 1B. The settings details for the growth operator are illustrated in Appendix [G]

4.2 RESULTS AND ANALYSIS

Table 1: Training time for SLOP and other potential schedules on same training data over growth
stages. Training time refers to the number of GPU hours required by the schedules to grow a model
within the same data size. Since the attention head numbers do not lead to changes in parameters,
we only consider the three dimensions (hidden-ffn-layer). To simplify the representation of schedule
sequences, the abbreviations are used in table: 1 for layer, f for ffn, and h for hidden. SLOP utilizes
minimal GPU time for training while maintaining superior performance in terms of perplexity.

Schedules Initial [stagey | stages | stagez | Sum
Target structure sequence TI Aparams PPL ‘Wall time (GPU hours)
layer hidden ffn
I-h-f 6.59E+24 31.43 34.38 8.65 27.53 43.39 113.94
ffn hidden layer
(2816,7680,8) £l 4.14E425 3348 | 3438 1121 34.01 4339 | 123.09
hidden ffn layer
h-f-1 1.81E+26 39.84 34.38 22.12 34.01 43.39 133.89
hidden ffn layer
h-f-1 4.66E+24 31.1 34.38 10.32 11.80 45.22 101.72
(1280,3584,40) layer hidden fiin
1-h-f 1.65E+26 38.65 34.38 19.66 35.39 45.22 134.66
ffn hidden layer
f-h-1 4.24E+24 31.43 34.38 9.14 14.1 49.94 107.62
(1536,4096,32) layer hidden ffn
I-h-f 1.52E+26 39.85 34.38 16.91 37.36 49.94 138.59
ffn layer hidden
(2560.6912.10) f-1-h 8.53E+24 32,99 34.38 1'0,76 14.01 44.40 103.55
hidden ffn layer
h-f-1 1.24E+26 38.65 34.38 19.66 29.00 44.40 127.44
layer ffn hidden
(2816,7680.8) SLOP I-f-h 1.69E+24 30.61 34.38 8.65 12.97 43.39 99.39

Evaluate the theoretical validity of SLOP. Table [I| shows a comparison of the pre-training perfor-
mance of the SLOP recommended optimal schedule and other optional schedules. There may be
multiple model structures for a 1B parameter model. The experiment includes all possible target
model structures adhering to the previously stated structural constraints. For example, in Table

Under review as a conference paper at ICLR 2025

one of the target structures is designated as (2816, 7680, 8), corresponding to the parameters (hid-
den, ffn, layer). We will apply this model structure notation uniformly throughout this section. The
growth path ignores the expansion of attention head numbers, as it does not alter the parameters. The
schedules in Table[I|cover all the possible sequences of the growth dimensions. Considering that the
increased parameters at each stage are also part of the objectives for optimization, it is impractical
to list all potential combinations of Aparams for each stage because of computational and time
limitations. For each path, the minimal [[Aparams are chosen as a representation, guaranteeing
that the experiment includes all suboptimal possibilities.

We have the following observations from Table [T} SLOP demonstrates superior performance com-
pared to alternative schedules in terms of perplexity, achieving a reduction in computational usage
ranging from 2.74% to 35.48%. The outcomes of stages further confirm the principle of the scaling
law(Hoffmann et al.| [2022), indicating that a model’s performance is primarily influenced by its
parameters and the training data while being less dependent on its structure.

Pre-training stage Pre-training stage Pre-training stage

Ry, — fhi

SLOP

Validation loss
Validation loss
Validation loss

— hefl — hfl
— fhel — fhil
SLOP SLOP

o 2 % 60 80 100 0 20 40 60 8 100 120 0 2 50 s 0 125 10 175
Training time Training time Training time

(a) stage1 (b) stages (c) stages

Figure 2: Validation loss vs. training time for different schedules during different growth stages.

