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ABSTRACT

Neural Radiance Fields (NeRF) face significant challenges in few-shot scenarios,
particularly due to overfitting and long training times for high-fidelity rendering.
While current approaches like FreeNeRF and SparseNeRF use frequency regular-
ization or pre-trained priors, they can be limited by complex scheduling or potential
biases. We introduce FrugalNeRF, a novel few-shot NeRF framework that leverages
weight-sharing voxels across multiple scales to efficiently represent scene details.
Our key contribution is a cross-scale geometric adaptation training scheme that
selects pseudo ground truth depth based on reprojection error from both training
and novel views across scales. This guides training without relying on externally
learned priors, allowing FrugalNeRF to fully utilize available data. While not
dependent on pre-trained priors, FrugalNeRF can optionally integrate them for
enhanced quality without affecting convergence speed. Our method generalizes
effectively across diverse scenes and converges more rapidly than state-of-the-
art approaches. Our experiments on standard LLFF, DTU, and RealEstate-10K
datasets demonstrate that FrugalNeRF outperforms existing few-shot NeRF models,
including those using pre-trained priors, while significantly reducing training time,
making it a practical solution for efficient and accurate 3D scene reconstruction.

1 INTRODUCTION

Few-shot novel view synthesis, generating new views from limited imagery, poses a substantial
challenge in computer vision. While Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) have
revolutionized high-fidelity 3D scene recreation, they demand considerable computational resources
and time, often relying on external datasets for pre-training. This paper introduces FrugalNeRF, a
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Figure 1: Comparison of novel view synthesis methods trained on two views. SimpleNeRF
suffers from long training times, SparseNeRF (Wang et al.l, 2023) produces blurry
results, and FSGS [2023) quality drops with few input views. Our FrugalNeRF achieves
rapid, robust voxel training without learned priors, demonstrating superior efficiency and realistic
synthesis. It can also integrate pre-trained priors for enhanced quality. Green: methods without
learned priors. : with learned priors
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Figure 2: Comparisons between few-shot NeRF approaches. (a) Frequency regularization gradually
increases the visibility of high-frequency signals of positional encoding, but the training speed is
slow. (b) Replacing the MLPs with voxels and incorporating them with gradual voxel upsampling
achieves similar frequency regularization but cannot generalize well. (c) Some approaches employ
pre-trained models to supervise the rendered color or depth patches. (d) Our FrugalNeRF, leveraging
weight-sharing voxels across scales for various frequencies representation, enhanced by a cross-scale
geometric adaptation for efficient supervision.

novel approach to accelerate NeRF training in few-shot scenarios. It fully leverages the training data
without relying on external priors and markedly reduces computational overhead.

Traditional NeRF methods, despite producing high-quality outputs, suffer from long training time and
rely on frequency regularization (Yang et al., 2023) via multi-layer perceptrons (MLPs) and positional
encoding, slowing convergence (Fig. 2] (a)). Alternatives like voxel upsampling (Fig.[2] (b)) attempt
to overcome these challenges but struggle with generalizing to varied scenes (Chen et al.| [2022a;
Sun et al.}[2022;[2023). Furthermore, using pre-trained models (Fig.[2](c)) creates dependencies on
external priors, which might not be readily available or could introduce biases from their training
datasets (Niemeyer et al.,2022; Roessle et al., [2022} [Wang et al.| [2023)).

FrugalNeRF differs from these approaches by incorporating a cross-scale, geometric adaptation
mechanism, facilitating rapid training while preserving high-quality view synthesis (Fig.[2](d)). Our
method efficiently utilizes weight-sharing voxels across various scales to encapsulate the scene’s
frequency components. Our proposed adaptation scheme projects rendered depths and colors from
different voxel scales onto the closest training view to compute reprojection errors. The most accurate
scale becomes the pseudo-ground truth and guides the training across scales, thus eliminating the
need for complex voxel upsampling schedules and enhancing generalizability across diverse scenes.

FrugalNeRF significantly reduces computational demands and accelerates training through self-
adaptive mechanisms that exploit the multi-scale voxel structure, ensuring quick convergence without
compromising the synthesis quality. By fully leveraging the training data and eliminating reliance on
externally learned priors and their inherent limitations, FrugalNeRF provides a pathway toward more
scalable and efficient few-shot novel view synthesis. In conclusion, FrugalNeRF efficiently bypasses
the need for external pre-trained prior and complex scheduling for voxel.

We evaluate the FrugalNeRF’s effectiveness on three prominent datasets: LLFF (Mildenhall et al.}
2019b), DTU (Jensen et al., [2014), and RealEstate-10K |Zhou et al.| (2018]) dataset to assess both the
rendering quality and convergence speed. Our results show that FrugalNeRF is not only faster but
also achieves superior quality in comparison to existing methods (Fig.[I), showcasing FrugalNeRF’s
proficiency in generating perceptually high-quality images. The main contributions of our work are:

* We introduce a novel weight-sharing voxel representation that encodes multiple frequency
components of the scene, significantly enhancing the efficiency and quality of few-shot
novel view synthesis.

* QOur geometric adaptation selects accurate rendered depth across different scales by reprojec-
tion errors to create pseudo geometric ground truth that guides the training process, enabling
a robust learning mechanism that is less reliant on complex scheduling and more adaptable
to various scenes.

* FrugalNeRF’s training scheme relies solely on available data, eliminating the need for
external priors or pre-trained models and ensuring fast convergence without sacrificing
quality. It remains flexible, allowing the integration of learned priors to further enhance
quality without affecting training speed.
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2 RELATED WORK

Neural Radiance Fields (NeRF)(Mildenhall et al., 2020) has advanced novel view synthesis(Chen
et al., [2022c; [Martin-Brualla et al.| [2021}; [Yuan et al., [2022; [ Xu et al., [2023}; [Tao et al., [2023; |Chen
et al., [2023; |Peng et al., 2021; Xu et al., [2022; Fridovich-Keil et al., 2022; Zhang et al., 2020; Wang
et al., [2021bj} |Ye et al., 2022} Zheng et al.| |2023; Bian et al., 2023). Research spans multi-view
synthesis (Oechsle et al.| [2021; |Chen et al.| 2021; Jensen et al.| 2014; Yariv et al.,[2020; [Wang et al.,
20214a)), single-view synthesis (Gao et al., [2020; Tucker & Snavely, 2020; |Han et al., [2022; Wiles
et al.} 2020; Wimbauer et al., 2023), 3D generation (Chan et al., |2021; Wang & Torr, 2022} |Chan
et al.,[2022; |Hong et al., 2023} L1 et al.| 2021])), and dynamic scenes (Pumarola et al.|[2021; Mildenhall
et al., (2022} [Liu et al., 2023)). Few-shot NeRFs (Chibane et al., [2021; Hu et al.,[2023akb; |Chen et al.|
2022bj [Zhang et al., 2021} |Jain et al.| 2022;|Zhou & Tulsiani, [2023; |[Kim et al., 2022; Bortolon et al.,
2022} Lee et al.l 2023 |Seo et al.,2023b; [Kwak et al., [2023)) aim to reconstruct from sparse inputs but
face overfitting and generalization issues. Some approaches use pre-trained models (Yu et al., 2021}
Jain et al.} 2021} [Wang et al., [2023; |Niemeyer et al., [2022; Johari et al.,[2022; Deng et al., [2023; Chen
et al., 2016; Uy et al., 2023)), while others introduce regularizations (Yang et al., [2023} [Niemeyer
et al., [2022; [Somraj & Soundararajan, 2023 |Deng et al.,|2022) to improve performance.

Depth regularizations. Recent works emphasize depth constraints during training. DS-
NeRF (Deng et all [2022)) uses sparse SfM-estimated depth, while DDP-NeRF (Roessle et al.|
2022) completes it with pretrained priors. SparseNeRF (Wang et al., [2023) uses prediction trans-
formers (Ranftl et al.| 2021a; [2020) for depth priors. D4RF (Song et al., [2023) jointly optimizes
NeRF and MDE, and ReVoRF (Xu et al.l 2024) improves geometry without heavy reliance on priors.
FSGS (Zhu et al., [2023)) uses monocular depth priors and geometric regularization. These methods
may be affected by data bias and require substantial data. ViP-NeRF (Somraj & Soundararajanl
2023)) uses visibility maps but demands significant computation time. In contrast, FrugalNeRF uses
geometrically adapted pseudo-GT depth, avoiding pre-trained models and extensive computation.

Novel pose regularization. Novel pose regularization addresses floaters in synthesized views from
sparse inputs. RegNeRF (Niemeyer et al., 2022) uses pose sampling with a normalizing flow model.
PixelNeRF (Yu et al.| [2021) extracts image features with CNNs (Krizhevsky et al., 2012) for scene
priors. DietNeRF (Jain et al.| [2021)) uses CLIP-based Transformers (Radford et al., |2021}; |Caron
et al., 20215 |L1 et al., 2022; |[Lin et al., [2023) for color consistency. FlipNeRF (Seo et al., [2023a)
samples flipped reflection rays but relies on geometry estimation. These methods often depend
on pre-trained models, potentially introducing bias and inference time. Our FrugalNeRF applies
geometric adaptation on pose rendering, avoiding pre-trained models while suppressing floaters.

Frequency regularization. Positional encoding (Sitzmann et al.,[2020; Tancik et al., 2020; Wang
et al.}2022) enables NeRF to capture high-frequency details but can lead to overfitting in few-shot
scenarios. FreeNeRF (Yang et al., 2023)) uses scheduling for increasing input frequency. VGOS (Sun
et al.||2023) adopts incremental voxel training to prevent overfitting. Both methods require complex
scheduling and may not generalize well. SimpleNeRF (Somraj et al.,|2023) introduces augmented
models focusing on low-frequency, leading to resource wastage. Our FrugalNeRF leverages weight-
sharing voxels across scales for various frequency representations, avoiding complex scheduling.

Fast convergence. NeRF’s time-consuming training due to MLP queries is a common challenge.
Methods like (Sun et al., 2023} 2022} |Chen et al., 2022a; Sitzmann et al., 2019) replace MLPs with
faster-converging representations. Instant-NGP (Miiller et al., 2022) uses voxels with hash encoding
and density bitfield. DVGO (Sun et al.|[2022) employs voxel grids with shallow MLP. TensoRF (Chen
et al., [2022a) decomposes radiance fields into low-rank tensors. ZeroRF (Shi et al., 2024} adapts
TensoRF for few-shot settings but is limited to the object level. Our FrugalNeRF uses TensoRF for
fast training and introduces a cross-scale geometric adaptation weight-sharing voxel framework.

