
International Conference on Bangla Speech and Language Processing(ICBSLP), 21-22 September, 2018

Recognition of Bengali Handwritten Digits Using
Convolutional Neural Network Architectures

Md Mahmudul Hasan
Department of CSE

BUET
Dhaka, Bangladesh

youngladesh@gmail.com

Md Rafid Ul Islam
Department of CSE

BUET
Dhaka, Bangladesh
rfd.009@gmail.com

Md Tareq Mahmood
Department of CSE

BUET
Dhaka, Bangladesh

tareq.mahmood2@gmail.com

Abstract—Handwritten digit recognition has been the “hello
world” of deep learning. Yet, there are no significant work on
Bengali handwritten digits due to a lack of benchmark dataset.
NumtaDB is the largest dataset on Bengali handwritten digits
and currently we have the best accuracy of 99.3359% on it. We
used popular CNN architectures namely, ResNet34 and Resnet50.
We preprocessed the data, used data augmentation, and trained
our models with augmented data. We tested our models on both
the raw test data and cleaned test data. We found that slightly
underfitted models work better on the test data. And finally
ensembled our six best models to get our final predictions. In this
paper we describe some methods and techniques that performs
well in NumtaDB dataset.

Keywords—Handwriting recognition, Convolutional Neural net-
works, Image Recognition

I. INTRODUCTION

Handwritten digit recognition (HWDR) is one of the step-
ping stone for many computer vision problems. The famous
MNIST handwritten digit dataset [1] is used to benchmark new
Machine Learning methods and architectures. HWDR is also
fundamental to applications, such as finding postal codes [1],
license plate recognition[2], automated bank check reading[3],
etc. Although Bengali is one of the most spoken language
in the world, historically, research in Bengali handwritten
digits has been very limited. The latest papers in Bengali
handwritten digit recognition are decades old [4]. And it
is almost untouched by the recent advancement in Machine
Learning and Deep Learning [5]. The main bottleneck for this
drawback has been unavailability of publicly available large
datasets that are free from age, gender, geographical biases.
NumtaDB [6] is the largest dataset of Bengali handwritten
digit dataset that was created to ameliorate this situation. The
NumtaDB dataset consists of more than 85000 handwritten
digits, collected from over 2700 contributors from different
age group, gender and geography. In a recently organized
Bengali handwritten digit recognition competition, around 57
teams participated to compete against each other, where our
model achieved the highest accuracy, which is 99.3359%. In
the subsequent sections, we would describe the techniques we
have used to achieve the high accuracy.

We have found that for adequately large Convolutional
Neural Network architectures, such as ResNet34 or ResNet50
[5], contrary to common intuition, preprocessed test image

gives worse result than unprocessed images. We observed
that when the training data is heavily augmented to match
the augmented test data, the model gives better result if it is
slightly underfitted. We also used a weighted voting method
with 6 of our best performing models to generate the final
prediction. We observed that in this ensembling method, even
number of models produce a better result than odd number of
model. In this paper we describe the methods and techniques
we have found to be best for the particular task of Bengali
handwritten digit recognition in the NumtaDB dataset.

In section II we briefly describe the NumtaDB dataset. And
the evaluation method that was used to find our accuracy.

Section III describes two data preprocessing methods, one is
data augmentation before training, and another is preprocess-
ing the test data to eliminate unnecessary noises from data.

Section IV demonstrates the Neural Network architectures
that was used in our model prediction, and the hyperparameters
and other tweaks we have used to create our final model.

Section V discusses our results, and section VI concludes
the paper.