Figure [2] presents the loss results corresponding
to different training schedules utilizing the target
structure specified as (2816, 7680, 6, 8) in terms
of (hidden, ffn, layer, head number). During the
first growth stages, the intermediate model struc-
ture selected by SLOP fails to achieve optimal per-
formance as a result of its comparatively limited
parameters. Upon completion of the growth stages,
SLOP demonstrates a significantly reduced train-
ing time compared to alternative schedules while
preserving similar or superior loss values.

Additional experiments are being designed to fur-
ther illustrate the capabilities of SLOP visually. We
compute the correlation between the training times
of various schedules and present the correlation
heatmap shown in Figure 3] We can see a clear
phase between these schedules. For a variety of
schedules, the closer the [| Aparams are, the higher the correlation of the training times. From a
different point of view, this shows that the LLM training costs are positively related to | [Aparams.
This supports our experimental setup that uses the minimal [Aparams to represent the potential
growth sequence.

Figure 3: Correlation heatmap between differ-
ent schedules

Under review as a conference paper at ICLR 2025

250 Lambada PPL 0 Lambada ACC Hellaswag
== SLOP

[2048,5632,16] 60
200 o ! 0
2816.7680.8] 50
i 2
150 2816,7680,8] 4
hid —— sLoP 15
100 S 30 [2048.5632.16]
1h
10
= 20 2816,76808] [2816.7680,8)
50 i —e- sLoP 281
10 [2816,7680,8] 5 ‘[2,”:5‘5532-‘51 2616,7680.8]
p] H il

b

0 0 0
Initial stage’ stage2 stage3 Inital stage stage2 stage3 Inital stage? stage2 stage3

BBH PIQA GSM8K

—o- sLoP
14 [2048,5632,16] 70 5
1+
2 [2616,7680,8] &0 >
0 fhi 50
[2816,7680,8)
hid)

8

6

4 20 o= SLOP 126167650 81 —e- sLop feresos
/ [2048,5632,16] 12616.7680,8] 1 [2048,5632,16] 2616,7680,8]

2 10 I bt Hh hf

0

0 0
Initial stage stage2 stage3 Inital stage stage2 stage3 Inital stage stage2 stage3

Figure 4: The performance of target models generated by various schedules following multi-stage
model growth on representative downstream tasks. Blue line represents SLOP.

Evaluate with other baselines. We conduct a comparison of various growth schedule baselines
to evaluate the effectiveness of SLOP, which are listed as follows. 1) SCHL-from scratch: We
train from scratch to obtain the target 1B parameter model using the previously specified 65b token
pre-training dataset. 2) SCHL-single stage: The initial model with 100M parameters is expanded
to the target model of 1B parameters through a single-stage growth strategy. 3) SCHL-MSG: The
most recent proposed growth schedule by MSG (Yao et al.,|2023) is also compared. 4) ELLE: To
assess the overall performance of model growth, we conduct a comparison with the model growth
method ELLE, which allows for the incremental expansion of both the width and depth of the LLMs.
Table [2] demonstrates that SLOP exhibits a reduction of 22.6% in training time when compared to
SCHL-MSG and ELLE, while the perplexity remains nearly equivalent. Compared with SCHL-
from scratch and SCHL-single stage, although the perplexity increased, SLOP saves 183.74% in
training time.

Performance on the downstream

tasks. As shown in FitgureE], weeval- Table 2: Evaluation of perplexity and training time for
uate the target LLM’s performance SL.OP compared to alternative baseline schedules, growing

across a suite of popular bench- from identical initial models to target models.
marks(Touvron et al., [2023b). It can

be concluded that, in comparison to

Target .
alternative schedules, SLOP demon- structure Model PPL Wall time (GPU hours)
strates enhanced performance in most ggg}:-f@ﬂ; scratch gg-gz igg-gé
: -single stage . .
downstream tasks. This suggests (2816,7680,8) SCHL-MSG 3118 101.96
that the knowledge gained through ELLE 30.6 121.86
the optimal schedule during model SLOP 30.61 99.39

growth can be effectively utilized for
downstream tasks.