Self-supervised consistency. Consistency modeling between sparse images and warped counter-
parts is crucial for Few-shot NeRFs. SinNeRF (Xu et al,[2022) and PANeRF (Ahn et al., [2022)
use warping results as pseudo labels but require RGB-D input. SE-NeRF (Jung et al.| [2023) and
Self-NeRF (Bai et al., [2023) use teacher NeRF rendering results as labels, requiring effective initial-
ization. GeCoNeRF (Kwak et al.,|[2023)) uses render depth for warping but needs a pre-trained feature
extractor. FrugalNeRF combines frequency regularization with cross-scale geometric adaptation,
using the best render depth at different scales as a pseudo label to ensure geometric consistency
without relying on learned priors.
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Figure 3: (a) Our FrugalNeRF represents a scene with a pair of density and appearance voxels
(VP VA). For a better graphical illustration, we show only one voxel in the figure. (b) We sample
rays from not only training input Views Iy,i, but also randomly sampled novel views rpover. (¢) We
then create L + 1 multi-scale voxels by hierarchical subsampling, where lower-resolution voxels
ensure global geometry consistency and reduce overfitting but suffer from representing detailed
structures, while higher-resolution voxels capture fine details but may get stuck in the local minimum
or generate floaters. (d) For the rays from training views Iy,;,, we enforce an MSE reconstruction
loss between the volume rendered RGB color C! and input RGB C at each scale. (¢) We introduce a
cross-scale geometric adaptation loss for novel view rays ryovel, Warping volume-rendered RGB to the
nearest training view using predicted depth, calculating projection errors e’ at each scale, and using
the depth with the minimum reprojection error as pseudo-GT for depth supervision. This adaptation
involves rays from both training and novel views, though the figure only depicts novel view rays for
clarity.

3 METHOD

3.1 PRELIMINARIES

Neural radiance fields. NeRF (Mildenhall et al.,[2020) uses a neural network f to map 3D location
x and viewing direction d to density o and color ¢ for image rendering: f : (x,d) — (o, c). Then we

use the densities and colors to render a pixel color C (r) by integrating the contributions along aray r
cast through the scene: C/(r) = Zf\il T;(1 — exp(—0;9;))c;, where T'(t) = exp(— Z;: 0;0;) is
the transmittance along the ray, and [V is the number of points along the ray. NeRF seeks to minimize

. 2
the MSE between the rendered image and the actual image: £ =} _» HC’ (r) —C(r) H , where R
denotes a set of rays.

Voxel-based NeRFs. Voxel-based NeRFs (Sun et al.l 2022} [Chen et al., 20224} Miiller et al 2022)
enhance color and density querying speed in the radiance field by employing voxel grids, allowing
efficient data retrieval via trilinear interpolation. They typically utilize a logistic function with a bias
term for density calculation and adopt a coarse-to-fine strategy, refining results with a shallow MLP
for view-dependent effects.

Few-shot NeRFs. Recent methods propose various strategies to address the challenge of under-
constrained optimization with limited images. These include regularizing visible frequencies in
positional encoding (Fig. 2] (a)), expanding voxel ranges incrementally
2023) (Fig.[2] (b)), and utilizing external priors like pre-trained models for additional guidance (Wang]
et al., 2023) (Fig.2](c)). Our approach, FrugalNeRF, leverages a weight-sharing voxel across scales
to capture a spectrum of frequency components. It self-adapts by evaluating reprojection errors
with the nearest training view, enhancing scene generalization, and offering faster training without
dependence on pre-trained models (Fig. |Z| (d)).
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3.2 OVERVIEW OF FRUGALNERF

FrugalNeRF introduces an efficient architecture for novel view synthesis from sparse inputs without
external priors, leveraging voxel-based NeRFs (Chen et al.,[2022a; Miiller et al.,|2022; Sun et al.,[2022)
to estimate 3D geometry and reduce training time. Key features include hierarchical subsampling
with weight-sharing multi-scale voxels for diverse geometric details (Sec.[3.3), a geometric adaptation
training strategy for few-shot scenarios (Sec. [3.4)), novel view sampling with additional regularization
losses to minimize artifacts (Sec. [3.5), and integration of data from both training and sampled novel
views for robust scene representation (Sec. [3.6).

3.3 WEIGHT-SHARING MULTI-SCALE VOXELS

Addressing data sparsity in few-shot scenarios, we introduce FrugalNeRF’s weight-sharing multi-
scale voxels, which are crucial for balancing frequency characteristics. Inspired by FreeNeRF (Yang
et al.||2023)), which highlights the overfitting challenges with high-frequency inputs, our system adopts
a voxel-based representation to manage frequency components. We employ varied resolution voxels
similar to NeRF’s positional encoding (Mildenhall et al., [2020), with lower resolutions capturing
broad scene outlines and higher resolutions modeling finer details.

Unlike methods such as VGOS (Sun et al., [2023), which starts with a coarse geometry and progres-
sively refines details, our approach maintains generalization without intricate tuning. We construct
multi-scale voxels by downsampling from a single density and appearance voxel, ensuring consistent
scene representation(Fig. [3](c)). This technique effectively balances different frequency bands in the
training pipeline without increasing model size or memory demands.

With multi-scale voxels, we can further utilize multi-scale voxel color loss to guide the training (Fig.[3]
(d)), which is crucial for few-shot scenarios in ensuring a balanced representation of geometry and
detail. The multi-scale voxel color loss is defined as:

L
['ms—color = Z Z

1=0 Tirain € Rirain

2

Ol (rtrain) - C(rlrain) y (@))

where C! is the rendered color from the voxel at scale [ , C'is the ground truth color, L is the number
of scales, Ryin 1S a set of rays from training views, and ry,;, is a ray sampled from R,,. We
compute a weighted average MSE loss across scales to ensure color rendering accuracy at each scale,
enhancing overall robustness and fidelity.

3.4 CROSS-SCALE GEOMETRIC ADAPTATION

Our cross-scale geometric adaptation approach effectively addresses the challenges of few-shot
scenarios by supervising geometry without ground truth depth data. Recognizing the diverse frequency
representation by different voxel scales in a scene, it is essential to identify the optimal frequency
band for each region of the scene.

For each ray from a training view ¢, we compute depth values at multiple scales through volume
rendering and then warp (Luo et al., 2020; |[Kopf et al.; 2021} [Li et al., [ 2021)) view i’s input RGB to the
nearest training view j using these depths. The reprojection error with view j’s input RGB determines
the most suitable scale for each scene area. The depth of this scale serves as a pseudo-ground truth,
guiding the model in maintaining geometric accuracy across frequencies (Fig. 3] (e)).

Mathematically, for a pixel p; in a training frame 7, with its depth D!(p;) at scale [ and camera
intrinsic K;, we can lift p; to a 3D point x', then transform it to world coordinate x!, and subsequently
transform to frame j’s camera coordinate x._, ;- This 3D point is then projected back to 2D in frame
7, obtaining the pixel coordinate pé _,;- Due to the space limit, we provide the details for reprojection
calculation in the supplementary. We calculate the reproject error e!(p;) using the RGB values of
frame ¢ and j for each scale [.

1 1 2
e'(pi) = ||Ci(pi) — Cj(pi,)|| 2
where C; and C; are the input RGB images from view 7 and j, respectively. For a pixel location p
from which the training view ray r,;, originates, we denote it simply as ry.i,. The pseudo-ground
truth depth for this pixel is the depth at the scale with the minimum reprojection error:

D/(rlrain) = ﬁll(rlmm)(rtrain)7 (3)
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where D! is the rendered depth from the voxel at scale [, and I’ denotes the scale with minimum
reprojection error:

l/(rlrain) = arg mlin(el (rtrain))~ (4)

This pseudo-ground truth depth D’ is used to compute a geometric adaptation 10ss, Lgeo (Tirain), an
MSE loss that ensures the model maintains scene geometry effectively, even without explicit depth

ground truth:
geo I'lram Z Z

1=0 Tirain € Rirain

‘ 2

‘ﬁl(rtram) — D/(rtrain)

&)

We further define a threshold for reprojection error to determine the reliability of depth estimation.
Specifically, we do not compute the loss of those pixels in which the projection error exceeds this pre-
defined threshold. Geometric adaptation is critical by allowing the model to refine its understanding
of the scene’s geometry in a self-adaptive manner.

3.5 NOVEL VIEW REGULARIZATIONS

In few-shot scenarios, we extend geometric adaptation to novel views to address the limitations in
areas with less overlap among training views (Fig.[3](e)). Our novel view sampling strategy involves
a spiral trajectory around training views, promoting comprehensive coverage and model robustness.
In the absence of ground truth RGB for novel views, we rely on rendered color C for reprojection
error calculation, similar to Eq. in Sec. but focusing on rays from novel views I'yovel:

(o) = [Cuton) ~ 50l)|| ©

In this context, p,, denotes a pixel coordinate in the sampled novel frame n, and p!,_, ; represents the
coordinates on its nearest training pose j after warping p,, at scale [. This reprojection error helps
refine the model’s rendering for novel views. For each ray from a novel view, similar to Egs. (3) to (3),
we first determine the scale with the minimum reprojection error, then determine its pseudo-ground
truth depth and calculate geometric adaptation loss:

l/(rnovel) = arg Inlin(el(rnovel)); D/(rnovel) = ﬁl,(rmve')(rnovel)y @)

2
geo I'novel Z Z HD rnovel (rnovel)H ) )]

1=0 Tnovel € Rnovel

where Ryovel 18 the set of rays from sampled novel views, and ryqve is @ sampled ray from the set
Riovel- We combine this loss with the geometric adaptation loss from training views to enhance the
overall training process:

Lgeo = Lgeo(rtrain) + Egeo(rnovel)~ (9)
This approach of novel view sampling and applying regularization through reprojection error com-
putation is critical in training our model. It ensures that the model not only learns from the limited
training views but also adapts to and accurately renders novel perspectives, thereby enhancing the
overall performance and reliability of FrugalNeRF.

Additional global regularization losses. To further improve the geometry and reduce artifacts,
we introduce an additional global regularization loss Ly, including total variation loss (Chen et al.,
2022a; [Sun et al 2023)), patch-wise depth smoothness loss (Niemeyer et al., 2022), L1 sparsity
loss (Chen et al.| [2022al), and distortion loss (Sun et al., |2022; |Barron et al.,[2022). These losses help
smooth the scene globally and suppress artifacts like floaters and background collapse.

