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ABSTRACT

Query-based Transformers have been yielding impressive results in object detec-
tion. The potential of DETR-like methods for 3D data, especially in volumetric
medical imaging, remains largely unexplored. This study presents Organ-DETR
that contains two novel modules, MultiScale Attention (MSA) and Dense Query
Matching (DQM), for boosting the performance of DEtection TRansformers (DE-
TRs) for 3D organ detection. MSA introduces a novel top-down representation
learning approach for efficient encoding of 3D visual data. MSA has a multi-
scale attention architecture that leverages dual self-attention and cross-attention
mechanisms to provide the most relevant features for DETRs. It aims to employ
long- and short-range spatial interactions in the attention mechanism, leveraging
the self-attention module. Organ-DETR also introduces DQM, an approach for
one-to-many matching that tackles the difficulties in detecting organs. DQM in-
creases positive queries for enhancing both recall scores and training efficiency
without the need for additional learnable parameters. Extensive results on five
3D Computed Tomography (CT) datasets indicate that the proposed Organ-DETR
outperforms comparable techniques by achieving a remarkable improvement of
+10.6 mAP COCO and +10.2 mAR COCO. Code and pre-trained models are
available at https://---.

1 INTRODUCTION

The advent of the DEtection TRansformer (DETR) (Carion et al., 2020) represents a pivotal mile-
stone in computer vision, specifically within object detection. DETR is distinguished by its novel
query-embedding-based Transformer architecture that replaces traditional heuristic target box-to-
anchor assignments (Ren et al., 2015). DETR fundamentally shifts the paradigm by directly map-
ping queries into distinct object representations. DETR-like methods have gone beyond object de-
tection and have broadly impacted various vision recognition tasks like object detection (Zhang
et al., 2022; Chen et al., 2022; Jia et al., 2023), segmentation (Dong et al., 2021; Cheng et al., 2021;
2022; Li et al., 2023b), pose estimation (Hampali et al., 2022), multi-object tracking (Meinhardt
et al., 2022), and other pertinent domains.

The identification and delineation of organs hold significant implications in clinical applications,
such as efficient data retrieval (Xu et al., 2019), robust quantification (Tong et al., 2019), and
enhancement for subsequent tasks like semantic segmentation (Navarro et al., 2022; Azad et al.,
2023). However, the transition from 2D to 3D visual data poses the challenge of processing data
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in higher dimensions. Furthermore, medical imaging modalities, particularly 3D Computed To-
mography (CT), inherently exhibit complexities pertaining to organ structures. These complexities
encompass issues such as proximity and overlap, fuzzy boundaries, inter-patient variability, and dif-
ferent anatomical structures with analogous intensity levels (see Supplementary Figure 7). These
challenges pose obstacles to effectively extending DETR-like approaches to 3D organ detectors,
limiting their full potential.

This study makes the following primary contributions. i) We introduce a MultiScale Attention
(MSA) module, a pioneering top-down representation learning approach adept at capturing both
long- and short-range information from multiscale features. ii) We propose a Dense Query Match-
ing (DQM) method, a novel one-to-many matching approach to boost recall and training efficiency.
MSA is an attention-based encoder that captures high-level global context and dependencies be-
tween visual patches across different scales by leveraging a long-range cross-attention mechanism
(see Supplementary Figure 8). The abstract features in high-level feature maps, like organs or in-
stances, can provide invaluable guidelines for representing features in lower levels, like edges. In
our organ detection transformer (Organ-DETR), we use MSA as an encoder and combine it with
the decoder from Deformable DETR (D-DETR) (Zhu et al., 2020b). Our second contribution is a
novel query matching strategy for the label assignment. One-to-one techniques (Carion et al., 2020;
Zhang et al., 2023c) often suffer from slow training convergence and lower recall due to an insuffi-
cient number of positive queries. One-to-many methods (Chen et al., 2022; Kim & Lee, 2020; Zhu
et al., 2020a; Ge et al., 2021; Feng et al., 2021; Shuai et al., 2022) partially solve the aforementioned
issues but still suffer from difficult optimization, duplicate-removal operation, and low precision.
We present DQM, a novel one-to-many label assignment strategy that addresses these challenges.
A hyperparameter matching ratio in DQM governs the selection of positive queries to boost recall
scores and the learning pace during training. We then rectify the intricacy of multiple predicted
labels and bounding boxes through a proposed multiscale segmentation framework for expediting
optimization procedures while elevating the precision levels of the outcomes. By integrating these
innovations, our Organ-DETR shows superior performance over comparative methods, achieving an
outstanding improvement of +10.6 mAP COCO and +10.2 mAR COCO across five widely-used CT
databases.

