
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FRUGALNERF: FAST CONVERGENCE FOR FEW-SHOT
NOVEL VIEW SYNTHESIS WITHOUT LEARNED PRIORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Radiance Fields (NeRF) face significant challenges in few-shot scenarios,
particularly due to overfitting and long training times for high-fidelity rendering.
While current approaches like FreeNeRF and SparseNeRF use frequency regular-
ization or pre-trained priors, they can be limited by complex scheduling or potential
biases. We introduce FrugalNeRF, a novel few-shot NeRF framework that leverages
weight-sharing voxels across multiple scales to efficiently represent scene details.
Our key contribution is a cross-scale geometric adaptation training scheme that
selects pseudo ground truth depth based on reprojection error from both training
and novel views across scales. This guides training without relying on externally
learned priors, allowing FrugalNeRF to fully utilize available data. While not
dependent on pre-trained priors, FrugalNeRF can optionally integrate them for
enhanced quality without affecting convergence speed. Our method generalizes
effectively across diverse scenes and converges more rapidly than state-of-the-
art approaches. Our experiments on standard LLFF, DTU, and RealEstate-10K
datasets demonstrate that FrugalNeRF outperforms existing few-shot NeRF models,
including those using pre-trained priors, while significantly reducing training time,
making it a practical solution for efficient and accurate 3D scene reconstruction.

1 INTRODUCTION

Few-shot novel view synthesis, generating new views from limited imagery, poses a substantial
challenge in computer vision. While Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) have
revolutionized high-fidelity 3D scene recreation, they demand considerable computational resources
and time, often relying on external datasets for pre-training. This paper introduces FrugalNeRF, a

FSGSSparseNeRFSimpleNeRFFrugalNeRF (Ours)

Figure 1: Comparison of novel view synthesis methods trained on two views. SimpleNeRF (Som-
raj et al., 2023) suffers from long training times, SparseNeRF (Wang et al., 2023) produces blurry
results, and FSGS (Zhu et al., 2023) quality drops with few input views. Our FrugalNeRF achieves
rapid, robust voxel training without learned priors, demonstrating superior efficiency and realistic
synthesis. It can also integrate pre-trained priors for enhanced quality. Green: methods without
learned priors. Orange: with learned priors

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

P.E.(𝐱, 𝐝) (𝐜, 𝜎)

Training stepsFr
eq

ue
nc

y

MLP

Training steps

Vo
xe

l s
ize

(𝐱, 𝐝)

(𝐱, 𝐝)

Color Pre-trained normalizing
flow model

Depth Pre-trained depth
model or depth sensor

Weight-
sharing
voxels

Color

Depth

Pseudo-GT

Cross-scale
Low freq.

High freq.

Geometric adaptation

(a) Frequency regularization (b) Voxel upsampling (c) Pre-trained models (d) FrugalNeRF (Ours)

Figure 2: Comparisons between few-shot NeRF approaches. (a) Frequency regularization gradually
increases the visibility of high-frequency signals of positional encoding, but the training speed is
slow. (b) Replacing the MLPs with voxels and incorporating them with gradual voxel upsampling
achieves similar frequency regularization but cannot generalize well. (c) Some approaches employ
pre-trained models to supervise the rendered color or depth patches. (d) Our FrugalNeRF, leveraging
weight-sharing voxels across scales for various frequencies representation, enhanced by a cross-scale
geometric adaptation for efficient supervision.

novel approach to accelerate NeRF training in few-shot scenarios. It fully leverages the training data
without relying on external priors and markedly reduces computational overhead.

Traditional NeRF methods, despite producing high-quality outputs, suffer from long training time and
rely on frequency regularization (Yang et al., 2023) via multi-layer perceptrons (MLPs) and positional
encoding, slowing convergence (Fig. 2 (a)). Alternatives like voxel upsampling (Fig. 2 (b)) attempt
to overcome these challenges but struggle with generalizing to varied scenes (Chen et al., 2022a;
Sun et al., 2022; 2023). Furthermore, using pre-trained models (Fig. 2 (c)) creates dependencies on
external priors, which might not be readily available or could introduce biases from their training
datasets (Niemeyer et al., 2022; Roessle et al., 2022; Wang et al., 2023).

FrugalNeRF differs from these approaches by incorporating a cross-scale, geometric adaptation
mechanism, facilitating rapid training while preserving high-quality view synthesis (Fig. 2 (d)). Our
method efficiently utilizes weight-sharing voxels across various scales to encapsulate the scene’s
frequency components. Our proposed adaptation scheme projects rendered depths and colors from
different voxel scales onto the closest training view to compute reprojection errors. The most accurate
scale becomes the pseudo-ground truth and guides the training across scales, thus eliminating the
need for complex voxel upsampling schedules and enhancing generalizability across diverse scenes.

FrugalNeRF significantly reduces computational demands and accelerates training through self-
adaptive mechanisms that exploit the multi-scale voxel structure, ensuring quick convergence without
compromising the synthesis quality. By fully leveraging the training data and eliminating reliance on
externally learned priors and their inherent limitations, FrugalNeRF provides a pathway toward more
scalable and efficient few-shot novel view synthesis. In conclusion, FrugalNeRF efficiently bypasses
the need for external pre-trained prior and complex scheduling for voxel.

We evaluate the FrugalNeRF’s effectiveness on three prominent datasets: LLFF (Mildenhall et al.,
2019b), DTU (Jensen et al., 2014), and RealEstate-10K Zhou et al. (2018) dataset to assess both the
rendering quality and convergence speed. Our results show that FrugalNeRF is not only faster but
also achieves superior quality in comparison to existing methods (Fig. 1), showcasing FrugalNeRF’s
proficiency in generating perceptually high-quality images. The main contributions of our work are:

• We introduce a novel weight-sharing voxel representation that encodes multiple frequency
components of the scene, significantly enhancing the efficiency and quality of few-shot
novel view synthesis.

• Our geometric adaptation selects accurate rendered depth across different scales by reprojec-
tion errors to create pseudo geometric ground truth that guides the training process, enabling
a robust learning mechanism that is less reliant on complex scheduling and more adaptable
to various scenes.

• FrugalNeRF’s training scheme relies solely on available data, eliminating the need for
external priors or pre-trained models and ensuring fast convergence without sacrificing
quality. It remains flexible, allowing the integration of learned priors to further enhance
quality without affecting training speed.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Neural Radiance Fields (NeRF)(Mildenhall et al., 2020) has advanced novel view synthesis(Chen
et al., 2022c; Martin-Brualla et al., 2021; Yuan et al., 2022; Xu et al., 2023; Tao et al., 2023; Chen
et al., 2023; Peng et al., 2021; Xu et al., 2022; Fridovich-Keil et al., 2022; Zhang et al., 2020; Wang
et al., 2021b; Ye et al., 2022; Zheng et al., 2023; Bian et al., 2023). Research spans multi-view
synthesis (Oechsle et al., 2021; Chen et al., 2021; Jensen et al., 2014; Yariv et al., 2020; Wang et al.,
2021a), single-view synthesis (Gao et al., 2020; Tucker & Snavely, 2020; Han et al., 2022; Wiles
et al., 2020; Wimbauer et al., 2023), 3D generation (Chan et al., 2021; Wang & Torr, 2022; Chan
et al., 2022; Hong et al., 2023; Li et al., 2021), and dynamic scenes (Pumarola et al., 2021; Mildenhall
et al., 2022; Liu et al., 2023). Few-shot NeRFs (Chibane et al., 2021; Hu et al., 2023a;b; Chen et al.,
2022b; Zhang et al., 2021; Jain et al., 2022; Zhou & Tulsiani, 2023; Kim et al., 2022; Bortolon et al.,
2022; Lee et al., 2023; Seo et al., 2023b; Kwak et al., 2023) aim to reconstruct from sparse inputs but
face overfitting and generalization issues. Some approaches use pre-trained models (Yu et al., 2021;
Jain et al., 2021; Wang et al., 2023; Niemeyer et al., 2022; Johari et al., 2022; Deng et al., 2023; Chen
et al., 2016; Uy et al., 2023), while others introduce regularizations (Yang et al., 2023; Niemeyer
et al., 2022; Somraj & Soundararajan, 2023; Deng et al., 2022) to improve performance.

Depth regularizations. Recent works emphasize depth constraints during training. DS-
NeRF (Deng et al., 2022) uses sparse SfM-estimated depth, while DDP-NeRF (Roessle et al.,
2022) completes it with pretrained priors. SparseNeRF (Wang et al., 2023) uses prediction trans-
formers (Ranftl et al., 2021a; 2020) for depth priors. DäRF (Song et al., 2023) jointly optimizes
NeRF and MDE, and ReVoRF (Xu et al., 2024) improves geometry without heavy reliance on priors.
FSGS (Zhu et al., 2023) uses monocular depth priors and geometric regularization. These methods
may be affected by data bias and require substantial data. ViP-NeRF (Somraj & Soundararajan,
2023) uses visibility maps but demands significant computation time. In contrast, FrugalNeRF uses
geometrically adapted pseudo-GT depth, avoiding pre-trained models and extensive computation.

Novel pose regularization. Novel pose regularization addresses floaters in synthesized views from
sparse inputs. RegNeRF (Niemeyer et al., 2022) uses pose sampling with a normalizing flow model.
PixelNeRF (Yu et al., 2021) extracts image features with CNNs (Krizhevsky et al., 2012) for scene
priors. DietNeRF (Jain et al., 2021) uses CLIP-based Transformers (Radford et al., 2021; Caron
et al., 2021; Li et al., 2022; Lin et al., 2023) for color consistency. FlipNeRF (Seo et al., 2023a)
samples flipped reflection rays but relies on geometry estimation. These methods often depend
on pre-trained models, potentially introducing bias and inference time. Our FrugalNeRF applies
geometric adaptation on pose rendering, avoiding pre-trained models while suppressing floaters.

Frequency regularization. Positional encoding (Sitzmann et al., 2020; Tancik et al., 2020; Wang
et al., 2022) enables NeRF to capture high-frequency details but can lead to overfitting in few-shot
scenarios. FreeNeRF (Yang et al., 2023) uses scheduling for increasing input frequency. VGOS (Sun
et al., 2023) adopts incremental voxel training to prevent overfitting. Both methods require complex
scheduling and may not generalize well. SimpleNeRF (Somraj et al., 2023) introduces augmented
models focusing on low-frequency, leading to resource wastage. Our FrugalNeRF leverages weight-
sharing voxels across scales for various frequency representations, avoiding complex scheduling.

Fast convergence. NeRF’s time-consuming training due to MLP queries is a common challenge.
Methods like (Sun et al., 2023; 2022; Chen et al., 2022a; Sitzmann et al., 2019) replace MLPs with
faster-converging representations. Instant-NGP (Müller et al., 2022) uses voxels with hash encoding
and density bitfield. DVGO (Sun et al., 2022) employs voxel grids with shallow MLP. TensoRF (Chen
et al., 2022a) decomposes radiance fields into low-rank tensors. ZeroRF (Shi et al., 2024) adapts
TensoRF for few-shot settings but is limited to the object level. Our FrugalNeRF uses TensoRF for
fast training and introduces a cross-scale geometric adaptation weight-sharing voxel framework.

Self-supervised consistency. Consistency modeling between sparse images and warped counter-
parts is crucial for Few-shot NeRFs. SinNeRF (Xu et al., 2022) and PANeRF (Ahn et al., 2022)
use warping results as pseudo labels but require RGB-D input. SE-NeRF (Jung et al., 2023) and
Self-NeRF (Bai et al., 2023) use teacher NeRF rendering results as labels, requiring effective initial-
ization. GeCoNeRF (Kwak et al., 2023) uses render depth for warping but needs a pre-trained feature
extractor. FrugalNeRF combines frequency regularization with cross-scale geometric adaptation,
using the best render depth at different scales as a pseudo label to ensure geometric consistency
without relying on learned priors.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Density &
Appearance

Voxels
(𝐕!, 𝐕")

𝐱!"#$%

Rays from
novel views
𝐫%&'()

Rays from
training views

𝐫!"#$%

𝐱%&'()

Volume
rendering

Volume
rendering

Volume
rendering

⋮

𝐕*, 𝐕+ ,

𝐕*, 𝐕+ -

MSE losses

𝐕*, 𝐕+ .

Input RGB 𝐶(𝐫!"#$%)

Volume
rendering

Volume
rendering

Volume
rendering

Reprojection error 𝑒,

Reprojection error 𝑒-

Reprojection error 𝑒.

Per-ray argm
in

Pseudo GT Depth
𝐷/(𝐫%&'())

RGB +𝐶,(𝐫%&'())

RGB +𝐶-(𝐫%&'())

RGB +𝐶.(𝐫%&'())

⋮ ⋮

↓ s-

↓ s.

