
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MODEL GROWTH SCHEDULE LEARNING VIA OPTIMAL
PATH (SLOP) FOR EFFICIENT LLM PRE-TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing training methods for Transformer-based large language models (LLMs)
rely on massive amounts of data training from scratch, which requires a high cost
in terms of compute and time. Recent studies have demonstrated the great poten-
tial of improving the LLM’s training efficiency by growing from small pre-trained
models to large ones—a technique known as model growth. There are two main
research problems associated with model growth: growth schedule and growth
operators. Existing research focuses on growth operators, detailing specific ma-
nipulations of potential dimensions to expand Transformer parameters. Few stud-
ies have investigated the optimal growth schedule, which involves integrating all
possible growth operators to create an optimal multi-staged growth path. This
work introduces SLOP, a Schedule Learning methodology via an Optimal Path for
multi-stage growth of models with minimal experimental training. SLOP utilizes
marginal utility as an appropriate measure for an optimal schedule that balances
training costs and model performance after multi-stage growth. With this mea-
surement, the objective of determining the optimal growth schedule is converted
into a dynamic programming problem, which is then solved mathematically in
polynomial time. Experimental results illustrate SLOP’s theoretical validity as
well as its efficiency, outperforming alternative schedules in a range of settings.

1 INTRODUCTION

Transformer-based large language models (LLMs), such as GPT (Radford et al., 2019) and T5 (Raf-
fel et al., 2020) have demonstrated impressive emergent abilities across various tasks. Existing LLM
training methods, on the other hand, require enormous amounts of data training from scratch, which
is both computationally and time costly. To save costs, there is a growing interest in effective pre-
training paradigms. One promising research direction (Chen et al., 2021; Wang et al., 2023; Yao
et al., 2023) is growing from small pre-trained models to large ones, known as model growth. In
practice, Li et al. (2023) trained a large-scale 100B-parameter model from a 16B-parameter model
utilizing model growth methods.

There are two main research problems associated with model growth: determining the optimal
growth schedule, and designing efficient growth operators (Yao et al., 2023). Existing works (Gu
et al., 2021; Chen et al., 2021; Wang et al., 2023; Chen et al., 2015) primarily focus on growth oper-
ators, detailing specific manipulations of potential dimensions (such as layers, hidden states, etc.) to
expand Transformer parameters. They also investigate ways to inherit knowledge from the smaller
model by developing initialization methods for the newly extended parameters and taking the entire
training state as input (e.g., the optimizer state, the learning rate schedule).

Research on the growth schedule is limited. The methodology involves integrating all possible
growth operators to create an optimal multi-staged growth path. At each stage, one dimension is ex-
panded to develop an intermediate structure until the entire target LLM structure is attained. Existing
works either adopt a single-stage growth without consideration for model schedules (Gong et al.,
2019; Gu et al., 2021), or focus on determining the optimal scheduling using empirical insights,
even though it may be theoretically suboptimal (Shen et al., 2022; Yao et al., 2023). Ultimately, es-
tablishing an optimal schedule for multi-staged model growth necessitates consideration of several
fundamental challenges. 1) What is an appropriate measurement for an optimal schedule? 2) How
are growth operators implemented sequentially, and what number of parameters are inserted at each

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

stage? 3) The exponential search space required for trial training makes it prohibitively expensive
to explore all possible growth paths (from the initial small model to the target large model) in order
to choose the most optimal one.

To address the aforementioned issues, we present a Schedule Learning methodology via Optimal
Path, abbreviated as SLOP, for multi-stage growth of models with limited experimental training ef-
forts. For Transformer-based LLMs, SLOP considers all possible expansion dimensions, expanding
one dimension per stage, but ignores more complex cases where several dimensions compound to
increase per stage, leading to a search space burst. It is worth noting that within our framework,
depth-only or width-only growth may be considered a specific case.

Specifically, we formulate the problem of finding the optimal schedule for multi-stage model growth.
The marginal utility (Samuelson, 1937) is used as an appropriate measure for an optimal schedule
that balances training costs and model performance after multi-stage growth. With this measure-
ment, we can consider the task of determining an optimal growth schedule as a dynamic program-
ming problem. Finally, we demonstrate that the dynamic programming problem enables the theoreti-
cal resolution of an optimal schedule in polynomial time, reducing the computational effort required
for trial training within the exponential search space.

To validate the correctness of SLOP’s theoretical reasoning results, we conduct experiments by
expanding various starting model sizes (e.g., 100M, 450M) to 1 billion decoder-only target LLMs.
It also shows that SLOP outperforms alternative schedules in a variety of scenarios, resulting in a
reduction in computational usage. Further ablation studies are conducted to evaluate our approach
on various growth scenarios.

2 RELATED WORK

Efficient LLM training. Efficient pretraining of large language models aims to reduce FLOPs.
Recent research focuses on stagewise efficient pretraining (Panigrahi et al., 2024), progressive pre-
training, or model reusing (Chen et al., 2015; 2021; Wang et al., 2023; Yao et al., 2023). Specifically,
model reusing involves maintaining the function of a pre-trained model as its size increases, result-
ing in an initial state that performs well even when scaled to a larger model. Net2Net (Chen et al.,
2015) is the first to introduce the concept of function-preserving transformations in model reusing,
expanding the width dimension by splitting neurons and increasing the depth by adding identity
layers. Bert2BERT (Chen et al., 2021) applies function-preservation to the Transformer structure,
extending Net2Net’s concept. LiGO (Wang et al., 2023) recently utilizes a trainable linear opera-
tor to develop an efficient expansion strategy. ELLE (Qin et al., 2022) employs function-preserving
model expansion within specific domains, leveraging pre-trained domain prompts to efficiently adapt
to emerging data over time. Our method concentrates on the model growth schedule, an area that
previous studies have rarely addressed.

Model growth schedule. The formulation of a model growth schedule is an essential research
topic due to the rising prominence of model reuse and progressed pre-training. Gong et al. (2019)
and Gu et al. (2021) utilize heuristics rules that divide the training steps into distinct expansion
stages to determine the training schedule. Shen et al. (2022) identifies optimal growth schedules that
maximize compute savings by applying scaling laws to initiate a new stage when training efficiency
decreases. The most relevant work for us is MSG (Yao et al., 2023), which provides empirical
insights for constructing an efficient schedule considering all possible growth dimensions. However,
they implement an empirical optimal solution that demonstrates practical efficiency, despite the fact
it may be theoretically suboptimal. Existing works have not systematically or theoretically explored
methodologies for identifying optimal growth schedules by relying instead on empirical results,
allowing more space for our method’s innovation in the field of optimal growth schedule learning.

