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ABSTRACT

Humans make numerous inferences in text comprehension to understand the mean-
ing. This paper aims to understand the similarities and differences between humans
and state-of-the-art Large Language Models (LLMs) in their ability to judge valid
inferences. To this end, we leverage a comprehensively curated entailment verifica-
tion benchmark that includes datasets from three NLP domains (NLI, contextual
QA, and rationales) containing multi-sentence premises and requiring different
types of knowledge. Our findings reveal LLMs’ superiority in multi-hop reasoning
across extended contexts requiring slow thinking, while humans excel in simple
deductive reasoning tasks. Using these insights, we introduce a fine-tuned Flan-T5
model that outperforms GPT-3.5 and rivals GPT-4, offering a superior open-source
LLM for entailment verification. As a practical application, we showcase the effi-
cacy of our finetuned model in enhancing the self-consistency in model-generated
CoT rationales, resulting in a 6% performance boost on average across three
multiple-choice question-answering datasets.

1 INTRODUCTION

A prevailing notion in cognitive psychology is the recognition that humans make numerous inferences
to understand discourse and text Garnham (1989). These inferences, serving diverse functions in text
comprehension, extend beyond resolving lexical ambiguities or determining the referent of a pronoun;
they play a crucial role in linking information from disparate sections of a text to establish its literal
meaning. Cognitive studies Buschman et al. (2011); Cowan (2001) have shown that an average
human brain has a limited capacity to retain only four chunks in short-term memory, indicating a
limitation of human inference abilities. Similarly, prior works Gururangan et al. (2018); McCoy et al.
(2019); Geiger et al. (2020); Clark et al. (2020); Sanyal et al. (2022) have shown that large language
models (LLMs) are still subpar at understanding negations in inference, use spurious correlations
while reasoning, cannot reason through multi-step compositions robustly, etc. With the advent of
large language models (LLMs) and their applications on natural language inference (NLI) Minaee
et al. (2021); Nie et al. (2020), understanding the key difference in the inference abilities between
humans and LLMs is crucial to making further progress, which is currently missing.

In this work, we aim to address this by first evaluating both humans and current LLMs Liu et al. (2019);
Tafjord et al. (2022); Chung et al. (2022); Brown et al. (2020); OpenAI (2023) on a comprehensive
entailment verification benchmark and then analyzing the performance across different reasoning
categories based on the ease of inference deduction and the type of knowledge required. Existing
textual inference datasets such as SNLI Bowman et al. (2015), MNLI Williams et al. (2018), etc.,
mostly contain short sentence premises that only partially encapsulate the challenges of multi-
sentence, complex reasoning. Predicting the entailment of such complex premise-hypothesis pairs
often requires multi-hop reasoning, inferring missing information, robustness to spurious correlation,
etc., which are largely missing from simpler datasets Gururangan et al. (2018); McCoy et al. (2019).
Also, real-world scenarios that require inference skills, such as understanding stories, dialogues,
etc., usually contain multi-sentence premises. Therefore, we select multiple datasets across three
categories (NLI, contextual QA, and rationales) and convert them into NLI format, as required, to
create a more suitable evaluation benchmark. As shown in Table 1, the datasets used in our study
typically contain multi-sentence premises that require different types of knowledge to predict the
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Desirable
Properties

NLI Contextual QA Rationale
WaNLI FEVER ANLI CosQA SIQA DREAM BoolQ RACE Entailer ECQA

Multi-sentence premise
Explanatory premise

Entity-grounded knowledge
Commonsense knowledge
Localized knowledge

Table 1: Comparisons between different datasets used for evaluation. We compare on two broad
categories: type of premise (multi-sentence and explanatory) and type of knowledge tested (entity-
grounded, commonsense, and localized). Please refer to Section 2.1 for more details.

entailment. Due to these challenges, we encourage researchers to use this benchmark for evaluating
entailment verification.

Figure 1: Distinctions between human and LLM In-
ferences. The entailment prediction performance of
humans and LLMs are depicted by a 5-star rating scale.
Humans are more consistent on simple deductive reason-
ing whereas LLMs excel at instances requiring complex,
multi-step inferences over long contexts. Both humans
and LLMs are comparable on instances with missing
knowledge. Please refer to Section 2 for more details.

Our analyses show that LLMs are stronger than
humans at entailment tasks that involve multi-
hop reasoning across long contexts that require
slow thinking. This suggests that training LLMs
to reason on diverse long context data is benefi-
cial for entailment verification on such complex
instances. In contrast, we find that humans are
better at solving entailment tasks that require
simple deductive reasoning using substitutions,
negations, etc., indicating that current LLMs
still lack consistency along these reasoning as-
pects. Further, we find that humans and LLMs
perform comparably in entailment tasks requir-
ing inferring some missing knowledge. These
findings are further depicted in Figure 1 with
motivating examples.

Among the different LLMs, we find that general
instruction-finetuned models are better than task-
finetuned models trained on a specific dataset
category. We leverage this finding by finetun-
ing a Flan-T5 Chung et al. (2022) model on a
training subset containing datasets from each
category. We explore two different training ap-
proaches: a classification-based finetuning that
learns to directly predict the label and a ranking-
based finetuning that learns to rank the most sup-
ported hypothesis from a given pair of hypothe-
ses for a given premise. We find that ranking-
based finetuning is superior to classification as
it can learn a softer decision boundary. Overall,
our fine-tuned models outperform GPT-3.5 and perform comparably to GPT-4 on the benchmark,
thus providing a strong open-sourced model for entailment verification.

Finally, we demonstrate the utility of our finetuned models on a downstream application of filtering
unfaithful model-generated explanations. Recent works Wei et al. (2022); Zhou et al. (2023); Wang
et al. (2023) have prompted LLMs to generate natural language explanations for model predictions.
However, such reasoning steps can sometimes be inconsistent, i.e., the explanation does not entail
the model’s final prediction Ye & Durrett (2022). In self-consistency (SC) Wang et al. (2023),
multiple reasoning paths are first sampled from the LLM decoder for a given instance and then
aggregated to predict the most consistent answer. We use our finetuned models to filter out non-
entailed reasoning chains in the SC decoding strategy before aggregating the final prediction, which
leads to 6% performance improvement on average across three MCQ datasets.
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2 HUMANS VS. LLMS ON ENTAILMENT VERIFICATION

In this section, we define the datasets used to create the evaluation benchmark, the evaluation
procedure for evaluating different LLM baselines and humans, and compare them across different
reasoning types. The entailment verification task can be formally defined as follows: for a given
premise (or context/explanation) p and a hypothesis (or claim) h, the task of entailment verification
(EV) is to determine whether the context has information that directly confirms the hypothesis or
not, i.e., whether the hypothesis follows from the information present in the context. This is a binary
classification task defined as f(p, h) = {support, not support}, where f is a classifier (human/LLM).

2.1 EVALUATION BENCHMARK

To benchmark humans and LLMs on the task of entailment verification, a basic criterion for dataset
selection is that the dataset should contain a premise, a hypothesis, and a support/not support label
associated with it. Additionally, we list some more desirable characteristics we want to cover in this
study, as discussed below:

• Type of Premise: Typically, NLI datasets, such as SNLI, MNLI, etc., do not contain more
than one sentence in the premise, potentially leading to shortcut learning. In contrast, we
focus more on multi-sentence premises that require complex reasoning. We also consider
datasets where the premise is a rationale, i.e., the premise is not just a logical precursor to
the hypothesis but rather an explanation. This tests the ability to evaluate model-generated
rationales Wei et al. (2022).

• Type of Knowledge: Often, one or more information in the premise needs to be used to
predict support. We categorize these information as entity-grounded, commonsense, or
localized. Entity-grounded knowledge consists of information about entities and other
general knowledge that are verifiable on the internet. These can be facts about general
science, history, etc., or details of some known person, event, etc. It is possible to infer these
information even if not mentioned in the premise. The commonsense knowledge is typically
all information about everyday life that humans use implicitly but cannot always be verified
online. This information is often missing from the premise, and has to be inferred implicitly.
Lastly, localized information is all other knowledge provided for understanding the events,
people, or items mentioned in the premise that are not grounded to any known entity. This
information depends on the premise’s specific context and, thus, is impossible to infer unless
stated explicitly. Please refer to Table 2 for examples of each knowledge type.

Next, we describe the three data sources we consider for creating the entailment verifica-
tion benchmark. In Table 1, we compare these datasets across the desirable characteris-
tics mentioned earlier. Please refer to Appendix A for more details on the datasets used.

Knowledge Examples

Entity-
grounded

Barack Obama is born in USA.;
Electrical energy is used by plants
for making food.

Commonsense
If you are hurting, you might cry.; If
you steal something, you can get in
trouble.

Localized
The policeman helps her find her
daughter.; Dan is 72 years old cur-
rently.

Table 2: Examples of different categories of knowl-
edge. Please refer to Section 2.1 for more details.