3.6 TortAL Loss

The total loss for FrugalNeRF, essential for accurate scene rendering from sparse views, combines
various components: color fidelity, geometric adaptation, global regularization, and sparse depth
constraints. It is formulated as:

L= Ems—color + )\geocgeo + )\regﬂreg + /\sd'csd- (10)

Lins-color 1 the multi-scale voxel color loss, crucial for maintaining color accuracy across different
scales. Ly, is the geometric adaptation loss, providing geometric guidance in the absence of explicit
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Table 1: Quantitative results on LLFF dataset (Mildenhall et al.,2019b). FrugalNeRF performs
competitively with baseline methods in extreme few-shot settings, offering shorter training time
without relying on externally learned priors. Integrating monocular depth regularization further
improves quality while maintaining fast convergence. Results differ from SimpleNeRF’s paper but
match its supplementary document, as we evaluate full images without visibility masks.

Learned 2-view 3-view 4-view Training

‘ Venue ‘ priors ‘ PSNRT SSIM{ LPIPS | ‘ PSNRT SSIMT LPIPS | ‘ PSNRT SSIMT LPIPS| | time

2 CVPR22 - 1693 051 042 | 1897 058 036 | 2007 061 034 | 35hrs

Y CVPR23 - 1755 054 038 | 1930 060 034 | 2045 063 033 | LShrs

SIGGRAPH23 - 1666 052 037 | 1889 059 034 | 193¢ 062 032 | 135hrs
Somra el al. | 2023 SIGGRAPH Asia23 - 1757 © 055 039 1947 062 033 | 2044 065 031 | 95hrs

FrugalNeRF (Ours - - 1807 054 035 1966 06l 030 | 2070 065 028 | 10mins

RegNeRF (Niemeyer et al.|2022 CVPR22 normalizing flow | 1688 049 043 | 1865 057 036 | 1989 062 032 | 2.35hrs
DDP-NeRF {Roessle ot al. CVPR22 depth completion | 1719~ 054 039 | 1771 056 039 | 1919 061 035 | 35hrs
GeCoNeRF (Kwak et al. ICML23 VGGI9 feawre | 1583 045 052 | 1744 050 047 | 1904 056 042 | 4hrs
SparseNeRF (Wang et al. 2023 1CCV23 monocular depth | 1802 052 045 1952 059 037 | 2089 065 034 1hrs

FSGS (Zhu et al. |[202 ECCV24 monocular depth | 1526 045 041 [ 1921 061 030 | 2007 066 022 | 25mins

FrugalNeRF (Ours - monocular depth | 1826 055 035 1987 061 030 | 2089 066 026 | I1mins

t ) i E
FrugalNeRF (Ours)  FrugalNeRF (Ours) SimpleNeRF GeCoNeRF SparseNeRF FSGS (Top) GT
(w/ mono. depth) (w/ VGG19 feat.) (w/ mono. depth) (w/ mono. depth) (Bottom) Inputs

Figure 4: Qualitative comparisons on the LLFF (Mildenhall et al.,[2019b) dataset with two input
views. FrugalNeRF achieves better synthesis quality and coherent geometric depth. We also include
the GT and overlapped input images for reference.

depth information. Ly, is the global regularization loss, addressing artifacts and inconsistencies in
unseen areas. And Ly is the sparse depth loss (Deng et al.} [2022)), utilizing sparse depth data for
absolute scale constraints derived from COLMAP (Schonberger & Frahml, 2016}, [Schonberger et al

2016).

4 EXPERIMENTS

Datasets & evaluation metrics. We conduct experiments on two datasets: LLFF
[2019Db) , DTU (Jensen et al.} [2014), and RealEstate-10K [Zhou et al.| (2018). For both datasets, we use
the test sets defined by pixelNeRF and ViP-NeRF (Somraj & Soundararajan [2023).
We follow the same evaluation protocol as ViP-NeRF, including the train/test split. Specifically, there
are 12 scenesEl in the test sets of the DTU dataset. We assume that camera parameters are known,
which is relevant for applications with available calibrated cameras. We provide further details and
RealEstate-10K in the supplementary materials.

We follow the established evaluation protocols for consistency. The experiments utilize three evalua-
tion metrics: PSNR, SSIM 2004), and LPIPS (Zhang et al., 2018). While evaluating on
DTU, we follow SparseNeRF (Yang et al.| to remove the background when computing metrics
to alleviate the background bias reported by RegNeRF (Niemeyer et al,2022)) and pixelNeRF
2021). Additionally, we include the training time with a single NVIDIA RTX 4090 GPU to
evaluate the efficiency of the methods.

IThere are 15 scenes in total in ViP-NeRF’s DTU test sets. However, COLMAP can only run successfully on 12
scenes.
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Table 2: Quantitative results on the DTU Jensen et al.|(2014) dataset. FurgalNeRF synthesizes
better images than most of the other baselines under extreme few-shot settings but with shorter
training time and does not rely on any externally learned priors. Additionally, integrating monocular
depth model regularization further improves quality while maintaining fast convergence. We follow
SparseNeRF [Wang et al.| (2023)) to remove the background when computing metrics.

Learned 2-view 3-view 4-view Training
Method ‘ Venue ‘ priors ‘ PSNR1 SSIMt LPIPS| | PSNRt SSIM{ LPIPS| | PSNRt SSIMt LPIPS| | time |
CVPR23 - 18.05 0.73 0.22 22.40 0.82 0.14 24.98 0.86 0.12 1 hrs
SIGGRAPH23 - 14.91 0.49 0.24 16.62 0.55 0.22 17.64 0.57 021 2.2 hrs
SIGGRAPH Asia23 - 14.41 0.79 0.25 14.01 0.77 0.25 13.90 0.78 0.26 1.38 hrs
CVPR24 - 14.84 0.60 0.30 14.47 0.61 0.31 15.73 0.67 0.28 25 mins
- - 19.72 0.78 0.16 2243 0.83 0.14 24.51 0.86 0.12 6 mins
CVPR22 normalizing flow - - - | - - - | - - - OOM
ICCV23 monocular depth | 19.83 0.75 0.20 2247 0.83 0.14 24.03 0.86 0.12 30 mins
ECCV24 monocular depth 16.82 0.64 027 | 1829 0.69 021 | 20.08 0.75 0.16 20 mins
- monocular depth | 20.77 0.79 0.15 22.84 0.83 0.13 24.81 0.86 0.12 7 mins
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Figure 5: Qualitative comparisons on the DTU (Jensen et al.,[2014) dataset with two input views.

FrugalNeRF achieves better synthesis quality.

Implementation details. We implement FrugalNeRF based on the TensoRF and
utilize the official PyTorch framework. The learning process is driven by an Adam optimizer (Kingma|
[2014), with an initial learning rate of 0.08, which decays to 0.002 throughout the training. We
sample 120 novel poses along a spiraling trajectory around the training view and set the batch size for
both training and novel view rays to 4,096. We utilize the pre-trained Dense Prediction Transformer
(DPT) (Ranftl et al.l 2021b) to generate monocular depth maps from training views. Each scene in
our model is trained for 5,000 iterations. For different datasets, we use specific voxel resolutions:
6402 for LLFF and RealEstate-10K, and 300 for the DTU dataset. Additionally, our model employs
a voxel downsample ratio with s = 4, L = 2 (three levels of scale in total) to accommodate varying
levels of scene detail. More details can be found in the supplementary materials.

4.1 COMPARISONS

LLFF dataset. We compare FrugalNeRF to RegNeRF (Niemeyer et al,[2022)), DS-NeRF (Deng
et al.l [2022)), DDP-NeRF (Roessle et al.,[2022)), FreeNeRF (Yang et al.,[2023)), ViP-NeRF (Somraj
& Soundararajan, 2023), SimpleNeRF (Somraj et al., 2023), GeCoNeRF’| (Kwak et al., 2023),
SparseNeRF (Wang et all, [2023), and FSGS 2023). Some use pre-trained models
or frequency regularization. As shown in Tab. |I} FrugalNeRF outperforms these methods in
PSNR and LPIPS, with comparable SSIM. Our cross-scale geometric adaptation generalizes better
than frequency regularization methods like FreeNeRF. Integrating monocular depth regularization
further improves quality while maintaining fast convergence. FrugalNeRF achieves an optimal
balance between quality and training time (10 minutes). Qualitative comparisons (Fig.[d) show that
FrugalNeRF renders scenes with richer detail and sharper edges compared to SparseNeRF’s blurry
results. FrugalNeRF models scene geometry more smoothly and consistently than SimpleNeRF and
FSGS, which suffer from floaters and holes. These results demonstrate FrugalNeRF’s capability to
model complex scenes with high fidelity.

DTU dataset. We compare FrugalNeRF with RegNeRF’| (Niemeyer et al., [2022), FreeNeRF (Yang
2023), ViP-NeRF (Somraj & Soundararajan| [2023), SimpleNeRF (Somraj et al) 2023),

2Since GeCoNeRF does not release a complete and executable implementation, we try our best to modify their
code and reproduce its results.

3RegNeRF runs into an out-of-memory issue on one NVIDIA RTX 4090 GPU, so we cannot report its results on
the DTU dataset
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Table 3: Comparison of different scales Table 4: Ablation of different components on the LLFF

on the LLFF dataset. dataset with two input views.
# of scales \ PSNRT SSIM1t LPIPS| Time | Weight-sharing ~ Lmscolor ~ Laeo Tnov | PSNRT  SSIMT  LPIPS | Model size |
_ : - v v Y 1754 052 037 198.31 MB
; ((é = (1); }2§§ 8‘;12 8"3‘; g““"? v v oo 1689 044 046  183.04 MB
= - - - mins v v - v 15.97 0.49 0.41 183.04 MB
3(L=2) 18.07 0.54 0.35 10 mins v v v _ 17.84 0.52 0.36 183.04 MB
4(L=3) 18.08 0.54 0.36 15 mins v v v v 18.07 0.54 0.35 183.04 MB
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Figure 6: Cross-scale geometric adaptation during training. (Lefr) Low-resolution voxels ini-
tially guide geometry learning, with higher resolutions contributing more over time. This enables
autonomous frequency tuning and better generalization. (Right) Geometric adaptation improves
convergence quality across all scales compared to training without it.

SparseNeRF (Wang et al., 2023)), ZeroRFE] (Shi et al., [2024)), and FSGS (Zhu et al.| [2023) on the
dataset preprocessed by pixelNeRF (Yu et al., 2021)). Tab.[2|shows FrugalNeRF achieves state-of-
the-art performance in most cases, with the shortest training time. Qualitative comparisons (Fig. [5)
demonstrate FrugalNeRF’s superior visual results, consistently rendering fine details (e.g., the blue
elf’s eyes) without noticeable artifacts, unlike other methods. This showcases FrugalNeRF’s ability
to model scenes with simple backgrounds effectively.

