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Abstract
Understanding the mechanisms behind decisions
taken by large foundation models in sequential
decision making tasks is critical to ensuring that
such systems operate transparently and safely. In
this work, we perform exploratory analysis on
the Video PreTraining (VPT) Minecraft playing
agent, one of the largest open-source vision-based
agents. We aim to illuminate its reasoning mech-
anisms by applying various interpretability tech-
niques. First, we analyze the attention mechanism
while the agent solves its training task—crafting a
diamond pickaxe. The agent pays attention to the
last four frames and several key-frames further
back in its six-second memory. This is a possible
mechanism for maintaining coherence in a task
that takes 3–10 minutes, despite the short memory
span. Secondly, we perform various interventions,
which help us uncover a worrying case of goal
misgeneralization: VPT mistakenly identifies a
villager wearing brown clothes as a tree trunk
when the villager is positioned stationary under
green tree leaves, and punches it to death.1

1. Introduction
Large transformer-based models have achieved significant
success in autoregressively predicting the next token across
various modalities, including language, images, and audio.
Recently, these models have started to be used as agents
in online settings. Given the advancements in large-scale
AI-based agents interacting with real and simulated worlds
(Abi Raad et al., 2024; Figure, 2024), it is crucial to un-
derstand their decision-making processes both in and out
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of distribution. VPT (Baker et al., 2022) is one of the first
large-scale transformer-based agents (250 million parame-
ters). The techniques that have been developed in the field of
mechanistic interpretability have the potential to be useful
for better understanding VPT and other agents like it. We
chose VPT as the model organism for our studies because
it is one of the largest and most capable open-source em-
bodied agentic models that act in a 3D environment. It has
also been used as a backbone for developing other agents
(Lifshitz et al., 2023; Milani et al., 2023). There are more
advanced agents, such as SIMA (Abi Raad et al., 2024);
however, they are not openly available for study.

Mechanistic interpretability. Mechanistic interpretabil-
ity seeks to reverse engineer neural networks into the algo-
rithms that the network weights have implemented through-
out training. The field has focused on circuit-based methods
(Wang et al., 2022; Elhage et al., 2021) and understanding at-
tention heads (McDougall et al., 2023; Olsson et al., 2022b).
However, most of this work has been on large language mod-
els (LLMs), with limited investigation into other modalities.
We propose that applying mechanistic interpretability tech-
niques that have been designed and tested on language to
other modalities is essential, not only to validate the method
but also to establish a foundation for the nuances of the var-
ious new modalities. In addition, VPT has been fine-tuned
with reinforcement learning (RL) and vision interpretability
techniques often do not work for vision-based RL agents
(Hilton et al., 2020).

Mechanistic interpretability on agents. Understanding
the behavior of agentic models mechanistically poses more
challenges than for traditional LLMs for several reasons.
First, isolating an agent’s behavior requires replicating the
environment and the actions leading to that behavior, which
is difficult for agentic models. For instance, Hanna et al.
(2023) identified a circuit in GPT-2 that computes greater
than by prompting the model with sentences like, "The war
lasted from the year 1732 to the year 17" and analyzing its
activations. In contrast, for stochastic agentic models in
dynamic environments, it is challenging to recreate slight
variations of similar situations to assess if the model has
generalized knowledge about a scenario. While LLMs and

1

https://sites.google.com/view/vpt-mi/


Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent

Figure 1: We use various interpretability techniques on the Minecraft playing agent VPT to better understand how it makes
decisions. These include visualizing attention head weights and outputs, feature visualization, saliency maps, ablating
attention head outputs, manipulating the input stream, and others. (Top) a part of a regular episode. (Bottom) an episode
with a "villager-tree". See Video01.

their language outputs are stochastic, LLM interpretability
researchers benefit from being able to carefully craft their
prompts to elicit certain behaviors from the model.

Additionally, computing rollouts for large-scale agentic
models is expensive, and comparing actions across different
rollouts is complex. Comparing action probabilities and an-
alyzing rollouts proved most useful in assessing the effect of
ablations on the overall behavior of VPT. Rewards can some-
times provide a metric to compare the success of rollouts,
but it does not capture the detail needed to understand if an
agent’s behavior has been altered and often can only show
if the agent remains functional. Finally, agentic models are
trained to maximize long-term rewards, adding another layer
of complexity to their decision-making processes compared
to LLMs optimized for next-token prediction.

Our paper makes the following contributions (Figure 1):

• We find clues on how the agent maintains coherence in
a 3–10-minute task with only 6 seconds of memory.

• We show that single attention output ablations only
influence actions when those actions are uncertain.

• We discover a new case of goal misgeneralization in the
wild: when we place a brown villager under tree leaves
and make it stand still, VPT mistakes the "villager-
tree" for a real tree, begins to attack it, and often kills
the villager (see Figure 19, Video12).

Goal misgeneralization is a failure mode where an agent
competently pursues an unintended goal when in a novel
situation (Shah et al., 2022; Di Langosco et al., 2022). This
incident further reinforces our initial motivation of trying to
understand how large-scale agents interact with the world
both in and out of distribution.