Natural Language Inference NLI is an obvi-
ous choice of data source. While converting an
NLI dataset for our task, we merge the neutral
and contradict labels to the not support label.
We use the following NLI datasets in our bench-
mark: WaNLI Liu et al. (2022), FEVER Nie
et al. (2019), and ANLI Nie et al. (2020).

Contextual QA Next, we consider multiple-
choice question-answering datasets where the
task is to answer a question based on a given
context and some options. We use an off-the-
shelf QA-to-statement converter model Chen
et al. (2021) to generate a hypothesis statement for each question option pair. Then, the hypothesis
corresponding to the correct choice is marked as “support”, while the rest are marked as “not support”
to create the entailment verification dataset. Overall, we include the following datasets from this
category: Cosmos QA (CosQA) Huang et al. (2019), SocialIQA (SIQA) Sap et al. (2019), DREAM
Sun et al. (2019), BoolQ Clark et al. (2019), and RACE Lai et al. (2017).
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Model NLI Contextual QA Rationale Avg
WaNLI FEVER ANLI CosQA SIQA DREAM BoolQ RACE Entailer ECQA

RoBERTa 0.79 0.92 0.67 0.46 0.45 0.63 0.71 0.41 0.87 0.37 0.63
Entailer-11B 0.68 0.75 0.59 0.71 0.56 0.67 0.81 0.49 0.90 0.49 0.67

Flan-T5-xxl 0.71 0.79 0.68 0.66 0.55 0.79 0.86 0.60 0.88 0.49 0.70
GPT-3.5 0.76 0.81 0.62 0.67 0.59 0.79 0.76 0.52 0.76 0.48 0.68
GPT-4 0.79 0.86 0.79 0.76 0.61 0.90 0.84 0.68 0.80 0.48 0.75

Human 0.74 0.88 0.67 0.63 0.74 0.87 0.77 0.61 0.91 0.48 0.73

Human − GPT-4 -0.05 0.02 -0.12 -0.13 0.13 -0.03 -0.07 -0.07 0.11 0.00 -0.02

Table 3: Comparisons between human and other LLMs on 100 sampled instances for each dataset.
We report the macro-F1 score and highlight the differences between human and GPT-4 performance
that are ≥ 0.10 in bold. Takeaways: GPT-4 is the best performing LLM across all the baselines
considered. It outperforms humans on ANLI and CosQA that require complex, multi-step reasoning.
In contrast, humans are better on SIQA and Entailer that require simple deductive reasoning. Please
refer to Section 2.5 for more analysis.

Rationale Lastly, we consider data sources where human-annotated explanations are available that
justify the original hypothesis (or the correct option, in the case of QA datasets). In this case, we
use the rationales as the premise. We use the following datasets: Entailer Tafjord et al. (2022), and
ECQA Aggarwal et al. (2021).

2.2 LLM EVALUATION SETUP

We evaluate two types of LLMs on the task of entailment verification, as categorized below:

Task-finetuned LLMs In this category, the models considered are already finetuned for either NLI
or the exact entailment verification task itself. We evaluate RoBERTa Liu et al. (2019) (finetuned on
NLI data) and Entailer-11B Tafjord et al. (2022) (finetuned on Entailer data) in this category. Please
refer to Appendix B.1 for more details on the evaluation setup for these models.

Instruction-finetuned LLMs These are “general-purpose” language models trained on a collection
of NLP tasks described using instructions, leading to generalization abilities to solve unseen tasks
described using new instructions. Here, we evaluate Flan-T5-xxl Chung et al. (2022), GPT-3.5 Brown
et al. (2020), and GPT-4 OpenAI (2023) models. To compute the label, we first modify a given
premise-hypothesis pair (p, h) into a prompted input P using the prompt template as shown in Box 1.
Next, we compute a score s as defined below:

s(p, h) =
pLLM (“Yes”|P)

pLLM (“Yes”|P) + pLLM (“No”|P)
, (1)

where pLLM(·|P) is the model’s probability distribution over the vocabulary. If the score s is higher
than a threshold (typically set to 0.5 in all our experiments), we assign the label support, else we
assign the label not support. For GPT-4 evaluation, we directly check for the “Yes” / “No” label
prediction as the token probabilities are not accessible via the API. Please refer to Appendix B.2 for
more details about the models and ablations on few-shot prompts.

Premise: {premise}
Hypothesis: {hypothesis}
Question: Given the premise, is the hypothesis correct?
Answer:

Box 1: Prompt used to evaluate instruction-finetuned LLMs for entailment verification.

2.3 EVALUATION METRIC

We use the macro-F1 score as the primary evaluation metric for comparing LLMs on the entailment
verification task because there are label imbalances in our evaluation datasets. The macro-F1 score
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computes the unweighted mean of F1 scores for each class, ensuring equal importance for each class
irrespective of the label statistics. Please refer to Appendix C for more discussions on the label
imbalance of each dataset.

2.4 HUMAN VS. LLMS
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Figure 2: Analysis of the different reasoning types
involved in entailment verification. [Top] Distribution
of the reasoning types aggregated across four datasets:
ANLI, CosQA, SIQA, and Entailer. [Bottom] Perfor-
mance comparisons between humans and GPT-4. Take-
away: GPT-4 is better than humans at instances requir-
ing complex reasoning, while humans are more con-
sistent in simpler deductive reasoning tasks. Refer to
Section 2.5 for more details.

First, we randomly sample 100 instances for
each dataset (i.e., 1000 instances in total) and
conduct a human evaluation on this subset to
estimate average human performance. Please
refer to Appendix E.1 for more details on the
annotation procedure. Additionally, we eval-
uate the above LLMs on this sampled subset
and report those numbers for fair comparisons
with humans. Table 3 shows the overall evalu-
ation results. Among LLMs, we observe that
instruction-finetuned LLMs are stronger than
task-finetuned models that are trained on some
selected datasets. This shows that using a spe-
cific dataset for fine-tuning does not necessarily
improve the general inference abilities of LLMs.
On comparisons between humans and LLMs,
we find that humans beat all the baseline LLMs,
except GPT-4. This shows that existing open-
sourced LLMs are not at par with humans on
this task. Additionally, although humans and
GPT-4 perform comparably on average, there
are large misalignments in different individual
datasets. Specifically, we observe that ANLI,
CosQA, SIQA, and Entailer are the four datasets
with > 0.1 absolute macro-F1 difference. Next, we perform more analysis on these four datasets to
better understand these misalignments.

2.5 REASONING TYPE ANALYSIS

We design a new analysis to further understand the reasons behind such misalignment between
models and humans. First, we categorize the type of reasoning required to predict an entailment into
the following four categories:

• Simple Deductive (R1): In this type, the premise contains sentences that can be minimally
combined in one step to predict the support for the hypothesis. This type typically tests skills such
as substitution, negation, synonyms, etc.

• Complex Deductive (R2): In this, more than one step of reasoning using information from the
premise is required to solve the task. Typically, this type tests skills like mathematical reasoning,
using multiple information in context to arrive at a conclusion, etc.

• Missing Entity-grounded/Commonsense Knowledge (R3): This is a case where some essential
commonsense or entity-grounded knowledge is missing in the premise. Such information can be
implicitly invoked by humans and the model’s parametric knowledge obtained from pretraining.

• Missing Localized Knowledge (R4): In this, information very specific to the context of the
premise is missing. Typically, this is information about the subjects in the context and is not
grounded to any entities that can be known via the internet. It is practically impossible for humans
or the model to infer such missing information.

Please refer to Appendix E.3 for examples of each reasoning type. We note that these categories
are mutually exclusive1. Given this categorization, we first annotate the reasoning type of the 100
previously sampled instances for each dataset with absolute macro-F1 difference > 0.1. We make

1Deductive reasoning implies that the premise has all the necessary information. Thus, any missing knowledge
instance falls under inductive reasoning.

5



Under review as a conference paper at ICLR 2024

Model NLI Contextual QA Rationale Avg Seen
Avg

Unseen
Avg

WaNLI FEVER ANLI† CosQA SIQA DREAM BoolQ RACE† Entailer ECQA†

GPT-4 0.73 0.88 0.86 0.79 0.69 0.92 0.86 0.85 0.86 0.48 0.79 - -
GPT-3.5 0.70 0.83 0.69 0.70 0.67 0.81 0.78 0.69 0.82 0.48 0.72 - -
Flan-T5-xxl 0.63 0.81 0.73 0.59 0.67 0.80 0.85 0.70 0.83 0.50 0.71 - -

Flan-T5-xxl + Class 0.71 0.86 0.79 0.66 0.72 0.88 0.85 0.85 0.85 0.49 0.77 0.71 0.79
Flan-T5-xxl + Rank 0.69 0.85 0.77 0.83 0.74 0.89 0.85 0.85 0.86 0.48 0.78 0.70 0.82

Table 4: Comparison of classification and ranking-based Flan-T5-xxl finetuning with baseline LLMs
on the complete evaluation benchmark. We report the macro-F1 for all datasets. †: Dataset is used in
finetuning and the average is reported in “Seen Avg” column. Other datasets are zero-shot evaluated
and average is reported in “Unseen Avg” column. Takeaways: Ranking objective is better than
classification on contextual QA datasets. Flan-T5-xxl + Rank outperforms Flan-T5-xxl and GPT-3.5,
and performs comparably to GPT-4. Please refer to Section 3.2 for more details.

this choice intending to attribute the largely misaligned datasets (namely, ANLI, CosQA, SIQA, and
Entailer) since some random noise in the annotation and sampling process can potentially also cause
some misalignment. Please refer to Appendix E.2 for more details on the annotation setup. Figure 2
depicts the aggregated results for each reasoning type. The top plot shows the percentage of each
reasoning type among 400 samples, and the bottom plot compares the human and GPT-4 macro-F1
scores. Please refer to Appendix E.4 for a detailed analysis of individual datasets.

