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ABSTRACT

Recent success of diffusion models has inspired a surge of interest in developing
sampling techniques using reverse diffusion processes. However, accurately esti-
mating the drift term in the reverse stochastic differential equation (SDE) solely
from the unnormalized target density poses significant challenges, hindering ex-
isting methods from achieving state-of-the-art performance. In this paper, we
introduce the Diffusion-PINN Sampler (DPS), a novel diffusion-based sampling
algorithm that estimates the drift term by solving the governing partial differential
equation of the log-density of the underlying SDE marginals via physics-informed
neural networks (PINN). We prove that the error of log-density approximation
can be controlled by the PINN residual loss, enabling us to establish convergence
guarantees of DPS. Experiments on a variety of sampling tasks demonstrate the
effectiveness of our approach, particularly in accurately identifying mixing propor-
tions when the target contains isolated components.

1 INTRODUCTION

Sampling from unnormalized distributions is a fundamental yet challenging task encountered across
various scientific disciplines such as Bayesian statistics, computational physics, chemistry, and biology
(Liu & Liu, 2001; Stoltz et al., 2010). Markov chain Monte Carlo (MCMC) and variational inference
(VI) have historically been the go-to methods for this problem. However, these approaches exhibit
limitations when dealing with complex target distributions (e.g., distributions with multimodality or
heavy tails). Recently, the success of diffusion models for generative modeling (Song et al., 2020b;
Ho et al., 2020; Nichol & Dhariwal, 2021; Kingma et al., 2021) have sparked considerable interest
in tackling the sampling problem using the reverse diffusion processes that transport a given prior
density to the target, governed by stochastic differential equations (SDE).

In diffusion-based generative models, the score function in the drift term of the reverse SDE is
learned based on score matching techniques (Hyvärinen & Dayan, 2005; Vincent, 2011) that require
samples from the target data distribution. However, for sampling tasks, we only have access to
an unnormalized density function π, making it challenging to estimate the score function for the
reverse SDE. From a stochastic optimal control perspective (Tzen & Raginsky, 2019; De Bortoli
et al., 2021), several VI methods that parameterize the drift term with neural network approximation
have been proposed (Zhang & Chen, 2021; Berner et al., 2022; Vargas et al., 2023b;a). Nevertheless,
these approaches face challenges such as instability during training, the computational complexity
associated with differentiating through SDE solvers, and mode collapse issues arising from training
objectives based on reverse Kullback-Leibler (KL) divergences (Zhang & Chen, 2021; Vargas et al.,
2023a). On the other hand, Huang et al. (2023) proposed a scheme based on the connection between
score matching and non-parametric posterior mean estimation. More specifically, they use MCMC
estimation of the scores to potentially alleviate the numerical bias intrinsic in parametric estimation
methods such as neural networks. However, this method also introduces noise in the estimates and
requires repetitive posterior sampling in each time step of the reverse SDE. Overall, despite their
potential, diffusion-based sampling methods have not yet achieved state-of-the-art performance.

In addition to its connection with posterior mean estimation, the score function has also been shown to
evolve according to a partial differential equation known as the score Fokker Planck equation (score
FPE) (Lai et al., 2023). This discovery has led to a novel regularization technique for enhancing score
function estimation in diffusion models (Lai et al., 2023; Deveney et al., 2023). In this paper, we adopt
this strategy for diffusion-based sampling methods. While the score function can be recovered by
solving the score FPE using the score of target distribution π as the initial condition, we demonstrate
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that it may fail to identify correct mixing proportions when π has isolated components, a common
limitation of score-based methods (Wenliang, 2020; Zhang et al., 2022). To remedy this issue,
we propose to solve the log-density FPE, a similar partial differential equation for the log-density
function, using physics-informed neural networks (PINN) (Raissi et al., 2019; Wang et al., 2022). The
estimated log-density function is then integrated into the reverse SDE, leading to a novel sampling
algorithm termed Diffusion-PINN Sampler (DPS). We prove that the error of log-density estimation
can be controlled by the PINN residual loss, which allows us to ensure convergence guarantee of
DPS based on established results for score-based generative models (Chen et al., 2023b;a; Benton
et al., 2023). Experiments on a variety of sampling tasks provide compelling numerical evidence for
the superiority of our method compared to other baseline methods.