2. Related work
Mechanistic interpretability. Most mechanistic inter-
pretability work has focused on reverse engineering circuits
in LLMs (Wang et al., 2022; Lieberum et al., 2023; Conmy
et al., 2023). There has been some limited work on under-
standing transformer-based vision models. For example,
Gandelsman et al. (2024) found that attention heads can
have specialized roles, such as focusing on shapes, colors,
and object counts.

Interpretable reinforcement learning. Reinforcement
learning techniques can sometimes be substantially easier
to interpret depending on what kind of model is used for
the policy and value function. Techniques such as linear
function approximation, decision trees, and tabular methods
often provide clear and understandable representations of
the learned policies and value functions; however, almost
all state-of-the-art RL uses deep RL (Milani et al., 2024;
Glanois et al., 2021; Kenny et al., 2023; Dao et al., 2018).

Recent advancements in interpretable RL include the devel-
opment of frameworks and methodologies that aim to bal-
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ance the performance and transparency of RL models. For
example, the SINDy-RL framework combines sparse dic-
tionary learning with deep reinforcement learning to create
interpretable and capable agents. This approach leverages
the Sparse Identification of Nonlinear Dynamics (SINDy)
method to construct data-driven models that are not only
effective but also offer insight into the underlying decision-
making processes (Zolman et al., 2024).

Hierarchical reinforcement learning is another avenue that
enhances interpretability. This method splits tasks, where
a higher-level controller decides on a sequence of subtasks
while a lower-level controller handles specific actions within
each subtask. This hierarchical structure allows for a more
intuitive understanding of the policy’s behavior by breaking
down complex decisions into simpler, more manageable
parts (Barto & Mahadevan, 2003; Xu & Fekri, 2021).

Additionally, explainable reinforcement learning techniques
focus on post-hoc methods to explain the decisions of black-
box models. These include generating visualizations, using
model-agnostic techniques like LIME (Ribeiro et al., 2016),
Shapley values (Beechey et al., 2023), and developing algo-
rithms that provide explanations for specific actions taken
by the RL agent (Puiutta & Veith, 2020).

3. Background
Environment—MineRL. VPT was trained in MineRL
(Guss et al., 2019), which turns Minecraft into an environ-
ment. Minecraft (Mojang, 2011) is a 3D embodied sandbox
video game known for its blocky graphics and open-world
gameplay. In survival mode, the player’s goal is to gather
resources, craft tools, and build shelters to survive against
monsters. In MineRL, each rollout starts in a new proce-
durally generated world, with the agent acting in it from a
first-person perspective. The observations are the images of
the game view. The action space is the same as what a hu-
man would use—keyboard buttons and mouse. One second
of in-game time is equal to 20 time steps in the environment.
The tasks and rewards can be specified manually. The most
popular task has been obtaining a diamond.

Agent—VPT. VPT is a 250 million parameter model that
was pre-trained using 70,000 hours of pseudo-labeled hu-
man Minecraft play videos and fine-tuned using reinforce-
ment learning for over 230,000 in-game hours (Baker et al.,
2022). The architecture of the network is a combination of
a residual convolutional neural network and a transformer.
The task the agent was fine-tuned on was obtaining a dia-
mond pickaxe—one extra step beyond obtaining diamonds.

VPT’s behavior is very consistent. At the start of an episode,
it goes towards the nearest tree, chops four logs, and pro-
ceeds to craft and mine its way through the subtasks (see

Figure 18). In about 80% of episodes, it gets an iron pickaxe,
the item required to mine diamonds. It gets diamonds 20%
of the time and the diamond pickaxe 2% of the time.

Agent—Steve-1. Steve-1 is a Minecraft agent that extends
the capabilities of VPT by introducing instruction tuning,
enabling it to follow natural language commands (Lifshitz
et al., 2023). It uses a richer dataset of human gameplay
videos with text annotations, improving its understanding
of complex behaviors. This integration of visual and textual
data during training gives it the ability to understand and act
upon natural language instructions. However, it can perform
only short tasks that take several seconds.

Attention mechanism. In transformer models, attention
weights are computed by taking the softmax of the dot prod-
uct of queries (Q) and keys (K), indicating how much focus
each part of the input should receive. Attention outputs are
then obtained by multiplying these weights by the values
(V). This allows the model to weigh the input elements ap-
propriately when generating representations or predictions.
VPT has 4 attention layers with 16 heads in each. We will
use "head 2.3" to refer to layer 2 attention head 3.

4. Attention visualization
We start our analysis by visualizing parts of the transformer
attention mechanism. VPT uses a transformer architecture
with a context length of 128 frames (6.4 in-game seconds).
The agent takes between 3 to 10 minutes to make a diamond
pickaxe from scratch when it succeeds at the task. This
involves a long sequence of subtasks, such as finding and
chopping a tree, crafting different pickaxes, mining stone,
finding and smelting iron, and others. As a comparison,
a proficient human takes on average 20 minutes to solve
this task (Baker et al., 2022). How does VPT "keep the
thread" for so long? That is, how does it know which part of
the long sequential task it is currently solving? We cannot
help but notice the similarity to the famous musician Clive
Wearing, who was struck by an extremely strong form of
amnesia, which left him with about 7 seconds of memory.
Yet he could play long piano pieces (Sacks, 2007).

