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Abstract

Image composition refers to inserting a foreground object
into a background image to obtain a composite image. In this
work, we focus on generating plausible shadows for the in-
serted foreground object to make the composite image more
realistic. To supplement the existing small-scale dataset, we
create a large-scale dataset called RdSOBA with rendering
techniques. Moreover, we design a two-stage network named
DMASNet with decomposed mask prediction and attentive
shadow filling. Specifically, in the first stage, we decompose
shadow mask prediction into box prediction and shape pre-
diction. In the second stage, we attend to reference back-
ground shadow pixels to fill the foreground shadow. Abun-
dant experiments prove that our DMASNet achieves better
visual effects and generalizes well to real composite images.

1 Introduction
Image composition refers to cutting out a foreground ob-
ject and pasting it on another background image to acquire a
composite image, which could benefit plenty of applications
in art, movie, and daily photography (Chen and Kae 2019;
Weng et al. 2020; Zhang et al. 2020c). However, the qual-
ity of composite images could be significantly compromised
by the inconsistency between foreground and background,
including appearance, geometric, and semantic inconsisten-
cies. In recent years, many deep learning models (Lin et al.
2018; van Steenkiste et al. 2020; Azadi et al. 2020) have en-
deavored to tackle different types of inconsistencies in com-
posite images, but only a few works (Hong, Niu, and Zhang
2022) focused on the shadow inconsistency, which is a cru-
cial aspect of appearance inconsistency. In this work, we aim
to cope with the shadow inconsistency, i.e., generating plau-
sible shadow for the foreground object to make the compos-
ite image more realistic.

For the shadow generation task, the used data are exhib-
ited in Figure 1. Given a composite image Ic without fore-
ground shadow, the foreground object mask Mfo, and the
masks of background object-shadow pairs {Mbo,Mbs}, our
goal is generating Îg with foreground shadow. To solve this
problem, SGRNet (Hong, Niu, and Zhang 2022) released the
first synthetic dataset DESOBA for real-world scenes. The
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Figure 1: The example data for shadow generation task. The
left two examples are from our RdSOBA dataset and the
right two examples are from DESOBA dataset (Hong, Niu,
and Zhang 2022). In each example, the background object
(resp., shadow) mask is outlined in green (resp., blue) and
the foreground object (resp., shadow) mask is outlined in
red (resp., yellow).

data in DESOBA can be summarized as tuples of the form
{Ic,Mfo,Mfs,Mbo,Mbs, Ig}. The way to obtain pairs in
DESOBA is as follows. First, they manually remove the
shadows in real images to get shadow-free images. Then,
they replace one foreground shadow region in a real image
(ground-truth image) with the counterpart in its shadow-free
version, yielding a synthetic composite image without fore-
ground shadow. Due to the high cost of manual shadow re-
moval, the scale of DESOBA dataset is very limited (e.g.,
1012 ground-truth images and 3623 tuples). Nevertheless,
deep learning models require abundant training data.

To supplement DESOBA dataset, we create a large-scale
dataset RdSOBA using rendering techniques. We first col-
lect lots of 3D objects and 3D scenes, then place a group of
3D objects in the 3D scene. By using rendering techniques,
we can get the images without object shadows and the im-
ages with object shadows without manual effort. Finally, we
obtain 114,350 ground-truth images and 280,000 tuples. The
details of dataset construction can be found in Section 3. Our
main goal is using both synthetic dataset DESOBA and ren-
dered dataset RdSOBA to train a model, which can generate
foreground shadows for real composite images.

Early shadow generation methods (Zhan et al. 2020; Liu
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et al. 2020) usually produce terrible results. SGRNet (Hong,
Niu, and Zhang 2022) can achieve good metrics on the DES-
OBA test set, but the generated images have unsatisfactory
visual effects and cannot generalize well to real composite
images. Specifically, the generated shadows of SGRNet are
prone to have notable artifacts like undesired holes and iso-
lated fragments. We also find that SGRNet could not signifi-
cantly improve the visual effects on both DESOBA and real
composite images with the help of our RdSOBA dataset.