The first type in Figure 2 is simple deductive reasoning (∼ 25% data). Here, humans perform
better than GPT-4 by a small margin. Instances that require simple deductive reasoning usually use
substitutions, negations, paraphrasing, etc., to prove entailment (refer to Table 10 for examples). We
find that humans are more robust than GPT-4 in performing such simple deductive reasoning tasks,
which is also observed in prior works Sanyal et al. (2022); Nguyen et al. (2023).

Next, we find that GPT-4 significantly outperforms the human baseline on complex reasoning that
constitutes ∼ 20% data. This type of reasoning usually requires two skills: understanding multiple
relevant information in the premise and combining them for reasoning. There are two potential
reasons for this misalignment. First, compared to humans, GPT-4 is likely a stronger context processor,
especially for long premises, since it has been trained on long-context data sources OpenAI (2023).
Alternatively, another potential confounding factor is that AMT workers are typically incentivized to
quickly finish annotations to maximize earnings. Thus, instances that require multi-step reasoning
can have noisier annotations, potentially underestimating true human performance.

Lastly, we observe that approximately 30% of the data has some missing entity-grounded or com-
monsense information while ∼ 25% of the data has missing localized information. To correctly
predict entailment in such instances, a system should be able to infer some of the missing grounded
knowledge while not hallucinating specific localized information not mentioned in the premise.
We find that both humans and models are comparable across the reasoning types R3 and R4, with
R4 being more challenging. This shows that both models and humans tend to hallucinate missing
localized information.

3 TRAINING LLMS FOR ENTAILMENT VERIFICATION

In Section 2.4, we observed that open-sourced LLMs are lacking in performance compared to humans
and close-sourced models such as GPT-4. Thus, in this section, we propose training strategies to
finetune an open-sourced model that can perform competitively w.r.t. GPT-4. Among the different
LLMs we compared in Table 3, we found that general instruction-finetuned models are better than
task-finetuned models trained on a specific dataset category. Using this insight, we finetune a Flan-
T5-xxl Chung et al. (2022) model using the train splits of datasets from each category, resulting in
using ANLI Nie et al. (2020), RACE Lai et al. (2017), and ECQA Aggarwal et al. (2021). Please
refer to Appendix F.1 for more details on our training dataset selection criteria. We describe two
approaches to finetuning and then discuss our findings.

3.1 FINETUNING FORMULATIONS

This section describes the two fine-tuning formulations explored in this work.
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Q: George wants to warm his 
hands quickly by rubbing them. 
Which skin surface will produce 
the most heat? (A) dry palms. 
(B) wet palms. (C) palms 
covered with oil. (D) palms 
covered with lotion.
A: Dry surfaces will more 
likely cause more friction via 
rubbing than other smoother 
surfaces, hence dry palms will 
produce the most heat. So the 
answer is (D).
...
Q: Cells need nutrients for 
energy. Which system is 
responsible for breaking down 
food to provide cellular 
energy?
(A) digestive (B) excretory (C) 
circulatory (D) respiratory
A:

The digestive system is responsible for breaking 
down food to provide energy to cells. So, the answer 
is (A).

The cells need nutrients for energy. Respiration is 
the system responsible for breaking down food to 
provide cellular energy. So, the answer is (D).

The cells are responsible for breaking down food to 
provide cellular energy. So, the answer is (D).

In the mouth, food is broken down and absorbed into 
the circulatory system. So, the answer is (D).

Food is broken down by digestive system to provide 
cellular energy. So, the answer is (A).

Figure 3: Example of filtering CoT Rationales. It consists of four steps: (1) CoT prompting, (2) Sampling
multiple reasoning paths from the LLMs decoder, (3) Filtering out reasoning paths that don’t support the model’s
prediction, (4) Aggregating the filtered reasoning paths to select the most consistent answer. The figure is
inspired by self-consistency Wang et al. (2023). Please refer to Section 4 for more details.

Classification This is the standard training paradigm where we finetune a Flan-T5-xxl model using
the training data. We follow the same steps as the evaluation setup to create a prompted input using
the prompt format in Box 1 and then define the cross-entropy loss over the “Yes” and “No” token
logits. We refer to this finetuned model as “Flan-T5-xxl + Class”.

Ranking In this approach, for a given premise and hypothesis pair (p, h), we define a weaker
hypothesis h′ as a statement such that the premise p supports h more strongly than h′. Then, for
a given triple (p, h, h′), we formulate the ranking task as predicting the hypothesis that is more
supported by the premise. Given the triplet (p, h, h′), we define the margin ranking loss as follows:

Lranking = max{0, s(p, h)− s(p, h′) +m}, (2)

where s(p, h) is the entailment score as defined in Equation 1. The key advantage of this formulation
over the classification is that ranking, by design, learns a softer decision boundary between the two
labels. This can lead to better generalization, especially for contextual QA datasets. Sometimes,
the wrong choice can be relatively less favorable w.r.t. to the best option in QA instead of being
absolutely incorrect. Training to hard-classify the hypothesis for such options can be avoided by
ranking them with the best hypothesis (corresponding to the right choice), thus learning a softer
classification boundary. We refer to the finetuned model using the ranking objective as “Flan-T5-xxl
+ Rank”. Please refer to Appendix F.2 for more details on the training data collection process for
ranking.

3.2 FINDINGS

Table 4 shows the evaluation results on the complete evaluation set (i.e., we use all the data points
instead of 100 samples per dataset, which was used in Table 3). For our models, we separately
average the results for the datasets already seen in training (namely, ANLI, RACE, and ECQA) and
unseen during training into two columns, seen and unseen, respectively. First, we observe that all our
finetuned models are consistently better across nine out of ten datasets than the baseline Flan-T5-xxl.
Finetuning improves 0.07 macro-F1 on average over Flan-T5-xxl. This shows that finetuning is
overall beneficial in training the model on the task of entailment verification.

Next, we observe that compared to classification, the ranking formulation is beneficial for the
contextual QA datasets CosQA, SIQA, and DREAM. This demonstrates that the ranking objective
improves contextual QA datasets’ generalization, which is expected. Additionally, our ranking
model outperforms GPT-3.5 and performs comparably to GPT-4, with stronger performance on
contextual QA datasets and weaker performance on NLI datasets. Thus, Flan-T5-xxl + Rank is a
strong open-sourced model for entailment verification and can be used as an alternative to GPT-4.
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4 APPLICATION: FILTERING COT RATIONALES

Recently, Wang et al. (2023) proposed self-consistency (SC), a decoding technique to improve over
chain-of-though (CoT) reasoning Wei et al. (2022) in LLMs, whereby multiple CoT rationales are
sampled for a given input instance and a majority voting overall predicted labels is considered as
the final prediction. But generative LLMs can potentially output rationales that are inconsistent
Ye & Durrett (2022), i.e., the rationale does not support the corresponding model prediction. Such
inconsistency can, in turn, degrade the overall self-consistency results. This motivates an important
application of entailment verification systems in this paradigm. Please refer to Appendix G.1 for
examples of consistent and inconsistent CoTs.

Approach As shown in Figure 3, we can use a verifier as an intermediate filtering step to filter out
the inconsistent rationales before computing the majority vote. For this, we define the generated
CoT rationale as the premise and use the QA-to-statement model Chen et al. (2021) as defined in
Section 2.1 to convert the question and model’s prediction into a hypothesis. Next, we calculate the
entailment score of all the premise-hypothesis pairs using a verifier (Equation 1). Finally, we select
the top-k rationales for majority voting, discarding the rest. We set k = 10 for all our experiments.
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Figure 4: Comparisons between self-consistency (SC)
and Filtering + SC. We report the accuracy metric aver-
aged across three MCQ datasets for four different LLMs.
Takeaway: Filtering consistently improves performance
over SC baseline, with more gains for weaker base mod-
els such as UL2. Please refer to Section 4 for more
details.