MSE losses [𝑅|𝑡]

Nearest training view

Warp

Warp

Warp

(a) Voxel-based
representations

(b) Rays sampling

(c) Multi-scale voxels

(d) Training view
reconstruction losses (e) Cross-scale geometric adaptation for sampled novel views

⋮

RGB +𝐶,(𝐫!"#$%)

RGB +𝐶-(𝐫!"#$%)

RGB +𝐶.(𝐫!"#$%)

Depth 3𝐷,(𝐫%&'())

Depth 3𝐷-(𝐫%&'())

Depth 3𝐷.(𝐫%&'())

⋮

Figure 3: (a) Our FrugalNeRF represents a scene with a pair of density and appearance voxels
(VD,VA). For a better graphical illustration, we show only one voxel in the figure. (b) We sample
rays from not only training input views rtrain but also randomly sampled novel views rnovel. (c) We
then create L + 1 multi-scale voxels by hierarchical subsampling, where lower-resolution voxels
ensure global geometry consistency and reduce overfitting but suffer from representing detailed
structures, while higher-resolution voxels capture fine details but may get stuck in the local minimum
or generate floaters. (d) For the rays from training views rtrain, we enforce an MSE reconstruction
loss between the volume rendered RGB color Ĉl and input RGB C at each scale. (e) We introduce a
cross-scale geometric adaptation loss for novel view rays rnovel, warping volume-rendered RGB to the
nearest training view using predicted depth, calculating projection errors el at each scale, and using
the depth with the minimum reprojection error as pseudo-GT for depth supervision. This adaptation
involves rays from both training and novel views, though the figure only depicts novel view rays for
clarity.

3 METHOD

3.1 PRELIMINARIES

Neural radiance fields. NeRF (Mildenhall et al., 2020) uses a neural network f to map 3D location
x and viewing direction d to density σ and color c for image rendering: f : (x,d) → (σ, c). Then we
use the densities and colors to render a pixel color Ĉ(r) by integrating the contributions along a ray r

cast through the scene: Ĉ(r) =
∑N

i=1 Ti(1 − exp(−σiδi))ci, where T (t) = exp(−
∑i−1

j=i σjδj) is
the transmittance along the ray, and N is the number of points along the ray. NeRF seeks to minimize

the MSE between the rendered image and the actual image: L =
∑

r∈R

∥∥∥Ĉ(r)− C(r)
∥∥∥2, where R

denotes a set of rays.

Voxel-based NeRFs. Voxel-based NeRFs (Sun et al., 2022; Chen et al., 2022a; Müller et al., 2022)
enhance color and density querying speed in the radiance field by employing voxel grids, allowing
efficient data retrieval via trilinear interpolation. They typically utilize a logistic function with a bias
term for density calculation and adopt a coarse-to-fine strategy, refining results with a shallow MLP
for view-dependent effects.

Few-shot NeRFs. Recent methods propose various strategies to address the challenge of under-
constrained optimization with limited images. These include regularizing visible frequencies in
positional encoding (Yang et al., 2023) (Fig. 2 (a)), expanding voxel ranges incrementally (Sun et al.,
2023) (Fig. 2 (b)), and utilizing external priors like pre-trained models for additional guidance (Wang
et al., 2023) (Fig. 2 (c)). Our approach, FrugalNeRF, leverages a weight-sharing voxel across scales
to capture a spectrum of frequency components. It self-adapts by evaluating reprojection errors
with the nearest training view, enhancing scene generalization, and offering faster training without
dependence on pre-trained models (Fig. 2 (d)).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 OVERVIEW OF FRUGALNERF
FrugalNeRF introduces an efficient architecture for novel view synthesis from sparse inputs without
external priors, leveraging voxel-based NeRFs (Chen et al., 2022a; Müller et al., 2022; Sun et al., 2022)
to estimate 3D geometry and reduce training time. Key features include hierarchical subsampling
with weight-sharing multi-scale voxels for diverse geometric details (Sec. 3.3), a geometric adaptation
training strategy for few-shot scenarios (Sec. 3.4), novel view sampling with additional regularization
losses to minimize artifacts (Sec. 3.5), and integration of data from both training and sampled novel
views for robust scene representation (Sec. 3.6).

3.3 WEIGHT-SHARING MULTI-SCALE VOXELS

Addressing data sparsity in few-shot scenarios, we introduce FrugalNeRF’s weight-sharing multi-
scale voxels, which are crucial for balancing frequency characteristics. Inspired by FreeNeRF (Yang
et al., 2023), which highlights the overfitting challenges with high-frequency inputs, our system adopts
a voxel-based representation to manage frequency components. We employ varied resolution voxels
similar to NeRF’s positional encoding (Mildenhall et al., 2020), with lower resolutions capturing
broad scene outlines and higher resolutions modeling finer details.

Unlike methods such as VGOS (Sun et al., 2023), which starts with a coarse geometry and progres-
sively refines details, our approach maintains generalization without intricate tuning. We construct
multi-scale voxels by downsampling from a single density and appearance voxel, ensuring consistent
scene representation(Fig. 3 (c)). This technique effectively balances different frequency bands in the
training pipeline without increasing model size or memory demands.

With multi-scale voxels, we can further utilize multi-scale voxel color loss to guide the training (Fig. 3
(d)), which is crucial for few-shot scenarios in ensuring a balanced representation of geometry and
detail. The multi-scale voxel color loss is defined as:

Lms-color =

L∑
l=0

∑
rtrain∈Rtrain

∥∥∥Ĉl(rtrain)− C(rtrain)
∥∥∥2, (1)

where Ĉl is the rendered color from the voxel at scale l, C is the ground truth color, L is the number
of scales, Rtrain is a set of rays from training views, and rtrain is a ray sampled from Rtrain. We
compute a weighted average MSE loss across scales to ensure color rendering accuracy at each scale,
enhancing overall robustness and fidelity.

3.4 CROSS-SCALE GEOMETRIC ADAPTATION

Our cross-scale geometric adaptation approach effectively addresses the challenges of few-shot
scenarios by supervising geometry without ground truth depth data. Recognizing the diverse frequency
representation by different voxel scales in a scene, it is essential to identify the optimal frequency
band for each region of the scene.

For each ray from a training view i, we compute depth values at multiple scales through volume
rendering and then warp (Luo et al., 2020; Kopf et al., 2021; Li et al., 2021) view i’s input RGB to the
nearest training view j using these depths. The reprojection error with view j’s input RGB determines
the most suitable scale for each scene area. The depth of this scale serves as a pseudo-ground truth,
guiding the model in maintaining geometric accuracy across frequencies (Fig. 3 (e)).

Mathematically, for a pixel pi in a training frame i, with its depth Dl
i(pi) at scale l and camera

intrinsic Ki, we can lift pi to a 3D point xl
i, then transform it to world coordinate xl, and subsequently

transform to frame j’s camera coordinate xl
i→j . This 3D point is then projected back to 2D in frame

j, obtaining the pixel coordinate pl
i→j . Due to the space limit, we provide the details for reprojection

calculation in the supplementary. We calculate the reproject error el(pi) using the RGB values of
frame i and j for each scale l.

el(pi) =
∥∥Ci(pi)− Cj(p

l
i→j)

∥∥2 , (2)

where Ci and Cj are the input RGB images from view i and j, respectively. For a pixel location p
from which the training view ray rtrain originates, we denote it simply as rtrain. The pseudo-ground
truth depth for this pixel is the depth at the scale with the minimum reprojection error:

D′(rtrain) = D̂l′(rtrain)(rtrain), (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where D̂l is the rendered depth from the voxel at scale l, and l′ denotes the scale with minimum
reprojection error:

l′(rtrain) = argmin
l
(el(rtrain)). (4)

This pseudo-ground truth depth D′ is used to compute a geometric adaptation loss, Lgeo(rtrain), an
MSE loss that ensures the model maintains scene geometry effectively, even without explicit depth
ground truth:

Lgeo(rtrain) =

L∑
l=0

∑
rtrain∈Rtrain

∥∥∥D̂l(rtrain)−D′(rtrain)
∥∥∥2. (5)

We further define a threshold for reprojection error to determine the reliability of depth estimation.
Specifically, we do not compute the loss of those pixels in which the projection error exceeds this pre-
defined threshold. Geometric adaptation is critical by allowing the model to refine its understanding
of the scene’s geometry in a self-adaptive manner.

3.5 NOVEL VIEW REGULARIZATIONS

In few-shot scenarios, we extend geometric adaptation to novel views to address the limitations in
areas with less overlap among training views (Fig. 3 (e)). Our novel view sampling strategy involves
a spiral trajectory around training views, promoting comprehensive coverage and model robustness.
In the absence of ground truth RGB for novel views, we rely on rendered color Ĉ for reprojection
error calculation, similar to Eq. (2) in Sec. 3.4, but focusing on rays from novel views rnovel:

el(pn) =
∥∥∥Ĉn(pn)− Cj(p

l
n→j)

∥∥∥2 . (6)

In this context, pn denotes a pixel coordinate in the sampled novel frame n, and pl
n→j represents the

coordinates on its nearest training pose j after warping pn at scale l. This reprojection error helps
refine the model’s rendering for novel views. For each ray from a novel view, similar to Eqs. (3) to (5),
we first determine the scale with the minimum reprojection error, then determine its pseudo-ground
truth depth and calculate geometric adaptation loss:

l′(rnovel) = argmin
l
(el(rnovel)), D

′(rnovel) = D̂l′(rnovel)(rnovel), (7)

Lgeo(rnovel) =

L∑
l=0

∑
rnovel∈Rnovel

∥∥∥D̂l(rnovel)−D′(rnovel)
∥∥∥2, (8)

where Rnovel is the set of rays from sampled novel views, and rnovel is a sampled ray from the set
Rnovel. We combine this loss with the geometric adaptation loss from training views to enhance the
overall training process:

Lgeo = Lgeo(rtrain) + Lgeo(rnovel). (9)
This approach of novel view sampling and applying regularization through reprojection error com-
putation is critical in training our model. It ensures that the model not only learns from the limited
training views but also adapts to and accurately renders novel perspectives, thereby enhancing the
overall performance and reliability of FrugalNeRF.

Additional global regularization losses. To further improve the geometry and reduce artifacts,
we introduce an additional global regularization loss Lreg, including total variation loss (Chen et al.,
2022a; Sun et al., 2023), patch-wise depth smoothness loss (Niemeyer et al., 2022), L1 sparsity
loss (Chen et al., 2022a), and distortion loss (Sun et al., 2022; Barron et al., 2022). These losses help
smooth the scene globally and suppress artifacts like floaters and background collapse.

3.6 TOTAL LOSS

The total loss for FrugalNeRF, essential for accurate scene rendering from sparse views, combines
various components: color fidelity, geometric adaptation, global regularization, and sparse depth
constraints. It is formulated as:

L = Lms-color + λgeoLgeo + λregLreg + λsdLsd. (10)

Lms-color is the multi-scale voxel color loss, crucial for maintaining color accuracy across different
scales. Lgeo is the geometric adaptation loss, providing geometric guidance in the absence of explicit

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Quantitative results on LLFF dataset (Mildenhall et al., 2019b). FrugalNeRF performs
competitively with baseline methods in extreme few-shot settings, offering shorter training time
without relying on externally learned priors. Integrating monocular depth regularization further
improves quality while maintaining fast convergence. Results differ from SimpleNeRF’s paper but
match its supplementary document, as we evaluate full images without visibility masks.

Learned 2-view 3-view 4-view Training
Method Venue priors PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ time ↓
DS-NeRF (Deng et al., 2022) CVPR22 - 16.93 0.51 0.42 18.97 0.58 0.36 20.07 0.61 0.34 3.5 hrs
FreeNeRF (Yang et al., 2023) CVPR23 - 17.55 0.54 0.38 19.30 0.60 0.34 20.45 0.63 0.33 1.5 hrs
ViP-NeRF (Somraj & Soundararajan, 2023) SIGGRAPH23 - 16.66 0.52 0.37 18.89 0.59 0.34 19.34 0.62 0.32 13.5 hrs
SimpleNeRF (Somraj et al., 2023) SIGGRAPH Asia23 - 17.57 0.55 0.39 19.47 0.62 0.33 20.44 0.65 0.31 9.5 hrs
FrugalNeRF (Ours) - - 18.07 0.54 0.35 19.66 0.61 0.30 20.70 0.65 0.28 10 mins

RegNeRF (Niemeyer et al., 2022) CVPR22 normalizing flow 16.88 0.49 0.43 18.65 0.57 0.36 19.89 0.62 0.32 2.35 hrs
DDP-NeRF (Roessle et al., 2022) CVPR22 depth completion 17.19 0.54 0.39 17.71 0.56 0.39 19.19 0.61 0.35 3.5 hrs
GeCoNeRF (Kwak et al., 2023) ICML23 VGG19 feature 15.83 0.45 0.52 17.44 0.50 0.47 19.14 0.56 0.42 4 hrs
SparseNeRF (Wang et al., 2023) ICCV23 monocular depth 18.02 0.52 0.45 19.52 0.59 0.37 20.89 0.65 0.34 1 hrs
FSGS (Zhu et al., 2023) ECCV24 monocular depth 15.26 0.45 0.41 19.21 0.61 0.30 20.07 0.66 0.22 25 mins
FrugalNeRF (Ours) - monocular depth 18.26 0.55 0.35 19.87 0.61 0.30 20.89 0.66 0.26 11 mins

FSGS
(w/ mono. depth)

SparseNeRF
(w/ mono. depth)

SimpleNeRF GeCoNeRF
(w/ VGG19 feat.)