In this work, as illustrated in Figure 2, we design a two-
stage network called DMASNet with decomposed mask
prediction and attentive shadow filling. In the mask pre-
diction stage, we decompose mask prediction into two sub-
tasks: box prediction and shape prediction. Through this de-
composition, the first (resp., second) sub-task focuses on
predicting the scale/location (resp., shape) of foreground
shadow. We first employ a CNN backbone to extract feature
from the composite image and a set of masks, then use box
head to predict the bounding box of the foreground shadow
and shape head to predict the mask shape within the bound-
ing box. After that, the predicted mask shape is placed in
the predicted bounding box to produce a rough mask. Then,
we concatenate the rough mask with the up-sampled fea-
ture map to produce a refined mask. With this structure, the
predicted bounding box constrains the range of shadow to
suppress isolated fragments and the shape head can generate
more solid shadow by concentrating on learning the shapes
of real shadows.

In the shadow filling stage, with the observation that the
values of foreground shadow pixels are usually close to
partial background shadow pixels, we tend to borrow rele-
vant information from background shadow pixels. Based on
multi-scale features extracted by a CNN encoder, we calcu-
late the similarities between the average feature within fore-
ground shadow region and pixel-wise background shadow
features, resulting in an attention map within background
shadow region. Then, we calculate the weighted average
of background shadow pixels as the target mean value of
foreground shadow pixels. Finally, we scale the pixel values
within foreground shadow region to match the target mean
value. This strategy makes the generated foreground shadow
look compatible with background shadows.

By treating synthetic dataset DESOBA, rendered dataset
RdSOBA, and real composite images as three different do-
mains, we also observe that our DMASNet has excellent
transferability across different domains. With the assistance
of our RdSOBA dataset, our DMASNet can achieve better
visual effects than previous methods on DESOBA test set
and real composite images. To sum up, our main contribu-
tions are as follows,

• We contribute a large-scale rendered dataset RdSOBA
for the shadow generation task.

• We propose a novel network DMASNet with decom-
posed mask prediction and attentive shadow filling.

• Extensive experiments demonstrate that our method
achieves better visual effects and generalizes well to real
composite images.

2 Related Work
2.1 Image Composition
Image composition refers to cutting out a foreground ob-
ject from one image and pasting it on another background
image to get a composite image. The issues that make the
obtained composite images unrealistic can be summarized
as appearance, geometry, and semantic inconsistencies (Niu
et al. 2021). Lots of works are devoted to solving one or
more types of inconsistencies. For instance, object place-
ment methods (Zhang et al. 2020b; Liu et al. 2021; Lee et al.
2018) solved the geometric inconsistency and semantic in-
consistency by adjusting the scale, location, and shape of the
foreground object. To address the appearance inconsistency,
image harmonization methods (Cong et al. 2022; Guo et al.
2021; Ling et al. 2021) adjusted the illumination statistics
of foreground, while image blending methods (Zhang et al.
2021; Zhang, Wen, and Shi 2020; Wu et al. 2019) attempted
to blend the foreground and background seamlessly. In this
work, we target at the missing foreground shadow, which
also belongs to appearance inconsistency.