Findings In figure 4, we compare the vanilla
SC with the filtering+SC approach described
above. Following Wang et al. (2023), we com-
pute the average performance of these meth-
ods across three MCQ datasets for four differ-
ent base CoT models (UL2 Tay et al. (2023),
Codex-001 Brown et al. (2020), LaMDA-137B
Thoppilan et al. (2022), and ChatGPT OpenAI
(2022)). Please refer to Appendix G for de-
tails on the datasets and more comparisons with
Flan-T5-xxl. We observe that filtering leads to
a consistent performance gain over SC across
all CoT base models. This demonstrates the
advantage of the filtering approach. Next, we
find that the improvements are more prominent
for weaker base models such as UL2 than the
stronger ones (ChatGPT). For instance, filter-
ing UL2 generated-rationales can even achieve
comparable performance with vanilla SC over
LaMDA-137B. In comparison, the gains for fil-
tering ChatGPT CoTs are ∼ 1.5 %. This shows that weaker models are prone to generating inconsis-
tent CoTs and thus benefit more from this approach. But at the same time, even stronger models such
as ChatGPT can still benefit from consistency checks. Please refer to Appendix G.1 for examples of
filtered CoT rationales.

5 RELATED WORKS

Natural Language Inference NLI Dagan et al. (2006); Manning & MacCartney (2009) is one of
the core NLP problems in which the relationship between a premise and hypothesis is classified as
either entailment, contradiction, or neutral. Prior works have mainly trained LLMs and evaluated
them on standard NLI datasets Bowman et al. (2015); Williams et al. (2018); Wang et al. (2019);
Nie et al. (2020; 2019); Liu et al. (2022). Another line of work Mishra et al. (2020); Chen et al.
(2021) has used question-answer-to-NLI conversion Demszky et al. (2018) to transform QA datasets
into NLI format and solve them. In fact verification literature Bekoulis et al. (2021); Thorne et al.
(2018), retrieved pieces of evidence have been used to verify the claim using an entailment verifier
Nie et al. (2019); Guan et al. (2023). Recently, NLI models have been used to verify the entailment
of model-generated explanations Tafjord et al. (2022); Jung et al. (2022); Mitchell et al. (2022). In
this work, we curate a diverse NLI benchmark for evaluating LLMs and humans by using datasets
from all the above NLI applications.
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Reasoning in LLMs With the advent of strong, general-purpose LLMs Brown et al. (2020); Chung
et al. (2022); OpenAI (2023), many prompting strategies have been proposed to generate a natural
language reasoning along with the model’s prediction Wei et al. (2022); Zhou et al. (2023); Yao et al.
(2023); Huang & Chang (2023). Recently, Ye & Durrett (2022) have found that such generations can
sometimes be unreliable due to non-factual and inconsistent reasoning, while Huang et al. (2023)
have argued that LLMs struggle to self-correct such issues without external feedback.

Prior works have addressed this limitation by oversampling reasoning chains and marginalizing
Wang et al. (2023), using the LLMs itself to recheck their reasoning Madaan et al. (2023); Miao
et al. (2023), leveraging external knowledge source to verify factuality Zhao et al. (2023), using
deterministic solvers to improve faithfulness Lyu et al. (2023), decomposing the reasoning steps
into smaller steps Ling et al. (2023), etc. While the progress is impressive, some of these are either
specialized approaches for math-specific datasets or heavily rely on close-sourced LLMs (GPT-3.5,
GPT-4, etc.) for verification. In contrast, here we focus on natural language datasets and develop a
strong open-sourced LLM that can be easily deployed to check entailment errors in LLM reasoning
chains.

6 CONCLUSION

We studied the entailment verification problem in the context of LLMs. Specifically, we sourced
datasets across three different categories (NLI, contextual QA, and rationales) and analyzed both
human and model performance across these datasets. We found some misalignments between the
two, whereby models are better than humans in complex reasoning and humans are relatively more
consistent on simpler reasoning tasks. We also explored different finetuning objectives to train LLMs
for verification. Our fine-tuned models outperform GPT-3.5 and are at par with GPT-4. Finally, we
demonstrated a practical application of entailment verification in filtering out inconsistent model-
generated rationales while using self-consistency decoding. Overall, we believe our work provides
a meaningful comparison of inference capabilities between human and LLMs, a comprehensive
evaluation benchmark, an open-sourced entailment verification model, and interesting applications of
the task.

LIMITATIONS

Even though our work demonstrates exciting results on entailment verification tasks by finetuning
LLMs, several limitations can be potentially improved. We only tried encoder-decoder-based models
for finetuning. However, other models with different architectures (like decoder-only) can also be
considered. Our strategy to convert a QA pair into a statement using the QA-to-statement converter
model can have errors that can cascade both in the evaluation dataset and our fine-tuned models. For
computing the entailment score in Equation 1, we only considered the probability of “Yes” and “No”
tokens in the entire vocabulary. Other alternative expressions like “YES”/“NO”, “True”/“False”,
etc., can also be considered to make the score more robust. Finally, our training objective outputs
entailment scores instead of directly generating answers. Answer generation as a training objective
can be more robust since it is a stricter objective than our scoring technique.
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Dataset
Statistics

NLI Contextual QA Rationale
WaNLI FEVER ANLI CosQA SIQA DREAM BoolQ RACE Entailer ECQA

Train 102,885 208,346 162,865 77,468 100,212 18,348 18,854 341,412 - 7,598
Dev - 19,998 3,200 8,970 5,859 6,120 6,540 18,944 7,849 1,090
Test 5,000 - 3,200 - - 6,123 - 19,172 - 2,194

Table 5: The number of examples in train/dev/test splits for different datasets. Some datasets do not
have certain splits and those statistics are left blank. For each dataset in our benchmark, we use the
test split, if available, else we use the dev split. Please refer to Appendix A for more details about
each dataset.

A EVALUATION DATASETS

In this section, we describe the datasets used in our evaluation. We mention some important challenges
that make these datasets useful for benchmarking the entailment verification task. Please refer to
Table 5 for these datasets’ train/dev/test statistics.

Natural Language Inference datasets NLI is an obvious choice of data source as it is a more
general case of the entailment verification problem. While converting an NLI dataset for our task, we
merge the neutral and contradict labels to the not support label. We use the following NLI datasets
in our benchmark:

• WaNLI Liu et al. (2022): This is a new NLI dataset built using worker and AI collaboration.
This challenging dataset improves over the existing NLI dataset MultiNLI Williams et al.
(2018). And the test split is used when doing evaluation.

• FEVER Nie et al. (2019): This is a modification of the original FEVER dataset Thorne
et al. (2018) in which the claim is paired with textual evidence from Wikipedia to convert it
into an NLI format dataset. This pairing uses existing state-of-the-art evidence extraction
systems to find relevant evidence for each claim. Premises in this dataset typically contain
multiple sentences, which is one of our focus areas. As the test split is not available, we
report results on dev split for evaluation.

• ANLI Nie et al. (2020): This is a large-scale NLI dataset that was collected using an
adversarial human-and-model-in-the-loop procedure. Like FEVER, this dataset tests factual
knowledge, and the premises typically contain multiple sentences. During evaluation, the
test split is considered.

Contextual QA datasets Next, we consider QA datasets where the task is to answer a question
based on a given context and some options. We use an off-the-shelf QA-to-statement converter
model Chen et al. (2021) to generate a hypothesis statement for each question option pair. Then, the
hypothesis corresponding to the correct choice is marked as “support”, while the rest are marked as
“not support” to create the entailment verification dataset. Overall, we include the following datasets
from this category:

• Cosmos QA (CosQA) Huang et al. (2019): This dataset contains multiple-choice questions
(MCQs) that require an understanding of commonsense-based reading comprehension to
answer a question. The key challenge in this dataset is understanding people’s everyday
narratives described in the context that can have some missing commonsense knowledge
that needs to be inferred implicitly. Since the test split is missing, we evaluate models on
dev split instead.

• SocialIQA (SIQA) Sap et al. (2019): Similar to CosQA, this is another MCQ benchmark for
commonsense reasoning about social situations that probes emotional and social intelligence
in a variety of everyday situations. This dataset has more nuanced commonsense knowledge
requirements, which makes it a challenging dataset for our task. Similarly, results on dev
split are reported given test is missing.

• DREAM Sun et al. (2019): This is a dialogue-based reading comprehension MCQ dataset
that focuses on multi-turn dialogue understanding. Here, the unique challenge is inferring
the events discussed across long, multi-turn dialogues. During evaluation, we use the test
split as it is available.
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• BoolQ Clark et al. (2019): This is a True/False QA dataset consisting of aggregated
queries to the Google search engine. Questions in this dataset require complex and difficult
entailment-like inference to solve, making it a good set for evaluation. The test split is
lacking for this dataset and we can only report results on dev split.

• RACE Lai et al. (2017): The reading comprehension dataset from examinations (RACE)
is one of the most popular machine reading comprehension datasets containing questions
from English exams for middle and high school students. These questions are designed by
domain experts for testing specific human reading skills, thus making it a good evaluation
set for our task. We report evaluating results on test split for this dataset.