(Top) GT
(Bottom) Inputs

FrugalNeRF (Ours)
(w/ mono. depth)

R
G

B
D

ep
th

R
G

B
D

ep
th

FrugalNeRF (Ours)

Figure 4: Qualitative comparisons on the LLFF (Mildenhall et al., 2019b) dataset with two input
views. FrugalNeRF achieves better synthesis quality and coherent geometric depth. We also include
the GT and overlapped input images for reference.

depth information. Lreg is the global regularization loss, addressing artifacts and inconsistencies in
unseen areas. And Lsd is the sparse depth loss (Deng et al., 2022), utilizing sparse depth data for
absolute scale constraints derived from COLMAP (Schönberger & Frahm, 2016; Schönberger et al.,
2016).

4 EXPERIMENTS

Datasets & evaluation metrics. We conduct experiments on two datasets: LLFF (Mildenhall et al.,
2019b) , DTU (Jensen et al., 2014), and RealEstate-10K Zhou et al. (2018). For both datasets, we use
the test sets defined by pixelNeRF (Yu et al., 2021) and ViP-NeRF (Somraj & Soundararajan, 2023).
We follow the same evaluation protocol as ViP-NeRF, including the train/test split. Specifically, there
are 12 scenes1 in the test sets of the DTU dataset. We assume that camera parameters are known,
which is relevant for applications with available calibrated cameras. We provide further details and
RealEstate-10K in the supplementary materials.

We follow the established evaluation protocols for consistency. The experiments utilize three evalua-
tion metrics: PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018). While evaluating on
DTU, we follow SparseNeRF (Yang et al., 2023) to remove the background when computing metrics
to alleviate the background bias reported by RegNeRF (Niemeyer et al., 2022) and pixelNeRF (Yu
et al., 2021). Additionally, we include the training time with a single NVIDIA RTX 4090 GPU to
evaluate the efficiency of the methods.

1There are 15 scenes in total in ViP-NeRF’s DTU test sets. However, COLMAP can only run successfully on 12
scenes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Quantitative results on the DTU Jensen et al. (2014) dataset. FurgalNeRF synthesizes
better images than most of the other baselines under extreme few-shot settings but with shorter
training time and does not rely on any externally learned priors. Additionally, integrating monocular
depth model regularization further improves quality while maintaining fast convergence. We follow
SparseNeRF Wang et al. (2023) to remove the background when computing metrics.

Learned 2-view 3-view 4-view Training
Method Venue priors PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ time ↓
FreeNeRF Yang et al. (2023) CVPR23 - 18.05 0.73 0.22 22.40 0.82 0.14 24.98 0.86 0.12 1 hrs
ViP-NeRF Somraj & Soundararajan (2023) SIGGRAPH23 - 14.91 0.49 0.24 16.62 0.55 0.22 17.64 0.57 0.21 2.2 hrs
SimpleNeRF Somraj et al. (2023) SIGGRAPH Asia23 - 14.41 0.79 0.25 14.01 0.77 0.25 13.90 0.78 0.26 1.38 hrs
ZeroRF Shi et al. (2024) CVPR24 - 14.84 0.60 0.30 14.47 0.61 0.31 15.73 0.67 0.28 25 mins
FrugalNeRF (Ours) - - 19.72 0.78 0.16 22.43 0.83 0.14 24.51 0.86 0.12 6 mins

RegNeRF Niemeyer et al. (2022) CVPR22 normalizing flow - - - - - - - - - OOM
SparseNeRF Wang et al. (2023) ICCV23 monocular depth 19.83 0.75 0.20 22.47 0.83 0.14 24.03 0.86 0.12 30 mins
FSGS Zhu et al. (2023) ECCV24 monocular depth 16.82 0.64 0.27 18.29 0.69 0.21 20.08 0.75 0.16 20 mins
FrugalNeRF (Ours) - monocular depth 20.77 0.79 0.15 22.84 0.83 0.13 24.81 0.86 0.12 7 mins

FrugalNeRF
(Ours)

FreeNeRF SimpleNeRF SparseNeRF
(w/ mono. depth)

ZeroRF FSGS
(w/ mono. depth)

Ground TruthFrugalNeRF
(w/ mono. depth)

Figure 5: Qualitative comparisons on the DTU (Jensen et al., 2014) dataset with two input views.
FrugalNeRF achieves better synthesis quality.

Implementation details. We implement FrugalNeRF based on the TensoRF (Chen et al., 2022a) and
utilize the official PyTorch framework. The learning process is driven by an Adam optimizer (Kingma
& Ba, 2014), with an initial learning rate of 0.08, which decays to 0.002 throughout the training. We
sample 120 novel poses along a spiraling trajectory around the training view and set the batch size for
both training and novel view rays to 4,096. We utilize the pre-trained Dense Prediction Transformer
(DPT) (Ranftl et al., 2021b) to generate monocular depth maps from training views. Each scene in
our model is trained for 5,000 iterations. For different datasets, we use specific voxel resolutions:
6403 for LLFF and RealEstate-10K, and 3003 for the DTU dataset. Additionally, our model employs
a voxel downsample ratio with s = 4, L = 2 (three levels of scale in total) to accommodate varying
levels of scene detail. More details can be found in the supplementary materials.

4.1 COMPARISONS

LLFF dataset. We compare FrugalNeRF to RegNeRF (Niemeyer et al., 2022), DS-NeRF (Deng
et al., 2022), DDP-NeRF (Roessle et al., 2022), FreeNeRF (Yang et al., 2023), ViP-NeRF (Somraj
& Soundararajan, 2023), SimpleNeRF (Somraj et al., 2023), GeCoNeRF2 (Kwak et al., 2023),
SparseNeRF (Wang et al., 2023), and FSGS (Zhu et al., 2023). Some use pre-trained models
or frequency regularization. As shown in Tab. 1, FrugalNeRF outperforms these methods in
PSNR and LPIPS, with comparable SSIM. Our cross-scale geometric adaptation generalizes better
than frequency regularization methods like FreeNeRF. Integrating monocular depth regularization
further improves quality while maintaining fast convergence. FrugalNeRF achieves an optimal
balance between quality and training time (10 minutes). Qualitative comparisons (Fig. 4) show that
FrugalNeRF renders scenes with richer detail and sharper edges compared to SparseNeRF’s blurry
results. FrugalNeRF models scene geometry more smoothly and consistently than SimpleNeRF and
FSGS, which suffer from floaters and holes. These results demonstrate FrugalNeRF’s capability to
model complex scenes with high fidelity.

DTU dataset. We compare FrugalNeRF with RegNeRF3 (Niemeyer et al., 2022), FreeNeRF (Yang
et al., 2023), ViP-NeRF (Somraj & Soundararajan, 2023), SimpleNeRF (Somraj et al., 2023),

2Since GeCoNeRF does not release a complete and executable implementation, we try our best to modify their
code and reproduce its results.

3RegNeRF runs into an out-of-memory issue on one NVIDIA RTX 4090 GPU, so we cannot report its results on
the DTU dataset

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparison of different scales
on the LLFF dataset.

of scales PSNR ↑ SSIM ↑ LPIPS ↓ Time ↓
1 (L = 0) 15.22 0.46 0.43 6 mins
2 (L = 1) 16.58 0.53 0.37 7 mins
3 (L = 2) 18.07 0.54 0.35 10 mins
4 (L = 3) 18.08 0.54 0.36 15 mins

Table 4: Ablation of different components on the LLFF
dataset with two input views.

Weight-sharing Lms-color Lgeo rnovel PSNR ↑ SSIM ↑ LPIPS ↓ Model size ↓
- ✓ ✓ ✓ 17.54 0.52 0.37 198.31 MB
✓ - ✓ ✓ 16.89 0.44 0.46 183.04 MB
✓ ✓ - ✓ 15.97 0.49 0.41 183.04 MB
✓ ✓ ✓ - 17.84 0.52 0.36 183.04 MB
✓ ✓ ✓ ✓ 18.07 0.54 0.35 183.04 MB

0% 20% 40% 60% 80% 100%
Training iterations

0.20

0.25

0.30

0.35

0.40

0.45

Pr
op

or
tio

n
of

 se
rv

in
g

as
 p

se
ud

o-
GT

(%
)

High res. Mid res. Low res.
0% 20% 40% 60% 80% 100%

Training iterations

12

14

16

18

PS
NR

High res.
High res. w/o geo

Mid res.
Mid res. w/o geo

Low res.
Low res. w/o geo

Figure 6: Cross-scale geometric adaptation during training. (Left) Low-resolution voxels ini-
tially guide geometry learning, with higher resolutions contributing more over time. This enables
autonomous frequency tuning and better generalization. (Right) Geometric adaptation improves
convergence quality across all scales compared to training without it.

SparseNeRF (Wang et al., 2023), ZeroRF4 (Shi et al., 2024), and FSGS (Zhu et al., 2023) on the
dataset preprocessed by pixelNeRF (Yu et al., 2021). Tab. 2 shows FrugalNeRF achieves state-of-
the-art performance in most cases, with the shortest training time. Qualitative comparisons (Fig. 5)
demonstrate FrugalNeRF’s superior visual results, consistently rendering fine details (e.g., the blue
elf’s eyes) without noticeable artifacts, unlike other methods. This showcases FrugalNeRF’s ability
to model scenes with simple backgrounds effectively.

4.2 ABLATION STUDIES

Number of scales. We examine the effect of different numbers of scales in Tab. 3. The results
show that by increasing the number of scales, we achieve better rendering quality. As there are more
different resolutions of voxels, FrugalNeRF is more capable of representing different levels of details
in the scene by geometric adaptation. We use L = 2 in our experiments, which indicates three scales
in total, to strike a balance between rendering quality and training time.

Weight-sharing voxels. We compared the performance and memory usage of weight-sharing
voxels against three independent voxels. Tab. 4 indicates that weight-sharing not only enhances
performance but also reduces the model size.

Multi-scale voxel color loss. We demonstrate the effectiveness of multi-scale voxel color loss
Lms-color by comparing it to using color loss only on the largest scale (Tab. 4, Fig. 9(Left)). Multi-
scale loss improves rendering and geometry by capturing various levels of scene detail. Without
geometric adaptation, FrugalNeRF underperforms FreeNeRF, which uses a scheduling mechanism
for gradually increasing input frequency. Our voxel grid representation offers faster training than
MLPs but sacrifices some continuity. The discrete nature of multi-scale voxel grids initially limits
our quality compared to FreeNeRF. However, integrating geometric adaptation significantly enhances
coherence across scales, effectively overcoming this limitation.

Cross-scale geometric adaptation. Tab. 4 shows that the performance drops on all metrics without
geometric adaptation loss Lgeo. Fig. 9 (Mid) demonstrate that geometric adaptation greatly sup-
presses floaters. Fig. 6 (Left) shows that during the training, low-frequency components from the
low-resolution voxels first guide the coarse geometry. Then, mid-frequency and high-frequency
components gradually increase their proportion of serving as pseudo-ground truth. Therefore, our
FrugalNeRF could generalize better to diverse scenes without complex training scheduling. Fig. 6
(Right) further demonstrates that geometric adaptation helps all scales converge at superior qualities.

4The official ZeroRF implementation samples rays that lie in object masks during training. We remove this
masked sampling for fair comparisons with other methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

High Mid. Low High Mid. Low High Mid. Low

Figure 7: Scene dependency analysis of multi-
scale voxels. ross-scale geometric adaptation can
adapt to diverse scene configurations.

2 4 6 8 10 12 14 16
The number of training views

10.0

12.5

15.0

17.5

20.0

22.5

25.0

PS
NR

FrugalNeRF(Ours)
TensoRF

Figure 8: Number of training views analysis.
FrugalNeRF significantly outperforms the base
TensoRF representation on sparse views.