3 METHODOLOGY

3.1 PRELIMINARY

We start by defining some key terms. Consider a model y =M(x, θ) that takes input x and outputs
y with parameters θ. M is the Transformer (Vaswani et al., 2017) within this study.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Growth operators. Take the vanilla decoder-only Transformer architecture as an example. M is
composed of L decoder layers, each consisting of a multi-head self-attention sublayer and a feed-
forward sublayer. Each decoder layer takes an input embedding that is presented as hidden states.
As a result, there might be four Transformer dimensions to expand: layers, multi-head attention
(mha), feed-forward network (ffn), and hidden states (hidden). We define the corresponding growth
operators for these four dimensions as Φ = {ϕlayer, ϕmha, ϕffn, ϕhidden}. Each operator ϕ ∈ Φ
initializes the extended parameters of the dimension randomly and reuses the weights from smaller
models for the weights of larger models. According to (Karp et al., 2024), the behavior observed
at initialization may not be a reliable indicator of final performance. Therefore, the influence of
function-preserving is ignored. Appendix G contains more details about each growth operator.

��

MODEL

Stage1 Stage2 Stage4

��multi-stages growth ��

Start

......

 ��
MODEL

∆params1

∆params1

......

 ��
MODEL

∆params1

∆params2

∆params1

∆params2

......

......

Stage3
......

 ��
MODEL

∆params1

∆params2

∆params3

(a)
∆params1

∆params2

∆params3

......

......

 ��
MODEL

∆params1

∆params2

∆params3

∆params1

∆params2

∆params3
∆params4

∆params4

......

���� =
∆���
∆�(b) Examples with detailed parameters(c)

Operators:

FFN

Multi-head
attentionLayer

Hidden
dimension

Figure 1: (a) Different growth paths for considering all the potential Transformer’s growth dimen-
sions. Each dimension’s growth operator is executed during a single stage. There could be A4

4
schedules by listing all potential growth operators’ orders. (b) The relationship between ppl and
training time affects the training efficiency of GPT2 with different depths. The ppl and training time
values are from our experiments. (c) The 1B parameter target model may have various structures,
including (2816, 7680, 8) and (1536, 4096, 32), which are arranged in a sequence with hidden states,
ffn, and depth. It could grow from the initial model through both single-stage and two-stage growth
in this example. Two-stage growth generates intermediate models such as (2816, 2048, 6) which
increase the hidden states from 768 to 2816 during Stage1.

Multi-staged model growth. Starting with a smaller model M1, one or more growth operators
ϕ ∈ Φ can be employed to expand one or more dimensions, facilitating the growth of M1 to a target
model Mk, where the model parameter grows from θ1 to θk. Traditional works (Chen et al., 2021;
Wang et al., 2023) typically utilize one or more operators within a single stage to accomplish the
goal, where k = 1 and no intermediary models arise. In the multi-stage scenario, the initial model
M1 increases by one dimension at each stage, ultimately achieving the target modelMk+1 following
k expansions. Figure 1 (a) provides examples of the Transformer’s four potential dimensions for
multi-stage growth. Figure 1 (c) presents examples that compare single-stage and multi-stage growth
options. The sequence from M1 to Mk+1 comprises multiple intermediary models, represented as
P = {M1,M2, . . . ,Mk+1}, where the maximum value of k is 4, determined by the complete set of
growth operators. It is worth noting that for a given magnitude of parameters, there exist multiple
distinct structures of the target model. Figure 1 (c) shows that the 1B model has different structures
(2816, 7680, 8) and (1536, 4096, 32) in a sequence with hidden states, ffn, and depth.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 TASK FORMULATION

A multi-stage model growth task can be formulated as below.

GrowthPathP :M1(x, θ1) =⇒M2(x, θ2) =⇒ · · · =⇒Mk+1(x, θk+1)

schedule : ϵ = {ϕ1, ϕ2, . . . , ϕk}
operator : θk+1 = ϕk(θk), ϕk ∈ Φ

(1)

ϕk is a growth operator during one growth stage for expanding one dimension to grow the Mk with
θk to M(k+1) with θk+1, and Φ is the growth operator set. M2, . . . ,Mk represent the intermediate
models generated at the end of each growth stage, corresponding to the application of each growth
operator aimed at increasing a specific dimension.

Each feasible Mk structure possesses A4
4 schedules by enumerating all possible Φ =

{ϕlayer, ϕmha, ϕffn, ϕhidden} combinations. Each operator is restricted to a single use at each
stage, thereby ignoring the occurrence of compound operator scenarios and reducing the schedule
search space. Finding an optimal multi-staged growth path, which consists of multiple growth op-
erators in a sequential order, to achieve better performance than other optional growth paths with
limited training time is not trivial.

Definition 1: Given a computing budget of C and the desired model parameter of N , an opti-
mal training schedule identifies the optimum sequence of growth operators and intermediate model
structures at each stage to use the least amount of computing power while maintaining target model
performance.

3.3 MEASUREMENT OF OPTIMAL SCHEDULE USING MARGINAL UTILITY

To find an optimal schedule, we need to answer the first question: what is an appropriate measure-
ment for an optimal schedule? We propose determining a good schedule measurement based on
model performance and training costs. The model performance is evaluated using loss or perplex-
ity (ppl) values, following most of the prior work for model optimization (Hoffmann et al., 2022).
Figure 1(b) shows the relationship between ppl and training time, which can reflect the training
efficiency of LLMs. It is non-trivial to find an appropriate objective function to optimize them
simultaneously.

To address this problem, we borrow the concept of marginal utility in economics (Samuelson, 1937)
and propose using the marginal utility of schedule (MUS) as the optimization objective. MUS
evaluates the gains (reduction in ppl) that a model may obtain from an increase in cost (training
time). Formally, MUS represents the derivation of the reduction of ppl to training time, which is
calculated as:

4∑
k=1

∆pplϕk

∆t(ϕk)
, ϕk ∈ ϵ (2)

∆pplϕk
= ppl(Mk) − ppl(Mk+1) is a positive value, representing the reduction in ppl achieved

by the Mk+1 after training, when ϕk is selected as the operator for this expansion of Mk to Mk+1.
∆t(ϕk) means the training time from Mk to Mk+1 costs.

Clearly, a higher benefit-cost ratio corresponds to a larger MUS. Given this MUS feature, we can
shift our focus from finding an optimum schedule to establishing an optimal growth path that results
in the highest MUS. A simple solution is to enumerate all candidate paths. Despite its simplicity
and effectiveness, training all intermediate models and computing MUSs requires a significant cost.
To address this, we investigate a learning-based method, SLOP, with restricted trial training.