2 RELATED WORK

Feature representation: In conventional object/organ detection, convolutional neural networks
(CNNs) or Swin Transformers are commonly employed for feature extraction as backbones (He
et al., 2016; Lin et al., 2017; Liu et al., 2021; Wittmann et al., 2022) or feature representations
as DETR-like methods’ encoders (Zhu et al., 2020b; Liu et al., 2022a; Cao et al., 2022; Li et al.,
2023b; Zhang et al., 2023a; Li et al., 2023a). Prominent examples of widely adopted CNN mod-
els are ResNet (He et al., 2016), FPN (Lin et al., 2017), and Retina U-Net (Jaeger et al., 2020;
Baumgartner et al., 2021). Due to the shortcomings of the CNN models in capturing long-range
information, recent studies tend to employ Transformers in their detection architectures (Liu et al.,
2021; 2022b; Wittmann et al., 2022). As shown in the experiments, existing Transformer-based
encoders or backbones have exhibited limitations in performance, unfortunately. This inclination
primarily arises from the necessity of a sufficient patch representation to effectively capture long-
range information within Transformer-based structures. Furthermore, DETR-like methods often opt
for high-level features due to the computational complexity, resulting in reduced spatial resolution.
This constraint hinders the effective utilization of the Transformer-based features within the scope
of detection tasks. In response to these challenges, we proposed the MSA module with a dual atten-
tion mechanism, strategically capturing a wide spectrum of long- and short-range feature patterns
within and between layers (Figure 8). Recent studies underscore a growing preference for employ-
ing the multi-scale concept in Transformer models. Notably, FasterViT ? and MAFormer (Wang
et al., 2022b) stand out for adeptly blending local and global features within a scale level. HiViT ?
eliminates local inter-unit operations and retains only global attention between tokens through a se-
ries of spatial merge operations and MLP layers. MERIT (Rahman & Marculescu, 2023) focuses
on utilizing multi-stage prediction maps for loss aggregation. In contrast to these techniques, MSA
employs inter-scale cross-attention that generates key token voxel patches from between scales for
the queries in the given scale, aiming to effectively capture more abstract information existing in
high-level feature maps.
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(a) DN matching (b) CDN matching (c) Group matching (d) Proposed DQM

Figure 1: Overview of the different matching approaches: (a) DeNoising matching (DN) (Li et al.,
2022); (b) Contrastive DeNoising (CDN) matching (Zhang et al., 2022); (c) Group matching (Jia
et al., 2023); and (d) Proposed Dense Query Matching (DQM).

Label assignemnt: Conventional label assignment methods can broadly be classified into two cate-
gories: i) One-to-one strategy that assigns exactly one positive query for each ground truth instance,
object, or organ (Carion et al., 2020; Zhang et al., 2023c); and ii) One-to-many strategy that allows
the assignment of multiple positive queries to a single ground truth instance (Chen et al., 2022; Kim
& Lee, 2020; Zhu et al., 2020a; Ge et al., 2021; Feng et al., 2021; Shuai et al., 2022). DETR (Carion
et al., 2020) developed a one-to-one label assignment approach for directly transforming queries into
distinct objects, thereby facilitating end-to-end object detection. The one-to-one label assignment
has been improved by a considerable number of methods (Zhu et al., 2023; Zhang et al., 2023c).
DeNoising (DN) methods (Li et al., 2022; 2023b) enhance the convergence of DETR by develop-
ing a query denoising scheme, where the ground truth labels and boxes are polluted by noises and
then enforce the Transformer decoder to reconstruct ground truth objects given their noised versions
(Figure 1a). Zhang et al. (2022) introduce a Contrastive DeNoising (CDN) training technique that
enhances the DN by incorporating positive and negative samples of identical ground truths simulta-
neously (Figure 1b). DN and CDN enhance the robustness of predicted labels and bounding boxes,
but their primary focus on denoising rather than detection yields lower recall.

One-to-many methods with dense query concepts are developed as an alternative to the one-to-one
approach for incorporating more positive object queries for enhancing training convergence. Such
techniques often increase positive samples and then post-process the predictions by non-maximum
suppression (NMS) with a predetermined threshold (Chen et al., 2021; Wang et al., 2022a; Ouyang-
Zhang et al., 2022). Recent one-to-many detection approaches refrain from using the NMS mech-
anism. This avoidance is rooted in NMS’s tendency to introduce instability when eliminating du-
plicated predictions, leading to compromised recall and precision. Jia et al. (2023) poorpse Hy-
brid Matching (HM) that integrates the one-to-one matching branch with an auxiliary one-to-many
matching branch during training without employing NMS. Group Matching (Chen et al., 2022) uti-
lizes one-to-many to assign multiple positive object queries to each ground truth, then separates
the queries into distinct, independent groups, and finally uses one-to-one to select the best positive
query per object within each group (Figure 1c). However, these methods rely on one-to-one bipar-
tite, making it challenging to achieve higher recall and maintain easy optimization during training,
as previously discussed. The proposed DQM, as a one-to-many matcher, improves the true positive
matching rate by increasing the ground truth instances, eschewing the need for auxiliary queries.
The true positive rate is then controlled through the utilization of a hyperparameter matching ratio
(represented by λ in Figure 1d), strategically designed to enhance recall. Increasing the number of
true positive instances in DQM simultaneously decreases the number of negative queries, leading to
lower false positives (and thus, higher precision) and boosting the training’s learning pace.