Without WithWithout With Without With
novel view regularizationscross-scale geometric adaptationmulti-scale color loss

Figure 9: Visual comparisons on ablation studies. (Left) Multi-scale color loss prevents overfitting
and leads to a better result. (Mid) Geometric adaptation determines proper depth across scales via
projection error and results in better geometry. (Right) Novel view regularizations provide additional
supervisory signals from novel views and provide high-fidelity geometry.

Scene dependency analysis of the multi-scale voxels. We analyze the scene dependency of the
multi-scale voxels in Fig. 7. The results indicate that scenes with foliage exhibit higher activations
in high- and mid-frequency voxels, while textureless scenes show significant activations in low-
frequency voxels. This confirms our approach’s adaptability to different scene configurations.

Number of training views analysis. We plot the number of training views experiment in Fig. 8,
demonstrating that FrugalNeRF outperforms TensoRF on sparse views (2 to 8 views) and continues
to lead as the number of views increases.

Novel view regularizations. We evaluated the impact of novel view regularizations by omitting
sample rays from novel views rnovel. Tab. 4 shows that using novel view rays and regularizations
improves rendering quality. Fig. 9 (Right) illustrates that without these regularizations, training
may get stuck in local minima, resulting in incorrect geometry. Novel view regularizations provide
additional guidance, preventing overfitting and improving geometry accuracy.

5 CONCLUSION

In this paper, we propose FrugalNeRF, a framework that synthesizes novel views with extremely few
input views. To speed up and regularize the training, we propose weight-sharing voxel representation
across different scales, representing varying frequencies in the scene. To prevent overfitting, we
propose a geometric adaptation scheme, utilizing reprojection errors to guide the geometry across
different scales both in training and sampled novel views. FrugalNeRF performs on par with existing
state-of-the-art methods on multiple datasets with shorter training time and does not rely on any
externally learned priors.

Limitations. Few-shot NeRF relies on accurate camera poses for training. In scenarios with signifi-
cant changes in viewpoint or sparse training views, the model may face challenges in generalization.
Although our method introduces novel-view losses to deal with those unseen regions in training
views, it is still an issue for few-shot NeRF.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Young Chun Ahn, Seokhwan Jang, Sungheon Park, Ji-Yeon Kim, and Nahyup Kang. Panerf: Pseudo-
view augmentation for improved neural radiance fields based on few-shot inputs. arXiv preprint
arXiv:2211.12758, 2022.

Jiayang Bai, Letian Huang, Wen Gong, Jie Guo, and Yanwen Guo. Self-nerf: A self-training pipeline
for few-shot neural radiance fields. arXiv preprint arXiv:2303.05775, 2023.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In CVPR, 2022.

Wenjing Bian, Zirui Wang, Kejie Li, Jia-Wang Bian, and Victor Adrian Prisacariu. Nope-nerf:
Optimising neural radiance field with no pose prior. In CVPR, 2023.

Matteo Bortolon, Alessio Del Bue, and Fabio Poiesi. Vm-nerf: Tackling sparsity in nerf with view
morphing. arXiv preprint arXiv:2210.04214, 2022.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In CVPR, 2021.

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d
generative adversarial networks. In CVPR, 2022.

Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su.
Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In ICCV, 2021.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields.
In ECCV, 2022a.

Di Chen, Yu Liu, Lianghua Huang, Bin Wang, and Pan Pan. Geoaug: Data augmentation for few-shot
nerf with geometry constraints. In ECCV, 2022b.

Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-image depth perception in the wild. In
NeurIPS, 2016.

Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng, Xuan Wang, and Jue Wang. Hallucinated
neural radiance fields in the wild. In CVPR, 2022c.

Zixuan Chen, Lingxiao Yang, Jian-Huang Lai, and Xiaohua Xie. Cunerf: Cube-based neural radiance
field for zero-shot medical image arbitrary-scale super resolution. In ICCV, 2023.

Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard Pons-Moll. Stereo radiance fields (srf):
Learning view synthesis for sparse views of novel scenes. In CVPR, 2021.

Congyue Deng, Chiyu Jiang, Charles R Qi, Xinchen Yan, Yin Zhou, Leonidas Guibas, Dragomir
Anguelov, et al. Nerdi: Single-view nerf synthesis with language-guided diffusion as general
image priors. In CVPR, 2023.

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised nerf: Fewer views
and faster training for free. In CVPR, 2022.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

Chen Gao, Yichang Shih, Wei-Sheng Lai, Chia-Kai Liang, and Jia-Bin Huang. Portrait neural
radiance fields from a single image. arXiv preprint arXiv:2012.05903, 2020.

Yuxuan Han, Ruicheng Wang, and Jiaolong Yang. Single-view view synthesis in the wild with
learned adaptive multiplane images. In ACM SIGGRAPH 2022 Conference Proceedings, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fangzhou Hong, Zhaoxi Chen, Yushi Lan, Liang Pan, and Ziwei Liu. Eva3d: Compositional 3d
human generation from 2d image collections. In ICLR, 2023.

Shoukang Hu, Fangzhou Hong, Liang Pan, Haiyi Mei, Lei Yang, and Ziwei Liu. Sherf: Generalizable
human nerf from a single image. In ICCV, 2023a.

Shoukang Hu, Kaichen Zhou, Kaiyu Li, Longhui Yu, Lanqing Hong, Tianyang Hu, Zhenguo Li,
Gim Hee Lee, and Ziwei Liu. Consistentnerf: Enhancing neural radiance fields with 3d consistency
for sparse view synthesis. arXiv preprint arXiv:2305.11031, 2023b.

Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf on a diet: Semantically consistent
few-shot view synthesis. In ICCV, 2021.

Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole. Zero-shot text-guided
object generation with dream fields. In CVPR, 2022.

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs. Large scale
multi-view stereopsis evaluation. In CVPR, 2014.

Mohammad Mahdi Johari, Yann Lepoittevin, and François Fleuret. Geonerf: Generalizing nerf with
geometry priors. In CVPR, 2022.

Jaewoo Jung, Jisang Han, Jiwon Kang, Seongchan Kim, Min-Seop Kwak, and Seungryong Kim.
Self-evolving neural radiance fields. arXiv preprint arXiv:2312.01003, 2023.

Mijeong Kim, Seonguk Seo, and Bohyung Han. Infonerf: Ray entropy minimization for few-shot
neural volume rendering. In CVPR, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent video depth estimation. In
CVPR, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In NeurIPS, 2012.

Minseop Kwak, Jiuhn Song, and Seungryong Kim. Geconerf: Few-shot neural radiance fields via
geometric consistency. In ICML, 2023.

SeokYeong Lee, JunYong Choi, Seungryong Kim, Ig-Jae Kim, and Junghyun Cho. Extremenerf: Few-
shot neural radiance fields under unconstrained illumination. arXiv preprint arXiv:2303.11728,
2023.

Changlin Li, Bohan Zhuang, Guangrun Wang, Xiaodan Liang, Xiaojun Chang, and Yi Yang. Auto-
mated progressive learning for efficient training of vision transformers. In CVPR, 2022.

Siyuan Li, Yue Luo, Ye Zhu, Xun Zhao, Yu Li, and Ying Shan. Enforcing temporal consistency in
video depth estimation. In ICCV, 2021.

Kai-En Lin, Yen-Chen Lin, Wei-Sheng Lai, Tsung-Yi Lin, Yi-Chang Shih, and Ravi Ramamoorthi.
Vision transformer for nerf-based view synthesis from a single input image. In WACV, 2023.

Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu Tseng, Ayush Saraf, Changil Kim, Yung-Yu
Chuang, Johannes Kopf, and Jia-Bin Huang. Robust dynamic radiance fields. In CVPR, 2023.

Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. Consistent video
depth estimation. ACM Transactions on Graphics (ToG), 2020.

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy,
and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections.
In CVPR, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ra-
mamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (TOG), 2019a.

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ra-
mamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (TOG), 2019b.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P Srinivasan, and Jonathan T Barron.
Nerf in the dark: High dynamic range view synthesis from noisy raw images. In CVPR, 2022.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 2022.

Michael Niemeyer, Jonathan T Barron, Ben Mildenhall, Mehdi SM Sajjadi, Andreas Geiger, and
Noha Radwan. Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs.
In CVPR, 2022.

Michael Oechsle, Songyou Peng, and Andreas Geiger. Unisurf: Unifying neural implicit surfaces
and radiance fields for multi-view reconstruction. In ICCV, 2021.

Jiefeng Peng, Jiqi Zhang, Changlin Li, Guangrun Wang, Xiaodan Liang, and Liang Lin. Pi-nas:
Improving neural architecture search by reducing supernet training consistency shift. In ICCV,
2021.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In CVPR, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE TPAMI,
2020.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
arXiv preprint arXiv:2103.13413, 2021a.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 12179–12188,
2021b.

Barbara Roessle, Jonathan T Barron, Ben Mildenhall, Pratul P Srinivasan, and Matthias Nießner.
Dense depth priors for neural radiance fields from sparse input views. In CVPR, 2022.

Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In CVPR,
2016.

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise view
selection for unstructured multi-view stereo. In ECCV, 2016.

Seunghyeon Seo, Yeonjin Chang, and Nojun Kwak. Flipnerf: Flipped reflection rays for few-shot
novel view synthesis. In ICCV, 2023a.

Seunghyeon Seo, Donghoon Han, Yeonjin Chang, and Nojun Kwak. Mixnerf: Modeling a ray with
mixture density for novel view synthesis from sparse inputs. In CVPR, 2023b.

Ruoxi Shi, Xinyue Wei, Cheng Wang, and Hao Su. Zerorf: Fast sparse view 360 {\deg} reconstruction
with zero pretraining. In CVPR, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael
Zollhofer. Deepvoxels: Learning persistent 3d feature embeddings. In CVPR, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In NeurIPS, 2020.

Nagabhushan Somraj and Rajiv Soundararajan. Vip-nerf: Visibility prior for sparse input neural
radiance fields. In ACM SIGGRAPH, 2023.

Nagabhushan Somraj, Adithyan Karanayil, and Rajiv Soundararajan. Simplenerf: Regularizing
sparse input neural radiance fields with simpler solutions. In ACM SIGGRAPH Asia, 2023.

Jiuhn Song, Seonghoon Park, Honggyu An, Seokju Cho, Min-Seop Kwak, Sungjin Cho, and Seungry-
ong Kim. D\” arf: Boosting radiance fields from sparse inputs with monocular depth adaptation.
In NeurIPS, 2023.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In CVPR, 2022.

Jiakai Sun, Zhanjie Zhang, Jiafu Chen, Guangyuan Li, Boyan Ji, Lei Zhao, and Wei Xing. Vgos:
Voxel grid optimization for view synthesis from sparse inputs. In IJCAI, 2023.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. In NeurIPS, 2020.

Tang Tao, Longfei Gao, Guangrun Wang, Peng Chen, Dayang Hao, Xiaodan Liang, Mathieu Salz-
mann, and Kaicheng Yu. Lidar-nerf: Novel lidar view synthesis via neural radiance fields. arXiv
preprint arXiv:2304.10406, 2023.

Richard Tucker and Noah Snavely. Single-view view synthesis with multiplane images. In CVPR,
2020.

Mikaela Angelina Uy, Ricardo Martin-Brualla, Leonidas Guibas, and Ke Li. Scade: Nerfs from space
carving with ambiguity-aware depth estimates. In CVPR, 2023.

Guangcong Wang, Zhaoxi Chen, Chen Change Loy, and Ziwei Liu. Sparsenerf: Distilling depth
ranking for few-shot novel view synthesis. In ICCV, 2023.

Guangrun Wang and Philip HS Torr. Traditional classification neural networks are good generators:
They are competitive with ddpms and gans. arXiv preprint arXiv:2211.14794, 2022.

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron,
Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view
image-based rendering. In CVPR, 2021a.

Yiqun Wang, Ivan Skorokhodov, and Peter Wonka. Hf-neus: Improved surface reconstruction using
high-frequency details. In NeurIPS, 2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE TIP, 2004.

Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. Nerf–: Neural
radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064, 2021b.

Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin: End-to-end view
synthesis from a single image. In CVPR, 2020.

Felix Wimbauer, Nan Yang, Christian Rupprecht, and Daniel Cremers. Behind the scenes: Density
fields for single view reconstruction. In CVPR, 2023.

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, and Zhangyang Wang. Sinnerf:
Training neural radiance fields on complex scenes from a single image. In ECCV, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Yi Wang, and Zhangyang Wang. Neurallift-360:
Lifting an in-the-wild 2d photo to a 3d object with 360deg views. In CVPR, 2023.

Yingjie Xu, Bangzhen Liu, Hao Tang, Bailin Deng, and Shengfeng He. Learning with unreliability:
Fast few-shot voxel radiance fields with relative geometric consistency. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20342–20351, 2024.