II. DATA DESCRIPTION

NumtaDB is a collection of Bengali Handwritten Digit
data [6]. The dataset contains more than 85,000 digits from
over 2,700 contributors. The dataset was rigorously checked
for mislabeling, noise and labeling biases. The dataset was
collected from 6 different sources[6]. Data from 5 of the
sources were split 85% - 15% for training and testing. And one
of the source was used completely as testing data. Splitting was
done such that set of people who contributed to the training
data does not intersect with set of people who contributed to
the test set. Number of images per digit kept approximately
equal. Most of the data were collected from students of public
universities in Dhaka. As students at these universities come
from all around Bangladesh, it is implicitly made sure that
the dataset contains representation from diverse regions of
Bangladesh. The dataset also contains data from both children
and adults. So it is supposed to be unbiased in terms of
geographic location and age. The test dataset contained 6
subsets, codenamed a, b, c, d, e, f. Additionally two augmented
data sets were produced from test set a and c. The final

978-1-5386-8207-4/18/$31.00 c© 2018 IEEE

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:14:06 UTC from IEEE Xplore. Restrictions apply.

evaluation accuracy was unweighted average of accuracy in
these 8 subsets. [7]

Acc =
1

8

8∑
i=1

Ai

III. DATA PREPROCESSING

A. Data Augmentation

As mentioned earlier, NumtaDB contains augmented images
in its test set. Types of augmentation that are applied on
dataset ‘a’ and ‘c’ are mentioned in NumtaDB’s data overview
page1. We apply these augmentation along with some other
augmentations on train data in order to mimic test data. They
are as follows.

• Rotation: Rotating image with respect to center. One
key thing to note about this operation is that image
dimensions may not be preserved after rotation. We
limit rotation up to 45 deg in either direction (clockwise
and anti-clockwise). And, to keep output image same
dimension, we squeeze rotated image in front of constant
black image as done in ‘auga’ and ‘augc’ test dataset.

• Translation: Translation is the shifting of digits location
along row or column. However, this creates a blank area
on the opposite direction of the translation. We fill the
blank area repeating border values of original image.

• Shear: We displace each pixel of am image in the
vertical direction with proportional to its distance from
left edge of that image. We displace in either direction
(left or right) randomly by choosing random proportional
constant.

• Salt-pepper noise: This noise is produced by sharp and
sudden disturbances of signal. It looks like sparingly
occurring white and black dots.

• Blurring: This is a smoothing operation. We apply a linear
filter on initial image.

• Zoom in: This augmentation zooms the initial image in.
We randomly zoom image in by not more than 2x.

• HSV shift: In other words, Hue Saturation Value shift.
This is an alternative representation of an RGB image.
We randomly shift hue and saturation value of image.

• Coarse dropout: We randomly black out certain rectan-
gular areas of image.

• Superimpose: This is done to replicate the effect of text
being written on the back of an already written page. For
each image, we find another image. We vertically flip the
other image and take a weighted sum of two image.

For each image, we randomly pick 1-3 augmentations and
apply them simultaneously. Also, the parameters for each
augmentations are selected randomly within a fixed range.
With this procedure, we create 5 to 7 new images for each
image in training dataset.

1https://www.kaggle.com/BengaliAI/numta/home

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. (a) Rotation, (b) Translation, (c) Shear, (d) Salt-pepper noise, (e) Blur,
(f) Zoom in, (g) HSV shift, (h) Coarse dropout, (i) Superimpose, and (j), (k),
(l) are sample combined augmentations.

B. Test Data Cleaning

The testing dataset had 8 subsections,
1) ”testing-a”
2) ”testing-b”
3) ”testing-c”
4) ”testing-d”
5) ”testing-e”
6) ”testing-f”
7) ”testing-auga”
8) ”testing-augc”
The augmented datasets, ”testing-auga”, ”testing-augc” and

”testing-f” were particularly troublesome. They were heavily
augmented and transformed to make it hard to recognize. Some
of the augmentations includes,

• Affine transformation
• Coarse dropout
• Addition of noise
• Superimpose
• Inverted image
One or more of these transformations were applied to aug-

mented image sets to make them non-recognizable. ”testing-f”
data was poorly lit, unusually cropped, and then also added
different type of noises and transformations.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:14:06 UTC from IEEE Xplore. Restrictions apply.