It could be that a single frame is enough to recognize what
the agent has to do next. For example, if it sees a stone
pickaxe in the hotbar, but no iron pickaxe, it might be look-
ing for iron ore. However, the agent is quite robust to the
items being placed in different slots of the hotbar, or even in
the parts of inventory that are visible only when the inven-
tory menu is open. This would imply a more sophisticated
mechanism, likely using its memory of past frames. Given
these constraints, it is likely that VPT has learned to play
Minecraft in a different way than humans; something that
we expect to be common among many large-scale AI agents.
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Figure 2: (Middle) Visualization of a trajectory up to crafting a stone pickaxe. The leftmost pixel of each frame corresponds
to the time step in the attention plots. (Top) Attention weights of attention head 2.2—note the different pattern above the 3rd
frame. This coincides with the camera moving up. The vertical axis is the 128 attention weights, the horizontal axis is time.
(Bottom) Max attention weights over all attention heads. This shows that most attention is paid to 3–4 past frames and some
key-frames. See Video02 and Video03.

4.1. Attention weights

Visualizing attention weights between tokens in LLMs has
enabled the discovery of many interesting circuits, such as
induction heads (Olsson et al., 2022a). We use a very similar
technique in the sequential decision making domain in our
work. The main difference comes from the short context
window of VPT—it does not have access to frames beyond
the previous 128, while its task takes many thousands.

The top plot in Figure 2 shows how much attention is being
paid to each of the past 128 frames (vertical axis) over the
first 1,000 frames of an episode (horizontal axis) by the
attention head 2 on layer 2 (4 layers, 16 heads each). The
darker the color, the higher the attention weight, with 0%
represented by white and 100% by black. 1,000 frames is
10–20% of an average episode in which the agent obtains a
diamond pickaxe. The frames in the middle show the pro-
gression over that time—from chopping a tree to crafting a
stone pickaxe. The leftmost pixel of each frame corresponds
to that exact moment in time on the above plot. A diagonal
line indicates that a specific frame is being attended to as
the agent continues to interact with the environment.

The bottom part of the top plot shows a short horizontal
line (above the third visualized frame). This indicates that
the attention head is paying attention to the last frame it
saw during the rollout. This coincides perfectly with the
agent looking up to chop the logs above it. This does not
happen when the agent looks down shortly after. We can
also observe how attention head 2.2 operates in two modes:
one of paying attention to some specific frames in the past
and the second of mainly looking at the last frame. Many
other attention heads show the same two-mode pattern (see

Figure 27–Figure 30 in the appendix). The patterns are
consistent between episodes. Also, see Figure 3 for a visu-
alization of attention weights at a single point in time.

To visualize what VPT pays the most attention to more
clearly, we overlaid the attention weight patterns for all 64
attention heads by taking a maximum for each frame and
each memory position (see the bottom plot of Figure 2).
We can see that the past 3–4 frames are always attended to,
indicated by the thick dark line at the bottom; as well as
some key-frames, seen as diagonal lines. We surmise that
the recent frames help describe its immediate past, while
the key-frames allow it to recognize which part of the full
task it is currently doing. Some example key-frames in-
clude: a dirt block that was just destroyed (starting to dig
down?), a cobblestone block that was just destroyed (dug
further down?), and an achievement popup after making a
stone pickaxe (can now mine iron?). These are of course
speculative and require more evidence.

4.2. Attention outputs

In addition to visualizing attention weights (Figure 2), we
can also gain insights by visualizing attention outputs. For
instance, attention head 2.2 again shows a distinct pattern
when the camera is moved up (see Figure 4). We discov-
ered some of the patterns in the attention weight plots after
initially noticing them in the attention output visualizations.

Below we list some of the patterns we found in both the
attention weight and the attention output visualizations:

• Attention head 0.8—looks at the previous frame every
time the inventory menu is open (Figure 27, Figure 24).
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Figure 3: The frame that each attention head is paying the most attention to at a single point in time, right after placing a
crafting table. Brightness indicates the magnitude of the attention. For example, heads 0.9 (1st row, 10th frame) and 1.9 are
looking at the previous frame; heads 2.13, and 3.13 are looking at the current frame (crafting table placed). Other heads are
looking at the inventory menu at different earlier times, some with the recipe book open, and some closed. See Video03.

• Attention head 0.9—looks at the previous frame all the
time, except for each time when the inventory menu
state is changing, when it looks at the current frame
(Figure 27).

• Attention head 1.2—mostly looks at every 4th frame
(Figure 28, Figure 24).

• Attention head 2.2—looks at the current frame when
the agent is looking up (Figure 27).

• Attention head 3.3—shows a distinct pattern when the
agent decides that it needs to open the crafting table
menu (Figure 25).

While visualizations can suggest what certain attention
heads are doing, one of the main goals is to be able to
control the agent’s behavior in a predictable manner, which
we explore in the next section.