Jiawei Yang, Marco Pavone, and Yue Wang. Freenerf: Improving few-shot neural rendering with free
frequency regularization. In CVPR, 2023.

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and Yaron Lipman.
Multiview neural surface reconstruction by disentangling geometry and appearance. In NeurIPS,
2020.

Vickie Ye, Zhengqi Li, Richard Tucker, Angjoo Kanazawa, and Noah Snavely. Deformable sprites
for unsupervised video decomposition. In CVPR, 2022.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
one or few images. In CVPR, 2021.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. Nerf-editing:
geometry editing of neural radiance fields. In CVPR, 2022.

Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. Ners: Neural reflectance
surfaces for sparse-view 3d reconstruction in the wild. In NeurIPS, 2021.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Chengwei Zheng, Wenbin Lin, and Feng Xu. Editablenerf: Editing topologically varying neural
radiance fields by key points. In CVPR, 2023.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
Learning view synthesis using multiplane images. In ACM TOG, 2018.

Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Distilling view-conditioned diffusion for 3d
reconstruction. In CVPR, 2023.

Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang. Fsgs: Real-time few-shot view synthesis
using gaussian splatting, 2023.

A APPENDIX

A.1 OVERVIEW

This supplementary material presents additional results to complement the main manuscript. First,
we discuss the difference between competing methods in Appendix A.2 Second, we explain the
implementation details in calculating reprojection errors in Appendix A.3. Then, we describe
the details of adding pretrained monocular depth prior in Appendix A.4 Next, we provide all the
training losses in our training process in Appendix A.5. Moreover, we describe the experimental
setup, including the dataset and training time measurement of compared methods in our evaluations
in Appendix A.6. In addition to this document, we provide an interactive HTML interface to compare
our video results with state-of-the-art methods and show ablation videos and failure cases. We also
attach the source code of our implementation for reference and will make it publicly available for
reproducibility.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 DISCUSSIONS ON COMPETING MODELS

GeCoNeRF. GeCoNeRF (Kwak et al., 2023) is a few-shot NeRF that uses warped features as
pseudo labels, which is sufficiently different from our method. Our method primarily focuses on
cross-scale geometric adaptation, selecting render depths with minimal reprojection error across
different scales as pseudo labels to adaptively learn the most suitable geometry for each scale. In
contrast, GeCoNeRF, besides requiring a pre-trained feature extractor, directly optimizes warped
features, making it highly sensitive to geometric noise and resulting in many floaters in its rendering
result as shown in our supplementary videos. Our approach, on the other hand, is more robust due
to our proposed multi-scale voxels. Low-resolution voxels represent coarse geometry, which is less
likely to produce floaters. Using this as supervision effectively suppresses the generation of floaters.

ZeroRF. ZeroRF (Shi et al., 2024) is a concurrent work to ours, also aimed at training NeRF
with sparse input views and achieving fast training times. Unlike TensoRF (Chen et al., 2022a),
which directly optimizes the decomposed feature grid, ZeroRF parameterizes the feature grids with
a randomly initialized deep neural network (generator). This decision is based on the belief in the
higher resilience to noise and artifacts ability of deep neural networks. Although ZeroRF claims
to achieve fast convergence stemming from its voxel representation, the need to train the generator
results in slower training speeds compared to ours (refer to the main paper Table 2). Our method
directly optimizes the feature grid and utilizes cross-scale geometry adaptation to avoid overfitting
under sparse views, without requiring a generator that slows down convergence to form decomposed
tensorial feature volumes. Additionally, we found that ZeroRF is not suitable for scenes with a
background (e.g., LLFF (Mildenhall et al., 2019a)) or datasets like the DTU (Jensen et al., 2014)
Dataset, where ZeroRF must extensively use object masks for training. These object masks are not
provided directly in these two datasets. Otherwise, ZeroRF may produce many artifacts and floaters,
or the feature volume may be filled up to fit the background, leading to severe memory consumption
issues causing training failures due to out-of-memory errors.

SparseNeRF. SparseNeRF (Wang et al., 2023) proposes a spatial continuity regularization that
distills depth continuity priors, but it requires a pre-trained depth prior and is extremely slow by
using MLP representation. Additionally, because monocular depth prediction results lack detail,
SparseNeRF’s rendered results tend to be blurry and lack detail. In contrast, our proposed cross-
scale geometric adaptation does not rely on pre-trained priors and ensures the generation of overall
geometry while paying attention to details.

SimpleNeRF. SimpleNeRF (Somraj et al., 2023) introduces a data augmentation method for few-
shot NeRF, employing an MLP with fewer positional encoding frequencies for augmentation, but this
simultaneously increases the training time. In contrast, we propose an efficient cross-scale geometric
adaptation that achieves multi-scale representation through shared-weight voxels, eliminating the
need for an additional model to reconstruct the same scene. This approach yields better results with
lower costs.

FreeNeRF. FreeNeRF (Yang et al., 2023) is an MLP-based few-shot NeRF model. FreeNeRF
proposes using a scheduling mechanism to gradually increase input frequency, allowing the model
to learn low-frequency geometry during the early stages of training and then ramp up positional
encoding to enable the model to learn more detailed geometry later on. However, our approach
takes advantage of the explicit voxel representation, which converges faster and allows for direct
cross-scaled geometry operations. Additionally, because we employ cross-scale geometry adaptation,
our model dynamically determines which frequency of geometry to learn at different training stages.
We do not require the complex frequency scheduling of FreeNeRF, nor are we limited to learning only
high-frequency components in the later stages of training like FreeNeRF. This makes our method
simpler, more general, and more robust.

VGOS. VGOS (Sun et al., 2023) introduces an incremental voxel training strategy and a voxel
smoothing method for Few-shot NeRF, aimed at reducing training time. It employs a complex
scheduling strategy to freeze the outer part of the voxel, leading to a leaky reconstruction of the
background scene. Additionally, VGOS requires ground truth poses for novel pose sampling, which
results in a quality drop when using random sampling. However, while VGOS’s training time is

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

shorter than ours, its performance significantly lags behind. Our cross-scale geometric adaptation
strategy eliminates the need for complex scheduling and ground truth pose sampling.

FSGS. FSGS (Zhu et al., 2023) addresses the challenge of limited 3D Gaussian splatting (3DGS)
by introducing Proximity-guided Gaussian Unpooling, which adaptively densifies the Gaussians
between existing points. Although this method mitigates the issue of insufficient GS, it still relies on
a sufficient initial set of Gaussians to perform effectively. In few-shot scenarios, the initial number of
GS can be extremely sparse, leading to suboptimal results. Furthermore, FSGS frequently requires
novel view inference using monocular depth models during training, which significantly increases the
training time. In contrast, our cross-scale geometric adaptation approach ensures rapid convergence
without relying on novel view inference or monocular depth models, providing efficient and robust
performance even with minimal initial data.

A.3 DETAILS OF CALCULATING REPROJECTION ERRORS

Mathematically, let pi be a 2D pixel coordinate in frame i, and p̃i be its homogeneous augmentation.
The depth Dl

i(pi) at scale l obtained from volume rendering, and camera intrinsics Ki are used to
reproject pi onto the 3D point xl

i in camera coordinate system of frame i. Subsequently, utilizing the
rotation matrix Ri and translation matrix ti of frame i, xl

i are transformed into world coordinates
system xl:

xl
i = Dl

i(pi)K
−1
i p̃i (11)

xl = Rix
l
i + ti (12)

We simplify the previous two equations because the position of the 3D point xl in world coordinates
can also be determined directly from the ray defined by the starting point oi(pi) and the direction
vi(pi):

xl = oi(pi) +Dl
i(pi)vi(pi) (13)

Following this, the 3D point xl in the world coordinate system is transformed to the camera coordinate
system of frame j using its rotation matrices Rj , and translation matrices Tj :

xl
i→j = RT

j

(
xl − tj

)
(14)

Finally, project it back to the 2D pixel coordinate system of frame j,

p̃l
i→j = π(Kjx

l
i→j) (15)

where π([x, y, z]T) =
[
x
z ,

y
z

]
. Using coordinates pi and pl

i→j to index the RGB maps of frames i
(denoted as Ci) and j (denoted as Cj), facilitating the computation of the reprojection error:

el(pi) =
∥∥Ci(pi)− Cj(p

l
i→j)

∥∥2 (16)

Therefore, for each ray sampled from the training view, the pseudo-GT depth of the scale with the
minimum reprojection error is obtained,

D′(rtrain) = argmin
l
(el(rtrain)). (17)

where the pseudo-GT depth is utilized to compute the geometric adaptation loss (MSE) Lgeo.

Lgeo(rtrain) =

L∑
l=0

∑
rtrain∈Rtrain

∥∥∥D̂l(rtrain)−D′(rtrain)
∥∥∥2. (18)

This mechanism provides a supervisory signal for geometry, ensuring that the model can effectively
maintain the geometric integrity of the scene across different scales, even in the absence of explicit
depth ground truth. It is a pivotal part of the training process, allowing the model to adapt and refine
its understanding of the scene’s geometric structure in a self-adaptive manner. In our implementation,
instead of using a single pixel to calculate reprojection error, we use a patch with 5 × 5 pixels to
calculate reprojection error. This avoids warping noise caused by similar patterns in scenes, for
example, in the case of the LLFF fortress and room. Furthermore, we set a threshold for reprojection
error that allows us to ignore cases of image warping with occlusions and prevents crashes during
initial training processes, which typically have high reprojection errors.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 DETAILS OF ADDING PRETRAINED MONOCULAR DEPTH PRIOR

We utilize the pre-trained Dense Prediction Transformer (DPT) (Ranftl et al., 2021b) to generate
monocular depth maps from training views. DPT is trained on 1.4 million image-depth pairs, making
it a convenient and effective choice for our setup. To address the scale ambiguity between the true
scene scale and the estimated depth, we introduce a relaxed relative loss based on Pearson correlation
between the estimated and rendered depth maps. This loss is applied at multiple scales, enhancing
the monocular depth prior’s constraint across different scales and improving the overall geometric
consistency.

A.5 LOSSES

Voxel TV loss (Ltv). We use the TV loss on voxel to smooth the result in voxel space.

Patch-wise depth smoothness loss (Lds). We sample patches of rays and calculate the total variance
of depth to smooth the geometry in the depth space.

L1 sparsity loss (Ll1). We suppress the voxel density in air space by introducing a density L1
regularization loss.

Distortion loss (Ldist). We adopt the approach from Mip-NeRF 360 (Barron et al., 2022), integrating
distortion loss to remove floaters from the novel views.

Occlusion loss (Locc). In the DTU dataset, we follow FreeNeRF Yang et al. (2023) by incorporating
an occlusion loss that utilizes black and white background priors to push floaters into the background.

Novel pose sampling form spiraling trajectory. We follow the implementation of a spiraling
trajectory from TensoRF (Chen et al., 2022a). For the LLFF dataset, we sample 60 novel poses from
the spiraling trajectory sampled from training views with 1 rotations, radius scale 1.0, and zrate 0.5.
For the DTU dataset, we sample 60 novel poses from the spiraling trajectory sampled from training
views with 4 rotations, radius scale 0.5, and zrate 0.5. For the RealEstate-10K dataset, we sample 60
novel poses from the spiraling trajectory sampled from training views with 2 rotations, radius scale
2.0, and zrate 0.5.

A.6 EXPERIMENTAL SETUP

We compare the result of few-shot NeRF on LLFF and DTU with n = 2, 3, 4 input views.

LLFF dataset. The LLFF dataset comprises 8 forward-facing unbounded scenes with variable
frame counts at a resolution of 1008 × 756. In line with prior work (Somraj & Soundararajan, 2023),
we use every 8th frame for testing in each scene. For training, we uniformly sample n views from the
remaining frames.

DTU dataset. The DTU dataset is a large-scale multi-view collection that includes 124 different
scenes. Follow the Pixel-NeRF (Yu et al., 2021) and ViP-NeRF (Somraj & Soundararajan, 2023)
approach, we use the same test sets. However, because COLMAP will fail to generate sparse depth at
scans 8, 30, and 110, we can only test on 12 scenes. Test scan IDs are 21, 31, 34, 38, 40, 41, 45, 55,
63, 82, 103, and 114. We use specific image IDs as input views and downsample images to 300 ×
400 pixels for consistency with prior studies (Yu et al., 2021; Somraj & Soundararajan, 2023).