Rationale datasets Lastly, we consider data sources where human-annotated explanations are
available that justify the original hypothesis (or the correct option, in the case of QA datasets). In this
case, we use the rationales as the premise. We use the following datasets:

• Entailer Tafjord et al. (2022): This dataset contains entailment-style statements and corre-
sponding rationales obtained from EntailmentBank dataset Dalvi et al. (2021) and crowd-
sourcing. The dataset mainly contains science domain statements and tests simple deductive
reasoning skills whereby sentences from the premise have to be combined to either support
or refute the hypothesis. The test split is also missing for this dataset and we can only
evaluate on the dev split.

• ECQA Aggarwal et al. (2021): This is a human-annotated explanation dataset for Com-
monsenseQA Talmor et al. (2019). We only use the explanations for the correct choice as
the explanations for the incorrect choices are often trivial. It is a complete dataset and, by
convention, we use the test split for evaluation.

B DETAILS ON LLM EVALUATION

We evaluate two types of LLMs on the task of entailment verification, as categorized below:

B.1 TASK-FINETUNED MODELS

In this category, the models considered are already finetuned for either NLI or the exact entailment
verification task itself. We evaluate two models in this category.

RoBERTa Nie et al. (2020); Liu et al. (2019) This is a strong pre-trained RoBERTa-
Large model with corresponding model card on HuggingFace2 called “ynie/roberta-large-
snli_mnli_fever_anli_R1_R2_R3-nli”. It is a specifically pre-trained RoBERTa-Large for NLI
task and includes the combination of SNLI Bowman et al. (2015), MNLI Williams et al. (2018),
FEVER Nie et al. (2019) and ANLI Nie et al. (2020) datasets as the training data. Hence, this incurs
a potential data leakage problem, as we also test it on FEVER and ANLI. To some extent, it explains
the strong performance of RoBERTa on FEVER and ANLI in Table 3.

The model is used as a classifier in evaluation, and three classes are available. Class 0 corresponds to
“entail”, class 1 corresponds to “neutral” and class 2 means “not entail”. In our experiment setting,
we only regard class 0 as “Yes” label and combine the remaining two classes to be “No” label.

Entailer Tafjord et al. (2022) Entailer is a T5-based model Raffel et al. (2020) trained to answer
hypotheses by building proof trees containing chains of reasoning. It can either generate valid
premises for a given hypothesis or predict a score for a given premise and hypothesis. We evaluate
Entailer-11B (model name “allenai/entailer-11b” on HuggingFace) in our experiments. Similarly,
Entailer dataset Dalvi et al. (2021) is in the training set, making this model very competitive when
evaluating on the same dataset.

We strictly follow the official implementation of the model to acquire class labels.3 The “entail-
ment_verifier” is called to decide if the hypothesis can be implied from the premise. If the answer is
“True”, then the class label will be “Yes”. And vice versa.

2https://huggingface.co/models
3https://github.com/allenai/entailment_bank/blob/main/entailer.md
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Prompt Avg
Premise: {premise}\n Hypothesis: {hypothesis}\n Given the premise, is the hypothesis correct?\n Answer: 0.71
Premise: {premise}\n Hypothesis: {hypothesis}\n Given the premise, is the hypothesis supported?\n Answer: 0.70
Premise: {premise}\n Hypothesis: {hypothesis}\n Based on the premise, is the hypothesis correct?\n Answer: 0.71
Premise: {premise}\n Hypothesis: {hypothesis}\n Does the premise support the hypothesis?\n Answer: 0.69
Given the premise {premise}, is the hypothesis {hypothesis} supported?\n Answer: 0.70
We are given the premise: {premise}. Can we conclude the hypothesis: {hypothesis}?\n Answer: 0.72

Table 6: Comparison of averaged results between different prompt formats used for Flan-T5-xxl
evaluation. Takeaway: Model is robust to variations in the prompt and generating consistent results.
Please refer to Appendix B.2 for more details.

B.2 INSTRUCTION-FINETUNED MODELS

These are the more recent “general-purpose” language models trained on a collection of NLP tasks
described using instructions, leading to generalization abilities to solve unseen tasks described using
new instructions. Following are models included in our evaluation.

Flan-T5-xxl Chung et al. (2022) It is instruction-tuned from T5 Raffel et al. (2020) on 1.8K+ tasks.
We adopt a publicly available version on HuggingFace with model card name “google/flan-t5-xxl”.
Flan-T5-xxl is also exposed to data leakage issues. BoolQ Clark et al. (2019), ECQA Aggarwal et al.
(2021) and ANLI Nie et al. (2020) have appeared in its training data. However, this is not a serious
problem in the finetuning stage because we transform original datasets into entailment verification
format before using them for model finetuning.

We extract labels from the model by focusing on the output probabilities of two words, “Yes” and
“No”. After applying the softmax function to those two probabilities, we finalize the label as the word
with a probability larger than a given threshold.

GPT-3.5 Brown et al. (2020) It is a general-purpose autoregressive decoder-only LMs accessible
via the OpenAI Completions API.4 We utilize “text-davinci-003” in OpenAI’s API for evaluation,
and the label determination procedure is quite similar to the one in Flan-T5-xxl. We monitor the
probability of “Yes” and “No” tokens. After applying the softmax function to them, we select the
token that attains a probability larger than a threshold to be our label.

GPT-4 OpenAI (2023) It is the latest generative model published by OpenAI which is optimized
for creativity and long context inputs. It is accessible via the OpenAI Chat API.5 We adopt plain
“gpt-4” in OpenAI’s API for our experiments. Unlike other models, the output probabilities are not
accessible. Alternatively, we firstly constrain the model to predict “Yes” or “No” only by putting
some instructions into the prompt. Then, we check the output text. In the ideal case, we can directly
use the output text as the label since only “Yes” or “No” is produced. Otherwise, we need to randomly
choose one as the label.

B.2.1 PROMPTS FOR ROBUSTNESS ASSESSMENT

To assess the robustness of the model in section 2.2, we design different prompt formats but hold the
order of premise and hypothesis in the prompt unchanged. Table 6 presents all prompts we tested
with Flan-T5-xxl and their corresponding averaged results across datasets. The results suggest that
the model is insensitive to the variation in the prompt and yields relatively consistent results. This
characteristic is maintained in Flan-T5-xxl + Class and Flan-T5-xxl + Rank as well since they are
generally constructed based on Flan-T5-xxl.

B.2.2 FEW-SHOT EVALUATION

Few-shot is an effective and promising strategy when testing the performance of a model Brown
et al. (2020). We also include this analysis by randomly picking two examples from Entailer as
demonstrations and incorporating them into the prompt. We test Flan-T5-xxl, Flan-T5-xxl + Rank,

4https://platform.openai.com/docs/api-reference/completions
5https://platform.openai.com/docs/api-reference/chat
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Model NLI Contextual QA Rationale Avg
WaNLI FEVER ANLI CosQA SIQA DREAM BoolQ RACE Entailer ECQA

GPT-4 0.73 0.88 0.86 0.79 0.69 0.92 0.86 0.85 0.86 0.48 0.79
GPT-4 + few-shot 0.75 0.87 0.84 0.75 0.62 0.91 0.86 0.81 0.83 0.48 0.77

Flan-T5-xxl 0.63 0.81 0.73 0.59 0.67 0.80 0.85 0.70 0.83 0.50 0.71
Flan-T5-xxl + few-shot 0.67 0.84 0.77 0.66 0.71 0.84 0.84 0.74 0.85 0.49 0.74

Flan-T5-xxl + Rank 0.69 0.85 0.77 0.83 0.74 0.89 0.85 0.85 0.86 0.48 0.78
Flan-T5-xxl + Rank + few-shot 0.69 0.86 0.79 0.77 0.74 0.89 0.84 0.85 0.86 0.48 0.78

Table 7: Comparison of performance between base models and models with few-shot setting. Take-
away: For Flan-T5-xxl, few-shot boosts the performance while it is not beneficial for other two
models. Please refer to Appendix B.2 for more analysis.

and GPT-4 in this setting and represent results in Table 7. The few-shot setting yields promising
improvement for Flan-T5-xxl, substantiating that the few-shot is a beneficial approach to teaching the
prompt to the model. However, it is not as helpful as our finetuning strategies, which give even better
performance. On the other hand, few-shot does not bring significant gains for Flan-T5-xxl + Rank,
suggesting that finetuning has already helped the model have a comprehensive understanding of the
prompt, and extra demonstrations are unnecessary. As for the GPT-4, simply using examples from
Entailer and applying the same prompt for all datasets seem detrimental.

C MAJORITY PREDICTION AND LABEL IMBALANCE

Dataset Majority Prediction
WaNLI 0.39
FEVER 0.40
ANLI 0.40

CosQA 0.41
SIQA 0.40
DREAM 0.40
BoolQ 0.35
RACE 0.43

Entailer 0.43
ECQA 1.00

Table 8: The macro-F1 score of majority la-
bel (most frequent label) prediction for differ-
ent datasets. For reference, the score of a well-
balanced dataset is 0.67. Those figures indicate
that the label imbalance issue exists in datasets we
evaluate. More details are presented in Appendix
C.

