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Abstract— The complexity of the real world presents numer-
ous challenges in robotics that must be overcome, such as
handling complex physical interactions, learning novel tasks,
and planning in unknown environments. Recently, large data-
driven algorithms and deep learning models have been adopted
and modified to solve these problems, but with the rise of
these approaches there also arises a need for large amounts
of diverse robotics data to train them on. In this work we
discuss the improvements to our previous dataset, TartanDrive,
that we are currently working on to fulfill these needs in
the context of off-road driving. We address the challenges
of copious data collection in order to provide an expansive
dataset containing several modalities collected in an outdoor
area with approximately 225 acres of diverse terrain. Moreover,
we will provide scripts capable of re-configuring this data
(such as by filtering by location or formatting to fit specific
use-cases/conventions) and release a framework that will allow
others to not only use our data but collect their own in a way
that enables them to use our scripts. By leveraging this dataset,
we hope to facilitate the advancement of robotics and reduce
the barrier to entry that is often associated with data at this
scale.

I. INTRODUCTION

In many robotics applications, systems are required to
perform complicated tasks in diverse environments. It is often
too difficult to hand-tune parameters in traditional algorithms
for these tasks, which is why more recent works tend to
incorporate learned models into their software as submodules
or in an end-to-end manner. Recently, there has been a trend
in exploring how to re-purpose large models developed for
language and vision, such as GPT or CLIP [1,2] for robotics.
These models have been shown to generalize effectively, and
some works have already shown their potential improvement
in certain robotics applications [3–6]. However, their impact
in robotics as a whole is constrained by the data that they are
pre-trained on, which is limited with respect to key robotics
concepts such as multimodality and physical interactions.
By using large amounts of robotics data when initially
training these large models, we can potentially obtain richer
robotics-specific representations that are powerful enough
to handle even more complicated downstream tasks. One
explanation for the lack of progress in this regard is the
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Fig. 1: We present our goals for the next generation of
TartanDrive, including more modalities, better structure and
data pipelines, and a framework for others to process their
own data through our pipelines.

fact that accumulating enough data presents a challenge
in several domains, especially in field robotics applications
such as autonomous off-road driving, where there are tighter
requirements with respect to performance and safety.

There exist very large autonomous driving datasets, but the
largest ones are from urban environments such as cities [7–
10]. These bigger datasets have been feasible partially due to
the resources and infrastructure available to the institutions
that collected them. The additional difficulties present in
collecting off-road data has caused the existing datasets to be
more limited in comparison [11–17]. With a few exceptions,
most have smaller amounts of data due to various constraints.
For example, many focus on tasks that require explicit labels
such as semantic segmentation. With these types of datasets,
even if more data was available, it is difficult to scale them up
due to the barrier of obtaining high-quality labels. The ambi-
guity present in off-road environments has also caused these
datasets to be somewhat inconsistent with respect to each
other [18]. For example, some might focus on distinguishing
between traversable and non-traversable terrain [14], while
others might be more concerned with distinguishing different
object classes such as trees and bushes [12,13]. This makes it
hard to merge datasets without significant engineering effort
[19], and the way they are merged is task- and system-
specific (bushes might get mapped to traversable terrain for
large robots but not for small robots).

We claim that scaling off-road datasets up to the needs of
large models requires a few specific key qualities. Regardless



Fig. 2: The high-level flow of information in our data collection process, with software in red and hardware in blue.

of whether or not the dataset contains manually-labeled
samples, it should provide information that allows models
to be trained in a self-supervised manner. This will help to
alleviate the scaling issues present with hand-labeled data.
It should also be highly accessible, meaning that it should
be useful to as many works as possible, regardless of the
downstream task. Finally, it should be consistent with other
off-road datasets so that domain overlap can be exploited
when present.

Last year, we released a large multimodal off-road driving
dataset, and now we are working on an improved version
that we will release at the end of this summer. Taking
inspiration from highly-organized and accessible examples
in other works [7,9,12,20], we present our current progress
and ideas towards this dataset that fulfills the previously-
mentioned requirements in the following ways:

1) Rather than dedicating effort into manually labeling
existing data, we are adding more modalities, such as
lidar as shown in Fig. 1. We continue to provide other
signals as well, such as teleoperation inputs and GPS,
that have the potential to facilitate self-supervision.

2) We are implementing better infrastructure and
pipelines in order to improve ease-of-use and acces-
sibility. This includes processed forms of the raw data
(e.g. birds-eye-view maps from lidar or stereo camera)
that can be directly used to test non-perception tasks
such as planning. Additionally, we will provide the
capability to re-configure this processed data based on
the needs of the user.

3) We will release a framework for structuring datasets
the same way we do. This will enable others to utilize
our pipelines with their own data and will encourage
consistent data conventions.

II. RELATED WORK

The largest datasets for autonomous driving come from
urban scenarios, where cars are generally driving on roads
and in relatively well-structured environments. For example,
the Waymo Open Dataset [7,8] includes data from urban

vehicles equipped with lidars and cameras in order to provide
100,000 labeled images and 1,200 segments of labeled lidar
data. Nuscenes [9,10] is similar, including labeled lidar and
camera data, but also exposes other information such as
IMU data and vehicle information such as wheel speed and
steering angle. Argoverse provides processed maps alongside
their raw data in order to streamline certain tasks. For
example, one of the maps they incldue allows the user to filter
out ground heigh in order to detect obstacles more efficiently.