3 ORGAN-DETR
The principal stages for organ detection in 3D CT data are represented in Figure 2 and detailed in
the following sections.

Feature extraction backbone: Considering visual CT data I as a 3D array with dimensions
H×W×D, where H , W , and D represent the height, width, and depth, respectively. A CNN-based
backbone, such as FPN (Lin et al., 2017; Wittmann et al., 2023) or ResNet (He et al., 2016), gener-
ates a set of L feature maps. Within this set, Lh high-level feature maps (Lh ≤ L) are considered as
input for MSA. Each feature map is then mapped into fe features by a convolutional layer, forming
a feature representation {P(l)}Lh

l=1, where P(1) denotes the highest-level feature map.
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Figure 2: Organ-DETR overview: Extracted feature maps from input CT data by a backbone are
fed into the encoder of Organ-DETR for being processed by MSA. MSA provides a deeper feature
representation for the backbone’s feature maps. A multiscale segmentation framework further guides
the enriched feature maps before feeding them into the decoder, followed by the head. The query
embeddings are finally matched through DQM, and the output is the prediction of class labels and
bounding boxes of detected organs. Note organ segmentations are only available during training.

Multiscale Attention: Organ-DETR is a Detection Transformer that uses MSA as an encoder, and
its decoder is borrowed from the Deformable DETR (Zhu et al., 2020b). The MSA encoder learns
adaptive spatial sampling, allowing more flexible and accurate organ detection. As shown in Fig-
ure 2, the Lh feature maps extracted by a backbone, {P(l)}Lh

l=1, are fed into the MSA block. Global
context information, like texture and patterns, tends to be repeated within a specific scale/layer or
through different scales in feature and original data domains. By attending to distant patches, MSA
can recognize complex patterns and objects that span a larger area of the visual data (see Figure 8
in Supplementary). This is particularly useful in the organ detection task, where understanding the
relationships between distant regions is crucial for accurate predictions. Engaging distant patches
across different layers in attention mechanisms also enables information flow across all patch em-
beddings, regardless of their spatial proximity. This helps propagate relevant information to all parts
of the visual data, which is especially beneficial when dealing with large-scale visual data like CT,
wherein organs are spread across different regions.

MSA is equipped with two attention mechanisms: i) self-attention that seeks a (short-range) atten-
tion map inside the given scale level, and ii) cross-attention that explores the attention map between
interlayer patch embeddings, those located in other layers. We divide the backbone output feature
maps P into p×p×p non-overlapping voxel/3D patches, i.e. X(l) = {x(l)

1 , . . . ,x
(l)
Nl
|x(l) ∈ Rp3×fe},

l ∈ {1, . . . , Lh}; Nl denotes the number of voxel patches at the l-th scale level, and x
(l)
i is the vector

representation of the i-th voxel patch at the l-th layer. The self-attention within the MSA is similar to
traditional Swins’ self-attention mechanism Liu et al. (2021) that computes the attention scores be-
tween all voxel patch embeddings in the given scale level for capturing short-range dependencies1.
MSA projects X(l) ∈ RNl×p3×fe into query, key and value using three matrices W

(l)
Q ∈ Rfe×fq ,

W
(l)
K ∈ Rfe×fk , and W

(l)
V ∈ Rfe×fv , respectively:

Q(l) = X(l)W
(l)
Q , K(l) = X(l)W

(l)
K , V(l) = X(l)W

(l)
V , l = 1, . . . , Lh. (1)

Then self-attention Sself is computed via:

Sself

(
X(l)

)
= attention

(
Q(l),K(l),V(l)

)
= softmax

(
Q(l)K(l),⊤√

fq

)
V(l), (2)

where ‘⊤’ denotes the transpose operation. The output of the self-attention block is fed into a hi-
erarchy attention map, called cross-attention, that explores the attention scores between the voxel
patch embeddings at layer l and those located on its higher feature layers. Cross-attention is a

1Long-range refers to the voxel patch embeddings’ relationship between different layers throughout this
study.
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long-range attention that explores the long-range relationship between inter-layer voxel patch em-
beddings. Since the natural visual data tends to repeat its features across several feature levels,
it is tempting to capture such features to provide an impressive representation of the given scale
level’s patches. If X0 represents the output of the self-attention layer (that serves as the input for the
computation of the cross-attention), the cross-attention layer S(m)

cross is computed through:

(3)
Scross

(
X0,X

(m)
)
= attention

(
Q0,K

(m),V(m)
)

= softmax

(
Q0K

(m),⊤√
fq

)
V(m),m ∈ {1, . . . , l − 1}.