3.4 SCHEDULE LEARNING VIA OPTIMAL PATH

We treat finding an optimum growth schedule as a dynamic programming problem, searching for the
schedule in polynomial time. The goal is to find the optimal growth path from M1 to Mk+1 with the
highest MUS, as described in equation 2. Therefore, the objective of equation 2 can be transformed
as below. By theoretically solving the dynamic programming problem, we could significantly reduce
trial training costs, which include enumerating and assessing all feasible paths.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

argmax
ϕk∈ϵ

4∑
k=1

∆pplϕk

∆t(ϕk)
⇐⇒ argmax

ϕk∈ϵ

4∑
k=1

∆pplϕk

∆params(ϕk)
(3)

In equation 3, ∆params(ϕk) = params(Mk+1)− params(Mk) represents the parameter that in-
creases with each growth stage. Given that the natural logarithm, ln(·), is a monotonically increasing
function, equation equation 3 can be expressed as:

argmax
ϕk∈ϵ

4∑
k=1

∆pplϕk

∆params(ϕk)
⇐⇒ argmax

ϕk∈ϵ

4∑
k=1

ln
∆pplϕk

∆params(ϕk)

⇐⇒ argmax
ϕk∈ϵ

4∑
k=1

[ln (∆pplϕk
)− ln (∆params(ϕk))]

(4)

Optimizing the upper bound of equation 4 yields the re-formulation shown below (⇔ represents the
relaxation of solution space in this situation):

argmax
ϕk∈ϵ

4∑
k=1

[ln (∆pplϕk
)− ln (∆params(ϕk))] ⇐⇒

argmax
ϕk∈ϵ

4∑
k=1

ln (∆pplϕk
)− argmin

ϕk∈ϵ

4∑
k=1

ln (∆params(ϕk))

(5)

Following a series of derivations (refer to proof), the objective function in equation 5 is transformed
to:

argmax
ϕk∈ϵ

1

D

4∑
k=1

log (qM5(xi))︸ ︷︷ ︸
1⃝

− argmin
ϕk∈ϵ

4∑
k=1

ln (∆params(ϕk))︸ ︷︷ ︸
2⃝

(6)

where D is the number of samples in the test set; qM5
(xi) is the probability distribution predicted

by the M5 for any input xi in the test set.

Proofs: By utilizing just the first term of equation 5, we can get the following reformulation:

argmax
ϕk∈ϵ

4∑
k=1

ln (∆pplϕk
) ⇐⇒ argmax

ϕk∈ϵ
ln (

4∑
k=1

∆pplϕk
)

= argmax
ϕk∈ϵ

ln (ppl(M1)− ppl(M2) + ppl(M2)− ppl(M3) + · · ·+ ppl(M4)− ppl(M5))

= argmax
ϕk∈ϵ

ln (ppl(M1)− ppl(M5))

(7)

The relaxation of the upper bound in equation 7 benefits from the monotonically increasing property
of ln(·). Since the initial M1 before expansion is fixed, its corresponding ppl is a constant value,
and we can obtain:

argmax
ϕk∈ϵ

ln (ppl(M1)− ppl(M5)) ⇐⇒ argmax
ϕk∈ϵ

[ppl(M1)− ppl(M5)]

⇐⇒ argmax
ϕk∈ϵ

ppl(M1)− argmin
ϕk∈ϵ

ppl(M5)
(8)

Consequently, the objective of the first term of equation 5 is to pursue argmin
ϕk∈ϵ

ppl(M5):

argmin
ϕk∈ϵ

ppl(M5) ⇐⇒ argmin
ϕk∈ϵ

ln (ppl(M5)) = argmin
ϕk∈ϵ

ln (e
1
D

∑D
i=1 ECM5

(xi))

= argmin
ϕk∈ϵ

1

D

D∑
i=1

ECM5
(xi) = argmin

ϕk∈ϵ

1

D

D∑
i=1

[−PM5
(xi) log(qM5

(xi))]

⇐⇒ argmax
ϕk∈ϵ

1

D

D∑
i=1

log(qM5
(xi))

(9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where ppl(M5) = e
1
D

∑D
i=1 ECM5

(xi), and ECMk
(xi) = −PMk

(xi) log(qMk
(xi)) is used to calcu-

late cross-entropy. PMk
(xi) denotes the ground truth distribution, which is a constant value.

equation 6 splits the entire solution into two parts: 1) Finding the optimum target model with the
highest average probability of accurate token prediction; 2) Enumerating all schedules and selecting
the optimal one that satisfies equation 6. 2⃝.

In part. 1⃝ of equation 6, for a model M , when the parameters N and computation cost C are fixed,
the optimal loss can be predicted through the scaling law (Hoffmann et al., 2022), which is solely
related to the model’s parameters N rather than its structure. Therefore, part. 1⃝ in equation 6 can be
taken as a constant. Then the optimization goal of equation 6 becomes:

argmin
ϕk∈ϵ

4∑
k=1

ln (∆params(ϕk)) = argmin
ϕk∈ϵ

[ln (∆params(ϕ1)) + · · ·+ ln (∆params(ϕ4))]

= argmin
ϕk∈ϵ

ln[∆params(ϕ1) ∗ · · · ∗∆params(ϕ4)]

(10)
Setup of optimal path. Note that equation 10 has the same form as the objective function in the
optimal path. To solve equation 10, given a directed graphG = (V,E) where V is the set of vertices
and E is the set of edges. Each edge eij = (vi, vj) has a non-negative weight w(vi, vj). The goal
of equation 10 is to find a path from the source to the target vertex that meets certain conditions.

In this scenario, the vertices represent all of the potential intermediate model structures that could
emerge as the model grows. The weights w(vi, vj) of the edges in E illustrate the variations in
parameters at every stage of growth between the two vertices in V . Our objective is to find a path
from the source vertex (vM1

source) to the destination vertex (vM5) in four stages, ensuring that the
product of the edge weights is minimized:

min

4∏
k=1

wk(vi, vj) (11)

Although the destination vertex is not unique, they share the same number of M5’s parameters N5.
Formally, such constraints are defined as:

params(vM5) = N5,

∀vM5 ∈ V settarget = (vM5
1 , vM5

2 , . . . , vM5
t)

(12)

Now, we can use optimal path algorithms, such as the Dijkstra algorithm, to efficiently obtain the
optimal schedule without trial training. Our algorithm details are shown in Algorithm 1, which
outputs optimal schedules satisfying equation 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For pre-training, we use the redpajama (Computer, 2023) dataset and create 65B token
training data using Llama’s(Touvron et al., 2023a) training data mixture ratio. Among these, 25B
tokens are used for initial model training and 10B tokens for model growth training at each stage.

Downstream benchmarks. For downstream task assessment, we use a set of common LLM evalua-
tion benchmarks that include commonsense reasoning (PIQA (Bisk et al., 2020), Hellaswag (Zellers
et al., 2019)), common aggregated benchmarks (BBH (Suzgun et al., 2022), Lambada (Paperno
et al., 2016)), and math (GSM8K (Cobbe et al., 2021)).