2 RELATED WORKS

Recently, several works have explored the combination of Physics-Informed Neural Networks (PINN)
and sampling techniques. For instance, Máté & Fleuret (2023); Fan et al. (2024); Tian et al. (2024)
address the continuity equation using PINN based on ODEs and achieve flow-based sampling through
a linear interpolation (i.e., annealing) path between the target distribution and a simple prior, such
as a Gaussian distribution. Besides, Berner et al. (2022) (in the appendix of their paper) and Sun
et al. (2024) propose solving the log-density Hamilton–Jacobi–Bellman (HJB) equation via PINN to
develop a SDE-based sampling algorithm. However, both approaches lack comprehensive numerical
investigation and thorough theoretical analysis. In contrast, our work investigates a limitation of
score-based Fokker-Planck equations (FPE) in identifying the mixing proportions of multi-modal
distributions, introduces novel computational techniques for solving PDEs via PINN in the context of
diffusion-based sampling, and provides the first complete theoretical analysis of the algorithm.

3 BACKGROUND

Notations. Throughout the paper, Ω ⊂ Rd denotes a bounded and closed domain. For simplicity,
we do not distinguish a probabilistic measure from its density function. We use x = (x1, · · · , xd)′ to
denote a vector in Rd and ∥x∥ =

√
x21 + · · ·x2d stands for the L2-norm. Let ν denotes a probability

measure on Rd, for any f : Rd → Rm, we denote ∥f(·)∥2L2(Ω;ν) :=
∫
Ω
∥f(x)∥2 dν(x). For any

f : Rd × [0, T ]→ Rm , we define ∥ft(·)∥2L2(Ω;ν) :=
∫
Ω
∥ft(x)∥2 dν(x) as a function of t ∈ [0, T ].

For any F = (F1, · · · , Fd)
′ : Rd → Rd, we denote the divergence of F by ∇ · F :=

∑d
i=1 ∂xiFi.

For any F : Rd → R, we denote the Laplacian of F by ∆F :=
∑d

i=1 ∂
2
xi
F .

Diffusion models. In diffusion models, noise is progressively added to the training samples via a
forward stochastic process described by the following stochastic differential equation (SDE)

dxt = f(xt, t) dt+ g(t) dBt, x0 ∼ p0(·), 0 ⩽ t ⩽ T, (1)

where p0(·) is the data distribution, Bt is a standard Brownian motion, and f(xt, t) and g(t) are
the drift and diffusion coefficients respectively. The derivatives of the log-density of the forward
marginals, i.e., scores, are learned via score matching techniques (Vincent, 2011; Song et al., 2020b)
and new samples from the data distribution can be obtained by simulating the following reverse
process

dxt =
[
f(xt, t)− g2(t)∇xt log pt(xt)

]
dt+ g(t) dB̄t, xT ∼ pT (·), (2)

where pt(·) is the probability density of xt and B̄t is a standard Brownian motion from T to 0.

Physics-informed neural networks (PINN). PINN is a deep learning method for solving partial
differential equations (PDEs) (Raissi et al., 2019). Consider the following general form of PDE

Lu(x) = φ(x), x ∈ Ω ⊆ Rd, (3a)
Bu(x) = ψ(x), x ∈ ∂Ω, (3b)
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where L and B are the differential operators on domain Ω and boundary ∂Ω, respectively. PINN
seeks an approximate solution using deep model uθ(x) by minimizing the L2 PINN residual losses

ℓΩ(uθ) := ∥Luθ(x)− φ(x)∥2L2(Ω;ν) , (4a)

ℓ∂Ω(uθ) := ∥Buθ(x)− ψ(x)∥2L2(Ω;ν) , (4b)

where ν is a probability measure for collocation point generation, often taken to be the uniform
distribution on Ω. The two terms ℓΩ(u) and ℓ∂Ω(u) in Eq. (4) reflect the approximation error on Ω
and ∂Ω respectively. In practice, the losses in Eq. (4) can be optimized by gradient-based methods
with Monte Carlo gradient estimation.