4.3 ABLATION STUDY

Effect of different initial models. We evaluate the impact of different initial models for SLOP.
The initial model M consists of 450M parameters, structured as (1024, 4096, 16, 24), whereas the
target model M5 contains 1B parameters. The performance of different schedules, after multi-stage
growth, is detailed in Table [3] The SLOP schedule offers significant computational savings while
maintaining high performance, regardless of initial model changes.

Under review as a conference paper at ICLR 2025

Table 3: Training time for SLOP and other schedules on same data in the pre-training stage, utilizing
a different initial model.

Schedules Initial | stage; | stages | stages | Sum
Target structure sequence Tl Aparams PPL Wall time (GPU hours)
ffn layer hidden
f-1-h 1.59E+17 35.08 102.67 8.55 28.02 44.61 183.85
layer hidden ffn
(1152,3072.50) I-h-f 1.53E+26 3548 | 10267 23.10 37.24 461 | 20762
ffn hidden layer
SLOP f-h-1 4.76E+8 322 102.67 8.55 10.54 44.61 166.37
hidden ffn layer
h-f-1 4.71E+24 33.01 102.67 9.66 11.87 45.71 169.92
layer hidden ffn
(1152,4608,40) I-h-f 5.54E+25 34.02 102.67 19.66 29.49 45.71 197.54
ffn hidden layer
SLOP f-h-1 2.28E+24 33.01 102.67 9.44 11.87 45.71 169.69

Compatible to the special cases of two-dimensional expansion. Existing studies on model growth
often investigate expanding in depth and width dimensions (Yao et al.,|2023};|Yang et al.,[2020; Shen
et al.| 2022 Wang et al.| |2023). To validate the universality of SLOP, we limit the growth operators
t0 ¢ = {Qiayer, Phidden }- We set the structures of the initial model M to (768, 2048, 6, 6), and the
target model M5 to (2816, 7680, 8, 22). Table E|c0mpares the performance of different schedules
after two expansion stages for width and depth. The results presented the utility of SLOP in specific
cases. The appendix provides more experimental details.

Table 4: Training time for SLOP and other schedules, growing with depth and width.

Schedules Initial | stage; | stages | Sum
Target structure sequence 11 Aparams PPL Wall time (GPU hours)
hidden layer

(2816.7680.8) h-1 1.41E+17 38.65 34.38 68.03 43.39 145.8
layer hidden

SLOP I-h 1.38E+16 38.65 34.38 8.65 86.77 139.8

The impact of multi-head atten-

ti‘“}- Table shows Fhe effeq Table 5: The percentage savings in computing time pertains
of inserting ¢mpe ON various posi- (g the positioning of the ¢,,n, at various growth stages in

tions within the SLOP recommend.ed relation to the baseline, which involves expanding the ;14
schedule (h-f-1, corresponding with ¢ s¢age;.

Table [I). The target model struc-

ture is (1536, 4096, 32). Expand- ~gepedules | stager | stages | stages | stages | Sum

ing the multi-head at stage; serves as computational savings (%)

the baseline. The placement of Yrnne " fhead-h1 | 056 -0.19 209 -037 | -0.51
within the first three stages appears to f-h-head-1 0.56 -23.56 0.20 0.52 2.86
have a small impact on training time. f-h-l-head | 0.56 -23.56 -210.67 -1.58 | -39.77

Positioning ¢, as the final stage
will result in increased fluctuations in
performance throughout the model growth process. We further investigate how varying the number
of attention heads affects the target model’s performance and downstream experiments, as detailed

in Appendix[C.2]

5 CONCLUSION

This study examines optimal model growth schedule learning problems, concentrating on determin-
ing a suitable sequence that integrates several operators to enhance performance for the target LLM.
We present a cost-effective optimal path learning method within the framework of a multi-stage
model growth scenario that could attain theoretically optimal results. Observe that we examine a
straightforward scenario in which each growth dimension occurs just once along the path. We will
leave more complex scenarios for future work.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao
Chen, Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models. arXiv
preprint arXiv:2110.07143, 2021.

