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Abstract
Curriculum learning for reinforcement learning
(RL) is an active area of research that seeks to
speed up training of RL agents on a target task
by first training them through a series of progres-
sively more challenging source tasks. Each task
in this sequence builds upon skills learned in pre-
vious tasks to gradually develop the repertoire
needed to solve the final task. Over the past few
years, many automated methods to develop cur-
ricula have been developed. However, they all
have one key limitation: the curriculum must be
regenerated from scratch for each new agent or
task encountered. In many cases, this generation
process can be very expensive. However, there is
structure that can be exploited between tasks and
agents, such that knowledge gained developing
a curriculum for one task can be reused to speed
up creating a curriculum for a new task. In this
paper, we present a method to generalize a cur-
riculum learned for one set of tasks to a novel set
of unseen tasks.

1. Introduction
Curricula are used throughout human education and devel-
opment, serving to structure the learning process in every-
thing from cognitive skills such as math and reading to
motor skills and sports. These curricula are organized so
that each new concept introduced builds upon previously
learned skills, facilitating the rapid acquisition of complex
skills and behaviors.

Motivated by this observation, recently there have been
efforts to apply curricula to improve training speed for re-
inforcement learning (RL) agents. Over the years, many
techniques have been designed to both manually and auto-
matically design curricula for RL agents. However, each of
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these methods must be run entirely from scratch to design a
curriculum for each new agent or each new task. In contrast,
curricula designed for humans are used to teach many differ-
ent students, and can easily be repurposed to teach people
how to solve similar tasks.

This paper thus considers the problem of curriculum gen-
eralization: how can knowledge gained about designing a
curriculum for one task be generalized to speed up learning
of a curriculum for a similar, but novel unseen task? In other
words, how can we transfer or adapt a curriculum learned
for one task to a new target task?

Our work builds on a representation of a curriculum as a
policy (specifically, a curriculum policy) (Narvekar & Stone,
2019), which maps from the state of knowledge of an RL
agent to the task it should learn next. Our primary contribu-
tion is to show that by combining curriculum policies with
universal value functions, where the task is encoded as the
goal, we can learn a curriculum policy that can generalize to
produce curricula for new unseen tasks. This combination
allows us to essentially perform “zero-shot”” curriculum
learning, where a curriculum is generated for a novel target
task based on experience generating curricula for similar
tasks.

2. Background
We begin by introducing some basic notation and back-
ground on reinforcement learning, curriculum learning, and
universal value functions, which will form the basis for our
approach.

2.1. Reinforcement Learning

We model an agent’s interaction with its environment (i.e. a
task) as an episodic Markov Decision Process (MDP) (Sut-
ton & Barto, 2018). An episodic MDP M is a 4-tuple
(S,A, p, r), where S is the set of states, A is the set of
actions, p(s′|s, a) is a transition function that gives the prob-
ability of transitioning to state s′ after taking action a in
state s, and r(s, a, s′) is a reward function that gives the
immediate reward for taking action a in state s and transi-
tioning to state s′. In addition, we use ∆s0 to denote the
initial state distribution, and Sf to denote the set of terminal
states.
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At each time step t, the agent observes its state and chooses
an action according to its policy πθ(a|s), which we assume
is parameterized by θ. The goal of the agent is to learn an
optimal policy π∗, which maximizes the expected return
(cumulative sum of rewards) until the episode ends. One
algorithm for appoximating π∗ is DQN (Mnih et al., 2015),
which uses a function approximator (specifically, a deep
neural network) to learn an action-value function that es-
timates the expected return for taking an action in a state
and following the current policy after. The optimal policy is
derived by acting greedily with respect to the values.

2.2. Curriculum Learning in RL

Many RL problems of interest are challenging due to issues
such as sparse reward signals, poor state representation, or
the presence of adversaries. One way learning can be ac-
celerated in such settings is by first training on a simpler
source task, and transferring the knowledge acquired to im-
prove learning on a subsequent target task. Transfer learning
(Taylor & Stone, 2009) is an area of research that focuses
on how this knowledge can be transferred. For example,
one method is value function transfer (Taylor et al., 2007),
which initializes the value function in the target task using
the value function from the source task. This process in
effect creates an exploration bias in the target task. In deep
learning, this process is also referred to as finetuning.