2.2 Shadow Generation
Although there are lots of works on shadow detection (Ding
et al. 2019; Chen et al. 2020; Wang et al. 2021) and removal
(Zhang et al. 2020a; Le and Samaras 2020; Zhu et al. 2022;
Guo et al. 2023), there are few works on shadow genera-
tion. Existing works on shadow generation can be divided
into two groups according to their adopted technical routes:
rendering based methods and image translation methods.
Rendering based methods: Rendering based methods use
rendering techniques to generate shadow for the foreground
object, during which the 3D information of foreground ob-
ject and background scene are required. With necessary
3D information, some methods (Karsch et al. 2014; Kee,
O’brien, and Farid 2014) obtained the illumination informa-
tion by interacting with users, while other methods (Liao
et al. 2019; Zhang et al. 2019) resorted to traditional algo-
rithms or deep learning networks to predict additional in-
formation for a single image. Obviously, the missing infor-
mation beyond a 2D image is often unavailable and hard to
estimate in the real world, so the rendering based methods
are difficult to use in practice.
Image translation methods: Deep image-to-image trans-
lation methods have become prevalent in recent years.
The translation network translates a composite image with-
out foreground shadow to a target image with foreground
shadow, which can be categorized into unsupervised meth-
ods and supervised methods. Unsupervised methods like
(Zhan et al. 2020) mainly use adversarial learning to gen-
erate realistic shadows which are indistinguishable from
real shadows. Supervised methods have ground-truth images
with foreground shadows as supervision. Zhang, Liang, and
Wang (2019) exploited a local discriminator to finetune the
details and a global discriminator to finetune the global view.
Liu et al. (2020) proposed to locate object-shadow pairs
in the background to help generate the foreground shadow.
Sheng, Zhang, and Benes (2021) predicts the ambient occlu-
sion maps first, then uses a encoder-decoder with the help of
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the light map manually provided by users to generate soft
shadows for the foreground object in simple backgrounds.
Hong, Niu, and Zhang (2022) designed cross-attention be-
tween foreground encoder and background encoder to pre-
dict the mask of foreground shadow, followed by filling the
shadow region using predicted shadow parameters.

In this work, we propose novel decompose mask predic-
tion and attentive shadow filling to achieve better transfer-
ability and better visual effects.

3 Our RdSOBA Dataset
In this section, we will introduce the details of constructing
our RdSOBA dataset.

3.1 Constructing 3D Scenes
We use Unity-3D to construct 3D scenes and render im-
ages. There are abundant freely available 3D models and
3D scenes online. We collect 800 standard 3D objects from
different categories (e.g., people, vehicles, plants, animals)
from CG websites, and 30 representative 3D scenes (e.g.,
schools, streets, grass) from Unity Asset Store and CG web-
sites. The collected 3D objects and 3D scenes cover a wide
range of 3D geometry and object/scene categories, which
lays the foundation for generating diverse rendered images.

For each 3D scene, we select 20 open areas to place 3D
objects, then choose 10 suitable camera settings (e.g., cam-
era position and viewpoint) for each area. After fixing the
camera, we place a group of 3D objects (randomly select 1
to 5 objects from collected 800 objects) in the field of view
of camera. For each camera setting, we place 10 groups of
3D objects. With the camera and objects ready, we choose
5 different illumination conditions (e.g., illumination direc-
tion, intensity) and render a set of 2D images. Therefore, we
can render 30×20×10×10×5 = 300, 000 sets of images.

3.2 Rendering 2D Images
Once we set up an open area, camera settings, 3D object
group, and lighting in a 3D scene, we generate a series of
images. First, we render an image Iempty before placing ob-
jects. After placing a group of K 3D objects, we switch off
the visibility of all objects to the camera and switch on the
visibility of each object one by one. When switching on the
visibility of the k-th object, we can choose whether to render
shadow for this object in Unity-3D. Without the shadow, we
render an image Io,k with the k-th object. With the shadow,
we render an image Ios,k with the k-th object and its shadow.
Based on Iempty and Io,k, we can obtain the k-th object
mask Mo,k by calculating their difference. Similarly, based
on Io,k and Ios,k, we can obtain the k-th shadow mask Ms,k.
At last, we switch on the visibility of all objects and render
an image Ig with the shadows of all objects.

Among K 3D objects, when we choose the k-th object as
the foreground object, we can use Mo,k (resp., Ms,k) as the
foreground object (resp., shadow) mask Mfo (resp., Mfs).
We can merge {Mo,1, . . . ,Mo,k−1,Mo,k+1, . . . ,Mo,K} as
the background object mask Mbo. Similarly, we can get the
background shadow mask Mbs. Then, we calculate Ic by
Ic = Io,k ∗ (1−Mbs −Mbo) + Ig ∗ (Mbs +Mbo), in which

∗ denotes element-wise multiplication. Up to now, we have
obtained data tuples whose form is identical to DESOBA’s.
However, not all the tuples are of high quality because some
shadow masks are incomplete or erroneous. After manually
filtering out low-quality tuples, we have 280,000 tuples left.
We have shown some examples in Figure 1 and more exam-
ples can be found in Supplementary.