Tiangi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama—Datal

Chinmay Deshpande, David Gens, and Michael Franz. Stackbert: machine learning assisted static
stack frame size recovery on stripped and optimized binaries. In Proceedings of the 14th ACM
Workshop on Artificial Intelligence and Security, pp. 85-95, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient train-
ing of BERT by progressively stacking. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2337-2346. PMLR, 09-15 Jun 2019. URL
https://proceedings.mlr.press/v97/gongl99a.htmll

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. On the transformer
growth for progressive BERT training. In Kristina Toutanova, Anna Rumshisky, Luke Zettle-
moyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and
Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pp. 5174-5180, Online,
June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.406.
URLhttps://aclanthology.org/2021.naacl-main.406.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Stefani Karp, Nikunj Saunshi, Sobhan Miryoosefi, Sashank J Reddi, and Sanjiv Kumar. Landscape-
aware growing: The power of a little lag. arXiv preprint arXiv:2406.02469, 2024.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. EMNLP 2018, pp. 66, 2018.

Xiang Li, Yiqun Yao, Xin Jiang, Xuezhi Fang, Xuying Meng, Siqi Fan, Peng Han, Jing Li, Li Du,

Bowen Qin, et al. FIm-101b: An open 1lm and how to train it with $100 k budget. arXiv preprint
arXiv:2309.03852, 2023.

11

https://github.com/togethercomputer/RedPajama-Data
https://proceedings.mlr.press/v97/gong19a.html
https://aclanthology.org/2021.naacl-main.406

Under review as a conference paper at ICLR 2025

Abhishek Panigrahi, Nikunj Saunshi, Kaifeng Lyu, Sobhan Miryoosefi, Sashank Reddi, Satyen Kale,
and Sanjiv Kumar. Efficient stagewise pretraining via progressive subnetworks. arXiv preprint
arXiv:2402.05913, 2024.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Elle:
Efficient lifelong pre-training for emerging data. arXiv preprint arXiv:2203.06311, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Paul A. Samuelson. A Note on Measurement of Utility. The Review of Economic Studies, 4(2):
155-161, 02 1937. ISSN 0034-6527. doi: 10.2307/2967612. URL https://doi.org/10.
2307/2967612.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715-1725, 2016.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy. Staged
training for transformer language models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp- 19893-19908. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/
v162/shen22f.htmll

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.(nips), 2017. arXiv preprint
arXiv:1706.03762, 10:S0140525X16001837, 2017.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan Li, Ru He, and Jinggiao Zhang. Progressively
stacking 2.0: A multi-stage layerwise training method for bert training speedup. arXiv preprint
arXiv:2011.13635, 2020.

12

https://doi.org/10.2307/2967612
https://doi.org/10.2307/2967612
https://proceedings.mlr.press/v162/shen22f.html
https://proceedings.mlr.press/v162/shen22f.html

Under review as a conference paper at ICLR 2025

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster lan-
guage model pre-training. arXiv preprint arXiv:2305.02869, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

A LIMITATIONS

In this work, we propose a theoretical solution for finding the optimal growth schedules for multi-
stage growth involving all possible dimensions. However, we do not consider complex cases when
multiple growth dimensions can combine at the same stage and execute more than once. Our work
establishes a starting point for the development of self-adaptive growth schedules, vital to the ef-
ficient pre-training of LLMs. Another limitation is that, due to limited computing capacity and
budget, the largest models in our experiments have 1 billion parameters, which is a significant dif-
ference from existing LLMs. This constraint is present in the vast majority of research projects,
according to our knowledge.