Curriculum learning (Narvekar et al., 2020) considers how
exactly to select and order different source tasks, such that
performance or learning speed is improved on the target
task. In this work, we consider a curriculum learning model
(Narvekar & Stone, 2019) that poses curriculum generation
as an interaction between 2 MDPs. The first is an MDP
for the student agent, which will be the recipient of the
curriculum. This agent interacts in the standard way with a
given task. The second is a higher level curriculum MDP
(CMDP) for the teacher, whose goal is to select tasks for
the student to train on. Formally, a CMDP MC is a tuple
(SC ,AC , pC , rC) where the set of states SC represent the
state of the student agent’s knowledge or learning progress,
and the set of actions AC are the possible tasks the student
can train on next. Training on a task updates the student’s
state according to the transition function pC , and incurs a
cost rC , which is the time it takes to learn that task. The
CMDP terminates when the student is able to solve the target
task to a desired performance threshold. Thus, a policy πC

over a CMDP is a mapping from the state of knowledge
of an agent to the task it should learn next. The optimal
curriculum policy minimizes the time needed to learn the
target task to a desired performance level.

2.3. Universal Value Functions

In standard reinforcement learning, the value function vπ(s)
estimates the return of a policy from a given state s. In deep
reinforcement learning, the value function is represented by
a deep neural network, and exploits the structure in the state
space to learn values for observed states and generalize to
unseen states. In goal-oriented tasks, where the environment
transition dynamics stay the same but the goal state may
differ, much of the structure of a value function can also be
shared across goals. Thus, the idea behind Universal Value
Functions (Schaul et al., 2015) is to create a value function
vπ(s, g) that generalize over both states s and goals g by
creating an embedding over state features and goal features:

vπ(s, g) = Eπ
[ ∞∑
t=0

rg(st, a, st+1)

∣∣∣∣s0 = s

]
(1)

3. Curriculum Generalization
Our main idea is to learn a universal value function over
a curriculum MDP so that we can generalize over CMDP
states and goals. Therefore, we need a way of representing
CMDP states and goals.

Recall that a CMDP state parametrically represents the
agent’s knowledge. One way to represent the agent’s state
of knowledge is by its policy πθ. In particular, the class of
policies the agent can represent is determined by the struc-
ture of the function approximator used, and the instantiation
of weights θ determines the exact policy in this class. Thus,
when access to the internal representation of the agent is
available, we can represent the agent’s state of knowledge
in the CMDP state SC using the vector of weights of the
student agent’s value function or policy θ.

A goal in the universal value framework is represented as
a single state: g ∈ S. In the CMDP setting, we instead
represent goals gC as target tasks that the agent could be
trained on, with one goal for each target task. Note that this
effectively represents a goal as a subset of CMDP states
gC ⊆ SC , where the student agent policies θ represented
by those states are able to solve that specific target task.

A key question is how to represent tasks. In this work, we
restrict our attention to goal-based navigational tasks, which
are defined by a starting position and an ending position.
This allows us to easily create a parameterized represen-
tation of the task by using the concatenated vector of co-
ordinates corresponding to the starting and ending states.
However, an important direction for future work is to extend
these ideas to non-goal based tasks, such as those described
by language or vision commands (Chevalier-Boisvert et al.,
2019).

Given a representation for both the CMDP state and goal,
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we use a two-stream neural network architecture as used by
(Schaul et al., 2015) to learn a universal value function over
the CMDP. A two-stream architecture assumes the problem
can be factorized into two components. In our case, one
component is φ : SC 7→ Rn, which creates an embedding
for CMDP states. The second is ψ : GC 7→ Rn, which
creates an embedding for CMDP goals. The two streams
are combined using an output function h : Rn×Rn 7→ Rm.
In our case, the mappings φ and ψ are represented by multi-
layer perceptrons, and the output function is the Hadamard
product. See Figure 2 for the architecture we use in the
experiments.

A policy extracted from this value function is then able to
suggest a task to the student based both on what the student
knows, and the task it needs to learn. Given enough experi-
ence on a set of “training” target tasks, our experiments will
show that learning such a universal value function allows
the curriculum policy to generalize and zero-shot produce
curricula for unseen “test” target tasks.