Model growth settings. All of the models in our studies use vannila decode-only Transformer
architectures. During model growth, we adhere to a few simple constraints contained in the existing
LLM structure, as detailed in their published technical report, such as llama(Touvron et al., 2023a),
qwen(Bai et al., 2023; Yang et al., 2024), baichuan(Yang et al., 2023), and mistral(Jiang et al.,
2023). The constraints include: 1) The hidden dimension size is a multiple of 128. 2) The hidden
dimension is either 8/3 or 4 times the ffn dimension. 3) The number of attention heads should

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 SLOP
Input: G = (V,E), vM1

source, V settarget = {vM5
1 , vM5

2 , . . . , vM5
t }

Output: Traverse vM5
t ∈ V settarget, find the top K smallest dist[vM5

t], and output its path (predecessor
vertices) according to prev[vM5

t]

1: Initialize: Create vertex set Q = ∅
2: for each v in V do
3: dist[v]←∞ //initial distance is set to infinity
4: prev[v]← Undefined // Undefined V ’s predecessor vertex
5: Add v to Q
6: end for
7: dist[vM1

source] = 1
8: while Q ̸= ∅ do
9: Find vertex u satisfying min(dist) = dist[u]

10: Extract u from Q: Q = Q− u
11: end while
12: for each adjacent vertex v of u do
13: if dist[v]>dist[u] ∗ w(u, v) then
14: dist[v]← dist[u] ∗ w(u, v)
15: prev[v]← u
16: end if
17: end for

be divisible by the hidden dimension; nevertheless, this has no effect on the model’s size. Check
Appendix F for more details. With these constraints, we randomly select parameter N = 100M for
the initial beginning point model with the structure (768, 2048, 6, 6), which corresponds to the four
dimensions of (hidden, ffn, layer, and mha). Due to computational constraints, the target’s N value
is limited to 1B. The settings details for the growth operator are illustrated in Appendix G.

4.2 RESULTS AND ANALYSIS

Table 1: Training time for SLOP and other potential schedules on same training data over growth
stages. Training time refers to the number of GPU hours required by the schedules to grow a model
within the same data size. Since the attention head numbers do not lead to changes in parameters,
we only consider the three dimensions (hidden-ffn-layer). To simplify the representation of schedule
sequences, the abbreviations are used in table: l for layer, f for ffn, and h for hidden. SLOP utilizes
minimal GPU time for training while maintaining superior performance in terms of perplexity.

Schedules Initial stage1 stage2 stage3 Sum
Target structure sequence

∏
∆params PPL Wall time (GPU hours)

(2816,7680,8)

layer hidden ffn
l-h-f 6.59E+24 31.43 34.38 8.65 27.53 43.39 113.94

ffn hidden layer
f-h-l 4.14E+25 33.48 34.38 11.21 34.01 43.39 123.09

hidden ffn layer
h-f-l 1.81E+26 39.84 34.38 22.12 34.01 43.39 133.89

(1280,3584,40)

hidden ffn layer
h-f-l 4.66E+24 31.1 34.38 10.32 11.80 45.22 101.72

layer hidden ffn
l-h-f 1.65E+26 38.65 34.38 19.66 35.39 45.22 134.66

(1536,4096,32)

ffn hidden layer
f-h-l 4.24E+24 31.43 34.38 9.14 14.1 49.94 107.62

layer hidden ffn
l-h-f 1.52E+26 39.85 34.38 16.91 37.36 49.94 138.59

(2560,6912,10)

ffn layer hidden
f-l-h 8.53E+24 32.99 34.38 10.76 14.01 44.40 103.55

hidden ffn layer
h-f-l 1.24E+26 38.65 34.38 19.66 29.00 44.40 127.44

(2816,7680,8) layer ffn hidden
SLOP l-f-h 1.69E+24 30.61 34.38 8.65 12.97 43.39 99.39

Evaluate the theoretical validity of SLOP. Table 1 shows a comparison of the pre-training perfor-
mance of the SLOP recommended optimal schedule and other optional schedules. There may be
multiple model structures for a 1B parameter model. The experiment includes all possible target
model structures adhering to the previously stated structural constraints. For example, in Table 1,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

one of the target structures is designated as (2816, 7680, 8), corresponding to the parameters (hid-
den, ffn, layer). We will apply this model structure notation uniformly throughout this section. The
growth path ignores the expansion of attention head numbers, as it does not alter the parameters. The
schedules in Table 1 cover all the possible sequences of the growth dimensions. Considering that the
increased parameters at each stage are also part of the objectives for optimization, it is impractical
to list all potential combinations of ∆params for each stage because of computational and time
limitations. For each path, the minimal

∏
∆params are chosen as a representation, guaranteeing

that the experiment includes all suboptimal possibilities.

We have the following observations from Table 1. SLOP demonstrates superior performance com-
pared to alternative schedules in terms of perplexity, achieving a reduction in computational usage
ranging from 2.74% to 35.48%. The outcomes of stage3 further confirm the principle of the scaling
law(Hoffmann et al., 2022), indicating that a model’s performance is primarily influenced by its
parameters and the training data while being less dependent on its structure.

0 20 40 60 80 100
Training time

Va
lid

at
io

n
lo

ss

Pre-training stage

h-f-l
f-h-l
SLOP

(a) stage1

0 20 40 60 80 100 120
Training time

Va
lid

at
io

n
lo

ss

Pre-training stage

h-f-l
f-h-l
SLOP

(b) stage2

0 25 50 75 100 125 150 175
Training time

Va
lid

at
io

n
lo

ss

Pre-training stage
h-f-l
f-h-l
SLOP

(c) stage3

Figure 2: Validation loss vs. training time for different schedules during different growth stages.

1.
7e

+2
4

4.
2e

+2
4

4.
7e

+2
4

6.
6e

+2
4

6.
8e

+2
4

7.
5e

+2
4

7.
8e

+2
4

8.
0e

+2
4

8.
2e

+2
4

8.
5e

+2
4

9.
6e

+2
4

1.
0e

+2
5

1.
4e

+2
5

1.
6e

+2
5

1.
9e

+2
5

2.
1e

+2
5

2.
4e

+2
5

2.
5e

+2
5

3.
0e

+2
5

3.
3e

+2
5

4.
1e

+2
5

4.
2e

+2
5

5.
0e

+2
5

5.
5e

+2
5

6.
3e

+2
5

6.
5e

+2
5

7.
6e

+2
5

7.
9e

+2
5

8.
9e

+2
5

9.
6e

+2
5

1.
1e

+2
6

1.
2e

+2
6

1.
4e

+2
6

1.
5e

+2
6

1.
7e

+2
6

1.
8e

+2
6

1.7e+24
4.2e+24
4.7e+24
6.6e+24
6.8e+24
7.5e+24
7.8e+24
8.0e+24
8.2e+24
8.5e+24
9.6e+24
1.0e+25
1.4e+25
1.6e+25
1.9e+25
2.1e+25
2.4e+25
2.5e+25
3.0e+25
3.3e+25
4.1e+25
4.2e+25
5.0e+25
5.5e+25
6.3e+25
6.5e+25
7.6e+25
7.9e+25
8.9e+25
9.6e+25
1.1e+26
1.2e+26
1.4e+26
1.5e+26
1.7e+26
1.8e+26

0.92

0.94

0.96

0.98

1.00

Figure 3: Correlation heatmap between differ-
ent schedules

Figure 2 presents the loss results corresponding
to different training schedules utilizing the target
structure specified as (2816, 7680, 6, 8) in terms
of (hidden, ffn, layer, head number). During the
first growth stages, the intermediate model struc-
ture selected by SLOP fails to achieve optimal per-
formance as a result of its comparatively limited
parameters. Upon completion of the growth stages,
SLOP demonstrates a significantly reduced train-
ing time compared to alternative schedules while
preserving similar or superior loss values.