B EXPERIMENTAL DETAILS

B.1 DETAILS FOR THE EXPERIMENTS SET UP

Datasets: The training dataset mixture, comprising 65 billion tokens, adheres to the mixture ratio
established by LLAMA (Touvron et al.,[2023a), as detailed below:

Table 6: The pre-training data mixture ratio

Dataset ratio
CommonCrawl 67.0%
C4 15.0%

Github 4.5%
Wikipedia 4.5%
Books 4.5%

Arxiv 2.5%
StackExchange 2.0%

Tokenizer: We tokenize the data with the byte pair encoding (BPE) algorithm (Sennrich et al.,
2016)), using the implementation from SentencePiece (Kudo & Richardson, 2018)).

Optimization: Our models are trained using the AdamW optimizer, with the following hyper-
parameters: 5; = 0.9, 82 = 0.95. We implement a cosine learning rate schedule, with the final
learning rate set to 10% of the maximum value. Our weight decay is 0.1, and we apply gradient
clipping at 1.0. We configure the batch size to 256K and use a warmup period of 2,000 steps. The
details of the hyperparameters for our different models are given in Table

Table 7: Model sizes, structures, and optimization hyper-parameters

params structure learning rate batch size n tokens
1B (dhiddena dffn7Nlaye’r>Nhead) 3.0e”* 256K 65B

Implementation: Our code handles approximately 50K tokens per second per GPU on 2048 A100
GPUs with 80GB of RAM. Training for the final growth stage on our dataset, which includes 65B
tokens, takes about 15 days in total.

B.2 MORE DETAILS FOR THE GROWTH SCHEDULES IN THE MAIN EXPERIMENT

We present some sample schedule details (schl, sch2, and sch3) for their respective expansion se-
quences, as shown in Table

13

Under review as a conference paper at ICLR 2025

Table 8: Growth schedules expand in one dimension in each stage. The schedules listed are part of
the main experiment used.

Schedule sequence initial stagel stage2 stage3
schl h-f-1 (768,2048,6) (2816,2048,6) (2816,7680,6) (2816, 7680, 8)
sch2 f-h-1 (768,2048,6) (768,4096,6) (1536,4096,6) (1536, 4096, 32)
sch3 1-f-h (768,2048,6) (768,2048,16) (768,5632,16) (2048,5632,16)
SLOP 1-f-h (768,2048,6) (768,2048,8) (768,7680,8) (2816,7680,8)

C ABLATION STUDY

C.1 THE IMPACT OF EXPANDING MHA IN DIFFERENT SEQUENCES

The experiments depicted in Figure [5 further back up our conclusion, demonstrating that the se-
quence of ¢, 1, has minimal impact on the model’s overall performance. In comparison, expanding
the head as the final stage results in suboptimal performance in downstream tasks.

gggggggggggggggg
uuuuuu

staged nitial stage1 stage2 stage3 sages . el sagel sage2 sage3 staged

PIQA R GsMeK

stago2

stages nitial staget stage2 stages stagos Inital stage1 stage2 stages stages

Figure 5: The target LLM’s performance after multi-stage model growth pre-training on representa-
tive downstream tasks with ¢,,,1, in different sequences.

C.2 THE IMPACT OF VARYING THE NUMBER OF HEADS.

Table[9]indicates a positive correlation between the number of heads and the increase in ppl.

Table 9: Perplexity of the target model with the head number increasing from 6 to 48 values, main-
taining a fixed schedule of head-ffn-hidden-laye.

stagey [stagez [stages [stages [Avg.
head number Perplexity (PPL)
headg | 107.53 104.87 70.48 31.29 | 78.54
headg | 117.89 111.15 68.77 30.80 | 82.15
headqo | 117.87 11025 70.27 30.61 | 82.25
headyg | 118.76 11198 68.71 31.10 | 82.64
headsy | 120.30 116.81 68.69 31.64 | 84.41
headss | 126.02 120.54 69.10 32.24 | 86.98
headys | 126.40 126.02 71.17 32.99 | 89.15

14

Under review as a conference paper at ICLR 2025

We also investigate the influence of different numbers of attention heads on downstream task per-
formance. As depicted in Figure[6] the optimal overall results are achieved with a head number of
48.