Fokker Planck equation. The evolution of the density pt(x) associated with the forward SDE (1)
is governed by the Fokker Planck equation (FPE) (Øksendal, 2003)

∂tpt(x) =
1

2
g2(t)∆pt(x)−∇ · [f(x, t)pt(x)]︸ ︷︷ ︸

:=LFPEpt(x)

. (5)

Recently, Lai et al. (2023) derive an equivalent system of PDEs for the log density log pt(x) and
score ∇x log pt(x), termed as the log-density Fokker Planck equation (log-density FPE) and the
score Fokker Planck equation (score FPE) respectively, as summarized in Theorem 1 (the proof can
be found in Appendix A.1).
Theorem 1 (Log-density FPE and score FPE; Proposition 3.1 in Lai et al. (2023)). Assume the
density pt(x) is sufficiently smooth on Rd × [0, T ]. Then for all (x, t) ∈ Rd × [0, T ], the log-density
ut(x) := log pt(x) satisfies the PDE

∂tut(x) =
1

2
g2(t)∆ut(x) +

1

2
g2(t) ∥∇xut(x)∥2 − f(x, t) · ∇xut(x)−∇ · f(x, t)︸ ︷︷ ︸

:=LL-FPEut(x)

, (6)

and the score st(x) := ∇x log pt(x) satisfies the PDE

∂tst(x) = ∇x

[
1

2
g2(t)∇ · st(x) +

1

2
g2(t) ∥st(x)∥2 − f(x, t) · st(x)−∇ · f(x, t)

]
︸ ︷︷ ︸

:=LS-FPEst(x)

. (7)

4 DIFFUSION-PINN SAMPLER

We consider sampling from a probability density π(x) = µ(x)/Z with x ∈ Rd, where µ(x) has
an analytical form and Z =

∫
Rd µ(x)dx is the intractable normalizing constant. Throughout, we

only consider the forward process (1) with an explicit conditional density of xt|x0 ∼ πt|0(·|x0). We
denote by πt the marginal density of xt associated with (1) from x0 ∼ π0 = π.

Inspired by diffusion models, sampling can be performed by simulating a reverse process (8) targeting
at π(x), given an accurate estimate of the perturbed scores sθ(x, t) ≈ ∇x log πt(x),

dxt =
[
f(xt, t)− g2(t)sθ(xt, t)

]
dt+ g(t) dB̄t, xT ∼ πprior, (8)

where πprior denotes the stationary distribution of the forward process (1) and T is large enough such
that πT ≈ πprior. However, unlike generative models, sampling tasks lack training data from π, which
hinders the application of denoising score matching for perturbed score estimation. In this section,
we propose to solve the log-density FPE (6) with PINN to estimate the perturbed scores. While the
score FPE can also be used for this purpose, we find that it may fail to learn the mixing proportions
properly when the target contains isolated modes.

4.1 FAILURE OF SCORE FPE

Consider the case where the target is a mixture of Gaussians (MoG) with two distant modes. The
following example shows that, for two MoGs with the same modes but different weights, the Fisher
divergence between them can be arbitrarily small but the KL divergence between them remains
large when the two modes are sufficiently separated. See Figure 1 (left) for an illustration of this
phenomenon. More general theoretical results can be found in Appendix A.2.
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Figure 1: Left: KL divergence, Fisher divergence, and log-density error between πM and π̂M as
functions of w1, where ŵ1 = 0.2 and a = (−5,−5)′. Middle/Right: The evolution of log-density
error/Fisher divergence along the forward process respectively. The forward process achieves standard
Gaussian at t = 1.

Example 1. For any τ > 0, there exists Mτ (d) > 0 such that the following holds. For every
a ∈ Rd satisfied ∥a∥ ⩾ Mτ (d), w1, w2, ŵ1, ŵ2 ⩾ 0.1, w1 + w2 = 1, and ŵ1 + ŵ2 = 1, MoG
πM = w1N (a, Id) + w2N (−a, Id) and π̂M = ŵ1N (a, Id) + ŵ2N (−a, Id) satisfy

KL(πM∥π̂M ) ⩾ w1 log
w1

ŵ1
+ w2 log

w2

ŵ2
− τ, but F (πM , π̂M ) < τ, (9)

where F (πM , π̂M ) denotes the Fisher divergence between πM and π̂M .

4.1.1 SOLVING SCORE FPE STRUGGLES TO LEARN THE WEIGHTS

Let πM , π̂M be the MoGs in Example 1. For any t ∈ [0, T ], πM
t denotes the marginal distribution

of xt associated with the forward process (1) from x0 ∼ πM . We denote sMt (x) := ∇x log πM
t (x)

which is the solution to (7) with sM0 (x) = ∇x log πM (x). π̂M
t and ŝMt (x) are defined similarly.