In Table 8, we show the performance of an or-
acle model that predicts the most frequent la-
bel in a dataset. For a label-balanced dataset,
the macro-F1 score of such a majority predic-
tion model would be 0.67 (precision 0.5 and
recall 1.0). The datasets in the evaluation set
have some label imbalance, as evidenced by the
lower majority label prediction scores. Since we
convert existing 3-class NLI and multi-choice
QA datasets into our binary classification task
format, it inherently has more not support labels.
We have more support instances for the ratio-
nale datasets since the dataset creators usually
only annotate the rationale for the right choice.
Specifically, the ECQA dataset only has posi-
tive instances, leading to a 1.0 macro-F1 score
for majority prediction (support label). Since
it has all support labels, any model predicting
even a single non support label gets penalized
severely, as is seen in ECQA results. Because
of this label imbalance in the datasets, we re-
port the macro-F1 scores instead of accuracy or
micro-F1.

D RESULTS ON HYPOTHESIS GROUNDEDNESS

We define the groundedness of a hypothesis based on the type of knowledge required to establish its
validity. Using this categorization, we classify the datasets into two categories as follows:

• Knowledge-based: A knowledge-based hypothesis typically contains entity-grounded or
commonsense knowledge. Such a hypothesis is usually well-defined (i.e., the premise is not
required to ground it), and models can potentially leverage their internal knowledge to verify
the entailment without using the premise. The datasets that contain such knowledge-based
hypotheses are FEVER, ANLI, BoolQ, Entailer, and ECQA.

18



Under review as a conference paper at ICLR 2024

• Contextual: A contextual hypothesis requires localized knowledge, i.e., the premise/context
grounds the hypothesis. These hypotheses cannot be verified on their own without using the
premise. Datasets with contextual hypotheses are WaNLI, CosQA, SIQA, DREAM, and
RACE.
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Figure 5: Performance comparisons of LLMs across
two hypothesis categories. We report the average macro-
F1 score for each model. Takeaways: Contextual hy-
potheses are harder than knowledge-based hypotheses.
Scaling model/training benefits the performance of con-
textual cases more than knowledge-based ones. Please
refer to Appendix D for details.

Performance w.r.t. groundedness Figure 5
shows the aggregate performance across the two
hypothesis categories described above. First,
we observe that performance on the knowledge-
based hypotheses is higher on average than con-
textual hypotheses for all models (except GPT-
3.5 and GPT-4, for which they are compara-
ble). This is likely because models can poten-
tially leverage their internal knowledge stored
in the parameters to check the validity of the
knowledge-based hypotheses. Such a scenario
is harder for contextual cases since the hypoth-
esis solely depends on the context and would
require a strong context understanding to pre-
dict the hypothesis entailment.

The models in the plot are arranged with increas-
ing complexity, i.e., along the x-axis, either the
model size or the amount/variety of pretraining
data increases. We observe that the performance
on contextual hypotheses almost consistently
improves with scaling, whereas the trend is not so strong for the knowledge-based case. This shows
that scaling is useful for training LLMs in understanding contexts. However, this does not necessarily
improve LLMs’ knowledge retention or retrieval skills.

E HUMAN ALIGNMENT EXPERIMENTS

We adopted Amazon Mechanical Turk (MTurk) Crowston (2012) for data collection. Two annotation
formats (Figure 7 and Figure 8) were devised for the human evaluation task and reasoning type
analysis task, respectively. During the annotations, each annotator was compensated according to
$15/hour per the U.S. minimum wage.

E.1 HUMAN EVALUATION DETAILS

In each HIT, the annotator was presented with a format exactly like Figure 7, including detailed task
descriptions and label explanations. Annotators were expected to read the premise and claim first,
then determine the supportiveness of the claim based on the premise and choose the corresponding
label. Initially, we only provided three labels — “support”, “irrelevant” and “contradict”. But later,
we realized that annotators could not explicitly identify labels for some ambiguous instances where
the premise only partially supported or contradicted the claim. Hence, we introduced two weak
labels (“partially support” and “partially contradict”) to remedy this issue. When collating results
for analysis, we internally combined “support” and “partially support” to be “support”, and the rest
to be “not support”, aligning to the standard entailment verification (EV) setup. Each instance was
annotated by 3 MTurk annotators, and a majority verdict determined the label. The Fleiss’s kappa
score Fleiss (1971) we got was 0.6, indicating a moderate level of agreement among annotators.

E.2 REASONING TYPE ANNOTATION DETAILS

In every HIT, we used Figure 8 as the reasoning type annotation format. It was an intense job with
two tasks involved. The instructions and label explanations were explicitly stated at the beginning of
the format. For task 1, after reading the premise and the claim, annotators should decide whether the
supportiveness of the claim could be decided by only referring to the information in the premise. If yes,
annotators needed to choose the corresponding difficulty level of reasoning about the supportiveness
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Figure 6: Analysis of different reasoning types involved in entailment verification for each dataset. [Top]
Distribution of the reasoning types for each dataset studied. [Bottom] Macro-F1 performance comparison
between humans and GPT-4. We fade out all bars with distribution percentage ≤ 10% since they are insignificant
to draw meaningful conclusions. Takeaways: Humans are better at simple reasoning (R1) and commonsense
reasoning (R3). GPT-4 is superior at complex reasoning (R2) and entity-grounded reasoning (R3 ANLI). Trends
for R4 are mixed. Please refer to Appendix E.4 for details.

of the claim in task 2. Otherwise, the type of missing information should be decided in task 1,
and task 2 did not apply to these cases. As stated in 2.5, we aggregated answers from two tasks
and categorized them into four types. Both R1 and R2 were types where the premise contained
all necessary information. The difference was that the difficulty level of reasoning for R1 was
Easy while for R2 was Moderate. We combined Missing Entity-grounded Information and Missing
Commonsense Information to be R3. Finally, the Missing Localized Information label corresponded
to R4.

Given that some NLP background knowledge was required to understand task descriptions and label
explanations, we recruited Computer Science graduate students instead of the general public to
finish this MTurk annotation. Similarly, every instance was assigned to 2 students, and the majority
vote determined the label. The Fleiss’s kappa score for this job was 0.62, showing a substantial
inter-annotator agreement.

E.3 REASONING TYPE EXAMPLES

Table 10 incorporates three examples from each reasoning type, providing more insight into those
types.

In the third example of R1, the first sentence in the premise states that “iron oxide” comes from
“oxygen” and “rust”. The second sentence shows those two substances are “gases” at room temperature.
Therefore, combining them will be sufficient to entail the hypothesis.

However, unlike R1, the third example of R2 requires three steps of reasoning that “De Baandert was
a multi-use stadium.”, “It was mostly used for football matches.” and “The stadium was able to hold
22,000 people.”. The hypothesis can be disproved with those steps because “22,000 people” is just
the maximum capacity.
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As for the first example of R3, some missing commonsense information like “it is not wise to give
more money to a person who keeps playing in a detrimental situation.” should be combined with the
premise to disprove the hypothesis.

In the first example of R4, the next movement of “Addison” is the missing information specific to the
context depicted by the premise. The hypothesis can not be directly disproved without that piece of
information.

E.4 REASONING TYPE ANALYSIS

We depict the aggregated results of the reasoning type annotation for each dataset in Figure 6. Here,
the first row shows the frequency of each reasoning type in that dataset, and the corresponding plot in
the second row compares the human and GPT-4 macro-F1 scores. We fade out the columns with data
percentages less than 5% because such low frequency might not lead to conclusive observations.

We note that type R1 is most prominent in Entailer dataset. Here, we observe that humans are
significantly better than models. This shows that humans are usually more consistent with simple
deductive reasoning. Similar findings about consistency in human deductive reasoning skills have
been reported in prior works Sanyal et al. (2022); Nguyen et al. (2023).

Reasoning type R2, which requires more complex reasoning, is dominant in ANLI and CosQA.
For this type, we find that models are superior to humans. Complex reasoning requires two skills:
understanding multiple relevant information in the premise and then using them for reasoning. We
hypothesize that models are stronger context processors than humans because they have been trained
on long-context data OpenAI (2023).

The reasoning type R3 is present in ANLI, CosQA, and SIQA. From Table 1, we know that ANLI
mostly require entity-grounded knowledge, whereas CosQA and SIQA specifically test commonsense
knowledge. Here, we find that humans are stronger than models in commonsense knowledge (CosQA
and SIQA), whereas models are better in ANLI that requires entity-grounded knowledge. This shows
that humans can infer missing social/commonsense knowledge more easily since these are inherently
known to humans. In contrast, models can retrieve the entity-grounded knowledge stored in their
parameters more efficiently.

Lastly, we find that the reasoning type R4, indicating missing localized knowledge, is also prominent
in ANLI, CosQA, and SIQA. Here, we find that the trends are a bit mixed. We find that for SIQA,
humans are better at recognizing missing localized knowledge, but in CosQA, models outperform
humans. This is likely because SIQA typically contains short contexts based on everyday social
situations that are easier for humans to understand. In contrast, CosQA has longer contexts with rarer
situations requiring more complex understanding.