Note that the highest-level feature map P1 contains no long-range cross-attention. Equation 3 is
recursively applied across all m values for yielding the long-range attention map for the given layer:

Xm =

l−1∏
m=1

Scross

(
Xm−1,X

(m)
)
, (4)

where X0 is the input feature map into the cross-attention module at the given layer l, i.e.,
Sself

(
X(l)

)
. Following each multi-head self- and cross-attention layer, an MLP layer as a feed-

forward network (FFN) is applied to voxel patch embeddings. The MLP comprises two linear
transformations along with dropout layers, followed by ReLU non-linear activation functions. The
Transformer encoder takes Lh feature maps as input and produces output feature maps with identical
resolutions. We guide the resultant feature maps of the encoder through a multiscale segmentation
framework to yield relevant features (Figure 2). The segmentation head converts the Lh refined
feature maps into Lh segmentation maps with M labels and then are fed into the multiscale segmen-
tation framework for computing the segmentation loss. In the Organ-DETR framework, we have
adopted the decoder from Deformable DETR, which takes the enriched feature maps from the MSA
encoder, query embeddings, and query position embeddings as its inputs and enhances feature repre-
sentations to improve the accuracy of organ detection. A head predicts the bounding box coordinates
and class labels of organs, and they are then fed into DQM for label assignment.

Dense Query Matching: DQM has been specifically designed for organ detection tasks, where
each ground truth label corresponds to a single organ. Let Q ∈ RN×fe , q ∈ RN , and g ∈ RM

represent query embeddings, the prediction scores of queries, and ground truth labels, respectively.
A matcher assigns predictions to ground truth labels to form pairs for the detection task. Medical
images are characterized by anatomical structures that have a similar appearance. For instance, the
human vertebral column consists of tens of vertebrae that exhibit resemblant patterns. Owing to
the resemblance observed among such structures, a potential approach entails elevating the recall
rate and subsequently discerning the entities with the most favorable scores for designation as the
ultimate predictions. Within this context, we propose DQM to enhance the relatively inadequate re-
call associated with the one-to-one assignment strategy while concurrently boosting learning during
training. To improve the recall score, we add a new set of ground truth samples to the original ground
truth during training (Figure 1d). We increase the number of positive queries to yield higher recall
via duplicating the ground truth labels. The number of duplications is denoted by η and defined as:

η = ⌈λρ⌉, λ ∈ (0, 0.9). (5)

⌈.⌉ denotes a ceiling operator, and λ is a hyperparameter, called matching ratio, which parameterizes
a fraction of the potential queries that are matched to ground truth in a one-to-many setting; ρ
is the ratio between the number of queries and ground truth labels, i.e., ρ = N

M . DQM strictly
assigns ‘1 + η’ queries to each ground truth during training. In inference, DQM selects the best-
predicted query per class/organ whose prediction score is the highest among the others. Hence,
DQM generates only one prediction per ground truth, even though multiple queries are assigned
to each ground truth. Hyperparameter λ plays an important role in the matching performance as it
determines the number of positive-negative queries and influences the pace of convergence. For a
more in-depth analysis of the influence of the matching ratio λ, we analyze the loss function for a
conventional one-to-one (O2O) approach. Considering the ratio of positive queries’ gradient values
between DQM and O2O, γ+, we deduce in Appendix A that the following holds:

γ+ =
∂LDM

∂p+
/
∂LO2O

∂p+
= 1 + ⌈λρ⌉. (6)
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Likewise, γ− denotes the ratio of negative queries’ gradient values between DQM and the one-to-
one mechanism, computed via

γ− =
∂LDM

∂p−
/
∂LO2O

∂p−
= 1− ⌈λρ⌉

ρ− 1
. (7)

Figure 3 depicts the resulting equations for various values of λ and ρ.

Figure 3: Gradient ratio variation of
positive (left) and negative (right) with
different λ values (M=10).

The graph demonstrates ρ exhibits discrete incremental
increments in γ+, while decelerating γ−. From an ac-
curacy perspective, a larger number of queries in one-
to-one methods is unfavorable as extra queries introduce
confusion and complexity to the model, worsening the
precision-recall scores. The figure further illustrates that
an elevation in the matching rate λ expedites the conver-
gence of the gradient norm for positive queries while si-
multaneously decelerating the convergence for negative
queries. Notably, acceleration is more prominent for pos-
itive queries than deceleration for negative ones. On the
other hand, higher values for λ increase the number of
false positives, which can negatively impact the precision
score. Therefore, the matching ratio λ poses a trade-off
between the precision-recall scores and the learning pace
of the training phase. The ablation study in Section 4
delves deeper into this aspect of DQM. We suppress the false positive rate by introducing a multi-
scale segmentation loss function detailed in the following section.