RealEstate-10K dataset. RealEstate-10K is a comprehensive database of approximately 80,000
video segments, each with over 30 frames, widely utilized for novel view synthesis. For our study, we
select five scenes from its extensive test set, following the approach outlined in ViP-NeRF (Somraj &
Soundararajan, 2023). We selected frames 0, 10, 20, and 30 for the training set with a resolution of
1024 × 576, in accordance with the SimpleNeRF (Somraj et al., 2023) methodology, while testing on
the same test set as SimpleNeRF (Somraj et al., 2023) due to the unobserved region problem, which
NeRF cannot handle, in some testing view.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.6.1 TRAINING TIME MEASUREMENT AND TIME COMPLEXITY

RegNeRF. We use the official implementation of RegNeRF (Niemeyer et al., 2022) and follow
most of the default configuration, while the batch size or other hyperparameters might be adjusted
due to the GPU memory issue. For the LLFF dataset, the training requires roughly 2.35 hours per
scene with 69769 iterations and a batch size of 2,048. Note that RegNeRF samples 10000 random
poses by its default configuration on the DTU dataset, leading to out-of-memory on a single NVIDIA
RTX 4090 GPU. While reducing the number of random poses to about 1/8 could potentially resolve
this issue, such a reduction is likely to adversely affect the performance, so we simply exclude this
method from our experiments.

FreeNeRF. We use the official implementation of FreeNeRF (Yang et al., 2023) and follow most of
the default configuration, while the batch size or other hyperparameters might be adjusted due to the
GPU memory issue. For the LLFF dataset, the training requires roughly 1.5 hours per scene with
69,769 iterations and a batch size of 2,048. For the DTU dataset, the training requires about 1 hour
per scene with 43,945 iterations and a batch size of 2,048.

SparseNeRF. We use the official implementation of SparseNeRF. (Wang et al., 2023) and follow
most of the default configuration, while the batch size or other hyperparameters might be adjusted
due to the GPU memory issue. For the LLFF dataset, the training requires roughly 1 hour per scene
with 70,000 iterations and a batch size of 512. For the DTU dataset, the training requires about 30
minutes per scene with 70,000 iterations and a batch size of 256.

SimpleNeRF. We use the official implementation of SimpleNeRF (Somraj et al., 2023) and follow
most of the default configuration, while the batch size or other hyperparameters might be adjusted
due to the GPU memory issue. For the LLFF dataset, we use the model weights released by the
author directly. Since there’s no official implemented dataloader for the DTU dataset, we use the
dataloader and configuration from ViP-NeRF (Somraj & Soundararajan, 2023), which requires about
1.38 hours per scene with 25,000 iterations and batch size of 2,048.

VGOS. We furter provide VGOS result. We use the official implementation of VGOS (Sun et al.,
2023) and follow most of the default configuration, while the batch size or other hyperparameters
might be adjusted due to the GPU memory issue. Note that VGOS samples random poses directly
from the entire dataset, which is unreasonable under the few-shot setting, so we replace the sampling
with the interpolation from training poses implemented in the official repo. For the LLFF dataset, the
training requires roughly 5 minutes per scene with 9,000 iterations and a batch size of 16,384. For the
DTU dataset, the training requires about 3 minutes per scene with 9,000 iterations and a batch size of
16,384. Note that VGOS seems invalid on the DTU dataset (Fig. 11) and they does not evaluate the
DTU dataset in their paper.

GeCoNeRF. As mentioned in GeCoNeRF (Kwak et al., 2023)’s official github repo, their current
code is unexecutable. To complete our experiment, we still try our best to implement their method
based on the code provided. For the LLFF dataset, the training requires roughly 4 hours per scene
with 85,000 iterations and a batch size of 1024. It is important to note that we utilized 2 GPUs for
training this method, so the training time reported in our paper might be shorter than what is actually
required.

ZeroRF. We use the official implementation of ZeroRF (Shi et al., 2024) and follow most of the
default configurations. For the LLFF dataset, ZeroRF does not provide the dataloader for the LLFF,
and their paper mentions its inability to be used for unbounded scenes. Therefore, our primary
testing was conducted on the DTU dataset. In the DTU dataset, the original implementation of
ZeroRF necessitates masking out the background area of the input frame before training, which is
incompatible with our evaluation benchmark. Consequently, we trained it without object masks.
Training requires approximately 25 minutes per scene with 10,000 iterations and a batch size of 214.

FSGS. We use the official implementation of FSGS (Zhu et al., 2023) and follow most of the
default configurations. For the LLFF dataset, we adjust the input views to match the settings used in
ViP-NeRF, which differs from the original FSGS paper. Training takes approximately 25 minutes per

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 5: Comparison of the time complexity.

Method MFLOPs / pixel ↓
FreeNeRF (Yang et al., 2023) 288.57
ViP-NeRF (Somraj & Soundararajan, 2023) 149.26
SimpleNeRF (Somraj et al., 2023) 303.82
SparseNeRF (Wang et al., 2023) 287.92
Ours 13.77

Table 6: Quantitative results on the LLFF (Mildenhall et al., 2019a) dataset with two input
views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene Fern Flower Fortress Horns Leaves Orchids Room Trex Average
Method

0.51 0.43 0.37 0.51 0.35 0.45 0.38 0.42 0.43
RegNeRF (Niemeyer et al., 2022) 0.45 0.51 0.46 0.42 0.37 0.30 0.74 0.54 0.49

15.8 17.0 20.6 15.9 14.5 13.9 18.7 16.7 16.9

0.50 0.43 0.30 0.49 0.47 0.43 0.35 0.41 0.42
DS-NeRF (Deng et al., 2022) 0.46 0.44 0.65 0.49 0.24 0.32 0.76 0.53 0.51

16.4 16.1 23.0 16.6 12.4 13.7 18.9 15.7 16.9

0.44 0.46 0.17 0.46 0.52 0.41 0.30 0.43 0.39
DDP-NeRF (Roessle et al., 2022) 0.49 0.45 0.77 0.52 0.23 0.38 0.76 0.54 0.54

17.2 16.2 22.7 17.1 12.6 15.1 18.7 15.7 17.2

0.46 0.38 0.33 0.43 0.36 0.42 0.34 0.33 0.38
FreeNeRF (Yang et al., 2023) 0.49 0.55 0.53 0.53 0.38 0.35 0.76 0.60 0.54

17.1 17.6 21.3 17.1 14.4 14.1 18.3 18.1 17.6

0.45 0.42 0.21 0.39 0.46 0.40 0.36 0.38 0.37
ViP-NeRF (Somraj & Soundararajan, 2023) 0.45 0.43 0.71 0.54 0.21 0.36 0.72 0.54 0.52

16.2 14.9 22.6 17.1 11.7 14.2 17.7 15.9 16.7

0.51 0.43 0.25 0.42 0.44 0.41 0.35 0.39 0.39
SimpleNeRF (Somraj et al., 2023) 0.50 0.53 0.67 0.54 0.30 0.37 0.77 0.58 0.55

17.0 16.9 22.5 17.1 13.5 14.7 19.5 16.8 17.6

0.48 0.44 0.37 0.47 0.36 0.42 0.38 0.40 0.42
VGOS (Sun et al., 2023) 0.51 0.55 0.53 0.55 0.38 0.40 0.77 0.59 0.55

16.5 17.5 19.4 15.7 14.7 14.4 18.8 16.0 16.7

0.56 0.49 0.50 0.61 0.49 0.51 0.54 0.49 0.52
GeCoNeRF (Kwak et al., 2023) 0.47 0.49 0.43 0.41 0.28 0.29 0.68 0.52 0.45

16.4 16.9 17.9 15.4 13.3 13.4 17.3 16.1 15.8

0.48 0.55 0.40 0.52 0.52 0.55 0.29 0.37 0.45
SparseNeRF (Wang et al., 2023) 0.52 0.41 0.61 0.51 0.244 0.24 0.82 0.62 0.52

18.2 15.4 21.7 17.4 13.4 13.3 22.8 18.6 18.0

0.46 0.45 0.35 0.42 0.33 0.41 0.38 0.45 0.41
FSGS (Zhu et al., 2023) 0.40 0.38 0.47 0.42 0.34 0.24 0.72 0.46 0.45

15.0 14.8 16.9 16.2 14.2 12.6 17.6 13.8 15.3

0.41 0.41 0.27 0.36 0.32 0.42 0.34 0.32 0.35
FrugalNeRF (Ours) 0.47 0.50 0.54 0.55 0.41 0.33 0.75 0.61 0.54

17.4 17.5 20.3 18.5 15.5 15.0 19.2 18.6 18.1

0.40 0.40 0.27 0.37 0.33 0.39 0.32 0.35 0.35
FrugalNeRF w/ mono. depth (Ours) 0.46 0.53 0.54 0.54 0.41 0.37 0.76 0.59 0.54

17.7 17.9 20.9 18.5 15.4 15.6 19.6 18.2 18.3

scene with 10,000 iterations. Since there is no official dataloader for the DTU dataset, we convert the
DTU camera poses to the LLFF format and use the default LLFF configuration. Training on the DTU
dataset requires around 20 minutes per scene with 10,000 iterations.

Time complexity. To verify the efficiency of our method, besides comparing the training time of
various methods, we also calculated the MFLOPs per pixel in Tab. 5.

A.7 COMPLETE QUANTITATIVE EVALUATIONS

LLFF dataset. We show all 8 scenes of the quantitative comparisons with two, three, and four
input views on the LLFF dataset in Tab. 6, Tab. 7, and Tab. 8, respectively.

DTU dataset. We show all 12 scenes of the quantitative comparisons with two, three, and four
input views on the LLFF dataset in Tab. 9, Tab. 10, and Tab. 11, respectively.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Quantitative results on the LLFF (Mildenhall et al., 2019a) dataset with three input
views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene Fern Flower Fortress Horns Leaves Orchids Room Trex Average
Method

0.47 0.27 0.31 0.44 0.39 0.44 0.25 0.36 0.36
RegNeRF (Niemeyer et al., 2022) 0.48 0.58 0.64 0.53 0.37 0.31 0.81 0.63 0.57

17.9 19.6 22.7 18.2 14.6 14.2 21.0 18.4 18.7

0.47 0.25 0.25 0.47 0.50 0.45 0.22 0.37 0.36
DS-NeRF (Deng et al., 2022) 0.52 0.66 0.72 0.52 0.25 0.33 0.84 0.59 0.58

18.5 21.3 24.8 17.5 12.6 14.1 23.0 17.1 19.0

0.47 0.29 0.20 0.48 0.52 0.45 0.32 0.42 0.39
DDP-NeRF (Roessle et al., 2022) 0.53 0.63 0.75 0.53 0.24 0.35 0.76 0.54 0.56

18.5 20.2 22.1 17.4 12.8 15.1 18.3 16.0 17.7

0.40 0.28 0.32 0.41 0.40 0.41 0.22 0.33 0.34
FreeNeRF (Yang et al., 2023) 0.54 0.61 0.60 0.58 0.40 0.37 0.85 0.64 0.60

18.9 20.7 22.0 18.7 15.0 14.7 22.6 19.0 19.3

0.51 0.24 0.19 0.42 0.44 0.41 0.27 0.32 0.34
ViP-NeRF (Somraj & Soundararajan, 2023) 0.49 0.65 0.76 0.57 0.25 0.34 0.81 0.62 0.59

17.3 20.8 24.5 18.2 12.4 14.2 21.7 18.1 18.9

0.43 0.24 0.17 0.42 0.42 0.39 0.26 0.34 0.33
SimpleNeRF (Somraj et al., 2023) 0.52 0.66 0.78 0.57 0.38 0.38 0.83 0.66 0.62

18.2 20.7 24.7 18.4 14.8 15.0 22.0 18.9 19.5

0.40 0.31 0.33 0.46 0.40 0.41 0.31 0.35 0.37
VGOS (Sun et al., 2023) 0.58 0.61 0.69 0.58 0.40 0.40 0.83 0.66 0.61

19.0 20.0 23.0 17.0 15.0 15.2 21.8 18.0 18.8

0.57 0.36 0.45 0.60 0.50 0.51 0.34 0.43 0.47
GeCoNeRF (Kwak et al., 2023) 0.46 0.57 0.53 0.44 0.32 0.30 0.80 0.59 0.50

17.0 19.5 20.6 15.8 13.8 13.6 21.1 18.1 17.4

0.43 0.33 0.37 0.50 0.35 0.41 0.28 0.31 0.37
SparseNeRF (Wang et al., 2023) 0.57 0.60 0.59 0.53 0.45 0.37 0.81 0.67 0.59

19.6 19.8 23.0 18.4 16.5 15.2 21.5 20.1 19.5

0.48 0.30 0.15 0.36 0.26 0.35 0.28 0.28 0.30
FSGS (Zhu et al., 2023) 0.55 0.68 0.72 0.65 0.28 0.37 0.84 0.62 0.61

17.9 21.5 23.9 19.4 13.3 14.1 22.6 17.4 19.2

0.39 0.32 0.24 0.34 0.37 0.42 0.27 0.29 0.32
FrugalNeRF (Ours) 0.50 0.55 0.63 0.59 0.39 0.35 0.81 0.66 0.59

18.2 18.8 23.4 19.3 15.5 15.3 22.2 19.3 19.4

0.40 0.23 0.22 0.33 0.37 0.40 0.25 0.29 0.30
FrugalNeRF w/ mono. depth (Ours) 0.49 0.63 0.69 0.60 0.39 0.36 0.83 0.67 0.61

18.6 21.4 23.5 19.0 15.4 15.7 22.3 20.0 19.9

RealEstate-10K dataset. We show all 12 scenes of the quantitative comparisons with two, three,
and four input views on the LLFF dataset in Tab. 12, Tab. 13, Tab. 14, and Tab. 15.