Although our dataset construction requires certain manual
efforts, it is still much more efficient than manually remov-
ing the shadows when constructing DESOBA dataset.

4 Our Method
Given an input composite image Ic, the foreground object
mask Mfo, and the masks of background object-shadow
pairs {Mbo,Mbs}, our DMASNet aims at generating Îg with
foreground shadow. We solve this problem with two inde-
pendent stages: mask prediction stage and shadow filling
stage. In the mask prediction stage, we decompose mask
prediction into box prediction and shape prediction. The pre-
dicted mask shape is placed within the predicted bounding
box to form the shadow mask M̂fs, further refined as M̂ ′

fs.
In the shadow filling stage, we predict the target mean value
of foreground shadow pixels by attending to relevant back-
ground shadow pixels. After filling the predicted shadow
mask to match the target mean value, we get the result Îg .

4.1 Decomposed Mask Prediction
In the first stage, our goal is to predict the foreground
shadow mask M̂ ′

fs. We use a CNN encoder Ec to extract
the bottleneck feature map Fe with size 16 × 16 from the
concatenation of {Ic,Mbs,Mbo,Mfo} with size 256× 256.

Based on Fe, we predict the mask shape and bound-
ing box separately, similar to instance segmentation method
Mask-RCNN (He et al. 2017). Unlike instance segmentation
where the instance already exists in the input image, we need
to imagine the shadow’s shape and bounding box, which is
much more challenging than instance segmentation.

Intuitively, by observing background object-shadow pairs,
we can roughly estimate the relative scale and location off-
set of shadow compared with the inserted object. There-
fore, we predict the regression from the bounding box of
foreground object to that of foreground shadow. We use a
quadruplet B = (x, y, w, h) to describe a bounding box,
where (x, y) are the center coordinates of the bounding box
and w (resp., h) is the width (resp., height) of the bounding
box. The bounding box of foreground object is denoted as
Bo = (xo, yo, wo, ho) and the ground-truth bounding box
of foreground shadow is denoted as Bs = (xs, ys, ws, hs).
Then, we use another quadruplet r = (rx, ry, rw, rh) to
characterize the regression from Bo to Bs:

rx = (xs − xo)/wo,
ry = (ys − yo)/ho,
rw = ln(ws/wo),
rh = ln(hs/ho).

(1)

We use box head Hb to predict quadruplet r̂, then calculate
the predicted B̂s by Eqn. 1. The aspect ratio and position
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Figure 2: The architecture of our proposed DMASNet. In the first stage, we employ Ec to extract Fe, based on which the box
head Hb and the shape head Hs jointly predict the rough mask M̂fs. By using the decoder feature from Dt, we refine M̂fs to
get M̂

′

fs. In the second stage, we employ Es to extract Fs, based on which we calculate the attention map A within background
shadow region to get the target mean value for foreground shadow pixels. To match the target mean value, we scale Ic to get
Idark. Finally we use M̂

′

fs to combine Idark with Ic to get the final result Îg .

may change significantly when mapping the object bound-
ing box to the shadow bounding box. To consider the co-
ordinate correlation and enhance the robustness, we employ
CIoU loss (Zheng et al. 2020) to supervise r̂:

Lreg(r̂, r) = CIoU(B̂s, Bs). (2)
For shape prediction, we do not consider position and as-

pect ratio handled in Hb, so we generate shape mask within
a standardized box for each shadow. For images with size
256×256, the mean size of shadow bounding boxes is close
to 32×32, so we use the shape head Hs to predict a mask M̂s

with size 32 × 32. We use ξB(I) to denote the operation of
cropping the bounding box B from image I and resizing it to
32 × 32. Inversely, ξ−1

B (I) denotes the operation of placing
the resized I within the bounding box B and padding zeros
outside the bounding box. In the training phase, the ground-
truth shape mask can be obtained by Ms = ξBs

(Mfs). We
calculate L1 loss between Ms and M̂s:

Lshape(M̂s,Ms) = L1(M̂s,Ms). (3)

After obtaining B̂s and M̂s, we can get a rough shadow
mask by M̂fs = ξ−1

B̂s
(M̂s). M̂fs has roughly correct loca-

tion, scale, and shape, but lacks fine-grained details. To com-
pensate for detailed information, we employ a decoder Dt,
which takes in the bottleneck feature map Fe to produce the
up-sampled feature map Ft. Then, Ft is concatenated with
{M̂fs,Mfo} and passed through several convolutions lay-
ers to yield the refined mask M̂ ′

fs. Again, we use L1 loss to
supervise M̂ ′

fs:

Lmask(M̂
′
fs,Mfs) = L1(M̂

′
fs,Mfs). (4)

4.2 Attentive Shadow Filling

In the second stage, we aim to fill the predicted fore-
ground shadow region. To guarantee that the filled fore-
ground shadow looks compatible with background shadows,
one naive approach is calculating the mean value of back-
ground shadow pixels as the target mean value of foreground
shadow pixels. However, the values of background shadow
pixels vary widely and the provided background shadow
masks are not perfectly accurate. Hence, we attempt to se-
lect reference background shadow pixels by learning differ-
ent weights for different background shadow pixels.

We apply another encoder Es to the concatenation of
{Ic,Mbs,Mbo,Mfo}, and concatenate multi-scale encoder
features as Fs. Then we average the pixel-wise feature vec-
tors within M̂ ′

fs as ffs. Besides, we denote the pixel-wise
feature vector for the i-th background shadow pixel as fbs,i.
After that, we project ffs and fbs,i to a common space
via a fully-connected layer ϕ(·) and calculate their similari-
ties to produce the attention map A = {a1, a2, . . . , aNbs

},
in which Nbs is the number of background shadow pix-

els and ai =
exp(ϕ(ffs)

Tϕ(fbs,i))∑Nbs

i=1
exp(ϕ(ffs)Tϕ(fbs,i))

. Finally, we calcu-

late the weighted average of background shadow pixels as
p̄bs = 1

Nbs

∑Nbs

i=1 aipbs,i, in which pbs,i is the color value of
the i-th background shadow pixel.

Then, we calculate the average of pixel values within the
predicted foreground shadow region M̂ ′

fs as p̄fs. To match
the target mean value p̄bs, we can get the scale p̄bs/p̄fs for
the foreground shadow region. In implementation, we scale
the whole composite image Ic by Idark = p̄bs/p̄fs ∗ Ic and
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Figure 3: Example results of different methods in the setting of DESOBA → DESOBA.

obtain the target image Îg by

Îg = M̂ ′
fs ∗ Idark + (1− M̂ ′

fs) ∗ Ic. (5)
We employ shadow-MSE loss to supervise the shadow

color for the predicted target image:

Lrec(Îg, Ig) = MSE(Îg ∗Mfs, Ig ∗Mfs). (6)
The whole network can be trained in an end-to-end man-

ner, and the overall loss function can be written as
Ltotal = Lreg + Lshape + Lmask + Lrec. (7)

5 Experiments
5.1 Datasets and Implementation Details
Our RdSOBA dataset has 280,000 training tuples. DESOBA
dataset has 2792 training tuples and 580 testing tuples. All
images are resized to 256 × 256. We implement our model
using PyTorch and train our model on 4*RTX 3090 with
batch size being 16. We use the Adam optimizer with the
learning rate being 0.0001 and β set to (0.5,0.999). We train
RENOS for 50 epochs and DESOBA for 1000 epochs with-
out using data augmentation. Further details of our network
can be found in the Supplementary.

5.2 Baselines
Following (Hong, Niu, and Zhang 2022), we pick Pix2Pix
(Isola et al. 2017), Pix2Pix-Res, Mask-ShadowGAN (Hu
et al. 2019), ShadowGAN (Zhang, Liang, and Wang 2019),
ARShadowGAN (Liu et al. 2020), and SGRNet (Hong, Niu,
and Zhang 2022) as baselines. Pix2Pix is a typical image-to-
image translation method. Pix2Pix-Res is a simple variant of
Pix2Pix. Mask-ShadowGAN performs shadow removal and
mask-guided shadow generation simultaneously, in which
the shadow generation network can be adapted to our task.
ShadowGAN, ARShadowGAN, and SGRNet work on the
same task as ours and thus can be directly applied.