Additional experiments are being designed to fur-
ther illustrate the capabilities of SLOP visually. We
compute the correlation between the training times
of various schedules and present the correlation
heatmap shown in Figure 3. We can see a clear
phase between these schedules. For a variety of

schedules, the closer the
∏

∆params are, the higher the correlation of the training times. From a
different point of view, this shows that the LLM training costs are positively related to

∏
∆params.

This supports our experimental setup that uses the minimal
∏

∆params to represent the potential
growth sequence.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Initial stage1 stage2 stage3
0

50

100

150

200

250
Lambada PPL

SLOP
[2048,5632,16]
l-f-h
[2816,7680,8]
f-h-l
[2816,7680,8]
h-f-l

Initial stage1 stage2 stage3
0

10

20

30

40

50

60

70
Lambada ACC

SLOP
[2048,5632,16]
l-f-h
[2816,7680,8]
f-h-l
[2816,7680,8]
h-f-l

Initial stage1 stage2 stage3
0

5

10

15

20

30

Hellaswag

SLOP
[2048,5632,16]
l-f-h

[2816,7680,8]
f-h-l
[2816,7680,8]
h-f-l

Initial stage1 stage2 stage3
0

2

4

6

8

10

12

14

16
BBH

SLOP
[2048,5632,16]
l-f-h
[2816,7680,8]
f-h-l
[2816,7680,8]
h-f-l

Initial stage1 stage2 stage3
0

10

20

30

40

50

60

70

80
PIQA

SLOP
[2048,5632,16]
l-f-h

[2816,7680,8]
f-h-l
[2816,7680,8]
h-f-l

Initial stage1 stage2 stage3
0

1

2

3

4

5

6
GSM8K

SLOP
[2048,5632,16]
l-f-h

[2816,7680,8]
f-h-l
[2816,7680,8]
h-f-l

Figure 4: The performance of target models generated by various schedules following multi-stage
model growth on representative downstream tasks. Blue line represents SLOP.

Evaluate with other baselines. We conduct a comparison of various growth schedule baselines
to evaluate the effectiveness of SLOP, which are listed as follows. 1) SCHL-from scratch: We
train from scratch to obtain the target 1B parameter model using the previously specified 65b token
pre-training dataset. 2) SCHL-single stage: The initial model with 100M parameters is expanded
to the target model of 1B parameters through a single-stage growth strategy. 3) SCHL-MSG: The
most recent proposed growth schedule by MSG (Yao et al., 2023) is also compared. 4) ELLE: To
assess the overall performance of model growth, we conduct a comparison with the model growth
method ELLE, which allows for the incremental expansion of both the width and depth of the LLMs.
Table 2 demonstrates that SLOP exhibits a reduction of 22.6% in training time when compared to
SCHL-MSG and ELLE, while the perplexity remains nearly equivalent. Compared with SCHL-
from scratch and SCHL-single stage, although the perplexity increased, SLOP saves 183.74% in
training time.

Table 2: Evaluation of perplexity and training time for
SLOP compared to alternative baseline schedules, growing
from identical initial models to target models.

Target
structure Model PPL Wall time (GPU hours)

(2816,7680,8)

SCHL-from scratch 26.43 282.01
SCHL-single stage 28.76 207.92
SCHL-MSG 31.18 101.96
ELLE 30.6 121.86
SLOP 30.61 99.39

Performance on the downstream
tasks. As shown in Figure 4, we eval-
uate the target LLM’s performance
across a suite of popular bench-
marks(Touvron et al., 2023b). It can
be concluded that, in comparison to
alternative schedules, SLOP demon-
strates enhanced performance in most
downstream tasks. This suggests
that the knowledge gained through
the optimal schedule during model
growth can be effectively utilized for
downstream tasks.

4.3 ABLATION STUDY

Effect of different initial models. We evaluate the impact of different initial models for SLOP.
The initial model M1 consists of 450M parameters, structured as (1024, 4096, 16, 24), whereas the
target model M5 contains 1B parameters. The performance of different schedules, after multi-stage
growth, is detailed in Table 3. The SLOP schedule offers significant computational savings while
maintaining high performance, regardless of initial model changes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Training time for SLOP and other schedules on same data in the pre-training stage, utilizing
a different initial model.

Schedules Initial stage1 stage2 stage3 Sum
Target structure sequence

∏
∆params PPL Wall time (GPU hours)

(1152,3072,50)

ffn layer hidden
f-l-h 1.59E+17 35.08 102.67 8.55 28.02 44.61 183.85

layer hidden ffn
l-h-f 1.53E+26 35.48 102.67 23.10 37.24 44.61 207.62

ffn hidden layer
SLOP f-h-l 4.76E+8 32.2 102.67 8.55 10.54 44.61 166.37

(1152,4608,40)

hidden ffn layer
h-f-l 4.71E+24 33.01 102.67 9.66 11.87 45.71 169.92

layer hidden ffn
l-h-f 5.54E+25 34.02 102.67 19.66 29.49 45.71 197.54

ffn hidden layer
SLOP f-h-l 2.28E+24 33.01 102.67 9.44 11.87 45.71 169.69

Compatible to the special cases of two-dimensional expansion. Existing studies on model growth
often investigate expanding in depth and width dimensions (Yao et al., 2023; Yang et al., 2020; Shen
et al., 2022; Wang et al., 2023). To validate the universality of SLOP, we limit the growth operators
to ψ = {φlayer, φhidden}. We set the structures of the initial model M1 to (768, 2048, 6, 6), and the
target model M5 to (2816, 7680, 8, 22). Table 4 compares the performance of different schedules
after two expansion stages for width and depth. The results presented the utility of SLOP in specific
cases. The appendix provides more experimental details.

Table 4: Training time for SLOP and other schedules, growing with depth and width.

Schedules Initial stage1 stage2 Sum
Target structure sequence

∏
∆params PPL Wall time (GPU hours)

(2816,7680,8)

hidden layer
h-l 1.41E+17 38.65 34.38 68.03 43.39 145.8

layer hidden
SLOP l-h 1.38E+16 38.65 34.38 8.65 86.77 139.8

Table 5: The percentage savings in computing time pertains
to the positioning of the φmha at various growth stages in
relation to the baseline, which involves expanding the φmha

at stage1.