4.2 ABLATION STUDIES

Number of scales. We examine the effect of different numbers of scales in Tab.[Bl The results
show that by increasing the number of scales, we achieve better rendering quality. As there are more
different resolutions of voxels, FrugalNeRF is more capable of representing different levels of details
in the scene by geometric adaptation. We use L = 2 in our experiments, which indicates three scales
in total, to strike a balance between rendering quality and training time.

Weight-sharing voxels. We compared the performance and memory usage of weight-sharing
voxels against three independent voxels. Tab. [] indicates that weight-sharing not only enhances
performance but also reduces the model size.

Multi-scale voxel color loss. We demonstrate the effectiveness of multi-scale voxel color loss
Lins-color by comparing it to using color loss only on the largest scale (Tab. @ Fig. O(Left)). Multi-
scale loss improves rendering and geometry by capturing various levels of scene detail. Without
geometric adaptation, FrugalNeRF underperforms FreeNeRF, which uses a scheduling mechanism
for gradually increasing input frequency. Our voxel grid representation offers faster training than
MLPs but sacrifices some continuity. The discrete nature of multi-scale voxel grids initially limits
our quality compared to FreeNeRF. However, integrating geometric adaptation significantly enhances
coherence across scales, effectively overcoming this limitation.

Cross-scale geometric adaptation. Tab. [4|shows that the performance drops on all metrics without
geometric adaptation loss L. Fig. E] (Mid) demonstrate that geometric adaptation greatly sup-
presses floaters. Fig. [6] (Left) shows that during the training, low-frequency components from the
low-resolution voxels first guide the coarse geometry. Then, mid-frequency and high-frequency
components gradually increase their proportion of serving as pseudo-ground truth. Therefore, our
FrugalNeRF could generalize better to diverse scenes without complex training scheduling. Fig.[6]
(Right) further demonstrates that geometric adaptation helps all scales converge at superior qualities.

“The official ZeroRF implementation samples rays that lie in object masks during training. We remove this
masked sampling for fair comparisons with other methods.
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Figure 7: Scene dependency analysis of multi- Figure 8: Number of training views analysis.
scale voxels. ross-scale geometric adaptation can FrugalNeRF significantly outperforms the base
adapt to diverse scene configurations. TensoRF representation on sparse views.
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Figure 9: Visual comparisons on ablation studies. (Left) Multi-scale color loss prevents overfitting
and leads to a better result. (Mid) Geometric adaptation determines proper depth across scales via
projection error and results in better geometry. (Right) Novel view regularizations provide additional
supervisory signals from novel views and provide high-fidelity geometry.

Scene dependency analysis of the multi-scale voxels. We analyze the scene dependency of the
multi-scale voxels in Fig.[/| The results indicate that scenes with foliage exhibit higher activations
in high- and mid-frequency voxels, while textureless scenes show significant activations in low-
frequency voxels. This confirms our approach’s adaptability to different scene configurations.

Number of training views analysis. We plot the number of training views experiment in Fig.[8]
demonstrating that FrugalNeRF outperforms TensoRF on sparse views (2 to 8 views) and continues
to lead as the number of views increases.

Novel view regularizations. We evaluated the impact of novel view regularizations by omitting
sample rays from novel views rqye. Tab. El shows that using novel view rays and regularizations
improves rendering quality. Fig. O] (Right) illustrates that without these regularizations, training
may get stuck in local minima, resulting in incorrect geometry. Novel view regularizations provide
additional guidance, preventing overfitting and improving geometry accuracy.

5 CONCLUSION

In this paper, we propose FrugalNeRF, a framework that synthesizes novel views with extremely few
input views. To speed up and regularize the training, we propose weight-sharing voxel representation
across different scales, representing varying frequencies in the scene. To prevent overfitting, we
propose a geometric adaptation scheme, utilizing reprojection errors to guide the geometry across
different scales both in training and sampled novel views. FrugalNeRF performs on par with existing
state-of-the-art methods on multiple datasets with shorter training time and does not rely on any
externally learned priors.

Limitations. Few-shot NeRF relies on accurate camera poses for training. In scenarios with signifi-
cant changes in viewpoint or sparse training views, the model may face challenges in generalization.
Although our method introduces novel-view losses to deal with those unseen regions in training
views, it is still an issue for few-shot NeRF.

10
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A APPENDIX

A.1 OVERVIEW

This supplementary material presents additional results to complement the main manuscript. First,
we discuss the difference between competing methods in  Appendix [A.2] Second, we explain the
implementation details in calculating reprojection errors in Appendix [A.3] Then, we describe
the details of adding pretrained monocular depth prior in Appendix Next, we provide all the
training losses in our training process in Appendix [A.5] Moreover, we describe the experimental
setup, including the dataset and training time measurement of compared methods in our evaluations
in Appendix[A.6} In addition to this document, we provide an interactive HTML interface to compare
our video results with state-of-the-art methods and show ablation videos and failure cases. We also
attach the source code of our implementation for reference and will make it publicly available for
reproducibility.
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A.2 DISCUSSIONS ON COMPETING MODELS

GeCoNeRF. GeCoNeRF (Kwak et al.| [2023) is a few-shot NeRF that uses warped features as
pseudo labels, which is sufficiently different from our method. Our method primarily focuses on
cross-scale geometric adaptation, selecting render depths with minimal reprojection error across
different scales as pseudo labels to adaptively learn the most suitable geometry for each scale. In
contrast, GeCoNeRF, besides requiring a pre-trained feature extractor, directly optimizes warped
features, making it highly sensitive to geometric noise and resulting in many floaters in its rendering
result as shown in our supplementary videos. Our approach, on the other hand, is more robust due
to our proposed multi-scale voxels. Low-resolution voxels represent coarse geometry, which is less
likely to produce floaters. Using this as supervision effectively suppresses the generation of floaters.

ZeroRF. ZeroRF (Shi et all 2024) is a concurrent work to ours, also aimed at training NeRF
with sparse input views and achieving fast training times. Unlike TensoRF (Chen et al., 2022a)),
which directly optimizes the decomposed feature grid, ZeroRF parameterizes the feature grids with
a randomly initialized deep neural network (generator). This decision is based on the belief in the
higher resilience to noise and artifacts ability of deep neural networks. Although ZeroRF claims
to achieve fast convergence stemming from its voxel representation, the need to train the generator
results in slower training speeds compared to ours (refer to the main paper Table 2). Our method
directly optimizes the feature grid and utilizes cross-scale geometry adaptation to avoid overfitting
under sparse views, without requiring a generator that slows down convergence to form decomposed
tensorial feature volumes. Additionally, we found that ZeroRF is not suitable for scenes with a
background (e.g., LLFF (Mildenhall et al., |2019a)) or datasets like the DTU (Jensen et al., [2014)
Dataset, where ZeroRF must extensively use object masks for training. These object masks are not
provided directly in these two datasets. Otherwise, ZeroRF may produce many artifacts and floaters,
or the feature volume may be filled up to fit the background, leading to severe memory consumption
issues causing training failures due to out-of-memory errors.

SparseNeRF. SparseNeRF (Wang et al., 2023)) proposes a spatial continuity regularization that
distills depth continuity priors, but it requires a pre-trained depth prior and is extremely slow by
using MLP representation. Additionally, because monocular depth prediction results lack detail,
SparseNeRF’s rendered results tend to be blurry and lack detail. In contrast, our proposed cross-
scale geometric adaptation does not rely on pre-trained priors and ensures the generation of overall
geometry while paying attention to details.

SimpleNeRF. SimpleNeRF (Somraj et al., 2023)) introduces a data augmentation method for few-
shot NeRF, employing an MLP with fewer positional encoding frequencies for augmentation, but this
simultaneously increases the training time. In contrast, we propose an efficient cross-scale geometric
adaptation that achieves multi-scale representation through shared-weight voxels, eliminating the
need for an additional model to reconstruct the same scene. This approach yields better results with
lower costs.

FreeNeRF. FreeNeRF (Yang et al. 2023) is an MLP-based few-shot NeRF model. FreeNeRF
proposes using a scheduling mechanism to gradually increase input frequency, allowing the model
to learn low-frequency geometry during the early stages of training and then ramp up positional
encoding to enable the model to learn more detailed geometry later on. However, our approach
takes advantage of the explicit voxel representation, which converges faster and allows for direct
cross-scaled geometry operations. Additionally, because we employ cross-scale geometry adaptation,
our model dynamically determines which frequency of geometry to learn at different training stages.
We do not require the complex frequency scheduling of FreeNeRF, nor are we limited to learning only
high-frequency components in the later stages of training like FreeNeRF. This makes our method
simpler, more general, and more robust.

VGOS. VGOS (Sun et al.,|2023) introduces an incremental voxel training strategy and a voxel
smoothing method for Few-shot NeRF, aimed at reducing training time. It employs a complex
scheduling strategy to freeze the outer part of the voxel, leading to a leaky reconstruction of the
background scene. Additionally, VGOS requires ground truth poses for novel pose sampling, which
results in a quality drop when using random sampling. However, while VGOS’s training time is
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shorter than ours, its performance significantly lags behind. Our cross-scale geometric adaptation
strategy eliminates the need for complex scheduling and ground truth pose sampling.

FSGS. FSGS (Zhu et al.,2023) addresses the challenge of limited 3D Gaussian splatting (3DGS)
by introducing Proximity-guided Gaussian Unpooling, which adaptively densifies the Gaussians
between existing points. Although this method mitigates the issue of insufficient GS, it still relies on
a sufficient initial set of Gaussians to perform effectively. In few-shot scenarios, the initial number of
GS can be extremely sparse, leading to suboptimal results. Furthermore, FSGS frequently requires
novel view inference using monocular depth models during training, which significantly increases the
training time. In contrast, our cross-scale geometric adaptation approach ensures rapid convergence
without relying on novel view inference or monocular depth models, providing efficient and robust
performance even with minimal initial data.