Lambada PPL
—o— hoad-48

—o— hoad-12
o= head8

Figure 6: After multi-stage model growth, the performance of the target LLMs varies with different
head numbers over representative downstream tasks.

C.3 THE IMPACT OF DIFFERENT TARGET MODEL STRUCTURE.

To demonstrate the applicability of our method to all target structures, we conduct a supplemental
experiment to evaluate the effectiveness of SLOP with an additional target structure (2048, 5632,
16), compared to baseline MSG. As shown in Table the results further corroborate the versatility
of SLOP across various target structures.

Table 10: Evaluation of perplexity and training time for SLOP compared to alternative baseline
schedules, growing from identical initial models to target model (2048,5632,16).

Target

Model PPL Wall time (GPU hours)
structure
SCHL-single stage 32 172
SCHL-MSG 36 119
(2048, 5632, 16) ELLE 34 114
SLOP 34 108

C.4 THE IMPACT OF SMALLER PARAMETERS.

We further verify the generality of SLOP on smaller models, from 27M to 105M parameters. For
a comparison, SLOP-105M and ELLE-105M employ different schedules and operators for model
growth, progressively increasing from an initial model of 27M parameters with dimensions (384,
1024, 6) to a target model of 105M parameters with dimensions(768, 2048, 12). GPT-105M fixes
the number of parameters at 105M and maintains a constant model size throughout each training
stage. As presented in Table|l 1| the experimental results presented in the table demonstrate that our
method is equally applicable to models with smaller parameter sizes.

15

Under review as a conference paper at ICLR 2025

Table 11: Evaluation of FLOPs and training time for SLOP compared to alternative baseline sched-
ules in smaller models, growing from an initial model (384, 1024, 6) to a target model (768, 2048,
12).

Target

Model FLOPs(e18) Wall time (GPU hours)
structure
GPT-105M 4.46 3.10
(768, 2048, 12) ELLE-105M 6.64 4.60
SLOP-105M 4.08 2.83

D PERFORMANCE ON THE DOWNSTREAM TASKS

We conduct additional experiments comparing SLOP to the model growth baseline MSG, mentioned
in Table , on some of the downstream tasks specified in Sectionto assess SLOP’s effectiveness.
Table (12| below shows the results of the representative downstream tasks, demonstrating SLOP’s
robust performance on downstream tasks.

Table 12: The performance of SLOP compared to baseline MSG on representative downstream
task.

Target structure Models Lambada acc Lambadappl BBH Hellaswag
SCHL-MSG 42.90 90.77 6.89 22.90
(2816,7680.8) g op 59.2 6673 1500 20.69

E CASES FOR THE GROWTH SCHEDULE PATHS

Figure[7illustrates that the expansion of the Transformer model is configured with four dimensions:
hidden_dim, ffn_dim, head_number, and layer_number. We select one dimension for each expansion,
resulting in a total of four expansions. The number of parameters in the model expands from a to b.
For more complex scenarios in which each dimension can undergo multiple repetitions during the
expansion process, such as hidden_dim, ffn_dim, head_number, hidden_dim, and layer_number, the
entire search space becomes significantly larger and more complicated. In this paper, we omit this
case, focusing only on expanding each dimension once along the expansion path.

As an example depicted in Figure [/} let’s assume the initial model’s four-dimensional parameters
are set to (384, 1024, 6, 6), and through four rounds of expansion, the target parameter for the target
model is achieved at 1B. If the target model’s four-dimensional parameters are (768, 2048, 12, 12),
we can calculate the number of possible path choices for the expansion schedule by multiplying the
factorial of the number of steps in each dimension, which comes outto 4 * 3 x 2% 1 = 24. It is
essential to recognize that various configurations exist for the structure of the target model. Another
possible configuration is (1536, 4096, 32).