Schedules stage1 stage2 stage3 stage4 Sum
computational savings (%)

f-head-h-l 0.56 -0.19 -2.09 -0.37 -0.51
f-h-head-l 0.56 -23.56 0.20 0.52 -2.86
f-h-l-head 0.56 -23.56 -210.67 -1.58 -39.77

The impact of multi-head atten-
tion. Table 5 shows the effect
of inserting φmha on various posi-
tions within the SLOP recommended
schedule (h-f-l, corresponding with
Table 1). The target model struc-
ture is (1536, 4096, 32). Expand-
ing the multi-head at stage1 serves as
the baseline. The placement of φmha

within the first three stages appears to
have a small impact on training time.
Positioning φmha as the final stage
will result in increased fluctuations in
performance throughout the model growth process. We further investigate how varying the number
of attention heads affects the target model’s performance and downstream experiments, as detailed
in Appendix C.2.

5 CONCLUSION

This study examines optimal model growth schedule learning problems, concentrating on determin-
ing a suitable sequence that integrates several operators to enhance performance for the target LLM.
We present a cost-effective optimal path learning method within the framework of a multi-stage
model growth scenario that could attain theoretically optimal results. Observe that we examine a
straightforward scenario in which each growth dimension occurs just once along the path. We will
leave more complex scenarios for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao
Chen, Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models. arXiv
preprint arXiv:2110.07143, 2021.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Chinmay Deshpande, David Gens, and Michael Franz. Stackbert: machine learning assisted static
stack frame size recovery on stripped and optimized binaries. In Proceedings of the 14th ACM
Workshop on Artificial Intelligence and Security, pp. 85–95, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient train-
ing of BERT by progressively stacking. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2337–2346. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/gong19a.html.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. On the transformer
growth for progressive BERT training. In Kristina Toutanova, Anna Rumshisky, Luke Zettle-
moyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and
Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pp. 5174–5180, Online,
June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.406.
URL https://aclanthology.org/2021.naacl-main.406.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Stefani Karp, Nikunj Saunshi, Sobhan Miryoosefi, Sashank J Reddi, and Sanjiv Kumar. Landscape-
aware growing: The power of a little lag. arXiv preprint arXiv:2406.02469, 2024.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. EMNLP 2018, pp. 66, 2018.

Xiang Li, Yiqun Yao, Xin Jiang, Xuezhi Fang, Xuying Meng, Siqi Fan, Peng Han, Jing Li, Li Du,
Bowen Qin, et al. Flm-101b: An open llm and how to train it with $100 k budget. arXiv preprint
arXiv:2309.03852, 2023.

11

https://github.com/togethercomputer/RedPajama-Data
https://proceedings.mlr.press/v97/gong19a.html
https://aclanthology.org/2021.naacl-main.406

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhishek Panigrahi, Nikunj Saunshi, Kaifeng Lyu, Sobhan Miryoosefi, Sashank Reddi, Satyen Kale,
and Sanjiv Kumar. Efficient stagewise pretraining via progressive subnetworks. arXiv preprint
arXiv:2402.05913, 2024.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Elle:
Efficient lifelong pre-training for emerging data. arXiv preprint arXiv:2203.06311, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Paul A. Samuelson. A Note on Measurement of Utility. The Review of Economic Studies, 4(2):
155–161, 02 1937. ISSN 0034-6527. doi: 10.2307/2967612. URL https://doi.org/10.
2307/2967612.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, 2016.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy. Staged
training for transformer language models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 19893–19908. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/shen22f.html.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.(nips), 2017. arXiv preprint
arXiv:1706.03762, 10:S0140525X16001837, 2017.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan Li, Ru He, and Jingqiao Zhang. Progressively
stacking 2.0: A multi-stage layerwise training method for bert training speedup. arXiv preprint
arXiv:2011.13635, 2020.

12

https://doi.org/10.2307/2967612
https://doi.org/10.2307/2967612
https://proceedings.mlr.press/v162/shen22f.html
https://proceedings.mlr.press/v162/shen22f.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster lan-
guage model pre-training. arXiv preprint arXiv:2305.02869, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

A LIMITATIONS

In this work, we propose a theoretical solution for finding the optimal growth schedules for multi-
stage growth involving all possible dimensions. However, we do not consider complex cases when
multiple growth dimensions can combine at the same stage and execute more than once. Our work
establishes a starting point for the development of self-adaptive growth schedules, vital to the ef-
ficient pre-training of LLMs. Another limitation is that, due to limited computing capacity and
budget, the largest models in our experiments have 1 billion parameters, which is a significant dif-
ference from existing LLMs. This constraint is present in the vast majority of research projects,
according to our knowledge.

B EXPERIMENTAL DETAILS

B.1 DETAILS FOR THE EXPERIMENTS SET UP

Datasets: The training dataset mixture, comprising 65 billion tokens, adheres to the mixture ratio
established by LLAMA(Touvron et al., 2023a), as detailed below:

Table 6: The pre-training data mixture ratio

Dataset ratio
CommonCrawl 67.0%

C4 15.0%
Github 4.5%

Wikipedia 4.5%
Books 4.5%
Arxiv 2.5%

StackExchange 2.0%

Tokenizer: We tokenize the data with the byte pair encoding (BPE) algorithm (Sennrich et al.,
2016), using the implementation from SentencePiece (Kudo & Richardson, 2018).

Optimization: Our models are trained using the AdamW optimizer, with the following hyper-
parameters: β1 = 0.9, β2 = 0.95. We implement a cosine learning rate schedule, with the final
learning rate set to 10% of the maximum value. Our weight decay is 0.1, and we apply gradient
clipping at 1.0. We configure the batch size to 256K and use a warmup period of 2,000 steps. The
details of the hyperparameters for our different models are given in Table 7.

Table 7: Model sizes, structures, and optimization hyper-parameters

params structure learning rate batch size n tokens
1B (dhidden, dffn,Nlayer,Nhead) 3.0e−4 256K 65B

Implementation: Our code handles approximately 50K tokens per second per GPU on 2048 A100
GPUs with 80GB of RAM. Training for the final growth stage on our dataset, which includes 65B
tokens, takes about 15 days in total.

B.2 MORE DETAILS FOR THE GROWTH SCHEDULES IN THE MAIN EXPERIMENT

We present some sample schedule details (sch1, sch2, and sch3) for their respective expansion se-
quences, as shown in Table 8.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 8: Growth schedules expand in one dimension in each stage. The schedules listed are part of
the main experiment used.

Schedule sequence initial stage1 stage2 stage3
sch1 h-f-l (768,2048,6) (2816,2048,6) (2816,7680, 6) (2816, 7680, 8)
sch2 f-h-l (768,2048,6) (768,4096, 6) (1536,4096, 6) (1536, 4096, 32)
sch3 l-f-h (768,2048,6) (768,2048,16) (768,5632,16) (2048,5632,16)

SLOP l-f-h (768,2048,6) (768,2048,8) (768,7680,8) (2816,7680,8)

C ABLATION STUDY

C.1 THE IMPACT OF EXPANDING MHA IN DIFFERENT SEQUENCES

The experiments depicted in Figure 5 further back up our conclusion, demonstrating that the se-
quence of φmha has minimal impact on the model’s overall performance. In comparison, expanding
the head as the final stage results in suboptimal performance in downstream tasks.