Overall, we conclude that GPT-4 outperforms humans in complex deductive reasoning and situations
involving entity-grounded knowledge, whereas humans are more consistent at simple reasoning and
situations requiring commonsense knowledge.

F FINETUNING LLMS

In this section, we describe more details about the training dataset used for finetuning, our negative
data collection strategy that was used in the ranking formulation, and other finetuning details.

F.1 TRAINING DATASET SELECTION

To train the Flan-T5-xxl model, we create a training dataset using representative datasets from each
category. We pick the ANLI, RACE, and ECQA datasets to represent NLI, contextual QA, and
rationale categories, respectively. We note that the amount of training data is quite low for the
Rationale category. We also include the StrategyQA Geva et al. (2021) dataset in the training set to
alleviate this. Similar to BoolQ, StrategyQA has a Yes/No type of questions and their corresponding
explanations. We convert the question-answer pair into a hypothesis using the QA-to-statement
converter Chen et al. (2021) as described in Section 2.1.
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For a given premise and a valid hypothesis, generate five alternate hypotheses contradicted by
the premise. Try to avoid using the negation words such as “not”, “never”, etc. The output
should be numbered from 1 to 5.
Premise: {premise}
Hypothesis: {hypothesis}

Box 2: Prompt format for generating alternate negative hypothesis for a given premise-hypothesis
pair. Please refer to Section F.2 for details.

Method CSQA ARC-e ARC-c Average

UL2 + SC 55.77 70.33 49.57 58.56
UL2 + Filter (Flan-T5-xxl) + SC 61.75 75.15 54.94 63.95
UL2 + Filter (Flan-T5-xxl + Rank) + SC 63.06 77.39 58.81 66.42

Codex-001 + SC 54.80 71.70 52.20 59.57
Codex-001 + Filter (Flan-T5-xxl) + SC 62.90 74.20 56.91 64.67
Codex-001 + Filter (Flan-T5-xxl + Rank) + SC 67.16 77.86 60.20 68.41

LaMDA-137B + SC 62.90 78.90 59.90 67.23
LaMDA-137B + Filter (Flan-T5-xxl) + SC 71.33 82.20 64.16 72.56
LaMDA-137B + Filter (Flan-T5-xxl + Rank) + SC 71.74 83.84 68.09 74.56

ChatGPT + SC 78.40 96.30 87.20 87.30
ChatGPT + Filter (Flan-T5-xxl) + SC 81.20 96.40 87.90 88.50
ChatGPT + Filter (Flan-T5-xxl + Rank) + SC 81.00 96.50 88.70 88.73

Table 9: Comparison of Chain-of-Thought filtering performance. We consider four self-consistency
baselines. For each baseline, we experiment with both Flan-T5-xxl and Flan-T5-xxl + Rank to filter
out inconsistent rationals. Takeaway: Our fintuning strategy brings notable improvements when
compared to both baseline and Flan-T5-xxl filtering model. For more details and analysis, please
check Appendix G.

F.2 NEGATIVE DATA COLLECTION FOR RANKING

In the ranking formulation, for a given premise and hypothesis pair (p, h), we need to find some
weaker hypothesis h′ to use the ranking loss defined by Equation 2. We collect such weaker
hypotheses in two ways and then combine them to form the training data. The two techniques are
described below:

• Using incorrect options: The contextual QA category has naturally occurring negative data.
For a given question and choices, we pair the hypothesis corresponding to the correct option
with all other hypotheses corresponding to the wrong options to create the ranked data.

• GPT-3.5 prompting: The other way we generate negative data is by prompting GPT-3.5.
Specifically, we use the prompt format shown in Box 2 to generate alternate hypotheses
contradicted by the original premise. We only select premise and hypothesis pairs that
originally have support label. GPT-3.5 generated hypotheses are then considered negative
samples and paired with the original hypothesis. We repeat this for all the training datasets
(ANLI, RACE, ECQA, and StrategyQA).

F.3 HYPERPARAMETERS AND OTHER DETAILS

During training, we select the learning rate from the set {7e−5, 1e−4, 2e−4}, per GPU batch size
from the set 6, 8, margin m in Equation 2 from the set {0.2, 0.3, 0.5}, and warmup ratio 0.1. The
model is trained for 1400 steps on a cluster of 8 A6000 GPUs. We evaluate the model every 200 steps
and save the checkpoint if the model shows improvements on a held-out development set.

G CHAIN-OF-THOUGHT FILTERING

We study three variants of CoT Filtering as mentioned below:

• B + SC: This is the self-consistency baseline. Here, B is the base model used to sample
CoTs. We sample 40 CoTs for each instance before computing the majority predicted label.
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• B + Flan-T5-xxl + SC: In this, we use a pre-trained Flan-T5-xxl for filtering out the incon-
sistent rationales before the majority voting. We keep the top-10 rationales after scoring
them using Flan-T5-xxl.

• B + Flan-T5-xxl + Rank + SC: This is the same as above, but instead, we use our ranking-
finetuned Flan-T5-xxl model for filtering.

Following Wang et al. (2023), we use four different base CoT model: UL2 Tay et al. (2023), Codex-
001 Brown et al. (2020), LaMDA-137B Thoppilan et al. (2022), and ChatGPT OpenAI (2022).
Further, we compute the CoTs and analyze the performance of the above methods for three multi-
choice QA datasets, namely, CommonsenseQA Talmor et al. (2019) and AI2 Reasoning Challenge
Clark et al. (2018) (easy (ARC-e) and challenge (ARC-c) variants). Please refer to Wang et al. (2023);
Wei et al. (2022) and the associated code6 for details on the CoT prompt formats. The results are
shown in Table 9. We note a consistent improvement between the three variants, with Flan-T5-xxl
+ Rank model performing the best. This demonstrates the advantage of our entailment finetuning
approach. Please refer to Section 4 for more findings.

G.1 FILTERING EXAMPLES

Table 11 presents three CoT reasoning examples, each including two outputs that are kept and three
that are filtered out by ranking. According to the table, outputs supported by strong rationales are
ranked highly and kept. On the other hand, if the rationale is irrelevant to the prediction (like rationale
3 in example 1), the rationale itself is incomplete (like rationale 5 in example 1), or the rationale
supports another option rather than the prediction (like rationale 4 in the example 1), then such output
will have a low entailment score leading to a lower ranking and getting filtered out.

6https://openreview.net/attachment?id=1PL1NIMMrw&name=supplementary_material
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Instructions

Thanks for participating in this HIT!

You will read a claim and an premise which may or may not support the claim.

The task asks you to determine the relationship between theClaim and the Premise. Below are some important

definitions. Please read the label descriptions and choose accordingly.

A couple of notes:

You may disagree with the correctness/factuality of the Claim or the Premise. Please assume they are

correct and focus only on the relation between them.

The premise usually contains multiple sentences some of which might be redundant. Please ignore the

redundant sentences when judging the relation between the Premise and the Claim, i.e., it's okay to have

reduntant sentences in the premise as long as the claim is supported by the premise.

Premise A few sentences describing some knowledge behind the topic of the claim.

Claim A simple sentence describing an event, situation, fact, etc., that essentially makes a

claim.

Support Premise supports the claim basically means the premise provides all necessary

information to explain why the claim is valid.

Partial Support Premise partially supports the claim if the premise provides some information to

explain why the claim is valid, but its missing some more information that may be

required to confidently say its a valid claim.

Irrelevant/Out-of-topic These are cases where the premise is not related/relevant to the claim or contains

redundant information that is totally not helpful. Note that if the premise supports the

claim but still contains redundant sentences, this label should not be selected.

Partial Contradict Premise partially contradicts the claim if the premise indicates why a part of the

claim might be wrong, but more information is needed to be confident about it. This

might occur very rarely.

Contradict Premise contradicts the claim if the information provided in the premise proves the

opposite of what is claimed in the claim.

Example

Example #1:

Premise: A fried egg is a cooked dish made from one or more eggs which are removed from their

shells and placed into a pan, usually without breaking the yolk, and fried with minimal

accompaniment. Fried eggs are traditionally eaten for breakfast in many countries but may also

be served at other times of the day.

Claim: A fried egg has a runny yolk.

Task: Does the Premise support the Claim?

Justification: The premise just mentions that the yolk is not broken, but mentions nothing about it being runny or

not.

[Examples 2 and 3 ommited here for brevity] 

Yes, the Premise fully supports the Claim.

 Yes, but the Premise only partially supports  the Claim.

No, the Premise only contains irrelevant information/out-of-topic sentences or is not well-formed.

 No, the Premise partially contradicts  the Claim.

No, the Premise fully contradicts the Claim.

Figure 7: Human Evaluation Format. We use this format to evaluate human performance on the Entailment
Verification (EV) task. Please refer to Appendix E.1 for more details about the annotation procedure.
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Instructions

Thanks for participating in this HIT!