A.3 DETAILS OF CALCULATING REPROJECTION ERRORS

Mathematically, let p; be a 2D pixel coordinate in frame ¢, and p; be its homogeneous augmentation.
The depth D!(p;) at scale [ obtained from volume rendering, and camera intrinsics K; are used to
reproject p; onto the 3D point x} in camera coordinate system of frame i. Subsequently, utilizing the
rotation matrix R; and translation matrix ¢; of frame i, xﬁ are transformed into world coordinates
system x':
x; = Dj(p) K[ 'Di (1)
x' = Rx! +t; (12)
We simplify the previous two equations because the position of the 3D point x' in world coordinates
can also be determined directly from the ray defined by the starting point o;(p;) and the direction
vi(Pi):
x! = 0;(pi) + Di(pi)vi(p:) (13)
Following this, the 3D point x' in the world coordinate system is transformed to the camera coordinate
system of frame j using its rotation matrices I2;, and translation matrices 77:

Xiny = R (x' = 1) (14)
Finally, project it back to the 2D pixel coordinate system of frame j,
Piy = m(K;xi ;) (15)
z y

where 7([z,y, 2]7) = [, £]. Using coordinates p; and p!_, ; to index the RGB maps of frames i
(denoted as C;) and j (denoted as C}), facilitating the computation of the reprojection error:

é(p:) = |Ci(pi) — C;(P)|)” (16)

Therefore, for each ray sampled from the training view, the pseudo-GT depth of the scale with the
minimum reprojection error is obtained,

D/(rtrain) = arg Inlin(el(rtrain))- 17)

where the pseudo-GT depth is utilized to compute the geometric adaptation loss (MSE) L.

Egeo(rtrain) = Z Z

1=0 Ttrain € Rirain

2
| (18)

)Dl (rtrain) — D/(rtrain)

This mechanism provides a supervisory signal for geometry, ensuring that the model can effectively
maintain the geometric integrity of the scene across different scales, even in the absence of explicit
depth ground truth. It is a pivotal part of the training process, allowing the model to adapt and refine
its understanding of the scene’s geometric structure in a self-adaptive manner. In our implementation,
instead of using a single pixel to calculate reprojection error, we use a patch with 5 x 5 pixels to
calculate reprojection error. This avoids warping noise caused by similar patterns in scenes, for
example, in the case of the LLFF fortress and room. Furthermore, we set a threshold for reprojection
error that allows us to ignore cases of image warping with occlusions and prevents crashes during
initial training processes, which typically have high reprojection errors.
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A.4 DETAILS OF ADDING PRETRAINED MONOCULAR DEPTH PRIOR

We utilize the pre-trained Dense Prediction Transformer (DPT) (Ranftl et al., [2021b) to generate
monocular depth maps from training views. DPT is trained on 1.4 million image-depth pairs, making
it a convenient and effective choice for our setup. To address the scale ambiguity between the true
scene scale and the estimated depth, we introduce a relaxed relative loss based on Pearson correlation
between the estimated and rendered depth maps. This loss is applied at multiple scales, enhancing
the monocular depth prior’s constraint across different scales and improving the overall geometric
consistency.

A.5 LOSSES

Voxel TV loss (Ly). We use the TV loss on voxel to smooth the result in voxel space.

Patch-wise depth smoothness loss (Lq5). We sample patches of rays and calculate the total variance
of depth to smooth the geometry in the depth space.

L1 sparsity loss (£)1). We suppress the voxel density in air space by introducing a density L1
regularization loss.

Distortion loss (Lgist). We adopt the approach from Mip-NeRF 360 (Barron et al.|[2022), integrating
distortion loss to remove floaters from the novel views.

Occlusion loss (Lcc). Inthe DTU dataset, we follow FreeNeRF|Yang et al.|(2023)) by incorporating
an occlusion loss that utilizes black and white background priors to push floaters into the background.

Novel pose sampling form spiraling trajectory. We follow the implementation of a spiraling
trajectory from TensoRF (Chen et al., [2022a). For the LLFF dataset, we sample 60 novel poses from
the spiraling trajectory sampled from training views with 1 rotations, radius scale 1.0, and 2 0.5.
For the DTU dataset, we sample 60 novel poses from the spiraling trajectory sampled from training
views with 4 rotations, radius scale 0.5, and z., 0.5. For the RealEstate-10K dataset, we sample 60
novel poses from the spiraling trajectory sampled from training views with 2 rotations, radius scale
2.0, and 2 0.5.

A.6 EXPERIMENTAL SETUP

We compare the result of few-shot NeRF on LLFF and DTU with n = 2, 3, 4 input views.

LLFF dataset. The LLFF dataset comprises 8 forward-facing unbounded scenes with variable
frame counts at a resolution of 1008 x 756. In line with prior work (Somraj & Soundararajan, [2023),
we use every 8th frame for testing in each scene. For training, we uniformly sample n views from the
remaining frames.

DTU dataset. The DTU dataset is a large-scale multi-view collection that includes 124 different
scenes. Follow the Pixel-NeRF (Yu et al |2021)) and ViP-NeRF (Somraj & Soundararajan, [2023))
approach, we use the same test sets. However, because COLMAP will fail to generate sparse depth at
scans 8, 30, and 110, we can only test on 12 scenes. Test scan IDs are 21, 31, 34, 38, 40, 41, 45, 55,
63, 82, 103, and 114. We use specific image IDs as input views and downsample images to 300 x
400 pixels for consistency with prior studies (Yu et al.|[2021; |Somraj & Soundararajan, [2023]).

RealEstate-10K dataset. RealEstate-10K is a comprehensive database of approximately 80,000
video segments, each with over 30 frames, widely utilized for novel view synthesis. For our study, we
select five scenes from its extensive test set, following the approach outlined in ViP-NeRF (Somraj &
Soundararajanl [2023). We selected frames 0, 10, 20, and 30 for the training set with a resolution of
1024 x 576, in accordance with the SimpleNeRF (Somraj et al.| 2023) methodology, while testing on
the same test set as SimpleNeRF (Somraj et al.| 2023) due to the unobserved region problem, which
NeRF cannot handle, in some testing view.
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A.6.1 TRAINING TIME MEASUREMENT AND TIME COMPLEXITY

RegNeRF. We use the official implementation of RegNeRF (Niemeyer et al.} [2022) and follow
most of the default configuration, while the batch size or other hyperparameters might be adjusted
due to the GPU memory issue. For the LLFF dataset, the training requires roughly 2.35 hours per
scene with 69769 iterations and a batch size of 2,048. Note that RegNeRF samples 10000 random
poses by its default configuration on the DTU dataset, leading to out-of-memory on a single NVIDIA
RTX 4090 GPU. While reducing the number of random poses to about 1/8 could potentially resolve
this issue, such a reduction is likely to adversely affect the performance, so we simply exclude this
method from our experiments.

FreeNeRF. We use the official implementation of FreeNeRF (Yang et al., 2023 and follow most of
the default configuration, while the batch size or other hyperparameters might be adjusted due to the
GPU memory issue. For the LLFF dataset, the training requires roughly 1.5 hours per scene with
69,769 iterations and a batch size of 2,048. For the DTU dataset, the training requires about 1 hour
per scene with 43,945 iterations and a batch size of 2,048.

SparseNeRF. We use the official implementation of SparseNeRF. (Wang et al.,|2023) and follow
most of the default configuration, while the batch size or other hyperparameters might be adjusted
due to the GPU memory issue. For the LLFF dataset, the training requires roughly 1 hour per scene
with 70,000 iterations and a batch size of 512. For the DTU dataset, the training requires about 30
minutes per scene with 70,000 iterations and a batch size of 256.

SimpleNeRF. We use the official implementation of SimpleNeRF (Somraj et al.l 2023) and follow
most of the default configuration, while the batch size or other hyperparameters might be adjusted
due to the GPU memory issue. For the LLFF dataset, we use the model weights released by the
author directly. Since there’s no official implemented dataloader for the DTU dataset, we use the
dataloader and configuration from ViP-NeRF (Somraj & Soundararajan, 2023)), which requires about
1.38 hours per scene with 25,000 iterations and batch size of 2,048.

VGOS. We furter provide VGOS result. We use the official implementation of VGOS (Sun et al.,
2023) and follow most of the default configuration, while the batch size or other hyperparameters
might be adjusted due to the GPU memory issue. Note that VGOS samples random poses directly
from the entire dataset, which is unreasonable under the few-shot setting, so we replace the sampling
with the interpolation from training poses implemented in the official repo. For the LLFF dataset, the
training requires roughly 5 minutes per scene with 9,000 iterations and a batch size of 16,384. For the
DTU dataset, the training requires about 3 minutes per scene with 9,000 iterations and a batch size of
16,384. Note that VGOS seems invalid on the DTU dataset (Fig.[TT)) and they does not evaluate the
DTU dataset in their paper.

GeCoNeRF. As mentioned in GeCoNeRF (Kwak et al., [2023))’s official github repo, their current
code is unexecutable. To complete our experiment, we still try our best to implement their method
based on the code provided. For the LLFF dataset, the training requires roughly 4 hours per scene
with 85,000 iterations and a batch size of 1024. It is important to note that we utilized 2 GPUs for
training this method, so the training time reported in our paper might be shorter than what is actually
required.

ZeroRF. We use the official implementation of ZeroRF (Shi et al., 2024) and follow most of the
default configurations. For the LLFF dataset, ZeroRF does not provide the dataloader for the LLFF,
and their paper mentions its inability to be used for unbounded scenes. Therefore, our primary
testing was conducted on the DTU dataset. In the DTU dataset, the original implementation of
ZeroRF necessitates masking out the background area of the input frame before training, which is
incompatible with our evaluation benchmark. Consequently, we trained it without object masks.
Training requires approximately 25 minutes per scene with 10,000 iterations and a batch size of 24,

FSGS. We use the official implementation of FSGS (Zhu et al.| [2023) and follow most of the
default configurations. For the LLFF dataset, we adjust the input views to match the settings used in
ViP-NeRF, which differs from the original FSGS paper. Training takes approximately 25 minutes per
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Table 5: Comparison of the time complexity.