Initial stage1 stage2 stage3 stage4
0

50

100

150

200

250
Lambada PPL

stage1
stage2
stage3
stage4

Initial stage1 stage2 stage3 stage4
0

10

20

30

40

50

60

70
Lambada ACC

stage1
stage2
stage3
stage4

Initial stage1 stage2 stage3 stage4
0

5

10

15

20

25

30
Hellaswag

stage1
stage2
stage3
stage4

Initial stage1 stage2 stage3 stage4
0

2

4

6

8

10

12

14

16

18
BBH

stage1
stage2
stage3
stage4

Initial stage1 stage2 stage3 stage4
0

10

20

30

40

50

60

70

80
PIQA

stage1
stage2
stage3
stage4

Initial stage1 stage2 stage3 stage4
0

1

2

3

4

5

6

7
GSM8K

stage1
stage2
stage3
stage4

Figure 5: The target LLM’s performance after multi-stage model growth pre-training on representa-
tive downstream tasks with φmha in different sequences.

C.2 THE IMPACT OF VARYING THE NUMBER OF HEADS.

Table 9 indicates a positive correlation between the number of heads and the increase in ppl.

Table 9: Perplexity of the target model with the head number increasing from 6 to 48 values, main-
taining a fixed schedule of head-ffn-hidden-laye.

stage1 stage2 stage3 stage4 Avg.
head number Perplexity (PPL)

head6 107.53 104.87 70.48 31.29 78.54
head8 117.89 111.15 68.77 30.80 82.15
head12 117.87 110.25 70.27 30.61 82.25
head16 118.76 111.98 68.71 31.10 82.64
head24 120.30 116.81 68.69 31.64 84.41
head32 126.02 120.54 69.10 32.24 86.98
head48 126.40 126.02 71.17 32.99 89.15

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We also investigate the influence of different numbers of attention heads on downstream task per-
formance. As depicted in Figure 6, the optimal overall results are achieved with a head number of
48.

Initial stage1 stage2 stage3 stage4
0

50

100

150

200

250
Lambada PPL

head-48
head-32
head-24
head-16

head-12
head-8
head-6

Initial stage1 stage2 stage3 stage4
0

10

20

30

40

50

60

70
Lambada ACC

head-48
head-32
head-24
head-16

head-12
head-8
head-6

Initial stage1 stage2 stage3 stage4
0

5

10

15

20

25

30
Hellaswag

head-48
head-32
head-24
head-16

head-12
head-8
head-6

Initial stage1 stage2 stage3 stage4
0

5

10

15

20

25

30

35

40
BBH

head-48
head-32
head-24
head-16

head-12
head-8
head-6

Initial stage1 stage2 stage3 stage4
10

20

30

40

50

60

70

PIQA

head-48
head-32
head-24
head-16

head-12
head-8
head-6

Initial stage1 stage2 stage3 stage4
0

1

2

3

4

5

6

7

8
GSM8K

head-48
head-32
head-24
head-16

head-12
head-8
head-6

Figure 6: After multi-stage model growth, the performance of the target LLMs varies with different
head numbers over representative downstream tasks.

C.3 THE IMPACT OF DIFFERENT TARGET MODEL STRUCTURE.

To demonstrate the applicability of our method to all target structures, we conduct a supplemental
experiment to evaluate the effectiveness of SLOP with an additional target structure (2048, 5632,
16), compared to baseline MSG. As shown in Table 10, the results further corroborate the versatility
of SLOP across various target structures.

Table 10: Evaluation of perplexity and training time for SLOP compared to alternative baseline
schedules, growing from identical initial models to target model (2048,5632,16).

Target
structure Model PPL Wall time (GPU hours)

(2048, 5632, 16)

SCHL-single stage 32 172
SCHL-MSG 36 119
ELLE 34 114
SLOP 34 108

C.4 THE IMPACT OF SMALLER PARAMETERS.

We further verify the generality of SLOP on smaller models, from 27M to 105M parameters. For
a comparison, SLOP-105M and ELLE-105M employ different schedules and operators for model
growth, progressively increasing from an initial model of 27M parameters with dimensions (384,
1024, 6) to a target model of 105M parameters with dimensions(768, 2048, 12). GPT-105M fixes
the number of parameters at 105M and maintains a constant model size throughout each training
stage. As presented in Table 11, the experimental results presented in the table demonstrate that our
method is equally applicable to models with smaller parameter sizes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 11: Evaluation of FLOPs and training time for SLOP compared to alternative baseline sched-
ules in smaller models, growing from an initial model (384, 1024, 6) to a target model (768, 2048,
12).

Target
structure Model FLOPs(e18) Wall time (GPU hours)

(768, 2048, 12)
GPT-105M 4.46 3.10
ELLE-105M 6.64 4.60
SLOP-105M 4.08 2.83

D PERFORMANCE ON THE DOWNSTREAM TASKS

We conduct additional experiments comparing SLOP to the model growth baseline MSG, mentioned
in Table 2, on some of the downstream tasks specified in Section 4.1 to assess SLOP’s effectiveness.
Table 12 below shows the results of the representative downstream tasks, demonstrating SLOP’s
robust performance on downstream tasks.

Table 12: The performance of SLOP compared to baseline MSG on representative downstream
task.

Target structure Models Lambada acc Lambada ppl BBH Hellaswag

(2816,7680,8) SCHL-MSG 42.90 90.77 6.89 22.90
SLOP 59.2 66.73 15.00 20.69

E CASES FOR THE GROWTH SCHEDULE PATHS

Figure 7 illustrates that the expansion of the Transformer model is configured with four dimensions:
hidden dim, ffn dim, head number, and layer number. We select one dimension for each expansion,
resulting in a total of four expansions. The number of parameters in the model expands from a to b.
For more complex scenarios in which each dimension can undergo multiple repetitions during the
expansion process, such as hidden dim, ffn dim, head number, hidden dim, and layer number, the
entire search space becomes significantly larger and more complicated. In this paper, we omit this
case, focusing only on expanding each dimension once along the expansion path.

As an example depicted in Figure 7, let’s assume the initial model’s four-dimensional parameters
are set to (384, 1024, 6, 6), and through four rounds of expansion, the target parameter for the target
model is achieved at 1B. If the target model’s four-dimensional parameters are (768, 2048, 12, 12),
we can calculate the number of possible path choices for the expansion schedule by multiplying the
factorial of the number of steps in each dimension, which comes out to 4 ∗ 3 ∗ 2 ∗ 1 = 24. It is
essential to recognize that various configurations exist for the structure of the target model. Another
possible configuration is (1536, 4096, 32).