Consider solving score-FPE (7) using the following PINN residual loss

ℓS-res (s;x, t) := ∥∂tst(x)− LS-FPEst(x)∥2 , (10)
Though πM and π̂M are equipped with different weights, their scores both satisfy the PDE (7)
such that ℓS-res(s

M ;x, t) = ℓS-res(ŝ
M ;x, t) = 0 for any (x, t) ∈ Rd × [0, T ]. The PINN approach,

therefore, can only distinguish πM and π̂M through the initial condition. However, Example 1 shows
that the difference between sM0 (x) and ŝM0 (x) can be arbitrarily small, indicating the difficulty of
correctly identifying the weights by solving the score FPE. Figure 1 (right) shows that the perturbed
score can not tell the difference of weights until the every end of the forward process. On the other
hand, it is noticeable that the perturbed log-density distinguishes the weights well throughout the
forward process (Figure 1, middle). This suggests us to solve log-density FPE and compute the scores
by taking the gradient of the approximated log-density.

4.2 SOLVING LOG-DENSITY FPE

To estimate the perturbed scores, we consider solving log-density FPE with initial condition:
∂tut(x) = LL-FPEut(x), (11a)
u0(x) = logµ(x), (11b)

where the exact solution is u∗t (x) = log µt(x) := log πt(x) + logZ (which induces the same score
as ∇xu

∗
t (x) = ∇x log πt(x)). In what follows, we describe how to find an approximation uθ(x, t)

to u∗t (x) within the PINN framework.

Target-informed parameterization. To incorporate the initial condition (11b), we use the follow-
ing parameterization for the log-density function

uθ(x, t) =
T − t
T

logµ(x) +
t

T
×NNθ(x, t), ∀(x, t) ∈ Rd × [0, T ], (12)

4
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Algorithm 1 : Solving log-density FPE via PINN
Require: Unnormalized density µ(x), the number of training iterations N , the number of samples

used to estimate the training objective (13) M , the running time of the forward process (1) T .
1: Initialize the parameterized solution uθ(x, t) using target-informed parameterization (12).
2: for n = 1, · · · , N do
3: Sample i.i.d. ti ∼ U [0, T ], 1 ⩽ i ⩽M .
4: Sample i.i.d. x0

i ∼ ν0 and zi ∼ πprior, 1 ⩽ i ⩽M .
5: Sample collocation points by the forward process (1): xti

i ∼ πti|0(·|x0
i ), 1 ⩽ i ⩽M .

6: Compute the training objective (13) by Monte Carlo estimation

LMCMC(uθ) :=
1

M

M∑
i=1

β2(ti) ·
∥∥∂tuθ(xtii , ti)− LL-FPEuθ(x

ti
i , ti)

∥∥2+ λ

M

M∑
i=1

ℓreg(uθ;T, zi).

(14)

7: Gradient-based optimization: θ ← Optimizer (θ,∇θLMCMC(uθ)).
8: end for
9: return Parameterized solution uθ(x, t).

where NNθ(x, t) : Rd × [0, T ] → R is a deep neural network. This parameterization satisfies the
initial condition (11b), thus we only need to consider the PINN residual loss induced by (11a). Similar
strategy is also used in consistency models (Song et al., 2023).

Underlying distribution for collocation points. When training PINN, it is very important to
collect proper collocation points (xt, t) ∈ Rd × [0, T ] where xt ∼ νt. We expect samples from νt to
cover the high-density domain of πt where PINN can provide a good approximation. To achieve this,
we first generate samples x0 ∼ ν0 by running a short chain of Langevin Monte Carlo (LMC) for π so
that ν0 covers the high density domain of π. Given x0 ∼ ν0, we obtain xt ∼ νt by sampling from
the conditional distribution of the forward process given x0, namely, xt|x0 ∼ πt|0(·|x0).

Training objective. One useful property of the forward process (1) is that xT ∼ πT ≈ πprior when
T is large. In practice, we may use this property to further regularize the PINN residual loss, leading
to the following training objective:

Ltrain(uθ) := Et∼U [0,T ]Ext∼νt

[
β2(t) · ∥∂tuθ(xt, t)− LL-FPEuθ(xt, t)∥2

]
+ λ · Ez∼πprior [ℓreg(uθ;T, z)] ,

(13)

where ℓreg(uθ;T, z) := ∥∇xuθ(z, T )−∇x log πprior(z)∥2 denotes the regularization term, β(t) is
a weight function and λ is a regularization coefficient. We seek a good approximation uθ(x, t) by
minimizing (13) via stochastic optimization methods where the stochastic gradient is computed by
Monte Carlo estimation. Our algorithm is summarized in Algorithm 1.