5. Interventions and ablations
After visualizing the attention layers and observing the
agent, we wanted to better understand the behavior and
possibly change it by performing various interventions and
ablations. We start with simple behavioral interventions
in which we put the agent in different situations and ob-
serve how it acts. We then show how such observations
are not very informative unless hundreds or even thousands
of episodes are run. After this, we discuss the metrics we
used for further experimentation: visual manipulations and
ablations of the attention parts of the agent network.

5.1. Behavioral interventions

We have performed various behavioral experiments to get
better intuitions about how the agent makes decisions. One
should view these in the spirit of Eugene Linden (Linden,

1999; 2003)—whose books contain many stories of surpris-
ing animal behavior—as anecdotes and not as proof of some
mechanism of behavior.

First, we wanted to see if VPT would be tricked in a decep-
tive situation. We gave the agent an iron pickaxe at the start
of an episode and placed it in front of a tree and a block of
diamond ore (see Figure 22 in the appendix). Mining the
diamond ore gives a 20 times higher reward, but chopping
the tree is what the agent usually does at the start of an
episode. In the first rollout, it chose the tree, while in the
second it chose the diamond ore. What does that say about
how the agent makes decisions?

We then performed an experiment to better understand how
the agent decides that it is time to start making a crafting
table. Does it do it after chopping trees for a while? Or
maybe when seeing the top log of a tree from below? To find
out, we gave it enough logs to make a crafting table at the
start of an episode. The agent ran around for a bit, opened
its inventory, moved the mouse to the logs, picked them
up... then dropped them and moved on to find some trees to
chop. That does help getting back into familiar territory, but
it might not be the smartest behavior. This happened on the
very first try before we started recording. We then tried to
reproduce it for a video and it took over 500 episodes before
it happened again (see Video05). In most of the remaining
episodes, it crafted the logs and proceeded to solve the task.

Finally, we discovered the scenario in which VPT kills a
villager by using the knowledge that vision models often
use spurious features to recognize objects (Izmailov et al.,
2022). This also happens in biological systems, such as the
Australian jewel beetle males mistaking brown beer bottles
for females (Gwynne & Rentz, 1983). First, we tried finding
a natural scenario, such as some villagers standing under
tree leaves in a village, where VPT would attack them. This
happened sometimes, but the villagers would quickly run
away and the agent would lose interest in attacking them.
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Figure 4: All 128 output z-scores of attention head 2.2 over
the first 200 frames of a regular episode. The different
pattern on the right coincides with the agent looking up.
Regular vertical lines in the first half match the attacking
arm looping every 4 frames. These disappear in the second
half. The agent is still attacking, but the arm is replaced by
a smaller object—an oak log it just chopped. See Video04.

Figure 5: Top-down view of trajectories when VPT is pre-
sented with a choice between two villagers standing under
tree leaves, one on the left, one on the right. The identical
scenarios produce different trajectories due to stochastic ac-
tions, including one trajectory where the agent turns around
and goes in the other direction.

We thus forced a villager to stand in one spot by placing
four invisible barrier blocks around it and some tree leaves
and logs above. This also meant the agent could not move
closer to the villager than the barrier blocks allowed. In
this scenario, the agent punches the villager to death, which
takes around 20 punches, in roughly 30% of episodes. This
last example, although contrived, illustrates the necessity of
a better understanding of AI agents, if we are to trust them
in real-world situations.

5.2. Stochastic actions and metrics

In the previous section, we saw how difficult it can be to
interpret agent behavior. Especially when the actions are
stochastic. The agent network outputs action probabilities,
which are then sampled with a default temperature param-
eter of 1. When the agent sees a tree right in front of it, it
is very certain of what it should do—stand still and attack.
The attack probability in this case is often above 99.99%.
However, if we present it with a less certain Y-maze type
scenario of two villagers under leaves an equal distance
away on both sides, it will be less certain. The camera ac-
tion probabilities in such a case could be 40% left, 40%
right, and 20% no change, for example. This means that
each time we roll out the agent in an identical situation, we
can have a different outcome.

To illustrate (see Figure 5), out of roughly 100 rollouts
with the two villagers, roughly half the time the agent went
for the left one, and the other half it went for the right
one. However, there were several cases, where the agent
ignored both villagers and ran past them towards some trees
further away on the left side. Finally, there was a single

trajectory where the agent turned around and went on its
merry way in the opposite direction. This makes it hard
to perform detailed ablation analysis because each ablation
would require hundreds or even thousands of rollouts to
see if there was any behavior change (A single rollout of
VPT takes roughly 15 CPU minutes). Even then, it would
not be enough to look at summary statistics to calculate the
change in behavior—it might be the case that the change
happens only in rare circumstances. Because of this, we
use probability differences and log probability differences
of actions as the main metrics for our ablation experiments.
Both metrics have their strengths and weaknesses, which
are described well by Heimersheim & Nanda (2024).

5.3. Visual manipulation

Many successes of interpretability work in large language
models have been achieved by carefully crafting the prompts
and inspecting the resulting attention patterns. For example,
induction heads have been identified by giving a repeated
random sequence of letters to GPT-2 (Olsson et al., 2022a).
Inspired by this discovery, we gave the agent modified se-
quences of observations and inspected the resulting attention
patterns.