A.8 ADDITIONAL VISUAL COMPARISONS

LLFF dataset. We show additional visual comparisons on the LLFF dataset with two input views
in Fig. 10.

DTU dataset. We show additional visual comparisons on the DTU dataset with two input views
in Fig. 11.

RealEstate-10K dataset. We further present the qualitative comparisons of novel view synthesis
on the RealEstate-10K dataset with two input views in Fig. 13. Compared to SimpleNeRF (Somraj
et al., 2023), which requires hours of training, FrugalNeRF needs only less than 20 minutes and can
render comparable results, demonstrating FrugalNeRF’s effectiveness in more in-the-wild scenes.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Quantitative results on the LLFF (Mildenhall et al., 2019a) dataset with four input
views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene Fern Flower Fortress Horns Leaves Orchids Room Trex Average
Method

0.35 0.29 0.37 0.34 0.32 0.43 0.19 0.32 0.32
RegNeRF (Niemeyer et al., 2022) 0.63 0.64 0.55 0.64 0.44 0.34 0.87 0.66 0.62

20.8 19.8 22.4 20.1 15.9 14.8 23.9 18.9 19.9

0.35 0.28 0.31 0.41 0.41 0.41 0.16 0.39 0.34
DS-NeRF (Deng et al., 2022) 0.63 0.64 0.66 0.59 0.39 0.38 0.89 0.59 0.61

20.9 20.6 24.1 19.5 15.8 15.2 25.6 17.1 20.1

0.40 0.30 0.18 0.42 0.45 0.42 0.26 0.39 0.35
DDP-NeRF (Roessle et al., 2022) 0.60 0.63 0.73 0.59 0.37 0.41 0.82 0.60 0.61

20.1 20.0 23.4 19.3 15.1 15.8 20.8 17.3 19.2

0.37 0.30 0.35 0.37 0.35 0.42 0.19 0.31 0.33
FreeNeRF (Yang et al., 2023) 0.64 0.64 0.60 0.63 0.47 0.37 0.88 0.68 0.63

21.1 20.5 23.2 20.4 16.6 14.9 24.8 19.6 20.5

0.39 0.27 0.25 0.38 0.36 0.40 0.23 0.32 0.32
ViP-NeRF (Somraj & Soundararajan, 2023) 0.58 0.63 0.70 0.60 0.40 0.39 0.85 0.64 0.62

18.2 19.5 23.3 19.0 14.8 14.8 23.2 18.6 19.3

0.33 0.27 0.28 0.38 0.35 0.36 0.19 0.32 0.31
SimpleNeRF (Somraj et al., 2023) 0.65 0.67 0.69 0.63 0.46 0.42 0.88 0.68 0.65

21.1 20.8 24.3 19.7 16.3 15.7 24.3 19.3 20.4

0.40 0.35 0.40 0.43 0.34 0.41 0.28 0.35 0.37
VGOS (Sun et al., 2023) 0.64 0.63 0.64 0.62 0.49 0.43 0.86 0.68 0.64

19.6 20.3 22.7 18.6 16.6 15.8 23.6 18.7 19.7

0.45 0.36 0.44 0.47 0.44 0.51 0.27 0.40 0.42
GeCoNeRF (Kwak et al., 2023) 0.61 0.61 0.51 0.59 0.40 0.30 0.85 0.63 0.56

20.5 19.9 21.2 19.6 15.5 13.9 23.5 19.0 19.1

0.42 0.32 0.31 0.39 0.36 0.42 0.25 0.29 0.34
SparseNeRF (Wang et al., 2023) 0.62 0.64 0.70 0.63 0.49 0.39 0.85 0.70 0.65

21.4 20.7 24.6 20.4 17.5 15.7 23.5 20.9 20.9

0.26 0.22 0.17 0.24 0.22 0.28 0.17 0.23 0.22
FSGS (Zhu et al., 2023) 0.67 0.65 0.65 0.70 0.46 0.45 0.88 0.71 0.66

20.5 20.2 22.6 20.9 15.6 15.4 23.7 19.2 20.1

0.30 0.28 0.24 0.30 0.26 0.38 0.19 0.27 0.27
FrugalNeRF (Ours) 0.63 0.64 0.60 0.66 0.52 0.41 0.87 0.72 0.65

21.1 20.8 23.6 21.6 16.9 16.3 24.2 19.7 20.9

0.30 0.27 0.25 0.28 0.24 0.37 0.18 0.27 0.26
FrugalNeRF w/ mono. depth (Ours) 0.64 0.65 0.64 0.68 0.53 0.41 0.88 0.71 0.66

21.5 20.9 23.9 21.1 17.2 16.3 24.1 19.6 20.9

Table 9: Quantitative results on the DTU Jensen et al. (2014) dataset with two input views. The
three rows show LPIPS, SSIM and PSNR scores, respectively.

Scene Scan21 Scan31 Scan34 Scan38 Scan40 Scan41 Scan45 Scan55 Scan63 Scan82 Scan103 Scan114 Average
Method

0.33 0.18 0.31 0.34 0.41 0.35 0.19 0.11 0.07 0.08 0.17 0.12 0.22
FreeNeRF Yang et al. (2023) 0.51 0.75 0.63 0.61 0.58 0.63 0.76 0.80 0.93 0.90 0.82 0.85 0.73

13.21 19.33 14.66 16.76 11.42 14.50 18.66 21.62 23.19 21.56 17.55 24.19 18.05

0.37 0.24 0.27 0.38 0.31 0.23 0.31 0.21 0.09 0.12 0.18 0.17 0.24
ViP-NeRF Somraj & Soundararajan (2023) 0.26 0.49 0.52 0.43 0.47 0.58 0.37 0.39 0.63 0.57 0.65 0.49 0.49

11.31 13.57 17.13 13.25 15.08 17.81 11.35 16.92 16.71 13.37 16.15 16.24 14.91

0.23 0.32 0.23 0.21 0.24 0.19 0.28 0.22 0.30 0.27 0.19 0.27 0.25
SimpleNeRF Somraj et al. (2023) 0.73 0.71 0.76 0.77 0.77 0.84 0.70 0.88 0.75 0.79 0.81 0.82 0.79

12.71 11.91 14.39 14.50 13.76 15.57 11.88 19.58 12.73 14.37 16.64 14.86 14.41

0.28 0.36 0.33 0.31 0.30 0.27 0.37 0.15 0.49 0.45 0.34 0.18 0.32
VGOS Sun et al. (2023) 0.69 0.67 0.69 0.71 0.73 0.78 0.64 0.90 0.56 0.57 0.73 0.85 0.71

9.69 8.97 9.75 10.27 8.79 9.75 7.54 19.24 5.17 5.63 11.29 15.81 10.16

0.39 0.22 0.26 0.33 0.24 0.21 0.20 0.14 0.08 0.08 0.15 0.13 0.20
SparseNeRF Wang et al. (2023) 0.45 0.69 0.70 0.60 0.72 0.76 0.75 0.78 0.92 0.91 0.84 0.85 0.75

14.25 17.95 20.65 17.93 16.33 20.13 18.22 22.29 20.70 23.46 21.70 24.40 19.83

0.45 0.27 0.35 0.44 0.29 0.28 0.39 0.25 0.13 0.18 0.25 0.29 0.30
ZeroRF Shi et al. (2024) 0.30 0.61 0.50 0.39 0.59 0.63 0.49 0.68 0.88 0.82 0.73 0.63 0.60

10.99 14.40 13.93 12.16 15.41 16.73 11.24 17.08 20.39 15.36 16.23 14.12 14.84

0.25 0.16 0.20 0.24 0.24 0.17 0.16 0.13 0.09 0.07 0.13 0.11 0.16
FrugalNeRF (Ours) 0.57 0.73 0.73 0.64 0.73 0.78 0.77 0.86 0.92 0.92 0.85 0.89 0.78

14.67 17.86 19.47 17.66 14.51 19.74 16.94 24.87 21.21 22.67 21.45 25.60 19.72

0.25 0.15 0.19 0.21 0.23 0.16 0.15 0.12 0.08 0.07 0.10 0.10 0.15
FrugalNeRF w/ mono. depth (Ours) 0.56 0.73 0.75 0.68 0.74 0.79 0.78 0.86 0.93 0.91 0.88 0.90 0.79

14.14 18.46 21.27 19.40 15.56 20.53 18.05 25.65 23.46 22.72 23.76 26.25 20.77

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 10: Quantitative results on the DTU (Jensen et al., 2014) dataset with three input views.
The three rows show LPIPS, SSIM and PSNR scores, respectively.

Scene Scan21 Scan31 Scan34 Scan38 Scan40 Scan41 Scan45 Scan55 Scan63 Scan82 Scan103 Scan114 Average
Method

15.93 19.53 23.23 19.88 18.38 22.83 21.07 22.88 25.28 26.39 26.68 26.68 22.40
FreeNeRF (Yang et al., 2023) 0.58 0.76 0.80 0.70 0.80 0.84 0.84 0.80 0.94 0.94 0.92 0.90 0.82

15.93 19.53 23.23 19.88 18.38 22.83 21.07 22.88 25.28 26.39 26.68 26.68 22.40

0.34 0.18 0.26 0.32 0.32 0.28 0.22 0.22 0.09 0.11 0.12 0.12 0.22
ViP-NeRF (Somraj & Soundararajan, 2023) 0.33 0.58 0.58 0.53 0.47 0.55 0.50 0.43 0.66 0.65 0.77 0.60 0.55

12.97 16.58 18.63 16.12 14.82 16.25 14.14 18.04 17.67 14.75 20.85 18.65 16.62

0.22 0.32 0.24 0.24 0.28 0.27 0.23 0.15 0.31 0.36 0.17 0.25 0.25
SimpleNeRF (Somraj et al., 2023) 0.74 0.68 0.74 0.75 0.75 0.77 0.79 0.90 0.77 0.67 0.84 0.81 0.77

12.90 11.29 14.17 13.42 11.44 12.23 15.31 20.41 13.97 10.93 17.41 14.66 14.01

0.28 0.38 0.29 0.26 0.28 0.27 0.38 0.16 0.51 0.47 0.29 0.15 0.31
VGOS (Sun et al., 2023) 0.69 0.65 0.71 0.76 0.74 0.76 0.62 0.90 0.58 0.58 0.75 0.87 0.72

9.84 8.34 10.50 11.91 8.51 9.14 7.27 18.86 5.38 5.80 11.81 16.74 10.34

0.23 0.12 0.15 0.37 0.14 0.14 0.12 0.14 0.04 0.04 0.11 0.08 0.14
SparseNeRF (Wang et al., 2023) 0.63 0.81 0.79 0.59 0.84 0.84 0.84 0.84 0.96 0.95 0.90 0.92 0.83

17.14 21.11 24.88 12.36 22.25 23.05 20.85 19.75 27.52 28.98 23.74 28.00 22.47

0.45 0.36 0.41 0.45 0.29 0.30 0.33 0.27 0.19 0.19 0.24 0.30 0.31
ZeroRF (Shi et al., 2024) 0.33 0.55 0.47 0.41 0.65 0.68 0.57 0.68 0.84 0.83 0.74 0.63 0.61

11.55 12.43 11.81 12.84 15.66 16.01 12.77 16.50 17.81 15.34 16.64 14.25 14.47

0.19 0.14 0.18 0.22 0.21 0.13 0.13 0.12 0.06 0.05 0.10 0.11 0.14
FrugalNeRF (Ours) 0.69 0.76 0.77 0.69 0.79 0.84 0.82 0.89 0.94 0.94 0.89 0.90 0.83

17.38 19.06 22.38 18.96 17.77 24.01 20.35 26.11 24.57 25.85 25.43 27.28 22.43

0.19 0.13 0.17 0.21 0.20 0.13 0.13 0.12 0.06 0.05 0.08 0.10 0.13
FrugalNeRF w/ mono. depth (Ours) 0.68 0.78 0.78 0.73 0.79 0.84 0.82 0.88 0.95 0.93 0.91 0.91 0.83

17.14 19.89 23.17 20.33 17.18 23.71 20.59 26.60 25.52 25.04 27.84 27.10 22.84

Table 11: Quantitative results on the DTU (Jensen et al., 2014) dataset with four input views.
The three rows show LPIPS, SSIM and PSNR scores, respectively.