You will read a claim and an premise. The claim will either be supported or not supported by the premise. Your task is to
determine if any information is missing in the premise when determining the supportiveness of the claim and how easy it is to
conclude the supportiveness of the claim from the given premise.

Task1 asks you to determine if thePremise presents all necessary information to reason about the
supportiveness of the Claim. If some information is missing, below are three possible types of missing
information considered. Please understand the distinction between each and label accordingly.

Task2 asks you to determine how easy it is to reason about the supportiveness of the Claim using just the
information present in the Premise if all necessary information is presented in the Premise. Please read the label
descriptions and choose accordingly.

A couple of notes:

You may disagree with the correctness/factuality of the Claim or the Premise. Please assume they are
correct and focus only on the relationship and reasoning between them.

The premise usually contains multiple sentences some of which might be redundant. Please ignore the
redundant sentences when judging the relation between the Premise and the Claim, i.e., it's okay to have
reduntant sentences in the premise as long as the claim is supported by the premise.

Premise A few sentences describing some knowledge behind the topic of the claim.
Claim A simple sentence describing an event, situation, fact, etc., that essentially makes a

claim.

Missing Entity-
grounded Information

Some information is missing in the premise. Those information is likely to be found
on WikiPedia and general internet.

Missing
Commonsense
Information

Some information is missing in the premise. Those information is implicitly
understood amongst humans, unlikely to be documented on the web.

Missing Localized
Information

Some information is missing in the premise. Those information is about specific
person/event/item in the context.

Easy The reasoning is easy if minimally combining/substituting sentence in premise or
combining sentences in premise along with some english word knowledge of
negations, synonyms, antonyms, etc. will prove/disprove the claim.

Moderate The reasoning is moderate if the premise contains all information needed to
prove/disprove the claim but multiple reasoning steps are needed.

N/A There is some information missing in the premise and this question is not
applicable to that instance.

Example

Example #1:

Premise: Inheriting is when an inherited characteristic is passed from parent to offspring by genetics /
DNA. Inherited characteristics are the opposite of learned characteristics.
Claim: Learned characteristics are not inherited from parents.

Task 1: Does the Premise contain all information needed to convincingly support/refute Claim?

Justification: The premise clearly states that the inherited characteristics are from parents and clarifies the
relationship between inherited characteristic and learned characteristic. Those information is enough to
determine the supportiveness of the claim.

Task 2: If all needed information is contained, then how easy would it be to reason about the
supportiveness of the Claim based on just the Premise?

Easy

(combine/substitute sentences or use word knowledge)

Moderate

(multiple reasoning steps required)

N/A

(not applicable)

Justification: Simply understanding "opposite" in the premise has the similar meaning to "not" will be enough to
prove the claim.

[Examples 2 and 3 ommited here for brevity] 

 Yes

No, missing some entity-grounded information

 No, missing some commonsense information

No, missing some localized information

Figure 8: Reasoning Type Annotation Format. This format collects the reasoning type of sampled instances
from each dataset. The detailed annotation procedure can be found in Append E.2.
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Type Example Entails Human GPT4

[R1]
Premise: Seoul Train is a 2004 documentary film that deals with the dangerous journeys of
North Korean defectors fleeing through or to China. These journeys are both dangerous and
daring, since if caught, they face forced repatriation, torture, and possible execution.
Hypothesis: Seoul Train was filmed in 2002 to depict the dangerous journey of North Korea.

No

Premise: My family history goes back a long way. My ancestors on my mothers side were a
mix of English and Scandinavian Mormon converts that came to Utah in the 19th century. My
father side is an unknown.
Hypothesis: It might be true that your family history has a short history.

No

Premise: An iron oxide can be made from oxygen and rust. Oxygen and rust are gases at
room temperature.
Hypothesis: An iron oxide can be made from two elements that are gases at room temperature.

Yes

[R2]
Premise: How to make deep fried watermelon. Cut the watermelon in half, down its length.
Then cut each half in half, again cutting down the length. Place the four wedges on a board for
cutting.
Hypothesis: To deep fry a watermelon, it should be cut into 6 pieces.

No

Premise: The freshwater mussels used to live in the place where the mountain range is located.
A freshwater mussel is a kind of water animal that lives in freshwater.
Hypothesis: The mountain range used to be covered by freshwater.

Yes

Premise: De Baandert was a multi-use stadium in Sittard-Geleen, Netherlands. It was used
mostly for football matches and hosted the home matches of Fortuna Sittard. The stadium was
able to hold 22,000 people. It was closed in 1999 when Fortuna Sittard Stadion opened.
Hypothesis: 22,000 people go to football matches at De Baandert.

No

[R3]
Premise: Sasha spent Austin’s money trying to win a prize even when the odds were stacked
against her.
Hypothesis: Austin will want to pull out more money next.

No

Premise: George Dayton (born 1827, died 1938) lived in Union Township in what is now
Rutherford, New Jersey, and represented Bergen County in the New Jersey Senate from 1875
to 1877. Dayton moved to Closter, New Jersey, in 1890 and became the clerk of Harrington
Township, New Jersey.
Hypothesis: George Dayton lived in New Jersey his entire life.

No

Premise: We fought aliens on Mars for Mars Bars, which gave us superspeed. We didn’t stop
at Jupiter, coz that would have made us "stupider". Pluto was very chilly, so we ate it. Ahem,
chille that is.
Hypothesis: This person will attempt to make a fun rhyme with the names of the other six
planets.

Yes

[R4]
Premise: Robin put their hand on Addison’s wrist to keep Addison from shaking uncontrol-
lably.
Hypothesis: Addison will want to do good next.

No

Premise: Terry Pratchett’s Going Postal is a two-part television film adaptation of "Going
Postal" by Terry Pratchett, adapted by Richard Kurti and Bev Doyle and produced by The
Mob, which was first broadcast on Sky1, and in high definition on Sky1 HD, at the end of May
2010.
Hypothesis: Terry Pratchett’s Going Postal adaptation for television is faithful to the original
novel.

No

Premise: Co-producing the film is Happy Madison, the company owned by Sandler, who has
been a compatriot of Schneider’s since they met early in their careers, as mutually struggling
stand-up comedians in Los Angeles.
Hypothesis: Comedians in Los Angeles struggle.

No

Table 10: Comparison between the performance of human and GPT-4 on examples from four
reasoning types. Each example includes the golden label from the dataset and shows if human/GPT-4
make the correct decision. The definition of those reasoning types and detailed analysis can be found
in Section 2.5.
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Question & Options (Rationale, Prediction) Kept

[ARC_easy]
Cells need nutrients for energy. Which
system is responsible for breaking down
food to provide cellular energy?
(A) digestive
(B) excretory
(C) circulatory
(D) respiratory

(Digestive system takes in food, breaks down food, and takes away the
unusable parts of the food using the excretory system., B)

(Circulatory system is responsible for eliminating waste from the body.
Circulatory system is also responsible for breaking down food into
nutrients that the cells can use., C)

(Cellular energy is provided by the chemical breakdown of food., C)

(In the mouth, food is broken down and absorbed into the circulatory
system., D)

(Since the digestive system breaks down food to provide cellular energy.,
B)

[CSQA]
A human wants to submerge himself in
water, what should he use?
(A) whirlpool bath
(B) coffee cup
(C) cup
(D) soft drink
(E) puddle

(The answer should be the thing that will help the human submerge
himself in water. Of the above choices, only whirlpool baths can help
the human submerge himself in water., A)

(The answer should be an item that allows the human to fully submerge
himself. Of the above choices, only a whirlpool bath allows the human
to fully submerge himself., A)

(The answer should be something that can perform the submerging
function. Of the above choices, only the soft drink can float., D)

(The answer must be something that a human would use. Of the above
choices, the only thing a human would use is a soft drink., D)

(The answer must be something that is liquid. Of the above choices, only
a cup of water is liquid., C)

[ARC_challenge]
In pea plants, the trait for round seeds is
dominant over the trait for wrinkled seeds.
If a pure dominant plant with round seeds
is crossed with a plant with wrinkled seeds,
what can be predicted about the offspring
plants?
(A) They will always produce round seeds.
(B) They will only produce wrinkled seeds.
(C) Each offspring plant will have some
round and some wrinkled seeds.
(D) Unless the plant with wrinkled seeds
was pure recessive, no prediction can be
made.

(The offspring plants will only produce round seeds as the round seed
trait is dominant over the wrinkled seed trait., A)

(If plant with round seeds is crossed with plant with wrinkle seeds, the
dominant trait will be passed down to the offspring; so each offspring
plant will have round seeds., A)

(If a pure dominant plant with round seeds is crossed with a plant with
wrinkled seeds, the offspring plant will produce round seeds., C)

(Just like the traits in humans, there is no dominant trait for a particular
characteristic., C)

(The recessive trait is the one that causes the plant to produce round
seeds. So option Unless the plant with wrinkled seeds was pure recessive,
no prediction can be made., D)

Table 11: Filtering examples from three distinct datasets. Each example contains two outputs that are
kept and three outputs that are filtered out in ranking procedure.
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