For example, when we repeat the first frame of the episode
1,000 times, the attention head 1.2 still shows the pattern
of paying attention to every fourth frame (see Figure 20 in
the appendix). There was no frame-skip or frame-stack of
four during training, which is often used in other RL agents.
This means that the phenomenon is not purely a reflection
of the observations but reveals something about the agent
itself.
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Figure 6: The change in attack probability after ablating one-by-one every output in each attention head in layer 0 for frame
20 in a regular episode. The highest impact ablations are in attention head 0.9 (bright horizontal line). See Video07.

Another experiment was inspired by the infamous 25th
frame effect, the discredited belief that subliminal messages
could be embedded into a film by inserting them into ev-
ery 25th frame, influencing viewers’ thoughts and behaviors
without their conscious awareness. We showed the inventory
screen for a single frame at the 50th time step of an episode
and left the remaining observations unchanged. This caused
attention head 0.1 (and some others too, but in a less pro-
nounced way) to start focusing mainly on this frame as long
as it could (see Figure 21 in the appendix). Interestingly, the
resulting action probabilities were changed beyond the 128-
frame window of its memory. This is because the hidden
state of the transformer could keep some information from
those distant frames. However, these long-range changes
were minor, on the order of 0.1%.

For a scenario closer to reality, we tried imagining how we
could intervene in the observations of an embodied agent in
the real world instead of Minecraft. One idea was to shine a
laser pointer at the agent’s camera. Thus, we replaced 128
frames with pure red color starting at frame 150. This in
effect wipes the memory of the agent. The attention patterns
did not reveal much; however, the action probabilities did.
Attack probability returned to nearly 100% within a few
frames, but the less certain camera direction probabilities
took much longer to recover. This could be simply because
of the particular point in time we chose for this intervention—
the agent was looking at the tree and did not need its memory
to figure out what it was doing. However, this could also
mean that uncertain actions are easier to influence with
such interventions. We demonstrate more evidence for this
hypothesis in the next subsection.

5.4. Attention ablations

One simple but informative experiment is to run the agent
without access to its memory. We implement this by reset-
ting the transformer’s hidden state to its initial condition at
every time step and letting it observe only the current frame.
It barely manages to run towards a tree and painstakingly
chops a single log (see Video06). It fails to craft altogether.
This shows the importance of memory for VPT even when
a single frame is enough to infer the next action.

In prior work on interpreting VPT, Joseph et al. (2023)
mean-ablate each attention head one-by-one. They find
that ablating attention head 0.9 results in a significant logit
difference for attack versus non-attack actions. Despite the
logit difference, ablating the identified head does not impact
the agent’s performance in terms of task completion.

To see if we can find a more granular way of influencing
agent actions we ran the following experiment. We recorded
a 15-second (300 frames) episode where the agent runs
towards the villager-tree, punches the villager for about 3
seconds, and then looks up to chop the logs instead. We
record the action probabilities for each frame. They stay
constant if we show the same sequence of frames to the
agent again, making the experiment fully reproducible. We
start with the first frame. We take the first of the 128 outputs
of attention head 0 in layer 0 and zero-ablate it, i.e. set the
activation value to zero. We did not notice large differences
between zero and mean ablations, so we chose zero ablations
for simplicity. We record the resulting modified action
probabilities, set the output back to the previous value, and
move to the second output of the same attention head. We do
this for each output in each attention head in each layer for
a total of 128*16*4=8,192 times. We do this for each frame.
This lets us know which outputs have a higher influence on
the resulting agent actions. We visualize the heatmap for the
20th frame for the 16 attention heads in layer 0 in Figure 6.
We can see that the most impactful outputs in layer 0 belong
to head 0.9, which coincides with the findings by Joseph
et al. (2023).

We then compare the maximum ablation impact for each
frame to the unablated action probabilities (see Figure 7).
The only times when we can produce a meaningful impact
using this method is when the agent is uncertain about its
actions. When the probability of attack is near 0% or 100%,
such ablations do nothing. This is not simply the effect
of probability scaling exponentially with the logits—we
observe an almost identical phenomenon if we replace the
probability differences with log probability differences (see
Figure 23 in the appendix). We chose to display raw prob-
abilities for clarity, but there are also good reasons to use
other metrics instead (Heimersheim & Nanda, 2024).
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Figure 7: (Top left) Attack probability over a 300-frame episode where VPT attacks a villager-tree for about 100 frames,
after which it looks up to chop tree logs. (Middle left) Maximum single output ablation impact over the episode—zero
impact when attack probability is certain (either 0% or 100%). (Bottom left) a visualization of the episode. (Right) Same
information as a scatter plot, showing how uncertain attack probabilities coincide with higher ablation impact. See Video07.

The high certainty of the attack action also suggests a poten-
tial fix to the murderous agent problem. Namely, do not let
the agent execute an attack action unless it is highly certain
of it. We performed a preliminary experiment, where we set
the threshold to 99%. The agent stopped randomly attack-
ing the air while running around, it also did not attack the
villager-tree. It carefully, after looking at it for a moment,
chopped a tree, made a wooden pickaxe, and even destroyed
and picked up the crafting table. However, it got stuck try-
ing to dig down through the grass afterward (See Video08).
The fix prevented the worst misbehavior but also made the
agent incapable of solving its task.