There is also a growing number or off-road driving
datasets. Rellis-3D and RUGD [12,13] are two popular
datasets, with RUGD providing over 7,000 annotated images
with 24 object classes, and Rellis-3D containing over 6,000
annotated images and 13,000 labeled LiDAR scans. Rellis-
3D also provides the rosbag files they collected, which
include stereo camera and IMU data as well. Rather than
focus on object segmentation, the CaT: CAVS Traversability
Dataset classifies different types of terrain as traversable or
non-traversable [14], providing different labels for different
types of vehicles such as sedan, pickup truck, and off-road
vehicle. While these works are a good source of training data,
their size isn’t enough to train larger models. Moreover, they
lack the infrastructure that the larger urban driving datasets
provide.

III. THE DATASET

The first version of TartanDrive was designed with dy-
namics modeling in mind. Our new version will have the
same capabilities as before but, thanks to better organization
and additional sensor modalities, it will also be suitable for
a number of other tasks. The overall flow of data is outlined
in Fig. 2.

A. The Platform

As in TartanDrive, we use a Yamaha Viking All-Terrain
Vehicle (ATV) as our data collection platform pictured in
Fig. 3. The previous hardware still exists on the platform,
but we will now also be including lidar information from
three lidar sensors. Two Velodyne VLP-32 lidar sensors are
mounted on top of the front of the ATV, one of them being



Fig. 3: The Yamaha Viking ATV that we use for data col-
lection and testing. Relevant frames include the GPS/INSS
system (A), Velodyne (B), and Multisense (C)

tilted down at an angle as shown in Fig. 3. Before collecting
the full dataset, we will be adjusting the tilt angle of the
Velodyne and also add a Livox Mid-70 to maximize sensor
coverage. We also will provide a 3D pointcloud model of the
car generated using a Faro Focus Scanner so that accurate
measurements between different components of the car can
be taken.

B. Data Collection

The main location for collecting data is the same as
before, as it covers a wide set of terrains such as dirt paths,
grassy hills, and narrow trails surrounded by dense foliage.
Again, the vehicle will be tele-operated by a human during
collection, but each session will now have an associated
metadata file containing information such as:

• Name of driver and robot
• Date/time
• Context (e.g. data collection)
• Weather conditions (e.g. sunny, damp, snow)
• Active sensors and algorithms/modules
• Algorithm parameters

as well as a file containing time-stamped notes taken while
driving. This added structure combined with our post-
processing pipelines will allow the querying of data in several
useful manners (e.g. evaluating a perception algorithm in
dim vs bright conditions). We emphasize that taking time to
populate these metadata files can significantly improve the
utility, especially when it comes to large dataset management
and usage.

C. Raw Data

Our dataset will provide the raw data from a number of
sensors:

1) Pointclouds: Lidar sensors provide an additional data
format that provides useful depth and other geometric cues
that are useful for learning. Moreover, it can serve as a
ground truth to supervise models in other modalities. For
example, in Meng et al., a self-supervised neural network
is trained on camera input to predict features automatically
calculated using lidar information from the same dataset [21].
While their dataset is not included, their work provides a
strong example of how multimodal datasets are important to
facilitate self-supervision in training. To that end, we provide
pointcloud data from two Velodyne VLP-32 lidar sensors, as

well as a Livox Mid-70. We also include extrinsics so that
they can be merged into one cloud.

2) Images: A Carnegie Robotics Multisense S21 provides
image data, specifically monocular RGB, depth, and the
grayscale images from the stereo cameras used to generate
the depth.

3) IMU and Pose: A NovAtel PROPAK-V3-RT2i GNSS
provides an estimate of global pose, and also gives IMU data.
We also have an additional Xsens MTi-30 AHRS IMU, and
we are exploring the possibility of setting up an RTK system
for higher GPS accuracy.

4) Teleoperation: Joystick controls are used to drive the
ATV, and these inputs are recorded in the form of a throttle
and steer angle command.

5) Proprioceptive Information: In addition to the com-
manded steer angle and throttle, we include the actual steer
angle and throttle at each timestep. A Racepak G2X Pro Data
Logger is used to record suspension shock travel and wheel
RPM (for each wheel), as well as brake pedal position.

D. Post-Processed Data

We also provide data in a post-processed form similar to
what we currently use in our own autonomy algorithms:

1) Odometry and Registered Pointcloud: In addition to the
odometry estimate provided by the Novatel GNSS system,
we record an estimate provided by running Super Odometry
[22], which provides pose information at a high accuracy and
rate, both of which are important for tasks like dynamics
modeling. We also use the Super Odometry estimate to
register pointclouds from N timesteps together to form a
global pointcloud. We will also provide a global pointcloud
accumulated across all scans of a given run, similar to what
is provided in [17].