Once uθ(x, t) is learned, the induced score approximation is then substituted into the reverse process
(8), resulting in a new variant of diffusion-based sampling method that we call Diffusion-PINN
Sampler (DPS).

Hutchinson’s trick for the gradient of the PINN residual. Hutchinson’s trace estimator provides
a stochastic method for estimating the trace of any square matrix and is commonly used in Laplacian
estimation. However, directly using Hutchinson’s trick here can result in biased gradient estimation.
To address this issue, we propose a novel variant of Hutchinson’s trick that allows unbiased gradient
estimation. Recall that the PINN residual can be decomposed as

∂tuθ − LL-FPEuθ := ∂tuθ + f · ∇xuθ +∇ · f −
g2(t)

2
∥∇xuθ∥2︸ ︷︷ ︸

:=LIuθ

−g
2(t)

2
∆uθ.

5
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Using this decomposition, the PINN residual loss ∥∂tuθ − LL-FPEuθ∥2 has the following gradient,

∇θ ∥∂tuθ − LL-FPEuθ∥2 = 2

(
LIuθ −

g2(t)

2
∆uθ

)
∇θ

(
LIuθ −

g2(t)

2
∆uθ

)
=2

(
LIuθ −

g2(t)

2
· Ev1

[
v⊤1 ∇x

(
v⊤1 ∇xuθ

)])
∇θ

(
LIuθ −

g2(t)

2
· Ev2

[
v⊤2 ∇x

(
v⊤2 ∇xuθ

)])
=Ev1,v2

[
2

(
LIuθ −

g2(t)

2
· v⊤1 ∇x

(
v⊤1 ∇xuθ

))
∇θ

(
LIuθ −

g2(t)

2
· v⊤2 ∇x

(
v⊤2 ∇xuθ

))]
where v1 and v2 are independent and satisfy Ev1 [v1v

⊤
1 ] = Ev2 [v2v

⊤
2 ] = Id. Therefore, the following

objective yields an unbiased gradient estimate of the PINN residual loss,

Ev1,v2

[
Detach

(
2

(
LIuθ −

g2(t)

2
· v⊤1 ∇x

(
v⊤1 ∇xuθ

)))(
LIuθ −

g2(t)

2
· v⊤2 ∇x

(
v⊤2 ∇xuθ

))]
.

5 THEORETICAL GUARANTEES

Notations. Let us denote et(x) := uθ(x, t) − u∗t (x) and rt(x) := ∂tuθ(x, t) − LL-FPEuθ(x, t).
For any C ∈ R, t ∈ [0, T ], we define the weighted PINN objective on Ω as

LPINN(t;C) :=

∫ t

0

eC(t−s)∥rs(·)∥2L2(Ω;νs)
ds, (15)

where {νt}Tt=0 denotes the underlying distribution for collocation points introduced in Section 4.2
which satisfies the FPE ∂tνt(x) = LFPEνt(x).

5.1 APPROXIMATION ERROR OF PINN FOR LOG-DENSITY FPE

In this section, we provide an upper bound on the approximation error of PINN for solving
the log-density FPE (6) on a constrained domain Ω. Namely, we control ∥et(·)∥2L2(Ω;νt)

and
∥∇xet(·)∥2L2(Ω;νt)

by the residual loss ∥rt(·)∥2L2(Ω;νt)
and the weighted PINN objective (15). We

make the following assumptions.
Assumption 1. u∗ and uθ are the same on the boundary, i.e., u∗t (x) = uθ(x, t) on ∂Ω× [0, T ].
Assumption 2. For any t ∈ [0, T ], g2(t) is bounded: m1 ⩽ g2(t) ⩽M1 for some m1,M1 > 0.
Assumption 3. log νt(x), u

∗
t (x), uθ(x, t) ∈ C2(Ω× [0, T ]).