6. Discussion and limitations
There is an obvious limitation to our work. We are like a
behavioral biology lab with a single rat. What claims can we
make about any agent other than VPT? In fact, would any
of our analyses transfer beyond the single checkpoint we
analyzed? We briefly experimented with STEVE-1 (Lifshitz
et al., 2023) and easily succeeded in making it chop vil-
lage houses, so this type of behavior might be common (see
Figure 26). However, we know from prior work (Sellam
et al., 2021; Chughtai et al., 2023; D’Amour et al., 2022)
that factors such as the random seed used for weight initial-
ization can have a large influence on how models learn to
solve specific tasks. This is the case even when fine-tuning
models instead of full retraining. It shows up as similar
in-distribution performance but differing behavior in out-
of-distribution situations. Situations such as the villager
standing under some leaves. It is likely that if VPT was

retrained many times with only the random seed used for
weight initialization differing between runs, the resulting
agents could exhibit different behavior when presented with
the villager-tree.

Would that make our analysis useless? The goal of this work
was to show that it is possible to use existing interpretability
techniques to discover insights into the behavior of a com-
plex vision-based agent with a transformer component. It
also provides ideas for how other similar agents might make
decisions—ideas that can be tested.

However, it does raise an additional consideration—if the
internal mechanisms of an agent can change unpredictably
during training, our method of manually applying these
techniques would not scale well. We would then need inter-
pretability techniques that can be easily and automatically
applied after each significant change of a deployed model.

Another limitation of our work is that we considered only
single attention head output ablations. Much success in
mechanistic interpretability of LLMs happened through dis-
covering circuits by ablating the connections between at-
tention heads instead (Wang et al., 2022). We believe this
points to a fruitful future research direction.

7. Conclusion
This study advances our understanding of decision-making
in VPT, a large vision-based reinforcement learning agent.
By applying interpretability techniques, we have provided
clues on how the agent manages complex tasks with limited
memory, focusing on recent and key-frames to maintain
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task coherence. Our findings include a new example of goal
misgeneralization in the wild, where the agent mistakenly
identified a villager as a tree trunk and punched it to death,
pointing to the urgent need for better interpretability and
error correction in AI systems. This research underscores
the critical role of interpretability in ensuring the safety and
transparency of AI models.

Acknowledgements
This work was supported by the UKRI Centre for Doc-
toral Training in Accountable, Responsible and Transpar-
ent AI (ART-AI) [EP/S023437/1], the University of Bath,
the Canada CIFAR AI Chair Program [I.R.], the Canada
Excellence Research Chairs Program [I.R.], NSERC (Dis-
covery Grant: RGPIN-2020-05105; Discovery Accelerator
Supplement: RGPAS-2020-00031; Arthur B. McDonald
Fellowship: 566355-2022) [B.R.], and CIFAR (Canada AI
Chair; Learning in Machine and Brains Fellowship) [B.R.].
This research was enabled in part by Calcul Québec and the
Digital Research Alliance of Canada. We thank Rachael
Bedford, Daniel Beechey, Brandon Houghton, Gabija Juce,
Anssi Kanervisto, and Rohin Shah for helpful comments
and discussions.

Contributions
KJ performed the experiments in sections 4–5 and wrote the
initial drafts of sections 3–7 of the paper. GA performed the
experiments in appendix sections A, and C and wrote the
initial drafts of sections 1–2 and appendix sections A, C. MH
performed the experiments in appendix section B and wrote
the initial draft of the corresponding section. MS, AZ, and
SJ provided the initial code used for ablation experiments
and gave support in using it. SM, MS, AZ, SJ, BR, IR, and
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A. Saliency maps experiments
Although saliency maps are known to have many issues, they do serve as an additional test to validate some of our previous
hypotheses. We implement Gradient (Simonyan et al., 2014) and SmoothGrad (Smilkov et al., 2017) saliency maps. When
applied to VPT, both Gradient, and SmoothGrad pass the sanity checks specified in Adebayo et al. (2018): the model
parameter randomization test and the data randomization test.

The saliency maps of VPT show that when the agent is chopping logs, it focuses on the tree (see Figure 8). From afar,
VPT appears to look more at the foliage of the tree than at the tree trunk itself. When VPT is confronted with the tree vs
villager-tree dilemma, slightly more focus is paid to the real tree than to the villager-tree. The saliency map of the inventory
screen can be seen in Figure 9.

Figure 8: Gradient saliency maps on the tree in between
VPT’s punches. Colors are inverted to make it easier
to see the contrast between the saliency maps and the
gameplay. See Video09.