2) Depth Estimation and Semantic Segmentation: We use
the raw stereo images from the MultiSense as input into
TartanVO [23] in order to predict a depth image at each
timestep. We use a pretrained GANav model [24] to provide
a semantic segmentation prediction as well. While both of
these tasks could also be done by the user, by providing it
ourselves we increase the ease-of-use of our dataset.

3) Local Maps: We process the registered pointcloud into
a local birds-eye-view map that is 200x200m at .5m resolu-
tion. For each voxel, we calculate several features/statistics
and represent each as a channel in the map, some of which
are shown in Fig. 4. The local lidar map calculates for each
cell the following features:

1) Min/Max/Mean Height of Points
2) Roughness
3) SVD Features
4) Estimated Ground Height
5) Estimated Ground Slope (X, Y, Magnitude)
6) Semantic Class

This feature map is a convenient representation to take
advantage of both lidar and camera information without end-
users needing to process the raw sensor data themselves.

We also provide the image maps from the original Tar-
tanDrive dataset in the form of height and RGB maps at a



Fig. 4: Some of the feature maps calculated using the
registered pointcloud that we provide.

resolution of .02m extending out 10 meters in front of the
vehicle and 5 meters on either side.

E. Data Pipelines

1) Formatting: All our data is collected as rosbags, and
replaying the rosbags is a convenient way to test real-time
algorithms. However, they are less convenient for training
models offline. Alongside the rosbags, we provide utilities
that convert them into a dataset of trajectories where each
trajectory contains N seconds of all the above modalities
time-synced together and saved in a dictionary. We also will
provide similar utilities that instead convert the data into
other common dataset formats such as KITTI [25].

2) Reconfiguration: We chose the default map parameters
to fit the dimensions and capabilities of our ATV. However,
one goal of this dataset is to aid others in training models
for their own systems that might be physically very different
to ours (e.g. a .5m resolution might not be fine enough for a
smaller and more dexterous vehicle). To that end, we provide
scripts that can regenerate our post-processed data in user-
specified configurations.

3) Utilites: One challenge that arises when working with
large datasets is extracting only the information that is useful
for a given task. We will provide utilities that take advantage
of our metadata system and other signals to easily filter and
group data by various queries. For example, a user would
be able to split the data by time of day, by location, or by
who was driving the ATV. This makes it easy to extract only
the information that is necessary for an experiment, and for
common tasks such as creating a validation test set.

F. Data Framework

Collecting our new dataset with the features and infras-
tructure described above improves the quality of our dataset.
We will release a framework for others to follow so that they
can take advantage of our tools in their datasets as well to
convert their raw inputs into easy-to-use data. Using the same
conventions as that in our dataset will also make it easier to
merge them together (for example in order to create a multi-
robot dataset).

G. Additional Goals

While the majority of the new dataset will come from
the same testing site, we are exploring the possibility of

collecting more data at other locations. While our exist-
ing site has a wide range of terrain, even more diversity
will make our dataset more compelling. The logistics of
transporting our ATV to several other locations is non-
trivial however. Another key advantage of detailing our data
collection process as a framework is that it would make it
easier to collaborate with other groups and accumulate data
that would be to difficult to obtain separately.

We are also exploring the idea of including audio and
language in our dataset. We believe that there is something
to be learned about driving with respect to the words a
driver uses to describe where their goal is and how they
wish to reach it (for example avoiding obstacles that might
be difficult to detect with perception alone). There is also
possible information to be gained from the sounds generated
by the ATV as it drives through different environments, such
as change in engine volume or the sound of wheels driving
across various terrains.

IV. IMPACT

Our current progress with our data has already enabled
us to train two models without human labels that help the
ATV autonomously navigate complex terrain. In Triest et al.,
inverse reinforcement learning is used to predict costmaps
based on the lidar feature maps, using our trajectories as
expert demonstrations [26]. Guaman Castro et al. use a birds-
eye-view representation using the stereo camera images to
predict a costmap that is supervised by a bumpiness cost
based on IMU [27]. Many existing off-road datasets either
don’t contain enough modalities or don’t contain enough data
to enable self-supervised approaches such as these.

Having a large number of different modalities can facilitate
in learning representations and creating benchmarks. As
shown in our previous work with TartanDrive, a model
trained on multiple modalities helps with performance on
tasks related to off-road driving. As shown in the work by
Triest and Guaman Castro, the data that we provide allows
for training models without human labels by relying on other
modalities to obtain supervision. In the past, the lack of
metadata and other information has limited the number of
ways we can take advantage of this data which is why we
now include this information and tools to access it efficiently.

V. CONCLUSION

We present our current work and goals for the next gener-
ation of our TartanDrive multimodal off-road driving dataset,
specifically how better infrastructure and an emphasis on
self-supervision can allow it to scale up to the needs of large
models. We highlight the new hardware and modalities we
are adding, as well as the tools we provide to process them
into easily-manipulable datasets. By setting up a framework
for others to feed their data into, we hope to facilitate the
creation of more task-independent datasets that are unified
enough to be merged together as needed into even bigger
datasets without a loss of quality.
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