Method | MFLOPs / pixel |
FreeNeRF (Yang et al.;2023) 288.57
ViP-NeRF (Somraj & Soundararajan, 2023) 149.26
SimpleNeRF (Somraj et al.l|2023) 303.82
SparseNeRF (Wang et al.| [2023) 287.92
Ours 13.77

Table 6: Quantitative results on the LLFF (Mildenhall et al.,[2019a) dataset with two input
views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene Fern Flower  Fortress Horns Leaves  Orchids Room Trex Average
Method
0.51 0.43 0.37 0.51 0.35 0.45 0.38 0.42 0.43
RegNeRF (Niemeyer et al.}[2022) 0.45 0.51 0.46 0.42 0.37 0.30 0.74 0.54 0.49
15.8 17.0 20.6 15.9 14.5 13.9 18.7 16.7 16.9
0.50 0.43 0.30 0.49 0.47 0.43 0.35 0.41 0.42
DS-NeRF (Deng et al.|[2022) 0.46 0.44 0.65 0.49 0.24 0.32 0.76 0.53 0.51
16.4 16.1 23.0 16.6 124 13.7 18.9 15.7 16.9
0.44 0.46 0.17 0.46 0.52 0.41 0.30 0.43 0.39
DDP-NeRF (Roessle et al.|2022) 0.49 0.45 0.77 0.52 0.23 0.38 0.76 0.54 0.54
17.2 16.2 227 17.1 12.6 15.1 18.7 15.7 17.2
0.46 0.38 0.33 0.43 0.36 0.42 0.34 0.33 0.38
FreeNeRF (Yang et al.|[2023) 0.49 0.55 0.53 0.53 0.38 0.35 0.76 0.60 0.54
17.1 17.6 21.3 17.1 14.4 14.1 18.3 18.1 17.6
0.45 0.42 0.21 0.39 0.46 0.40 0.36 0.38 0.37
ViP-NeRF (Somraj & Soundararajan|[2023) 0.45 0.43 0.71 0.54 0.21 0.36 0.72 0.54 0.52
16.2 14.9 22.6 17.1 11.7 14.2 17.7 15.9 16.7
0.51 0.43 0.25 0.42 0.44 0.41 0.35 0.39 0.39
SimpleNeRF (Somraj et al.;[2023) 0.50 0.53 0.67 0.54 0.30 0.37 0.77 0.58 0.55
17.0 16.9 225 17.1 13.5 14.7 19.5 16.8 17.6
0.48 0.44 0.37 0.47 0.36 0.42 0.38 0.40 0.42
VGOS (Sun et al.|[2023) 0.51 0.55 0.53 0.55 0.38 0.40 0.77 0.59 0.55
16.5 17.5 19.4 15.7 14.7 14.4 18.8 16.0 16.7
0.56 0.49 0.50 0.61 0.49 0.51 0.54 0.49 0.52
GeCoNeRF (Kwak et al.;|2023) 0.47 0.49 0.43 0.41 0.28 0.29 0.68 0.52 0.45
16.4 16.9 17.9 154 133 13.4 17.3 16.1 15.8
0.48 0.55 0.40 0.52 0.52 0.55 0.29 0.37 0.45
SparseNeRF (Wang et al.||2023) 0.52 0.41 0.61 0.51 0.244 0.24 0.82 0.62 0.52
18.2 15.4 21.7 17.4 13.4 13.3 22.8 18.6 18.0
0.46 0.45 0.35 0.42 0.33 0.41 0.38 0.45 0.41
FSGS (Zhu et al.;|2023) 0.40 0.38 0.47 0.42 0.34 0.24 0.72 0.46 0.45
15.0 14.8 16.9 16.2 14.2 12.6 17.6 13.8 153
0.41 0.41 0.27 0.36 0.32 0.42 0.34 0.32 0.35
FrugalNeRF (Ours) 0.47 0.50 0.54 0.55 0.41 0.33 0.75 0.61 0.54
17.4 17.5 20.3 18.5 15.5 15.0 19.2 18.6 18.1
0.40 0.40 0.27 0.37 0.33 0.39 0.32 0.35 0.35
FrugalNeRF w/ mono. depth (Ours) 0.46 0.53 0.54 0.54 0.41 0.37 0.76 0.59 0.54
17.7 17.9 20.9 18.5 15.4 15.6 19.6 18.2 18.3

scene with 10,000 iterations. Since there is no official dataloader for the DTU dataset, we convert the
DTU camera poses to the LLFF format and use the default LLFF configuration. Training on the DTU
dataset requires around 20 minutes per scene with 10,000 iterations.

Time complexity. To verify the efficiency of our method, besides comparing the training time of
various methods, we also calculated the MFLOPs per pixel in Tab. [5]

A.7 COMPLETE QUANTITATIVE EVALUATIONS

LLFF dataset. We show all 8 scenes of the quantitative comparisons with two, three, and four
input views on the LLFF dataset in Tab.[6] Tab.[7] and Tab.[8] respectively.

DTU dataset. We show all 12 scenes of the quantitative comparisons with two, three, and four
input views on the LLFF dataset in Tab.[9} Tab.[I0] and Tab.[TT] respectively.
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Table 7: Quantitative results on the LLFF (Mildenhall et al., 2019a) dataset with three input
views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene Fern Flower  Fortress Horns Leaves  Orchids Room Trex Average
Method
0.47 0.27 0.31 0.44 0.39 0.44 0.25 0.36 0.36
RegNeRF (Niemeyer et al.|2022) 0.48 0.58 0.64 0.53 0.37 0.31 0.81 0.63 0.57
17.9 19.6 22.7 18.2 14.6 14.2 21.0 184 18.7
0.47 0.25 0.25 0.47 0.50 0.45 0.22 0.37 0.36
DS-NeRF (Deng et al.|[2022) 0.52 0.66 0.72 0.52 0.25 0.33 0.84 0.59 0.58
18.5 213 24.8 17.5 12.6 14.1 23.0 17.1 19.0
0.47 0.29 0.20 0.48 0.52 0.45 0.32 0.42 0.39
DDP-NeRF (Roessle et al.||2022) 0.53 0.63 0.75 0.53 0.24 0.35 0.76 0.54 0.56
18.5 20.2 22.1 17.4 12.8 15.1 18.3 16.0 17.7
0.40 0.28 0.32 0.41 0.40 0.41 0.22 0.33 0.34
FreeNeRF (Yang et al.|[2023) 0.54 0.61 0.60 0.58 0.40 0.37 0.85 0.64 0.60
189 20.7 22.0 18.7 15.0 14.7 22.6 19.0 19.3
0.51 0.24 0.19 0.42 0.44 0.41 0.27 0.32 0.34
ViP-NeRF (Somraj & Soundararajan|[2023) 0.49 0.65 0.76 0.57 0.25 0.34 0.81 0.62 0.59
17.3 20.8 245 18.2 124 14.2 21.7 18.1 18.9
0.43 0.24 0.17 0.42 0.42 0.39 0.26 0.34 0.33
SimpleNeRF (Somraj et al.|[2023) 0.52 0.66 0.78 0.57 0.38 0.38 0.83 0.66 0.62
182 20.7 24.7 18.4 14.8 15.0 22.0 18.9 19.5
0.40 0.31 0.33 0.46 0.40 0.41 0.31 0.35 0.37
VGOS (Sun et al.|[2023) 0.58 0.61 0.69 0.58 0.40 0.40 0.83 0.66 0.61
19.0 20.0 23.0 17.0 15.0 152 21.8 18.0 18.8
0.57 0.36 0.45 0.60 0.50 0.51 0.34 0.43 0.47
GeCoNeRF (Kwak et al..|2023) 0.46 0.57 0.53 0.44 0.32 0.30 0.80 0.59 0.50
17.0 19.5 20.6 15.8 13.8 13.6 21.1 18.1 17.4
0.43 0.33 0.37 0.50 0.35 0.41 0.28 0.31 0.37
SparseNeRF (Wang et al.{[2023) 0.57 0.60 0.59 0.53 0.45 0.37 0.81 0.67 0.59
19.6 19.8 23.0 18.4 16.5 15.2 215 20.1 19.5
0.48 0.30 0.15 0.36 0.26 0.35 0.28 0.28 0.30
FSGS (Zhu et al.|[2023) 0.55 0.68 0.72 0.65 0.28 0.37 0.84 0.62 0.61
17.9 215 239 19.4 133 14.1 22.6 17.4 19.2
0.39 0.32 0.24 0.34 0.37 0.42 0.27 0.29 0.32
FrugalNeRF (Ours) 0.50 0.55 0.63 0.59 0.39 0.35 0.81 0.66 0.59
182 18.8 234 19.3 15.5 153 222 19.3 19.4
0.40 0.23 0.22 0.33 0.37 0.40 0.25 0.29 0.30
FrugalNeRF w/ mono. depth (Ours) 0.49 0.63 0.69 0.60 0.39 0.36 0.83 0.67 0.61
18.6 214 235 19.0 154 15.7 223 20.0 19.9

RealEstate-10K dataset. We show all 12 scenes of the quantitative comparisons with two, three,
and four input views on the LLFF dataset in Tab.[T2] Tab.[T3] Tab.[T4] and Tab.

A.8 ADDITIONAL VISUAL COMPARISONS

LLFF dataset. We show additional visual comparisons on the LLFF dataset with two input views

in Fig. [I0]

DTU dataset. We show additional visual comparisons on the DTU dataset with two input views

in Fig.[T1]

RealEstate-10K dataset. We further present the qualitative comparisons of novel view synthesis
on the RealEstate- 10K dataset with two input views in Fig.[I3] Compared to SimpleNeRF (Somraj
et al.| 2023), which requires hours of training, FrugalNeRF needs only less than 20 minutes and can
render comparable results, demonstrating FrugalNeRF’s effectiveness in more in-the-wild scenes.
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Table 8: Quantitative results on the LLFF (Mildenhall et al., 2019a)) dataset with four input
views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene Fern Flower  Fortress Horns Leaves  Orchids Room Trex Average
Method
0.35 0.29 0.37 0.34 0.32 0.43 0.19 0.32 0.32
RegNeRF (Niemeyer et al.}[2022) 0.63 0.64 0.55 0.64 0.44 0.34 0.87 0.66 0.62
20.8 19.8 224 20.1 15.9 14.8 23.9 18.9 19.9
0.35 0.28 0.31 0.41 0.41 0.41 0.16 0.39 0.34
DS-NeRF (Deng et al.|[2022) 0.63 0.64 0.66 0.59 0.39 0.38 0.89 0.59 0.61
209 20.6 24.1 19.5 158 15.2 25.6 17.1 20.1
0.40 0.30 0.18 0.42 0.45 0.42 0.26 0.39 0.35
DDP-NeRF (Roessle et al.|2022) 0.60 0.63 0.73 0.59 0.37 0.41 0.82 0.60 0.61
20.1 20.0 234 19.3 15.1 15.8 20.8 17.3 19.2
0.37 0.30 0.35 0.37 0.35 0.42 0.19 0.31 0.33
FreeNeRF (Yang et al.|[2023) 0.64 0.64 0.60 0.63 0.47 0.37 0.88 0.68 0.63
21.1 20.5 232 20.4 16.6 14.9 24.8 19.6 20.5
0.39 0.27 0.25 0.38 0.36 0.40 0.23 0.32 0.32
ViP-NeRF (Somraj & Soundararajan,[2023) 0.58 0.63 0.70 0.60 0.40 0.39 0.85 0.64 0.62
18.2 19.5 233 19.0 14.8 14.8 232 18.6 19.3
0.33 0.27 0.28 0.38 0.35 0.36 0.19 0.32 0.31
SimpleNeRF (Somraj et al.|[2023) 0.65 0.67 0.69 0.63 0.46 0.42 0.88 0.68 0.65
21.1 20.8 243 19.7 16.3 15.7 243 19.3 20.4
0.40 0.35 0.40 0.43 0.34 0.41 0.28 0.35 0.37
VGOS (Sun et al.|[2023) 0.64 0.63 0.64 0.62 0.49 0.43 0.86 0.68 0.64
19.6 20.3 227 18.6 16.6 15.8 23.6 18.7 19.7
0.45 0.36 0.44 0.47 0.44 0.51 0.27 0.40 0.42
GeCoNeRF (Kwak et al.;|2023) 0.61 0.61 0.51 0.59 0.40 0.30 0.85 0.63 0.56
20.5 19.9 21.2 19.6 15.5 139 23.5 19.0 19.1
0.42 0.32 0.31 0.39 0.36 0.42 0.25 0.29 0.34
SparseNeRF (Wang et al.|2023) 0.62 0.64 0.70 0.63 0.49 0.39 0.85 0.70 0.65
21.4 20.7 24.6 20.4 17.5 15.7 235 20.9 20.9
0.26 0.22 0.17 0.24 0.22 0.28 0.17 0.23 0.22
FSGS (Zhu et al.{[2023) 0.67 0.65 0.65 0.70 0.46 0.45 0.88 0.71 0.66
20.5 20.2 22.6 209 15.6 15.4 23.7 19.2 20.1
0.30 0.28 0.24 0.30 0.26 0.38 0.19 0.27 0.27
FrugalNeRF (Ours) 0.63 0.64 0.60 0.66 0.52 0.41 0.87 0.72 0.65
21.1 20.8 23.6 21.6 16.9 16.3 24.2 19.7 20.9
0.30 0.27 0.25 0.28 0.24 0.37 0.18 0.27 0.26
FrugalNeRF w/ mono. depth (Ours) 0.64 0.65 0.64 0.68 0.53 0.41 0.88 0.71 0.66
21.5 20.9 23.9 21.1 17.2 16.3 24.1 19.6 20.9