We used various type of data cleaning process to each
of these test sets to make it more recognizable. Each data
cleaning process was applied to all images of a particular set.
We did not pick and choose a transformation for particular
images of a subsection. But we looked at the condition of
a subsection as a whole, and applied a transformation to the
entire subsection. Here we describe the data cleaning process
and transformations we have used to the subsections of test
sets.

One of the difficult type of augmentation to remove was
Coarse dropout and affine transformation. In Coarse dropout, a
parallelogram size part of the image was deleted right on top of
the digit edge (Figure 4). In affine transformation, the images
were translated, scaled, rotated, shear mapped, and sometimes
multiple of these effects combined (Figure 2). Each of these
transformations applied, or Coarse dropout added, a part of
the image becomes dark. But upon observation, we found
that the the dark portion of the images created with affine
transformation or Coarse dropout, was almost homogeneously
complete black, that means gray scale value = 0. In these
images, the actual digit portion of the image was almost never
complete black. So, in order to remove this dark portion, we
set all complete black pixels to the median grayscale value
of the image. In this process, there were still the edge of the
black portion of the augmented image, where a thin dark ramp
remained. So, we again applied a median blur effect on the
image to remove the ramp. The final result was visually very
close to normal images (Figure 3 Figure 5).

Fig. 2. Affine Transformation augmented images

Fig. 3. Affine Transformation removed

Fig. 4. Parallelogram Cropped augmented images

One thing to mention is that, this effort not necessarily
improved our accuracy. We have come to the conclusion that,
even if we replaced the dark pixels with median value, there
still remained an edge that the convolutional layers of our

Fig. 5. Parallelogram Cropped

network would pick up. So, this is an important realization,
that if an image is visually okay, it still might not be a good
data for a Convolutional Neural Network.

To remove the added noise and superimposed image in
”testing-auga”, ”testing-augc” and ”testing-f” we used a me-
dian blur of filter size 9x9. This method successfully removed
Guassinan noise completely, and also other type of noises
and sharp edges (Figure 6, Figure 7). But some test data
in ”testing-f” became victim of the blurring, and the digit
was blurred to a point that was unrecognizable. So we had
to withdraw this operation from ”testing-f”.

Fig. 6. Noise example

Fig. 7. Noise removal example

”testing-e” subset of test images had all the images inverted.
That means the digits were written in white pixels, where
the background was dark. The digits were binarized and they
covered the entire image. We inverted these images and added
a padding to make it more consistent with our training image
(Figure 8, Figure 9). The inversion didn’t seem to have
any significant advantage, as our network seemed to identify
white digit in dark background just as fine. We think it is
because the filters used in the convolutional layers work on
edges and the network easily identified the edges regardless
of the background or foreground color.

Fig. 8. White digit in dark background

After applying these transformations and operations in
testing set “testing-auga”, ”testing-augc” and ”testing-f”, we

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:14:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Image inverted to normal

created a new testing set, and we named it ”clean test” (Figure
10). At this point of the competition the submission window
was 2 submission a day. After submitting the test score of
”clean test”, we found that the overall accuracy dropped by
around 1%. Due to the small submission window, we were
unable to verify which of these individual data preprocessing
operations worked and which did not.

Fig. 10. Cleaned Data sample

By applying Otsu thresholding method to this ”clean test”
dataset, we created another dataset ”binarized clean test”
(Figure 11). But after testing, the accuracy of ”bina-
rized clean test” was even worse than ”clean test” dataset.

Fig. 11. Binarized clean data sample

We understand that as the smallest neural network we
have used in our final prediction is ResNet34, which has 34
layers, our network was complex enough for identifying subtle
nuances of the images to make a final prediction. But by
cleaning or binarizing the data, we remove information from
the image that the network find useful to make a prediction.
That’s why applying image processing to test data resulted
in worse result. Another reason that can be attributed to the
failure of image processing is, the same transformations were
not used in our training data. So preprocessing only the test
data results in inconsistency in training and testing.