It is obviously impractical to traverse each schedule and select the final optimal one. Therefore,
our goal is to transform this into an optimization problem of model metrics. Through a series of
derivations, we can select the most suitable schedule before training to reduce the computational
cost of achieving the optimal model.

F EXPLANATION FOR THE MODEL STRUCTURE CONSTRAINS

We acquire the structure of the LLaMA series and Qwen2 from their technical report, which is
displayed in Table The hidden dimension size of the LLaMA series (Touvron et al., |2023agbj
Dubey et al.| [2024) and Qwen2 (Yang et al.,2024) is a multiple of 128. Furthermore, the hidden
dimension of LLaMA[1 65B is 8/3 of the ffn dimension. And the number of attention heads for all
LLMs shown in Table|13|can be divided by the hidden dimension.

16

Under review as a conference paper at ICLR 2025

STEP, STEP, STEP, STEP, STEP, STEPg
> (816, 7650,6) > (2616.7600,6) «

Se16 o (816,2018,6) ~—=—_ i
7 (2816,2015,6) == > (2816,2048.9) — (2816.2048.8) «_

(28167650 8) > (2216.7620.6)

(768, 7650, 6) — A (r08.0680.6) —
> (168, 7680,8) - / (762,7620,8)

> (2510,2018,8)
- (e rea08) 7

L (768.2048,8) —— (768,2048,8) ~———> (2816,2016,5)

> (762,7620,8) 4
Inttial
(768,2048,6)

N - (1536,7650,6)
\\\\\ (1536,2040,8) ==

\ —> (762,4006,22) —

N (768,2048,32) ~—— (15336 2048 37 (768,2048,32) - (1536,2048,32) ~
~ (r68,4006,37) 7 T (768,1096,32) 7

_ 7 (1536,7680.6)

£36,2018,6) —=—_ .
36, 2048,37 (15382048, 0) =3 (1536204832

536,1096.6)

(1536,4006,6)
(768,4096,6) ~— (/68,1090,6) == Final
(1536,4096,32)
(hidden.tn layer)

inai
(1536.4096.32)
(nidden, fin,tayer)

(768,4006,32)

General — Special case
(a) General (b) Special case
Figure 7: Examples for all the potential paths with special cases growth only width and depth.

Table 13: The model structure from different LLMs.

Model D_Hidden dimension D_FFN N_Heads N_Layers
LLaMA1 65B 8192 22016 64 80
LLaMA2 70B 8192 28672 64 80
LLaMA3 70B 8192 28672 64 80

Qwen2 72B 8192 29568 64 80

G THE GROWTH OPERATORS

In this study, we focus on the Transformer structure that is prevalent in existing LLMs. Trans-
former’s possible growth dimensions are introduced below, while the operators of these dimensions
are listed subsequently.

Hidden states [7'~! represents the input for the Transformer layer I, which is a bi-dimensional

tensor with s and & being the sequence and hidden dimension. When the h changes, it affects every

module of the Transformer structure. We overlook the position embedding in this work as it does

not affect the expansion process. The hidden states are iteratively passing through the Transformer

layers: H 2 = Trans;(H l?),l € [1, L], where L denotes the total number of the Transformer
sX sX

layers.

Each Transformer layer [contains the modules that are important for the growth approach, which
are described below:

Multi-head attention (MHA): Multiple parallel self-attention heads make up MHA. The input H
of each layer is fed into the MHA mechanism, which can be formulated as follows:

Ki/Qi/ Vi = HthK/Q/V
sX

sxd sxd sxd h’fiii
1
Hpeaa; = Attention(Q;, K;, Vi) = softmaz(—= x Q; x K;') x V; (13)
sxd . \/E
HMEA — M HA(H) = [Hheads s oo Hheaa,] X W°
sXh (H) = [Hneaa, heada] (axd)xh

where H is applied to linear projection for generating queries, keys and values(Q)/K/V), utilizing
different weights(WK /Q/ V) for each transformation respectively. Hpeqq, signifies the output of the
i-th attention head with a being the total number of heads. The output linear matrix W generates
the final result HMH 4 which is then delivered to the Feed-forward network.