Scene Scan21 Scan31 Scan34 Scan38 Scan40 Scan41 Scan45 Scan55 Scan63 Scan82 Scan103 Scan114 Average
Method

0.18 0.14 0.13 0.24 0.14 0.12 0.09 0.06 0.04 0.03 0.08 0.07 0.11
FreeNeRF (Yang et al., 2023) 0.72 0.81 0.83 0.72 0.85 0.86 0.86 0.92 0.96 0.96 0.93 0.93 0.86

18.72 21.29 25.97 19.43 22.88 25.59 22.39 28.63 27.35 31.51 27.30 28.65 24.98

0.33 0.19 0.21 0.31 0.35 0.24 0.23 0.24 0.08 0.08 0.10 0.12 0.21
ViP-NeRF (Somraj & Soundararajan, 2023) 0.39 0.61 0.59 0.59 0.45 0.61 0.52 0.38 0.67 0.67 0.76 0.64 0.57

14.24 17.22 19.44 18.19 15.76 18.84 15.57 16.62 17.19 16.45 22.67 19.50 17.64

0.27 0.28 0.23 0.25 0.32 0.27 0.25 0.21 0.27 0.27 0.18 0.29 0.26
SimpleNeRF (Somraj et al., 2023) 0.71 0.73 0.78 0.75 0.72 0.76 0.78 0.88 0.82 0.80 0.84 0.81 0.78

11.81 12.95 14.72 12.71 10.42 11.67 14.12 18.84 14.05 14.43 16.87 14.23 13.90

0.27 0.35 0.31 0.28 0.27 0.27 0.37 0.16 0.43 0.42 0.28 0.18 0.30
VGOS (Sun et al., 2023) 0.73 0.69 0.71 0.74 0.76 0.78 0.64 0.90 0.66 0.66 0.75 0.85 0.74

11.09 9.53 10.57 11.15 9.12 10.00 8.10 19.53 6.55 7.14 12.69 15.65 10.93

0.16 0.14 0.15 0.21 0.21 0.14 0.10 0.09 0.04 0.05 0.09 0.06 0.12
SparseNeRF (Wang et al., 2023) 0.72 0.80 0.85 0.74 0.80 0.86 0.86 0.88 0.95 0.95 0.93 0.93 0.86

18.60 20.99 25.87 20.92 19.45 24.81 22.15 26.37 26.20 26.72 28.10 28.19 24.03

0.43 0.32 0.28 0.44 0.28 0.25 0.20 0.29 0.17 0.14 0.26 0.32 0.28
ZeroRF (Shi et al., 2024) 0.36 0.62 0.66 0.47 0.68 0.73 0.73 0.67 0.87 0.87 0.72 0.62 0.67

11.75 13.48 16.47 13.53 16.87 17.26 16.48 15.92 19.33 19.12 15.18 13.36 15.73

0.17 0.12 0.16 0.17 0.19 0.12 0.12 0.12 0.05 0.04 0.07 0.10 0.12
FrugalNeRF (Ours) 0.73 0.81 0.81 0.79 0.81 0.85 0.85 0.89 0.95 0.95 0.93 0.92 0.86

19.21 21.84 24.99 23.08 19.47 25.64 21.59 27.31 26.27 27.26 29.27 28.21 24.51

0.17 0.12 0.15 0.17 0.19 0.12 0.11 0.12 0.05 0.03 0.07 0.09 0.12
FrugalNeRF w/ mono. depth (Ours) 0.73 0.81 0.82 0.80 0.82 0.86 0.86 0.90 0.96 0.95 0.93 0.92 0.86

19.07 21.65 25.82 23.13 18.96 25.55 22.21 28.02 26.87 28.28 29.27 28.92 24.81

Table 12: Quantitative results on the RealEstate-10K Zhou et al. (2018) dataset. For SimpleN-
eRF Somraj et al. (2023) and ViP-NeRF Somraj & Soundararajan (2023), we calculate metrics using
testing data provided in their respective clouds. As for other models, we rely on the scores provided
in the SimpleNeRF paper.

Learned 2-view 3-view 4-view Training
Method Venue priors PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ time ↓
RegNeRF Niemeyer et al. (2022) CVPR 2022 normalizing flow 16.87 0.59 0.45 17.73 0.61 0.44 18.25 0.62 0.44 2.35 hrs
DS-NeRF Deng et al. (2022) CVPR 2022 - 25.44 0.79 0.32 25.94 0.79 0.32 26.28 0.79 0.33 3.5 hrs
DDP-NeRF Roessle et al. (2022) CVPR 2022 depth completion 26.15 0.85 0.15 25.92 0.85 0.16 26.48 0.86 0.16 3.5 hrs
FreeNeRF Yang et al. (2023) CVPR 2023 - 14.50 0.54 0.55 15.12 0.57 0.54 16.25 0.60 0.54 1.5 hrs
ViP-NeRF Somraj & Soundararajan (2023) SIGGRAPH 2023 - 29.55 0.87 0.09 29.75 0.88 0.11 30.47 0.88 0.11 13.5 hrs
SimpleNeRF Somraj et al. (2023) SIGGRAPH Asia 2023 - 30.30 0.88 0.07 31.40 0.89 0.08 31.73 0.89 0.09 9.5 hrs
FrugalNeRF (Ours) - - 30.12 0.87 0.07 31.04 0.89 0.06 31.78 0.90 0.06 20 mins

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 13: Quantitative results on the RealEstate-10K Zhou et al. (2018) dataset with two input
views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene 0 1 3 4 6 Average
Method

0.35 0.32 0.49 0.54 0.54 0.45
RegNeRF Niemeyer et al. (2022) 0.60 0.83 0.30 0.61 0.59 0.59

16.51 21.04 13.88 17.13 15.79 16.87

0.26 0.27 0.51 0.24 0.31 0.32
DS-NeRF Deng et al. (2022) 0.81 0.91 0.50 0.88 0.83 0.79

24.68 27.93 19.24 29.18 26.18 25.44

0.11 0.12 0.34 0.06 0.11 0.15
DDP-NeRF Roessle et al. (2022) 0.89 0.95 0.56 0.94 0.92 0.85

25.90 25.87 18.97 32.01 28.00 26.15

0.45 0.50 0.64 0.67 0.48 0.55
FreeNeRF Yang et al. (2023) 0.54 0.77 0.28 0.49 0.58 0.53

15.00 17.00 12.15 12.84 15.50 14.50

0.05 0.05 0.22 0.04 0.08 0.09
ViP-NeRF Somraj & Soundararajan (2023) 0.94 0.97 0.56 0.95 0.93 0.87

30.41 32.03 18.96 34.74 31.61 29.55

0.04 0.04 0.21 0.03 0.05 0.07
SimpleNeRF Somraj et al. (2023) 0.95 0.97 0.56 0.95 0.96 0.88

31.89 33.8 18.65 34.93 32.24 30.30

0.04 0.04 0.20 0.04 0.05 0.07
FrugalNeRF (Ours) 0.94 0.97 0.56 0.95 0.95 0.87

30.13 34.69 18.35 35.00 32.45 30.12

Table 14: Quantitative results on the RealEstate-10K Zhou et al. (2018) dataset with three input
views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene 0 1 3 4 6 Average
Method

0.40 0.32 0.53 0.56 0.37 0.44
RegNeRF Niemeyer et al. (2022) 0.60 0.82 0.29 0.62 0.71 0.61

15.99 20.89 13.87 17.60 20.28 17.73

0.24 0.26 0.53 0.26 0.31 0.32
DS-NeRF Deng et al. (2022) 0.83 0.91 0.49 0.87 0.85 0.79

25.24 28.68 19.14 29.08 27.58 25.94

0.11 0.11 0.38 0.06 0.13 0.16
DDP-NeRF Roessle et al. (2022) 0.89 0.96 0.55 0.94 0.92 0.85

25.27 26.67 18.81 31.84 26.99 25.92

0.54 0.51 0.64 0.59 0.42 0.54
FreeNeRF Yang et al. (2023) 0.53 0.75 0.29 0.61 0.66 0.57

13.79 15.59 12.45 15.72 18.05 15.12

0.06 0.10 0.26 0.04 0.08 0.11
ViP-NeRF Somraj & Soundararajan (2023) 0.94 0.95 0.60 0.95 0.95 0.88

30.66 29.89 19.59 35.17 33.43 29.75

0.04 0.04 0.23 0.03 0.08 0.08
SimpleNeRF Somraj et al. (2023) 0.95 0.98 0.61 0.95 0.95 0.89

32.23 36.44 19.65 35.85 32.81 31.40

0.04 0.03 0.18 0.03 0.04 0.06
FrugalNeRF (Ours) 0.95 0.98 0.61 0.95 0.96 0.89

31.11 35.39 18.85 35.78 34.07 31.04

Table 15: Quantitative results on the RealEstate-10K Zhou et al. (2018) dataset with four input
views. The three rows show LPIPS, SSIM, and PSNR scores, respectively.

Scene 0 1 3 4 6 Average
Method

0.43 0.35 0.59 0.56 0.27 0.44
RegNeRF Niemeyer et al. (2022) 0.59 0.83 0.29 0.65 0.75 0.62

16.09 20.98 13.91 18.48 21.78 18.25

0.27 0.26 0.56 0.25 0.31 0.33
DS-NeRF Deng et al. (2022) 0.82 0.92 0.50 0.87 0.85 0.79

25.40 29.40 19.64 29.26 27.69 26.28

0.12 0.08 0.39 0.06 0.13 0.16
DDP-NeRF Roessle et al. (2022) 0.89 0.96 0.58 0.93 0.91 0.86

25.14 28.57 19.57 31.73 27.36 26.48

0.56 0.48 0.65 0.58 0.39 0.53
FreeNeRF Yang et al. (2023) 0.53 0.80 0.31 0.66 0.69 0.60

13.84 17.93 12.69 17.29 19.48 16.25

0.06 0.08 0.27 0.05 0.09 0.11
ViP-NeRF Somraj & Soundararajan (2023) 0.94 0.96 0.62 0.94 0.95 0.88

31.64 32.24 20.35 34.84 33.28 30.47

0.04 0.05 0.24 0.03 0.09 0.09
SimpleNeRF Somraj et al. (2023) 0.96 0.97 0.64 0.95 0.94 0.89

32.95 36.44 20.52 35.97 32.77 31.73

0.04 0.03 0.17 0.03 0.05 0.06
FrugalNeRF (Ours) 0.96 0.98 0.64 0.95 0.96 0.90

32.29 36.06 19.81 36.54 34.22 31.78

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

SimpleNeRF SparseNeRF FSGSFrugalNeRF (Ours)

Figure 10: More qualitative comparisons on the LLFF (Mildenhall et al., 2019a) dataset with
two input views. FrugalNeRF achieves better synthesis quality in different scenes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

FrugalNeRF (w/ mono. depth) ZeroRFFreeNeRF SimpleNeRF SparseNeRF (w/ mono. depth) Ground TruthFSGS (w/ mono. depth)FrugalNeRF (Ours)

Figure 11: More qualitative comparisons on the DTU (Jensen et al., 2014) dataset with two
input views. FrugalNeRF achieves better synthesis quality in different scenes.

FrugalNeRF (Ours) ViP-NeRF SimpleNeRF Ground Truth

Figure 12: Qualitative comparisons on the RealEstate-10K Zhou et al. (2018) dataset with two
input views. Compared to Vip-NeRF Somraj & Soundararajan (2023) and SimpleNeRF Somraj et al.
(2023), our FrugalNeRF renders sharper details in the scene.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

ViP-NeRF SimpleNeRFFrugalNeRF (Ours) Ground Truth

Figure 13: More qualitative comparisons on the RealEstate-10K Zhou et al. (2018) dataset with
two input views. FrugalNeRF achieves synthesis quality comparable to the state-of-the-art methods.

27

	Introduction
	Related Work
	Method
	Preliminaries
	Overview of FrugalNeRF
	Weight-Sharing Multi-Scale Voxels
	Cross-scale geometric adaptation
	Novel View Regularizations
	Total Loss

	Experiments
	Comparisons
	Ablation Studies

	Conclusion
	Appendix
	Overview
	Discussions on Competing Models
	Details of Calculating Reprojection Errors
	Details of adding Pretrained Monocular Depth Prior
	Losses
	Experimental Setup
	Training Time Measurement and Time Complexity

	Complete Quantitative Evaluations
	Additional Visual Comparisons