Figure 9: VPT opens up its inventory and the gradient
saliency maps indicate that it is looking at the first slot in
the hotbar, off-hand slot, and the crafting area. However,
in this rollout, VPT did not have anything in the inven-
tory. VPT normally checks its inventory after attacking
a tree, but in this case, it attacked the villager-tree and
then checked its inventory which was empty.
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B. CNN Feature visualization
B.1. Filter Visualization by Optimization

Our study leverages filter visualization by optimization to elucidate the specific patterns and features that various layers of
the VPT model detect. The goal of this optimization is to generate an image that maximizes the activation of a specific
kernel map. The loss function is the output of that kernel map. In Figure 10, we show the visualizations of the fifth CNN
layer’s filters. These visualizations reveal that filters at this depth in the network capture more complex textures and patterns
compared to initial layers (see Figure 11).

Figure 11 provides filter visualizations for the first CNN layer. These filters detect basic features such as edges, simple
textures, and colors. The simplicity of these features aligns with the layer’s role in capturing foundational visual elements,
which are progressively combined and abstracted in the deeper layers to form more complex representations.

B.2. Receptive Field Attention

Figure 12 shows the receptive field attention of layer 6 mapped onto an input image. This mapping shows how the activations
from this layer correspond to specific regions in the input image, highlighting areas of interest that the model focuses on
during gameplay.

The receptive field R of a convolutional layer refers to the region in the input image that affects a particular feature in the
output. It can be calculated using the kernel size K, the stride S, and the padding P . The basic formula for a single layer is
straightforward:

R = K

For deeper layers, the calculation becomes recursive. Let’s denote:

• RL as the receptive field of layer L

• KL as the kernel size of layer L

• SL as the stride of layer L

• PL as the padding of layer L

The receptive field of a layer L depends on the receptive field of the previous layer RL−1 and can be calculated as:

RL = RL−1 + (KL − 1)×
L∏

i=1

Si

Where
∏L

i=1 Si is the product of all the strides from layer 1 to layer L.

This recursive method allows us to determine the receptive field of any layer in a deep convolutional network by considering
the kernel size, stride, and padding of all preceding layers. The mapping of activations to specific regions in the input image
(like gameplay frames) helps in understanding which parts of the input the model focuses on. For instance, the activations in
a higher layer of the network will correspond to larger regions of the input image, indicating broader, more abstract features
such as objects or actions within the game. In Figure 13, we present heatmaps of the receptive fields associated with the top
500 activations of the sixth layer.

B.3. Kernel Visualization

The kernel visualization for the fifth layer, shown in Figure 14, demonstrates how the model interprets an image containing
a villager and a tree. For this figure, we combined the outputs of multiple kernels and applied PCA to reduce the
dimensionality to three principal components. This allowed us to visualize complex, high-dimensional features in an RGB
format, highlighting how different components contribute to the learned representations. This technique revealed the intricate
patterns learned by the network and how different kernels collaborate to encode features. Interestingly, the visualization
indicates that the model does not distinctly separate the villager from the tree, suggesting a limitation in the model’s ability
to discern boundaries between overlapping objects.
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B.4. Filters Overlay

Figure 15 showcases the overlay of filter activations, providing a comprehensive view of how different filters respond to the
same input image. Here’s how we generate these filter overlays

• Pass an image through the network: the input image is fed through the CNN, and the activations of a specific layer are
recorded.

• Extract filter activations: For the chosen layer, the activations of each filter are extracted. These activations are
essentially the feature maps generated by each filter when applied to the input image.

• Overlay the activations on the input image: Each filter’s activation map is overlaid on top of the input image. This can
be done by upscaling the activation maps to the original image size and blending them with the image using different
visualization techniques like heatmaps or transparency overlays (we used transparency overlays).

This overlay helps understand the cumulative effect of multiple filters working together, contributing to the overall feature
extraction and decision-making process in the VPT model.

B.5. Layer-Specific Activations

The kernel visualization of all 256 kernels for an inventory image in the sixth layer, depicted in Figure 16, emphasizes how
the model processes and prioritizes different parts of the inventory interface. The activations suggest that the model pays
particular attention to areas with high informational content, such as item slots and inventory shapes (filters 15, 35, 39, 142,
143).
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Figure 10: Filter visualization by optimization for the 5th CNN layer of VPT.
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Figure 11: Filter visualization by optimization for the 1st CNN layer of VPT.
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Figure 12: Receptive field attention of layer 6 mapped into an input image.

Figure 13: Receptive fields associated to top 500 activations
of 6th layer. In other words, the receptive field attention of
layer 6 mapped into an input image.

Figure 14: How kernels visualize the image for VPT in the
5th layer, this is the villager-tree input image and lack of
boundary in the image suggests that VPT didn’t highlight
the difference between the villager and tree.
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Figure 15: Filters overlay.
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Figure 16: Kernel visualization for an inventory image of the 6th layer.
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C. Representation engineering
Zou et al. (2023) introduced the idea of running forward passes through a model with a specific concept in mind, then saving
the activations of some layer in the model for both the positive and negative versions of that idea. For example, if we want
VPT to be more likely to attack, we can find a way to add the activations of the positive concept of a tree and subtract the
activations of the negative concept of an empty field. Then, modify the model so that during inference, it adds the positive
version of a concept and subtracts the negative version of that concept from the same layer. The model’s outputs tend to be
steered in the direction of your concept. This technique has been used to steer the behavior of GPT-2 (Zou et al., 2023) and
to control a maze-solving RL agent Mini et al. (2023). We apply this to VPT with some limited success.