Multiscale segmentation framework and training loss function: Detection can benefit from seg-
mentation. Recent studies (Li et al., 2023b; Wu et al., 2023) show that combining segmentation and
detection tasks yields better performance compared to individualized approaches. Inspired by this,
we introduce a multiscale segmentation loss function for maintaining the coherence between each
layer of these feature maps and the corresponding input visual data. The encoder of Organ-DETR
produces Lh feature maps. Our segmentation framework employs a 3D convolutional layer to map
Lh feature maps into Lh corresponding segmentation maps with the exact spatial resolution but
comprising M + 1 channels, where M is the number of ground truth labels and one denotes the
background. The segmentation-related loss is computed using the cross-entropy (CE) and dice loss
(DL) functions as follows: Lseg =

∑Lh

l=1

(
CE(l) +DL(l)

)
. As depicted in Figure 5, the multiscale

segmentation framework incorporates the output of each layer of the MSA pyramid into the overall
loss, enforcing the model to refine the predicted organs’ labels and, consequently, their correspond-
ing bounding boxes. The segmentation framework is exclusively utilized during the training phase
to rectify the queries by suppressing the false negative queries and solidating the true positive ones.
The final training loss function considers classification, bounding box, and segmentation aspects:

L = λclsLcls + λbboxLbbox + λsegLseg. (8)

λcls, λbbox, and λseg correspond to the weights assigned to the classification, bounding box, and
segmentation losses, respectively. The bounding box loss comprises both L1 and Generalised
IoU (Rezatofighi et al., 2019), and the classification computes the cross-entropy loss between pre-
diction and gound-truth logits.

4 EXPERIMENTS

Datasets: We applied the proposed Organ-DETR to five publicly available CT datasets in-
cluding AbdomenCT-1K (Ma et al., 2022), WORD (Xiangde Luo & Zhang, 2022), Total-
Segmentator (Wasserthal et al., 2022), AMOS (Ji et al., 2022), and VerSe (Sekuboyina et al., 2020;
Löffler et al., 2020; Liebl et al., 2021) (Supplementary material Table 3). Among the datasets con-
sidered, all except VerSe comprise a mix of healthy and diseased organs, encompassing conditions
such as cancer, tumors, and fatty liver. VerSe, as a vertebrae dataset, also includes instances of both
healthy vertebrae and anatomically rare cases, such as fractured vertebrae and metal insertions. The
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Table 1: Performance of different methods and ours averaged across five 3D CT datasets. RetinaNet
is a CNN-based organ detector without a Transformer or matcher.

Method Backbone Transformer Matcher mAP mAR AP75

RetinaNet FPN - - 43.1 48.7 42.2
- UNETR+Swin D-DETR Hungarian 40.4 47.6 35.0
- FPN DETR Hungarian 32.7 39.6 26.6
FocusedDec FPN Focused Decoder Hungarian 34.3 41.1 27.5
SwinFPN FPN + Swin D-DETR Hungarian 43.6 51.2 38.4
Transoar FPN D-DETR Hungarian 43.7 51.2 37.5
Transoar ResNet-50 D-DETR Hungarian 41.4 48.6 35.1

Organ-DETR FPN MSA + D-DETR DQM 54.3 61.4 56.0
Organ-DETR ResNet-50 MSA + D-DETR DQM 51.2 57.9 50.2
Organ-DETR ResNet-101 MSA + D-DETR DQM 51.5 58.1 48.9

Supplementary material Section B.3 reports additional information about datasets and preparation
details.

State-of-the-art organ detection techniques and evaluation metrics: Our method’s performance
was compared against RetinaNet (Jaeger et al., 2020) as a CNN-based detector and several Trans-
former Detection methods including Focused Decoder (Wittmann et al., 2023), SwinFPN (Wittmann
et al., 2022), and Transoar (Wittmann et al., 2022). RetinaNet is constructed based on the well-
regarded medical object detection framework nnDetection (Baumgartner et al., 2021), incorporating
minor modifications as outlined in (Wittmann et al., 2023). We also incorporate the pre-trained UN-
ETR (Hatamizadeh et al., 2022) as a backbone in combination with D-DETR for additional analysis.
To ensure a fair comparison among all detection methods, we maintain identical training settings,
including the optimizer and its hyperparameters, batch size, and number of epochs. Parameters of
similar blocks such as specifications of FPN and ResNets backbones (the number of scale levels,
the number of feature maps employed in Transformer encoders, and the number of channels or fea-
tures, etc.), Transformers’ decoders (dropout, number of heads, embedding dimension, number of
decoders, etc) remain identical across all methods, including ours. We used the recommended set-
ting by the authors for other blocks like Swin Transformer, DETR, Focused Decoder, and Retina
U-Net (Section B.5 in Supplementary). The methods’ results were assessed by mAP COCO, mAR
COCO, and AP75, presented in Supplementary Section B.5.