Table 9: Quantitative results on the DTU Jensen et al. (2014) dataset with two input views. The
three rows show LPIPS, SSIM and PSNR scores, respectively.

Scene | Scan21  Scan31 Scan34 Scan38 Scand40 Scan4l Scan45 Scan55 Scan63 Scan82 Scanl03 Scanll4  Average
Method
0.33 0.18 0.31 0.34 0.41 0.35 0.19 0.11 0.07 0.08 0.17 0.12 0.22
FreeNeRF|Yang et al. (2023} 0.51 0.75 0.63 0.61 0.58 0.63 0.76 0.80 0.93 0.90 0.82 0.85 0.73
13.21 19.33 14.66 16.76 11.42 14.50 18.66 21.62 23.19 21.56 17.55 24.19 18.05
0.37 0.24 0.27 0.38 0.31 0.23 031 0.21 0.09 0.12 0.18 0.17 0.24
ViP-NeRF|Somraj & Soundararajan (2023 0.26 0.49 0.52 0.43 0.47 0.58 0.37 0.39 0.63 0.57 0.65 0.49 0.49
11.31 13.57 17.13 13.25 15.08 17.81 11.35 16.92 16.71 13.37 16.15 16.24 14.91
0.23 0.32 0.23 0.21 0.24 0.19 0.28 0.22 0.30 0.27 0.19 0.27 0.25
SimpleNeRF|Somraj et al. |(2023] 0.73 0.71 0.76 0.77 0.77 0.84 0.70 0.88 0.75 0.79 0.81 0.82 0.79
12.71 11.91 14.39 14.50 13.76 15.57 11.88 19.58 12.73 14.37 16.64 14.86 14.41
0.28 0.36 0.33 0.31 0.30 0.27 0.37 0.15 0.49 0.45 0.34 0.18 0.32
VGOS|Sun et al. (2023} 0.69 0.67 0.69 0.71 0.73 0.78 0.64 0.90 0.56 0.57 0.73 0.85 0.71
9.69 8.97 9.75 10.27 8.79 9.75 7.54 19.24 517 5.63 11.29 15.81 10.16
0.39 0.22 0.26 0.33 0.24 0.21 0.20 0.14 0.08 0.08 0.15 0.13 0.20
SparseNeRFWang et al. (2023} 0.45 0.69 0.70 0.60 0.72 0.76 0.75 0.78 0.92 091 0.84 0.85 0.75
14.25 17.95  20.65 17.93 1633 20.13 1822 2229 2070  23.46 21.70 24.40 19.83
045 0.27 035 0.44 0.29 0.28 0.39 0.25 0.13 0.18 0.25 0.29 0.30
ZeroRF Shi et al. (2024 0.30 0.61 0.50 0.39 0.59 0.63 0.49 0.68 0.88 0.82 0.73 0.63 0.60
10.99 14.40 13.93 12.16 15.41 16.73 11.24 17.08 20.39 15.36 16.23 14.12 14.84
0.25 0.16 0.20 0.24 0.24 0.17 0.16 0.13 0.09 0.07 0.13 0.11 0.16
FrugalNeRF (Ours) 0.57 0.73 0.73 0.64 0.73 0.78 0.77 0.86 0.92 0.92 0.85 0.89 0.78
14.67 17.86 19.47 17.66 14.51 19.74 16.94 24.87 21.21 22.67 21.45 25.60 19.72
0.25 0.15 0.19 0.21 0.23 0.16 0.15 0.12 0.08 0.07 0.10 0.10 0.15
FrugalNeRF w/ mono. depth (Ours) 0.56 0.73 0.75 0.68 0.74 0.79 0.78 0.86 0.93 0.91 0.88 0.90 0.79
14.14 18.46 21.27 19.40 15.56 20.53 18.05 25.65 23.46 22.72 23.76 26.25 20.77
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Table 10: Quantitative results on the DTU (Jensen et al.,[2014) dataset with three input views.
The three rows show LPIPS, SSIM and PSNR scores, respectively.

Scene | Scan2l  Scan31 Scan34 Scan38 Scand0 Scan4l Scan45 Scan55 Scan63 Scan82 Scanl03 Scanll4  Average
Method
15.93 19.53 23.23 19.88 1838 2283  21.07 2288 2528  26.39 26.68 26.68 22.40
FreeNeRF (Yang et al.[2023] 0.58 0.76 0.80 0.70 0.80 0.84 0.84 0.80 0.94 0.94 0.92 0.90 0.82
15.93 19.53 23.23 19.88 18.38 22.83 21.07 22.88 25.28 26.39 26.68 26.68 22.40
0.34 0.18 0.26 0.32 0.32 0.28 0.22 0.22 0.09 0.11 0.12 0.12 0.22
ViP-NeRF (Somraj & Soundararajan}2023} | 0.33 0.58 0.58 0.53 0.47 0.55 0.50 0.43 0.66 0.65 0.77 0.60 0.55
12.97 16.58 18.63 16.12 14.82 16.25 14.14 18.04 17.67 14.75 20.85 18.65 16.62
0.22 0.32 0.24 0.24 0.28 0.27 0.23 0.15 0.31 0.36 0.17 0.25 0.25
SimpleNeRF (Somraj et al.|2023) 0.74 0.68 0.74 0.75 0.75 0.77 0.79 0.90 0.77 0.67 0.84 0.81 0.77
12.90 11.29 14.17 13.42 11.44 12.23 15.31 20.41 13.97 10.93 17.41 14.66 14.01
0.28 0.38 0.29 0.26 0.28 0.27 0.38 0.16 0.51 0.47 0.29 0.15 0.31
VGOS (Sun et al.|2023} 0.69 0.65 0.71 0.76 0.74 0.76 0.62 0.90 0.58 0.58 0.75 0.87 0.72
9.84 8.34 10.50 11.91 8.51 9.14 727 18.86 5.38 5.80 11.81 16.74 10.34
0.23 0.12 0.15 0.37 0.14 0.14 0.12 0.14 0.04 0.04 0.11 0.08 0.14
SparseNeRF (Wang et al.|[2023] 0.63 0.81 0.79 0.59 0.84 0.84 0.84 0.84 0.96 0.95 0.90 0.92 0.83
17.14 21.11 24.88 12.36 22.25 23.05 20.85 19.75 27.52 28.98 23.74 28.00 2247
0.45 0.36 0.41 0.45 0.29 0.30 0.33 0.27 0.19 0.19 0.24 0.30 0.31
ZeroRF (Shi et al.}2024) 0.33 0.55 0.47 0.41 0.65 0.68 0.57 0.68 0.84 0.83 0.74 0.63 0.61
11.55 12.43 11.81 12.84 15.66 16.01 12.77 16.50 17.81 15.34 16.64 14.25 14.47
0.19 0.14 0.18 0.22 0.21 0.13 0.13 0.12 0.06 0.05 0.10 0.11 0.14
FrugalNeRF (Ours) 0.69 0.76 0.77 0.69 0.79 0.84 0.82 0.89 0.94 0.94 0.89 0.90 0.83
17.38 19.06 22.38 18.96 17.77 24.01 20.35 26.11 24.57 25.85 25.43 27.28 2243
0.19 0.13 0.17 0.21 0.20 0.13 0.13 0.12 0.06 0.05 0.08 0.10 0.13
FrugalNeRF w/ mono. depth (Ours) 0.68 0.78 0.78 0.73 0.79 0.84 0.82 0.88 0.95 0.93 0.91 091 0.83
17.14 19.89  23.17 2033 17.18 2371 20.59 2660 2552  25.04 27.84 27.10 22.84

Table 11: Quantitative results on the DTU (Jensen et al., 2014) dataset with four input views.
The three rows show LPIPS, SSIM and PSNR scores, respectively.