4. Experimental Results
We evaluated curriculum transfer on navigation tasks in a
static gridworld environment. Our goal was to train a CMDP
teacher agent to learn a curriculum policy on a subset of
tasks, and show that it can zero-shot produce curricula for a
student on novel unseen target tasks.

Gridworld Navigation

The gridworld environment considers goal-oriented naviga-
tion tasks in a standard 4-room grid world. The environment
consists of 4 connected rooms, where each room is 5x5 in
size and connected at one cell to each adjacent room. A
navigation task is defined by a pair of (x, y) coordinates for
the starting position and goal position. There are 100 possi-
ble starting and ending positions. We ignore tasks that start
and end on the same position, thus there are 9900 possible
different target tasks. See Figure 1(a) for an example of a
task.

Our student agent has a tabular representation for the state
space, and learns using Sarsa(λ) with exploration ε = 0.1,
learning rate α = 0.1, discount factor γ = 1.0, and eligibil-
ity trace decay rate λ = 0.7. We use value function transfer
to transfer information between tasks in the curriculum.

TEACHER (CMDP) AGENT DESCRIPTION

State and Goal Space

The CMDP needs to learn to generalize over both the agent’s
knowledge and task space. Conceptually, the agent’s cur-
rent policy – its function for selecting actions in each state,
which we assume to be known to the teacher – is its state

of knowledge. We thus represent the agent’s knowledge
using the vector of weights associated with the student’s Q-
function table. Tasks are represented using the pair of (x, y)
coordinates associated with the starting and goal states.

Action Space

We create nine different source tasks. Eight of these are
static tasks that don’t change based on the target task. These
tasks initialize the agent in one of the 4 rooms, and terminate
when the agent moves into one of the adjacent two rooms.
There is one such task for each room and adjacent room
pair. In addition, all corridors between rooms are blocked
except for the one required to complete the task. The ninth
source task is a dynamic source task that changes based on
the current target task. This task initializes the agent in the
same room as the goal of the target task, and sets the goal tile
to be the same as the target task. As with the static sources,
all corridors to other rooms are blocked off. These sources,
together with the target task, form the action space of the
CMDP. Note that these tasks were intentionally designed to
give rise to a natural and interpretable curriculum for each
target task: use the static sources to navigate to the goal
room, and follow with the dynamic source task to complete
the path.

Reward Function

When a task is selected, it is trained on until convergence.
We consider a task converged when the steps taken to reach
the goal averaged over the last 5 episodes is less than the
Manhattan distance between the start s and goal positions g
plus a slack term δ:

converged :=
(
steps taken < ||s− g||1 + δ

)
(2)

We set δ to 0 when the start and goal positions are in the
same room, 5 when they are in adjacent rooms, and 10 when
they are diagonally across, to account for navigating around
walls. The cost of learning a task is the number of steps
needed to learn to convergence. Therefore, the reward given
is the negative of the steps taken.

Architecture and Learning Parameters

We use DQN (Mnih et al., 2015) to learn the CMDP. The
neural network uses a two-stream architecture, where the
features relating to the task/goal space pass through a sin-
gle hidden layer, while the agent knowledge features pass
through three hidden layers. Each hidden layer has 128 units
followed by a tanh activation function. The two streams
are subsequently merged via element-wise multiplication,
and pass through a final hidden layer to produce action-
values. A diagram of this network can be seen in Figure 2.
The learning rate is set to 5e-4, replay buffer size to 5000,
batch size 64, exploration fraction to 0.05, and has the target
network updated every 50 steps. To speed up training, we
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Figure 1. (a) An example of a task in the gridworld environment. The red arrow is the agent, and the green circle is the goal. (b) CMDP
learning curves for the interpolation experiments. (c) CMDP learning curves for the extrapolation experiments. In the CMDP learning
curves, the x-axis represents a CMDP episode, where each episode is an entire run of a curriculum. The y-axis is the cost of that curriculum
in game steps.

also capped the number of actions the CMDP could take
to 5, and trained on the target task thereafter. The learning
parameters were not extensively optimized.