Organ-DETR parameters: We used the following setting for the blocks dedicated to Organ-DETR.
The MSA module was configured with a voxel patch size of 2, 64 attention heads, a depth of 2, and
a dropout rate of 0.3, all without bias. In DQM, λ and ρ were configured as 0.2 and 10, respectively.
During training, weights λcls, λbbox, and λseg were specified as 2, 5, and 2, respectively.

Main results: Table 1 reports the performance averaged over the five CT datasets. The detailed re-
sults for each dataset are reported in Supplementary Section B.6.1. We depict the visual comparison
of predicted bounding boxes by different techniques for the VerSe dataset in Figure 4. More results
are provided in Figures 10-12 in the supplement. Organ-DETR demonstrates superior performance
compared to all competing methods, showcasing substantial enhancements of +10.6 in mAP, +10.2
in mAR, and +13.8 in AP75.

The superiority of Organ-DETR is consistent across all datasets, as evident from Tables 9 to 13. This
underscores the method’s reliability and effectiveness across diverse datasets with varying specifi-
cations. Table 1 also suggests that U-Net-based backbones like FPN may yield superior results to
ResNet-based ones. The visual results confirm the quantitative results, where Organ-DETR bound-
ing box predictions closely resemble reference annotations, outperforming other methods.

Comparision of matching methods: We compared the proposed DQM with Hungarian match-
ing (Carion et al., 2020) and a range of recently developed matching methods including DeNoising
matching (DN) (Li et al., 2022), Contrastive DeNoising (CDN) matching (Zhang et al., 2022), Hy-
brid Matching Jia et al. (2023), and matching with distinct queries Zhang et al. (2023b) for the
organ detection task. All the matching methods, including DQM, were assessed under equitable
conditions, utilizing the FPN Backbone and Deformable DETR. Unfortunately, ‘memory mapping’
and NMS in each decoder layer in the matching with distinct queries failed to work for the organ
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(a) RetinaNet
(0.82 w/ 1 FN)

(b) Foc. Dec.
(0.58 w/ 1 FN)

(c) Transoar
(0.56 w/ 1 FN)

(d) SwinFPN
(0.64 w/o FN)

(e) Ours
(0.85 w/o FN)

Figure 4: 2D visual comparison of bounding box and classification predictions (in red) by different
organ detection methods within a sample from the VerSe dataset. The values in parentheses denote
the average IoU over the predicated bounding boxes, and ‘FN’ indicates false negatives. Detailed
results are in Table 12 in the Supplementary.

Table 2: Comparison of the performance of different matching techniques in terms of AP COCO
(AR COCO) averaged across five benchmark datasets.

Method Transformer mAP mAR AP75

Hungarian D-DETR 43.2 50.6 37.3
DN D-DETR 42.2 50.0 38.5
CDN D-DETR 42.6 50.4 36.6
Hybrid Matching D-DETR 43.8 51.3 38.5
Matching with Distinct Queries D-DETR 36.9 43.7 30.2
DQM (ours) D-DETR 44.5 52.0 42.8

detection task and were consequently omitted from the experiment. We employed NMS on the
intermediate output of the Transformer encoder to obtain distinct queries, which are subsequently
utilized within the Transformer decoder, so-called two-stage, in training and inference. Note that
these techniques were not generically developed for organ detection tasks; hence, we found and
reported the best setting for each matching technique throughout this study. For instance, the rec-
ommended setting for Hybrid Matching, {Q = 300, T = 1500, K = 6}, proved ineffective
for organ detection, so we did an ablation study to find its best parameters for CT data which is
{Q = 100, T = 300, K = 6}. Table 2 compares different matching strategies based on mAP,
mAR, and AP75, averaged across all five CT datasets. Detailed results with applied settings per
dataset can be found in Supplementary, Tables 14-18. The tabulated results indicate that matching
methods like DN, CDN, and matching with distinct queries are not recommended for 3D organ de-
tection. In the context of CT data with a compact structure, as exemplified by the VerSe dataset
(Table 15), introducing noise to the ground truth by DN and CDN is not advisable. Such noise
addition can lead to ambiguity in the localization of closely situated organs, hence diminishing the
suitability of DN and CDN for this specific data. NMS-based techniques like matching with distinct
queries may be unsuitable for organ detection since NMS can exclude potentially valuable queries.
The enhancement achieved by Hybrid Matching over the baseline one-to-one Hungarian method is
marginal, whereas DQM significantly bolsters matching performance. This notable improvement
is evident across most reported results in Tables 14 to 18, establishing DQM as a powerful tool
for matching. In the supplement, Figures 13-14 provide a comparative analysis of sampling loca-
tions between the one-to-one approach and DQM across various samples during inference. Our
DQM strategy incorporates more pertinent sampling locations in accurately predicting the bounding
boxes.