One operation that almost always improved the accuracy
is padding unusually shaped images. A large portion of the
”testing-f” dataset had unusual shape. I.e. the width of the
image was much smaller than the height. In this type of
situation our network was failing because our network was
made to take only square images as input. So when the
input images were rectangular in shape, but not square, our
architecture crops a square portion of the image from the
center, and feeds it to the convolutional layers. To avoid
this problem, we identified all the test images that has a
width/height ratio of less than 70%, and padded them on
left and right to make it square. The color of the padding

was chosen to be the median of the image. This operation
allowed one of our models to first reach 99% accuracy, and
5 of the 6 ensembled models in our final submission applied
this operation to test images.

Fig. 12. Unusually shaped data

Fig. 13. Median value padded to reshape the data

IV. METHODOLOGY

We first chose the suitable Convolutional Neural Network
architectures. Then, we tuned the hyperparameters to train our
models. Finally, we ensembled our best six models and got
our final results. Figure 14 shows the whole pipeline.

Fig. 14. Conceptual Diagram of the Solution Pipeline

A. Architectures

After AlexNet [8] the ILSVRC2012-ImageNet contest, deep
Residual Network [9] is next significant work in deep learning
based computer vision. ResNet is able to train deep networks
with hundreds or even thousands of layers and accomplishes
fascinating performance with the idea of ‘identity shortcut
connection’. We use two variants of ResNet ResNet34 and
ResNet50.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:14:06 UTC from IEEE Xplore. Restrictions apply.

ResNet50 is a 50 layers Residual Network. Similarly
ResNet34 is of 34 layers. We train six different models, five
of them are ResNet34 and one is ResNet50.

B. Hyperparameter Tuning

We consider 3 things as hyperparameter in this work.
1) No. of augmentations per image
2) Learning rate
3) No. of epochs to train

C. Ensembling

In our work, we ensembled six different models to achieve
our highest accuracy 99.3359%. We used weighted voting
from the individual model predictions to get the final pre-
diction. For weights of a model, we used the normalized form
of their validation accuracy. We used even number of models
instead of odd numbers because even number ensembles are
less likely to predict wrong on a particular data due to wrong
predicted models having higher weights for a particular data.
Suppose we have five models A, B, C, D, E, with individual
validation accuracy 99.008%, 98.986%, 98.74%, 98.65%, and
98.55%. When we ensemble with these five models, models C,
D, and E are more likely to predict the same wrong digit. When
we take a weighted vote of these five models, the three wrong
prediction wins over the two correct predictions no matter how
high the accuracy of the loosing predictions are. So instead if
we ensemble with model A, B, C, D and exclude E. Now if A
and B make a prediction, and C and D oppose, C and D are
going to loose because of their low weight. If low accuracy
predictions wants to overpower high accuracy predictions, by
sheer number, three of them have to agree on the incorrect
prediction. Which is less likely. Table I shows the summary
of the ensembled models.

D. Underfitting

When we are heavily augmenting, augmented and non
augmented datasets has a ratio of 3 : 1, 5 : 1 or 7 : 1.
The network was seeing more distorted images than normal
images. The training became biased towards the distorted
features. It started expecting the augmented features from test
images. But because the normal features were the ones that
were common among all test sets, the network failed to give
more emphasis on those features. The more we trained on
augmented data, the more the network got biased towards the
augmented features. So less trained or underfitted model gave
better results on the test sets. We chose the uderfitted model by
determining the epoch where training and validation accuracy
became almost equal and chose the epoch previous to it.

V. EVALUATION AND RESULTS

We trained our models by splitting the dataset into 80%
training and 20% validation set. We found that underfitted
models performed better as discussed in Section IV-D. So
we took the model from the epoch previous to the epoch
where train and validation accuracy became almost same for
submitting our predictions. Then we found the accuracy on