RESULTS

We consider two types of generalization that may be possible
in CMDPs: interpolation and extrapolation. In the interpo-
lation case, we randomly shuffle all the possible tasks, and
present them to the CMDP agent one by one. This is the
lifelong learning setting, where each task encountered is
new. The results are shown in Figure 1(b). As the CMDP
learns and the coverage of tasks increase, the curricula pro-
duced gradually improve, until they pass the baseline of
just training on the target task after having seen 300 tasks.
Thus, the results show how many tasks a curriculum must
be learned for before the teacher agent is able to zero-shot
produce curricula for novel unseen tasks.

In the extrapolation case, we explicitly split the set of target
tasks into a train set and a test set. The test set contains all
tasks that start in the top left room, and end in the bottom
right room, while the train set contains tasks with all other
possible start and end goal pairs. The extrapolation case
is more challenging, because in the previous interpolation
setting, generalization was expected because goals were
represented with similar features and the set of training tasks
covered pairings from all the different rooms. However, in
this case, the curriculum of navigating from the top left
room to the bottom right room has not been seen before.
We train on tasks in the train set for the first 200 CMDP
episodes, and subsequently evaluate on the test set. The
results are shown in Figure 1(c), with the curriculum graph
offset to reflect time spent training on the train set. The
results once again show that curricula learned on a different
set of tasks can transfer to produce curricula for new unseen
tasks.

5. Related Work
The idea of using curricula to train learning agents can be
traced back at least as far as (Elman, 1993). Over the years,
curricula have been used to train agents on complex tasks
in areas such as robotics (Asada et al., 1996; MacAlpine &
Stone, 2018) and games (Wu & Tian, 2017). Most of these
methods relied on manual specification of the curriculum,
which often requires a lot of human time, domain expertise,
and is based on intuition rather than quantitative analysis or
metrics.

In recent years, automated approaches to construct a curricu-
lum have been devised. Due to the complexity of the prob-
lem, many of these methods rely on heuristics to perform
sequencing, such as learning progress (Graves et al., 2017),
transfer potential (Svetlik et al., 2017; Da Silva & Costa,
2018), and task similarity (Narvekar et al., 2017). Other
approaches make simplifying assumptions on the types of
tasks that can be used in the curriculum. For example, some
only allow the initial and terminal state distribution to vary
between source and target (Florensa et al., 2017; 2018), or
only change the reward function (Riedmiller et al., 2018;
Sukhbaatar et al., 2018). Finally, another line of work con-
siders the formulation of curricula as an MDP (Narvekar
& Stone, 2019) or POMDP (Matiisen et al., 2017), which
our work builds upon. This formulation uses learning as
opposed to heuristics to guide task sequencing, and does not
make any restrictions on the source tasks. However, as far
as we know, in all of these previous works, the curriculum
is designed for a single agent to learn on a single target task.
Generating a curriculum for a new target task or agent re-
quires performing the same generation process from scratch,
which can be redundant and expensive. Our work attempts
to address this shortcoming.

Lastly, curriculum learning has also been explored in super-
vised learning (Bengio et al., 2009). For example, (Fan et al.,
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Figure 2. The two-stream network architecture used for the teacher CMDP agent.

2018) use a similar MDP style formulation to order samples
of training data. They showed that a teacher MDP can train
a student on a new task, where a task in this case is a subset
of samples from the same distribution (e.g. one task was
the first half of MNIST while another was the second half).
However, unlike in reinforcement learning, the distribution
of the training and test data does not change during learning.
Our work provides a parallel to (Fan et al., 2018) for the
reinforcement learning setting.

6. Conclusion
Most existing work on automated curriculum learning has
relied on heuristics, or limited the types of source tasks
that can be used in a curriculum, because learning a full
curriculum directly from experience can be computationally
expensive. In this paper, we showed how curriculum policies
can generalize to produce curricula for new unseen tasks.
This process effectively amortizes the cost of learning a
curriculum and opens the door to using more learning from
experience in curriculum design. In human and animal
training, as well as more recently in supervised machine
learning, curricula have been adapted to train multiple types
of learners for different target tasks. This work provides a
similar result for the reinforcement learning setting.
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