Impact of the multiscale segmentation framework on the accuracy of predicted classification
labels: Figure 5 demonstrates that the proposed multiscale segmentation framework boosts the
matching performance. Since an increase in λ may incur a higher number of false positive queries
due to the increase of positive queries, the proposed segmentation framework rectifies the matched
queries by reducing false positive queries. Hence, the introduced multiscale segmentation frame-
work proves its capability to rectify class labels assigned to organs, leading to increased prediction
accuracy, see Figure 5 right.
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Figure 5: Performance of Organ-DETR (backbone: ResNet-50, ρ = 10) with and without the
multiscale segmentation map on WORD in inference. T, F, P, and N stand for true, false, positive,
and negative, respectively.

Figure 6: Ablation study on DQM parameters,
i.e. ρ and λ. The numerical values within the
figure represent the average of mAP and mAR
scores.

Recommended ρ and λ values for organ de-
tection: Figure 6 displays the performance of
Organ-DETR across a range of λ and ρ values
in DQM. The values above the figure’s main
diagonal are more favorable, which indicates a
higher averaged mAR-mAP and lower bounding
box loss. Increasing λ beyond a certain threshold
while maintaining a constant ρ generally results
in an increase in bounding box loss. This is pri-
marily due to a larger number of queries involved
in the matching process. Likewise, increasing ρ
beyond a threshold while keeping λ fixed can po-
tentially worsen the performance. As a rule of
thumb, 1 ≤ η ≤ 5 yields desirable outcomes
(η = ⌈λρ⌉).

Complement experimental results: Due to
the page limit, we reported the ablation study
on MSA parameters in Supplementary Sec-
tion B.6.1. We also report the results of DQM’s gradient norm in the supplement, Section B.6.2.
Last but not least, Supplementary Section B.6.6 reports computational cost, training time, and infer-
ence FLOPs.

5 DISCUSSION AND CONCLUSION

We introduced Organ-DETR for 3D organ detection, which includes two contributions: multiscale
attention and dense query matching. The cross-attention of MSA improves different aspects of
a backbone, including: i) Global context and information flow: Cross-attention allows complex
pattern recognition and information flow across all scale levels in the visual data, regardless of their
spatial proximity. Propagating relevant voxel patches to all parts of the data enables dealing with
large visual data or scenes spread across different regions or a larger area of the visual data. ii)
Translation invariance: Unlike traditional Transformers that rely on local patch embeddings, long-
range patches in ross-attention allow to achieve a higher degree of translation invariance with a focus
on important features and patterns in different layers of the visual data, irrespective of their absolute
layer positions. iii) Handling variable-sized visual data: Thanks to the cross-attention mechanism,
MSA can handle both high-resolution and low-resolution visual data without the need for resizing
or cropping. The cross-attention ensures that relevant context is captured across various feature
layers, regardless of the input visual data’s dimensions. The impressive performance of Organ-
DETR demonstrated that these contributions help to address the inherent challenges posed by 3D
CT data, including proximity, overlap, and indistinct boundaries.

Broader impacts: Our results position Organ-DETR as a promising asset for future detection tasks
in 3D imaging, shifting the attention toward 3D object detection.
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REPRODUCIBILITY STATEMENT

To ensure the integrity and transparency of our research, we are committed to making our study
fully reproducible. All reported experiments were performed on publicly accessible datasets. Sup-
plementary Sections B.3 and B.4 provide comprehensive information on the datasets employed and
the procedures involved in data preparation, preprocessing, and augmentation within the scope of
this study. Experimental setups, hyperparameters, and training details are reported in Supplementary
in Section B.5. We will release the codebase and the trained models publicly available on GitHub.
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Michael Baumgartner, Paul F Jäger, Fabian Isensee, and Klaus H Maier-Hein. nndetection: a
self-configuring method for medical object detection. In Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France,
September 27–October 1, 2021, Proceedings, Part V 24, pp. 530–539. Springer, 2021.

Xipeng Cao, Peng Yuan, Bailan Feng, and Kun Niu. Cf-detr: Coarse-to-fine transformers for end-to-
end object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 185–193, 2022.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Qiang Chen, Yingming Wang, Tong Yang, Xiangyu Zhang, Jian Cheng, and Jian Sun. You only look
one-level feature. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 13039–13048, 2021.

Qiang Chen, Xiaokang Chen, Jian Wang, Shan Zhang, Haocheng Feng, Junyu Han, Errui Ding,
Gang Zeng, and Jingdong Wang. Group detr: Fast detr training with group-wise one-to-many
assignment. 2022.

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need for
semantic segmentation. Advances in Neural Information Processing Systems, 34:17864–17875,
2021.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1290–1299, 2022.