TABLE I
ENSEMBLED MODELS SUMMARY

Architecture Hyperparameter Value Weight

Resnet34

No of Augmen-
tation per sam-
ple

7

0.1669829

Learning rate 0.0098
No of Epoch 3
Image resized True

Resnet34

No of Augmen-
tation per sam-
ple

5

0.16680934

Learning rate 0.01
No of Epoch 2
Image resized True

Resnet34

No of Augmen-
tation per sam-
ple

6

0.16674025

Learning rate 0.0098
No of Epoch 2
Image resized True

Resnet34

No of Augmen-
tation per sam-
ple

7

0.166588595

Learning rate 0.005
No of Epoch 2
Image resized False

Resnet34

No of Augmen-
tation per sam-
ple

5

0.16629538

Learning rate 0.01
No of Epoch 3
Image resized False

Resnet50

No of Augmen-
tation per sam-
ple

7

0.16658354

Learning rate 0.0055
No of Epoch 2
Image resized False

TABLE II
TEST SCORE FROM THE COMPETITION

Model (Arch Aug Lr Epoch) Kaggle Score (test accuracy)
Resnet34 7 0098 3 99.094%
Resnet34 5 01 2 98.991%
Resnet34 6 0098 2 98.95%
Resnet34 7 005 2 98.86%
Resnet34 5 01 3 98.686%
Resnet50 7 0055 2 98.857%

the test set from the Bengali Handwritten Digit Recognition
competition in Kaggle2. The accuracy on the test set for our
selected models is given in Table II.

VI. CONCLUSION

Due to our limitation of computing resources, we could
not test large deep neural network architectures such as,
Inceptionv3, ResNext101, etc. In future we might look into the
performance of neural network models using these architec-
tures. Even after rigorous checking from the creators, some of
the data in NumtaDB was mislabeled. And some images were
so distorted that it was impossible for humans to recognize

2https://www.kaggle.com/c/numta

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:14:06 UTC from IEEE Xplore. Restrictions apply.

them. Handling these type of images were particularly chal-
lenging for us. We are hoping NumtaDB creators will release
a new version of dataset with minimum number of mislabeled
images.

As mentioned earlier, because of the submission limitation
during the competition, we could not justify how each of the
data cleaning methods we have applied contribute to higher
accuracy. In future we want to find out which type of data
cleaning procedure produced the best results.

Also we wish to extend our current work beyond the scope
of digit recognition and apply it to broader problems such as
license plate recognition, or handwritten character recognition.
The performance of the methods we have described in this
paper is yet to be seen in those applications.

ACKNOWLEDGMENT

We would like to thank the Bengali.Ai [10] community to
give us the opportunity to participate in the “Bengali Hand
Written Digit Recognition” competition and be able to set
a benchmarking score on the NumtaDB dataset. We would
also like to offer our thanks to Google Colaboratory [11] to
provide researchers like us with free GPU support which we
used extensively throughout the competition [7].

REFERENCES

[1] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, “Handwritten digit recognition
with a back-propagation network,” in Advances in Neural Information
Processing Systems 2, D. S. Touretzky, Ed. Morgan-Kaufmann,
1990, pp. 396–404. [Online]. Available: http://papers.nips.cc/paper/
293-handwritten-digit-recognition-with-a-back-propagation-network.
pdf

[2] S.-L. Chang, L.-S. Chen, Y.-C. Chung, and S.-W. Chen, “Automatic
license plate recognition,” March 2004, vol. 5, no. 1, pp. 42–53.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” vol. 86, no. 11, Nov 1998, pp. 2278–
2324.

[4] S. Basu, R. Sarkar, N. Das, M. Kundu, M. Nasipuri, and D. K.
Basu, “Handwritten bangla digit recognition using classifier combination
through ds technique,” 2005.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[6] S. Alam, T. Reasat, R. M. Doha, and A. I. Humayun, “Numtadb -
assembled bengali handwritten digits,” 2018.

[7] “Bengali handwritten digit recognition — kaggle,” https://www.kaggle.
com/c/numta, accessed on September 20, 2018.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[10] “Bengali.ai — bengali.ai is a community that works to open-source
datasets for research.” https://bengali.ai/, accessed on September 20,
2018.

[11] “Google colaboratory — google,” http://colab.research.google.com/, ac-
cessed on September 20, 2018.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:14:06 UTC from IEEE Xplore. Restrictions apply.