Method RMSE↓ S-RMSE↓ PSNR↑ S-PSNR ↑
Pix2Pix 7.659 75.346 31.791 6.785

Pix2Pix-Res 5.961 76.046 35.073 6.678
ShadowGAN 5.985 78.413 35.391 6.337

Mask-SG 8.287 79.212 30.991 6.280
AR-SG 6.481 75.099 33.720 6.790
SGRNet 4.754 61.762 37.126 8.501

DMASNet 5.583 65.847 36.013 8.029

Table 1: Quantitative results of different methods in the set-
ting of DESOBA → DESOBA. S-RMSE (resp., S-PSNR)
means shadow-RMSE (resp., shadow-PSNR).

5.3 Evaluation Metrics
For comprehensive comparison, we adopt three groups of
evaluation metrics.

The first group of metrics are calculated between the
ground-truth and the predicted images. We adopt RMSE
(resp., shadow-RMSE) and PSNR (resp., shadow-PSNR),
that computed on the whole image (resp., ground-truth fore-
ground shadow region). These metrics are valuable, but may
not conform to human perception of visual quality.

The second group of metrics are calculated between the
ground-truth masks and the predicted masks. We adopt bal-
anced error rate (BER) (resp., shadow-BER), which is com-
puted based on the whole image (resp., ground-truth fore-
ground shadow region). We observe that BER is relatively
more consistent with human perception of visual quality.

In the third group, considering that undesired holes and
isolated fragments seriously affect human perception with-
out significantly affecting the abovementioned metrics , we
design two heuristic metrics to measure the quality of pre-
dicted masks. In particular, we calculate the difference be-
tween the original mask and that after filling the holes (resp.,
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Figure 4: Example results of a comprehensive comparison between our DMASNet and SGRNet.

Training-set Method RMSE↓ S-RMSE↓ PSNR↑ S-PSNR ↑ BER↓ S-BER↓ d hole d frag

RdSOBA SGRNet 8.127 66.603 31.025 8.033 39.220 78.137 1.024 30.686
DMASNet 7.119 63.693 33.637 8.347 28.726 57.046 0.362 10.619

DESOBA SGRNet 4.754 61.762 37.126 8.501 26.624 53.407 15.797 100.440
DMASNet 5.583 65.847 36.013 8.029 29.792 59.264 2.218 31.473

RdSOBA+DESOBA SGRNet 4.676 59.855 36.898 8.921 27.233 54.300 5.276 56.995
DMASNet 4.703 55.168 37.149 9.521 24.295 48.336 0.212 11.924

Table 2: Quantitative results of SGRNet and our DMASNet on DESOBA test set using different training sets. S-BER means
shadow-BER. We report d hole and d frag of ground-truth foreground shadow masks (d hole=1.076, d frag=15.657) for refer-
ence.

removing isolated fragments) using the functions in skim-
age.morphology1, which is referred to d hole (resp., d frag).
To judge the quality of predicted masks, we should refer to
the values of d hole and d frag of ground-truth masks.

5.4 Experiments Without Using RdSOBA Dataset
In this section, we only train and evaluate different methods
on DESOBA dataset. We show the qualitative results in in
Figure 3 and report the quantitative results in Table 1. Since
some baselines do not predict the foreground shadow mask,
we only calculate the metrics in the first group.

As shown in Figure 3, only our DMASNet and SGRNet
can generate plausible shadows, while other methods usu-
ally generate terrible shadows. For the quantitative results
in Table 1, although our DMASNet is worse than SGRNet
on these metrics, the quality of generated images by our
DMASNet is comparable with or better than SGRNet. For
example, our DMASNet can generate shadows with more
compact shapes (e.g., row 4) or more proper intensity values
(e.g., row 1). The mismatch between quantitative evaluation

1remove small objects and remove small holes. We set con-
nectivity=2 and area threshold=50

and qualitative evaluation motivates us to include more met-
rics for more comprehensive comparison.