Bin Dong, Fangao Zeng, Tiancai Wang, Xiangyu Zhang, and Yichen Wei. Solq: Segmenting objects
by learning queries. Advances in Neural Information Processing Systems, 34:21898–21909, 2021.

Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and Weilin Huang. Tood: Task-aligned
one-stage object detection. In 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 3490–3499. IEEE Computer Society, 2021.

Zheng Ge, Songtao Liu, Zeming Li, Osamu Yoshie, and Jian Sun. Ota: Optimal transport assignment
for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 303–312, 2021.

10



Under review as a conference paper at ICLR 2024

Shreyas Hampali, Sayan Deb Sarkar, Mahdi Rad, and Vincent Lepetit. Keypoint transformer: Solv-
ing joint identification in challenging hands and object interactions for accurate 3d pose estima-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11090–11100, 2022.

Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Land-
man, Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d medical image segmentation.
In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 574–
584, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Paul F Jaeger, Simon AA Kohl, Sebastian Bickelhaupt, Fabian Isensee, Tristan Anselm Kuder,
Heinz-Peter Schlemmer, and Klaus H Maier-Hein. Retina u-net: Embarrassingly simple exploita-
tion of segmentation supervision for medical object detection. In Machine Learning for Health
Workshop, pp. 171–183. PMLR, 2020.

Yuanfeng Ji, Haotian Bai, Chongjian Ge, Jie Yang, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan
Zhanng, Wanling Ma, Xiang Wan, et al. Amos: A large-scale abdominal multi-organ benchmark
for versatile medical image segmentation. Advances in Neural Information Processing Systems,
35:36722–36732, 2022.

Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu, Weihong Lin, Lei Sun, Chao Zhang, and
Han Hu. Detrs with hybrid matching. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 19702–19712, 2023.

Kang Kim and Hee Seok Lee. Probabilistic anchor assignment with iou prediction for object detec-
tion. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXV 16, pp. 355–371. Springer, 2020.

Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate
detr training by introducing query denoising. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13619–13627, 2022.

Feng Li, Ailing Zeng, Shilong Liu, Hao Zhang, Hongyang Li, Lei Zhang, and Lionel M Ni. Lite detr:
An interleaved multi-scale encoder for efficient detr. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 18558–18567, 2023a.

Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang, Lionel M Ni, and Heung-Yeung Shum.
Mask dino: Towards a unified transformer-based framework for object detection and segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3041–3050, 2023b.

Hans Liebl, David Schinz, Anjany Sekuboyina, Luca Malagutti, Maximilian T Löffler, Amirhossein
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A APPENDIX: DQM’S GRADIENT NORM

Without loss of generality, the predicted labels can be categorized into binary classification, where
queries possessing a positive probability score p+i are regarded as foreground, and queries with a
negative probability score p−i are considered background. With a collection of M ground truth
instances and N queries, the cross-entropy of the predicted labels can be defined as follows:

LO2O = −
M∑

m=1

log(p+m)−
N−M∑
n=1

log(1− p−n ). (9)

Within the framework of the proposed DQM as a one-to-many approach, additional ‘ηM ’ queries
are identified as positive queries, while the remaining ‘N − (1 + η)M ’ candidates are classified as
negative queries. The determination of η is specified by equation 5, where it represents the count of
replicated ground truth labels, a value that depends on the matching rate λ. Hence, the cross-entropy
loss calculation for the DQM can be computed via:

LDM = −
(1+η)M∑
m=1

log(p+m)−
N−(1+η)M∑

n=1

log(1− p−n ). (10)

By definition γ+ as a ratio of gradient values between positive queries of DQM and baseline one-to-
one, one can deduce the DQM’s pace during treatment. Similarly, γ− is the ratio of gradient values
between negative queries of DQM and one-to-one. They are calculated through:

γ+ =
∂LDM

∂p+
/
∂LO2O

∂p+
, γ− =

∂LDM

∂p−
/
∂LO2O

∂p−
, (11)

where
∂LO2O

∂p+
=

∂

∂p+

(
−Mlog(p+)

)
= −M

p+
(12)

∂LDM

∂p+
=

∂

∂p+

(
−(1 + η)Mlog(p+)

)
= − (1 + η)M

p+
(13)

∂LO2O

∂p−
=

∂

∂p−

(
−(N −M)log(1− p−)

)
=

N −M

1− p−
(14)

∂LDM

∂p−
=

∂

∂p−

(
−(N − (1 + η)M)log(1− p−)

)
=

N − (1 + η)M

1− p−
. (15)

By incorporating equations 12-15 into equation 11 and subsequently simplifying the expression, we
arrive at the determined γ+ and γ− ratios:

γ+ = 1 + η = 1 + ⌈λρ⌉, (16)

γ− = 1− η

ρ− 1
= 1− ⌈λρ⌉

ρ− 1
. (17)
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