Feed-forward network (FFN) is a Multi-Layer Perceptron responsible for applying a non-linear
transformation to HMHA4 (f is FEN’s dimension of its internal representation):

HFFN — pENHMPA) = GELUHMPA x Wit 4 b1) x w'2 4 pl2 (14)

sxXh sxXh hxf sX f fxh sXh
MHA growth operator ¢,,,, refers to the act of introducing new heads within the multi-head
attention module. As mentioned in Eq[I3] the hyper-parameter a controls the scaling of the multi-

17

Under review as a conference paper at ICLR 2025

head attention dimension. When the head number increases from a; to as, we keep the weights of
the former heads fixed while assigning random values to the weights of the new heads.

wrre _ JWEY i<a (15)
* random a; <1 <as

As the number of heads increases, alterations are also observed in the size of the corresponding
weight matrix W© in Eq We set the expanded portion of W to be a random matrix R as
below:

WO

wo = w9 = [(arxd)xh] (16)

(ag xd)xh (agxd)xh ((ag—al)xd)xh

FFN growth operator ¢, can be scaled up by increasing its internal representation’s dimen-

sionality. In Eq[T4] the scaling of FFN expansion is controlled by the hyper-parameter f. Given a

Transformer layer as an example, when the FFN’s hidden dimension is increasing from f; to fs, the
extended part of W W2 and bt are initialized arbitrarily, written as R:

’ 1 wy ’ 1 wy
whosqu = [L] s =L
w2 17)
w2 o (w'2) = [F1xh]
fixch ek (2 —Tyxn

Hidden dimension growth operator ¢;,;44. is used to expand the dimension of the representation,
which is originally sent into the Transformer layers. The scaling of hidden dimension expansion is
controlled by the hyper-parameter 1. When the hidden dimension of the representation is increasing
from h; to ho, we set the extended portion of H to be random:

o R
S){{ll = st{;zz = [sxhl sx(h,Q—hl)}

18)
Then each module in Transformer exhibits variations in the scaling for the parameters with hidden
dimension expansion.

In the MHA module, we set the extended portion of WO to be random, and also the extended wei ght
matrices of K,), and V for each head are initialized randomly:

wK/Q/V
WK/Q/V:>(WK/Q/V)’ Z[hyxd]

hyxd hoxd (hg—hp)xd

19
o o o wo R
(axd)xhy = (axi/)x@) - [(GXGUX’H (ﬂXd)X(hth)}

In the FFN module, the extended portion of W T2 and b'? are initialized randomly:

wii
1 114 hyXf
W' = (W1l) = [B }
h h R
Xk hexd (ha—h1)x f ©0)

s s = [

N } pl2 = blz':[bl2
Fxhy Fxhg Fxhy fx(he=h1)] sxhy (s><hz)

o]
sXhy sX(hg—hy)

Layer operator For the layer operator, we adopt the stacking method proposed in StackBERT
(Deshpande et al., 2021)).

18

	Introduction
	Related Work
	Methodology
	Preliminary
	Task formulation
	Measurement of optimal schedule using Marginal Utility
	Schedule learning via Optimal Path

	Experiments
	Experimental setup
	Results and analysis
	Ablation study

	Conclusion
	Limitations
	Experimental details
	Details for the experiments set up
	More details for the growth schedules in the main experiment

	Ablation Study
	The impact of expanding MHA in different sequences
	The impact of varying the number of heads.
	The impact of different target model structure.
	The impact of smaller parameters.

	Performance on the downstream tasks
	Cases for the growth schedule paths
	Explanation for the model structure constrains
	The Growth Operators