We modified the VPT model by targeting the first MLP layer in the first transformer block after the CNN. We added 3x the
first MLP layer’s activations when VPT was in front of a tree, and subtracted 3x the first MLP layer’s activations when VPT
was in a field with no trees, i.e. +3*(tree image - field image) (see Figure 17). The modified VPT kept punching at thin air
even if there were no trees around (see Video10). However, this change caused VPT to lose its ability to achieve goals it was
previously capable of accomplishing.

Conversely, when we changed the sign of the activation engineering, i.e. -3*(tree image - field image), the modified VPT
did not punch a tree that was right in front of it (see Video11).

As found in Turner et al. (2024), the scalar value with which to multiply a layer’s activations before adding/subtracting them
from the model’s forward pass is mostly guess and check. We tried scalar values between 1 and 10, and of these, 3 worked
the best. We also find that this technique breaks if the magnitudes of the scalars multiplying the positive/negative activation
vectors are not equal.

A more fine-grained approach such as Templeton et al. (2024) could potentially be useful in attempting to not "break" the
model when trying to steer it towards certain kinds of actions.

(a) Tree Image (b) Blank Image

Figure 17: These are the images used when attempting to steer VPT towards being more prone to attacking using techniques
of representation engineering. We add 3x the first MLP layer’s activations of the tree image minus 3x the first MLP layer’s
activation when in the field without trees.
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D. Other
Below we show more figures that were not included in the main body due to space constraints.

Figure 18: Sequence of subtasks to get a diamond pickaxe in Minecraft. Figure from Baker et al. (2022).

Figure 19: A "villager-tree". We replaced the trunk of an oak tree with a villager and made it stand in one place by placing
four invisible barrier blocks around it. The agent goes for the villager-tree most of the time, punches it multiple times, and
often kills the villager, which takes around 20 punches. See Video12.
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Figure 20: Attention weights of attention head 1.2. The first frame of the episode is repeated 1000 times. The pattern of
paying attention to every fourth frame is still visible.

Figure 21: Attention weights of attention head 0.1. The 50th frame is replaced by the 316th frame, which shows open
inventory. This attention head pays full attention to the replaced frame for most of the maximum 128-frame duration (2nd
bright diagonal line on the left side).

Figure 22: The agent is given an iron pickaxe and has to choose between mining diamond ore and chopping a tree. The
outcome is random—sometimes it goes for the ore, sometimes for the tree.
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Figure 23: Comparison of measures of probabilities and log probabilities and their differences. The top two plots show
probabilities and max probability differences for ablations. The bottom two plots show the same but in log probabilities and
their max differences for ablations. The only difference is that we can see some log probability ablation impact when the
attack probability is near 0% at the start of the episode.

23



Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent

Figure 24: Attention head 1.2 shows this unique pattern
likely due to paying attention to every 4th frame, which
can be seen in the attention weight plots (Figure 28).

Figure 25: Attention head 3.3 shows a distinct pattern
(the one on the right) while the agent tries to open the
crafting table menu. It starts right after the previous
subtask is finished. The agent switches to the crafting
table on the hotbar, jumps up, places it under itself, and
opens it, after which the pattern stops. This pattern
happens in multiple parts of the episode, whenever the
crafting table menu is needed. See Video13.

Figure 26: When given the command "chop trees" in this situation, Steve-1 runs towards the house and proceeds to spend
several minutes destroying it. See Video14.
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Figure 27: Attention weights of attention heads in layer 0.
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Figure 28: Attention weights of attention heads in layer 1.
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Figure 29: Attention weights of attention heads in layer 2.
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Figure 30: Attention weights of attention heads in layer 3.

28



Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent

E. Videos
A list of videos and their descriptions:

• https://youtu.be/g-jd6OyOcUs (Video01) Teaser.

• https://youtu.be/BeqSthHRyLA (Video02) Head 2.2 attention weights.

• https://youtu.be/3GhhEysmSY4 (Video03) Frames with highest weights at each time step for each attention head.

• https://youtu.be/TbTBWdb6jSo (Video04) Head 2.2 attention outputs.

• https://youtu.be/e5qWNVEtuDA (Video05) VPT drops the four logs it was given at the start.

• https://youtu.be/0-bxLngYO1Y (Video06) VPT with memory removed.

• https://youtu.be/ju-s301cHzI (Video07) Single output ablation impact.

• https://youtu.be/U8NYiudY5n8 (Video08) If attack probability below 99%, don’t attack.

• https://youtu.be/cCRGOTRZQ8U (Video09) Saliency maps.

• https://youtu.be/i4RbOqFDlKc (Video10) Representation engineering. +3*(tree minus empty field).

• https://youtu.be/8NcUdqmCY4k (Video11) Representation engineering. -3*(tree minus empty field).

• https://youtu.be/VVkWWgwKf0M (Video12) MineRL VillagerChop-v0.

• https://youtu.be/uxghPuxh_0I (Video13) Head 3.3 attention outputs.

• https://youtu.be/VQhP3h9nxqo (Video14) STEVE-1 in a village, chopping "trees".
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