5.5 Experiments Using RdSOBA Dataset
In this section, we only compare with SGRNet because the
performances of other baselines are poor as demonstrated
in Section 5.4. We conduct experiments in three settings: 1)
only using RdSOBA training set; 2) only using DESOBA
training set; 3) using both RdSOBA training set and DES-
OBA training set (first training on RdSOBA, then finetune
on DESOBA). For all settings, the evaluation is performed
on DESOBA test set. The full comparisons between DMAS-
Net and SGRNet in three settings are summarized in Table 2.
We show the advantages of our method from three aspects.
Evaluation metrics: With the help of our RdSOBA, our
DMASNet demonstrates notable superiority over SGRNet
in metrics. Nevertheless, our RMSE and PSNR remains
comparable to SGRNet’s. One reason is that our DMASNet
is more likely to produce more shadows than SGRNet, so the
MSE of those false positive pixels (non-shadow pixels that
are wrongly predicted as shadow pixels) is larger. When us-
ing DESOBA or RdSOBA+DESOBA as training set, com-
pared with SGRNet, the d hole and d frag of our DMASNet
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Figure 5: Example results of different methods on real composite images.

Train-set Method B-T score↑ d hole d frag

DESOBA

Pix2Pix-Res -1.149 - -
ShadowGAN -1.206 - -

SGRNet -0.104 21.540 200.430
DMASNet 0.648 2.630 67.300

RdSOBA+
DESOBA

SGRNet -0.192 5.460 124.050
DMASNet 2.039 1.440 18.930

Table 3: Quantitative results of different methods on real
composite images.

are also closer to those of ground-truth masks.
Cross-domain transferability: When using RdSOBA as
training set, the results of SGRNet are poor (row 1). In con-
trast, the results of DMASNet are even better than those ob-
tained by using DESOBA training set (row 2 v.s. row 4).
The contrasting behaviors of SGRNet and our DMASNet
show the gap between their transferability. Moreover, with
RdSOBA, DMASNet can achieve much better results (row
6 v.s. row 4), but the improvement of SGRNet is marginal
(row 5 v.s. row 3), which also demonstrates that our DMAS-
Net has better transferability across different domains.
Visual effects: As shown in Figure 4, the results of DMAS-
Net are substantially improved with the aid of RdSOBA,
which are more realistic and closer to the ground-truth im-
ages. However, the improvement of SGRNet is not apparent.

5.6 Evaluation on Real Composite Images
Our ultimate goal is generating realistic foreground shadow
for real composite images, so we compare different methods

on the 100 real composite images provided by (Hong, Niu,
and Zhang 2022). We compare our DMASNet with SGR-
Net as well as relatively strong baselines Pix2Pix-Res and
ShadowGAN (see Table 1). For DMASNet and SGRNet, we
provide two versions depending on whether using RdSOBA
dataset or not. As there are no ground-truth images, we re-
port the metrics d hole, d frag and conduct user study. We
only report d hole, d frag for DMASNet and SGRNet, be-
cause the other two methods do not predict mask.

In our user study, we invite 20 people to observe a
pair of generated images by two methods at a time and
ask them to choose the one with more realistic foreground
shadow. Based on pairwise scores, we use Bradley-Terry(B-
T) model (Bradley and Terry 1952) to calculate the global
ranking score for each method. We list the results in Table
3 and show the generated images by different methods in
Figure 5. We can see that our DMASNet can greatly benefit
from RdSOBA and consistently produce more realistic re-
sults, while SGRNet fails to produce shadow in many cases.

6 Conclusion
In this work, we have contributed a large-scale rendered
shadow generation dataset RdSOBA. We have also proposed
a novel two-stage shadow generation network DMASNet,
which decomposes mask prediction and performs attentive
shadow filling. Extensive experiments have proved that our
RdSOBA dataset is helpful. Our DMASNet has shown re-
markable cross-domain transferability and achieved the best
visual effects for real composite images.
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