It is obviously impractical to traverse each schedule and select the final optimal one. Therefore,
our goal is to transform this into an optimization problem of model metrics. Through a series of
derivations, we can select the most suitable schedule before training to reduce the computational
cost of achieving the optimal model.

F EXPLANATION FOR THE MODEL STRUCTURE CONSTRAINS

We acquire the structure of the LLaMA series and Qwen2 from their technical report, which is
displayed in Table 13. The hidden dimension size of the LLaMA series (Touvron et al., 2023a;b;
Dubey et al., 2024) and Qwen2 (Yang et al., 2024) is a multiple of 128. Furthermore, the hidden
dimension of LLaMA1 65B is 8/3 of the ffn dimension. And the number of attention heads for all
LLMs shown in Table 13 can be divided by the hidden dimension.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) General (b) Special case

Figure 7: Examples for all the potential paths with special cases growth only width and depth.

Table 13: The model structure from different LLMs.

Model D Hidden dimension D FFN N Heads N Layers
LLaMA1 65B 8192 22016 64 80
LLaMA2 70B 8192 28672 64 80
LLaMA3 70B 8192 28672 64 80

Qwen2 72B 8192 29568 64 80

G THE GROWTH OPERATORS

In this study, we focus on the Transformer structure that is prevalent in existing LLMs. Trans-
former’s possible growth dimensions are introduced below, while the operators of these dimensions
are listed subsequently.

Hidden states H l−1 represents the input for the Transformer layer l, which is a bi-dimensional
tensor with s and h being the sequence and hidden dimension. When the h changes, it affects every
module of the Transformer structure. We overlook the position embedding in this work as it does
not affect the expansion process. The hidden states are iteratively passing through the Transformer
layers: H l

s×h
= Transl(H

l−1

s×h
), l ∈ [1, L], where L denotes the total number of the Transformer

layers.

Each Transformer layer l contains the modules that are important for the growth approach, which
are described below:
Multi-head attention (MHA): Multiple parallel self-attention heads make up MHA. The input H
of each layer is fed into the MHA mechanism, which can be formulated as follows:

Ki
s×d

/Qi
s×d

/ Vi
s×d

= H
s×h

× W
K/Q/V
headi
h×d

Hheadi
s×d

= Attention(Qi, Ki, Vi) = softmax(
1
√
d

× Qi × K
T
i) × Vi

H
MHA

s×h
= MHA(H) = [Hhead1

, ..., Hheada] × W
O

(a×d)×h

(13)

where H is applied to linear projection for generating queries, keys and values(Q/K/V), utilizing
different weights(WK/Q/V) for each transformation respectively. Hheadi

signifies the output of the
i-th attention head with a being the total number of heads. The output linear matrix WO generates
the final result HMHA, which is then delivered to the Feed-forward network.

Feed-forward network (FFN) is a Multi-Layer Perceptron responsible for applying a non-linear
transformation to HMHA (f is FFN’s dimension of its internal representation):

H
FFN

s×h
= FFN(H

MHA
) = GELU(H

MHA

s×h
× W

l1

h×f
+ b

l1

s×f
) × W

l2

f×h
+ b

l2

s×h
(14)

MHA growth operator φmha refers to the act of introducing new heads within the multi-head
attention module. As mentioned in Eq.13, the hyper-parameter a controls the scaling of the multi-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

head attention dimension. When the head number increases from a1 to a2, we keep the weights of
the former heads fixed while assigning random values to the weights of the new heads.

W
K/Q/V
i =

{
W

K/Q/V
i i ≤ a1

random ai < 1 ≤ a2
(15)

As the number of heads increases, alterations are also observed in the size of the corresponding
weight matrix WO in Eq.13. We set the expanded portion of WO to be a random matrix R as
below:

W
O

(a1×d)×h
⇒ (W

O
)
′

(a2×d)×h

=

 WO

(a1×d)×h

R
((a2−a1)×d)×h

 (16)

FFN growth operator φffn can be scaled up by increasing its internal representation’s dimen-
sionality. In Eq.14, the scaling of FFN expansion is controlled by the hyper-parameter f . Given a
Transformer layer as an example, when the FFN’s hidden dimension is increasing from f1 to f2, the
extended part of W l1 , W l2 and bl1 are initialized arbitrarily, written as R:

W
l1

h×f1
⇒ (W

l1

h×f2
)
′
=

[
W l1
h×f1

R
Wl1

h×(f2−f1)

]
b
l1

s×f1
⇒ (b

l1

s×f2
)
′
=

[
bl1

s×f1
R

Wl1
s×(f2−f1)

]

W
l2

f1×h
⇒ (W

l2

f2×h
)
′
=

 W l2
f1×h

R
(f2−f1)×h

 (17)

Hidden dimension growth operator φhidden is used to expand the dimension of the representation,
which is originally sent into the Transformer layers. The scaling of hidden dimension expansion is
controlled by the hyper-parameter h. When the hidden dimension of the representation is increasing
from h1 to h2, we set the extended portion of H to be random:

H
s×h1

⇒ H
′

s×h2
=

[
H

s×h1
R

s×(h2−h1)

]
(18)

Then each module in Transformer exhibits variations in the scaling for the parameters with hidden
dimension expansion.

In the MHA module, we set the extended portion ofWO to be random, and also the extended weight
matrices of K, Q, and V for each head are initialized randomly:

W
K/Q/V

h1×d
⇒ (W

K/Q/V
)
′

h2×d

=

WK/Q/V

h1×d

R
(h2−h1)×d

W

O

(a×d)×h1

⇒ (W
O

(a×d)×h2

)
′
=

[
WO

(a×d)×h1

R
(a×d)×(h2−h1)

] (19)

In the FFN module, the extended portion of W l1 ,W l2 and bl2 are initialized randomly:

W
l1

h1×f
⇒ (W

l1

h2×f
)
′
=

 W l1
h1×f

R
(h2−h1)×f

W

l2

f×h1
⇒ (W

l2

f×h2
)
′
=

[
W l2
f×h1

N
f×(h2−h1)

]
b
l2

s×h1
⇒ (b

l2

s×h2
)
′
=

[
bl2

s×h1
R

s×(h2−h1)

] (20)

Layer operator For the layer operator, we adopt the stacking method proposed in StackBERT
(Deshpande et al., 2021).

18

	Introduction
	Related Work
	Methodology
	Preliminary
	Task formulation
	Measurement of optimal schedule using Marginal Utility
	Schedule learning via Optimal Path

	Experiments
	Experimental setup
	Results and analysis
	Ablation study

	Conclusion
	Limitations
	Experimental details
	Details for the experiments set up
	More details for the growth schedules in the main experiment

	Ablation Study
	The impact of expanding MHA in different sequences
	The impact of varying the number of heads.
	The impact of different target model structure.
	The impact of smaller parameters.

	Performance on the downstream tasks
	Cases for the growth schedule paths
	Explanation for the model structure constrains
	The Growth Operators