Scene | Scan2l  Scan31 Scan34 Scan38 Scand40 Scan4l Scan45 Scan55 Scan63 Scan82 Scanl03 Scanll4  Average
Method
0.18 0.14 0.13 0.24 0.14 0.12 0.09 0.06 0.04 0.03 0.08 0.07 0.11
FreeNeRF (Yang et al.|2023] 0.72 0.81 0.83 0.72 0.85 0.86 0.86 0.92 0.96 0.96 0.93 0.93 0.86
18.72 21.29 2597 19.43 22.88 25.59 22.39 28.63 27.35 31.51 27.30 28.65 24.98
0.33 0.19 0.21 0.31 0.35 0.24 0.23 0.24 0.08 0.08 0.10 0.12 0.21
ViP-NeRF (Somraj & Soundararajan}2023} | 0.39 0.61 0.59 0.59 0.45 0.61 0.52 0.38 0.67 0.67 0.76 0.64 0.57
14.24 17.22 19.44 18.19 15.76 18.84 15.57 16.62 17.19 16.45 22.67 19.50 17.64
0.27 0.28 0.23 0.25 0.32 0.27 0.25 0.21 0.27 0.27 0.18 0.29 0.26
SimpleNeRF (Somraj et al.}[2023) 0.71 0.73 0.78 0.75 0.72 0.76 0.78 0.88 0.82 0.80 0.84 0.81 0.78
11.81 12.95 14.72 1271 10.42 11.67 14.12 18.84 14.05 14.43 16.87 14.23 13.90
0.27 0.35 0.31 0.28 0.27 0.27 0.37 0.16 0.43 0.42 0.28 0.18 0.30
VGOS (Sun et al.|2023} 0.73 0.69 0.71 0.74 0.76 0.78 0.64 0.90 0.66 0.66 0.75 0.85 0.74
11.09 9.53 10.57 11.15 9.12 10.00 8.10 19.53 6.55 7.14 12.69 15.65 10.93
0.16 0.14 0.15 0.21 0.21 0.14 0.10 0.09 0.04 0.05 0.09 0.06 0.12
SparseNeRF (Wang et al.{2023] 0.72 0.80 0.85 0.74 0.80 0.86 0.86 0.88 0.95 0.95 0.93 0.93 0.86
18.60 20.99 25.87 20.92 19.45 24.81 22.15 26.37 2620  26.72 28.10 28.19 24.03
0.43 0.32 0.28 0.44 0.28 0.25 0.20 0.29 0.17 0.14 0.26 0.32 0.28
ZeroRF (Shi et al. 2024} 0.36 0.62 0.66 0.47 0.68 0.73 0.73 0.67 0.87 0.87 0.72 0.62 0.67
11.75 13.48 16.47 13.53 16.87 17.26 16.48 15.92 19.33 19.12 15.18 13.36 15.73
0.17 0.12 0.16 0.17 0.19 0.12 0.12 0.12 0.05 0.04 0.07 0.10 0.12
FrugalNeRF (Ours) 0.73 0.81 0.81 0.79 0.81 0.85 0.85 0.89 0.95 0.95 0.93 0.92 0.86
19.21 21.84 24.99 23.08 19.47 25.64 21.59 27.31 26.27 27.26 29.27 28.21 24.51
0.17 0.12 0.15 0.17 0.19 0.12 0.11 0.12 0.05 0.03 0.07 0.09 0.12
FrugalNeRF w/ mono. depth (Ours) 0.73 0.81 0.82 0.80 0.82 0.86 0.86 0.90 0.96 0.95 0.93 0.92 0.86
19.07 21.65 25.82 23.13 18.96 25.55 2221 28.02 26.87 28.28 29.27 28.92 24.81

Table 12: Quantitative results on the RealEstate-10K Zhou et al.|(2018) dataset. For SimpleN-
eRF|Somraj et al.| (2023) and ViP-NeRF Somraj & Soundararajan| (2023)), we calculate metrics using
testing data provided in their respective clouds. As for other models, we rely on the scores provided
in the SimpleNeRF paper.

Learned 2-view 3-view 4-view Training
Method Venue priors PSNRT SSIMT LPIPS| | PSNRT SSIM1 LPIPS| | PSNRT SSIM{ LPIPS| | time
RegNeRF|Niemeyer et al. |(2022 CVPR 2022 normalizing flow | 1687  0.59 045 1773 061 0.4 1825 0.62 044 | 235hrs
DS-NeRF|Deng et al. {2022 CVPR 2022 - 2544 079 0.32 2594 079 032 2628 079 033 | 35hrs
DDP-NeRF|Roessle et al.[2022] CVPR 2022 depth completion | 26,15 0.85 0.15 2592 085 0.16 2648 086 0.16 | 3.5hrs
FreeNeRF|Yang et al. (2023 CVPR 2023 - 1450 054 0.55 1512 057 0.54 1625 0.60 054 | L5hrs
ViP-NeRF|Somraj & Soundararajan{2023] |  SIGGRAPH 2023 - 2955 087 0.09 2975 088 0.1 3047 088 0.11 | 13.5hrs
SimpleNeRF{Somraj ct al. (2023 SIGGRAPH Asia 2023 - 3030 088 0.07 3140 089 0.08 3173 089 0.09 | 95hrs
FrugalNeRF (Ours) - - 3012 087 0.07 31.04 089 0.06 3178 090 0.06 | 20 mins
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Table 13: Quantitative results on the RealEstate-10K Zhou et al.| (2018) dataset with two input

views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene 0 1 3 4 6 Average
Method
0.35 0.32 0.49 0.54 0.54 0.45
RegNeRF Niemeyer et al.|(2022) 0.60 0.83 0.30 0.61 0.59 0.59
16.51 21.04 13.88 17.13 15.79 16.87
0.26 0.27 0.51 0.24 0.31 0.32
DS-NeRF|Deng et al.|(2022) 0.81 0.91 0.50 0.88 0.83 0.79
24.68 27.93 19.24 29.18 26.18 25.44
0.11 0.12 0.34 0.06 0.11 0.15
DDP-NeRF|Roessle et al. (2022} 0.89 0.95 0.56 0.94 0.92 0.85
25.90 2587 18.97 32.01 28.00 26.15
0.45 0.50 0.64 0.67 0.48 0.55
FreeNeRF|Yang et al. (2023} 0.54 0.77 0.28 0.49 0.58 0.53
15.00 17.00 12.15 12.84 15.50 14.50
0.05 0.05 0.22 0.04 0.08 0.09
ViP-NeRF|Somraj & Soundararajan (2023} 0.94 0.97 0.56 0.95 0.93 0.87
30.41 32.03 18.96 34.74 31.61 29.55
0.04 0.04 0.21 0.03 0.05 0.07
SimpleNeRF|Somraj et al.|(2023} 0.95 0.97 0.56 0.95 0.96 0.88
31.89 33.8 18.65 34.93 32.24 30.30
0.04 0.04 0.20 0.04 0.05 0.07
FrugalNeRF (Ours) 0.94 0.97 0.56 0.95 0.95 0.87
30.13 34.69 18.35 35.00 3245 30.12

Table 14: Quantitative results on the RealEstate-10K [Zhou et al.|(2018) dataset with three input

views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene 0 1 3 4 6 Average
Method
0.40 0.32 0.53 0.56 0.37 0.44
RegNeRF|Niemeyer et al.|(2022) 0.60 0.82 0.29 0.62 0.71 0.61
15.99 20.89 13.87 17.60 20.28 17.73
0.24 0.26 0.53 0.26 0.31 0.32
DS-NeRF|Deng et al.|(2022) 0.83 0.91 0.49 0.87 0.85 0.79
25.24 28.68 19.14 29.08 27.58 25.94
0.11 0.11 0.38 0.06 0.13 0.16
DDP-NeRF|Roessle et al.|(2022) 0.89 0.96 0.55 0.94 0.92 0.85
25.27 26.67 18.81 31.84 26.99 25.92
0.54 0.51 0.64 0.59 0.42 0.54
FreeNeRF|Yang et al.|(2023} 0.53 0.75 0.29 0.61 0.66 0.57
13.79 15.59 12.45 15.72 18.05 15.12
0.06 0.10 0.26 0.04 0.08 0.11
ViP-NeRF|Somraj & Soundararajan [(2023] 0.94 0.95 0.60 0.95 0.95 0.88
30.66 29.89 19.59 35.17 3343 29.75
0.04 0.04 0.23 0.03 0.08 0.08
SimpleNeRF|Somraj et al.|(2023} 0.95 0.98 0.61 0.95 0.95 0.89
32.23 36.44 19.65 35.85 32.81 31.40
0.04 0.03 0.18 0.03 0.04 0.06
FrugalNeRF (Ours) 0.95 0.98 0.61 0.95 0.96 0.89
31.11 3539 18.85 3578 34.07 31.04

Table 15: Quantitative results on the RealEstate-10K Zhou et al.|(2018) dataset with four input

views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene 0 1 3 4 6 Average
Method
0.43 0.35 0.59 0.56 0.27 0.44
RegNeRF|Niemeyer et al. (2022} 0.59 0.83 0.29 0.65 0.75 0.62
16.09 20.98 1391 18.48 21.78 18.25
0.27 0.26 0.56 0.25 0.31 0.33
DS-NeRF|Deng et al. [(2022] 0.82 0.92 0.50 0.87 0.85 0.79
25.40 29.40 19.64 29.26 27.69 26.28
0.12 0.08 0.39 0.06 0.13 0.16
DDP-NeRF|Roessle et al. (2022} 0.89 0.96 0.58 0.93 0.91 0.86
25.14 28.57 19.57 31.73 27.36 26.48
0.56 0.48 0.65 0.58 0.39 0.53
FreeNeRF|Yang et al.|(2023) 0.53 0.80 0.31 0.66 0.69 0.60
13.84 17.93 12.69 17.29 19.48 16.25
0.06 0.08 0.27 0.05 0.09 0.11
ViP-NeRF|Somraj & Soundararajan|(2023) 0.94 0.96 0.62 0.94 0.95 0.88
31.64 3224 20.35 34.84 33.28 30.47
0.04 0.05 0.24 0.03 0.09 0.09
SimpleNeRF|Somraj et al.|(2023) 0.96 0.97 0.64 0.95 0.94 0.89
32.95 36.44 20.52 35.97 32.77 31.73
0.04 0.03 0.17 0.03 0.05 0.06
FrugalNeRF (Ours) 0.96 0.98 0.64 0.95 0.96 0.90
32.29 36.06 19.81 36.54 34.22 31.78
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SparseNeRF FSGS

Figure 10: More qualitative comparisons on the LLFF (Mildenhall et al.,[2019a) dataset with
two input views. FrugalNeRF achieves better synthesis quality in different scenes.
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FrugalNeRF (Ours) FrugalNeRF (w/ mono. depth) SimpleNeRF SparseNeRF (w/ mono. depth) croRF FSGS (w/ mono. depth) Ground Truth

Figure 11: More qualitative comparisons on the DTU (Jensen et al., 2014) dataset with two
input views. FrugalNeRF achieves better synthesis quality in different scenes.

i i ‘ : !
FrugalNeRF (Ours) ViP-NeRF SimpleNeRF Ground Truth

Figure 12: Qualitative comparisons on the RealEstate-10K [Zhou et al. (2018) dataset with two
input views. Compared to Vip-NeRF [Somraj & Soundararajan| (2023) and SimpleNeRF [Somraj et al.|
(2023), our FrugalNeRF renders sharper details in the scene.
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