Assumption 1 is necessary for us to ensure the uniqueness of the solution to (6) on Ω, which is
also considered in Deveney et al. (2023); Wang et al. (2022). Assumption 2, 3 are also considered
in Deveney et al. (2023). Based on Assumption 3, there exists Bν

0 , B
∗
0 , B̂0, B

ν
1 , B

∗
1 , B̂1 ∈ R+ and

Bν
2 , B

∗
2 , B̂2 ∈ R depended on Ω such that for any (x, t) ∈ Ω× [0, T ], we have

|∂t log νt(x)| ⩽ Bν
0 , |∂tu∗t (x)| ⩽ B∗

0 , |∂tuθ(x, t)| ⩽ B̂0,

∥∇x log νt(x)∥2 ⩽ Bν
1 , ∥∇xu

∗
t (x)∥2 ⩽ B∗

1 , ∥∇xuθ(x, t)∥2 ⩽ B̂1,

∆ log νt(x) ⩽ Bν
2 , ∆u∗t (x) ⩾ B∗

2 , ∆uθ(x, t) ⩾ B̂2,

In practice, using weights clipping strategy as in Arjovsky et al. (2017), we can control the regularity
of neural network approximation uθ(x, t), thus bound the constants B̂0, B̂1, B̂2.

We summarize our main results in the following theorem. The proof is deferred to Appendix A.3,
which generalizes the framework in Deveney et al. (2023).
Theorem 2. Suppose that Assumption 1, 2, and 3 hold. We further assume that uθ(x, 0) = u∗0(x)

1

for any x ∈ Ω. Then for any positive constant ε > 0, the following holds for any 0 ⩽ t ⩽ T ,

∥et(·)∥2L2(Ω;νt)
⩽ εLPINN(t;C1(ε)), (16)

1This is a reasonable assumption due to the target-informed parameterization introduced in Section 4.2.
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Moreover, for any 0 ⩽ t ⩽ T ,

m1∥∇xet(·)∥2L2(Ω;νt)
⩽ ε∥rt(·)∥2L2(Ω;νt)

+ C3(ε)LPINN(t;C1(ε)) + C2

√
εLPINN(t;C1(ε)). (17)

where C2 := 2
√
2(B̂2

0 +B∗2
0 )1/2, C3(ε) := ε(C1(ε) +Bν

0 ), and C1(ε) is a constant depended on
Bν

1 , B
∗
1 .B̂1, B

ν
2 , B

∗
2 .B̂2 and m1,M1.

Remark 1. The results of Wang et al. (2022) show that the L2-error cannot be universally bounded
by the PINN residual with universal constants independent of the approximate solution. Therefore,
some natural continuous assumptions (Assumption 3) about the approximate solution are necessary
to control the L2-error by the PINN residual. It is noted that this continuous assumption can be
satisfied by regularizing the neural network via weight clipping Arjovsky et al. (2017), and would not
sacrifice much approximation accuracy as the true solution is initialized as the log-density of the
target and follows the diffusion process (e.g., the OU process) that would only become smoother as
time evolves. Moreover, our upper bound of L2-error depends on continuous constants rather than
an universal bound. In this regard, our analysis aligns with the results of Wang et al. (2022), but with
a more flexible bound based on some natural continuous assumption in the context of diffusion-based
sampling.

5.2 CONVERGENCE OF DIFFUSION-PINN SAMPLER

In this section, we present our convergence analysis of DPS based on Theorem 2 and the analysis of
score-based generative modeling in Chen et al. (2023a). Following Chen et al. (2023b;a), we focus
on the forward process with f(x, t) = − 1

2x and g(t) ≡ 1, which is driven by

dxt = −
1

2
xt dt+ dBt, x0 ∼ π, 0 ⩽ t ⩽ T, (18)

In practice, we use a discrete-time approximation for the reverse process. Let 0 = t0 < · · · < tN = T
be the discretization points and hk := tk− tk−1 be the step size for 1 ⩽ k ⩽ N . Let t′k := T − tN−k

for 0 ⩽ k ⩽ N be the corresponding discretization points in the reverse SDE. In our analysis, we
consider the exponential integrator scheme which leads to the following sampling dynamics for
0 ⩽ k ⩽ N − 1,

dŷt =

(
1

2
ŷt + sT−t′k

(ŷt′k
)

)
dt+ dBt, ŷ0 ∼ N (0, Id), t ∈ [t′k, t

′
k+1], (19)

where st(x) ≈ ∇x log πt(x) denotes the score approximation. Let π̂T denotes the distribution of
ŷT from (19). We summarize all the assumptions we need as follows.
Assumption 4. The target distribution admits a density π ∈ C2(Rd) where ∇x log π(x) is K-
Lipschitz and has the finite second moment, i.e., M2 := Eπ

[
∥x∥2

]
<∞.

Assumption 5. For any δ > 0, there exists bounded Ω such that
∫
Ωc πt(x)∥∇x log πt(x)∥2 dx ⩽ δ

for any t ∈ [0, T ].

Assumption 6. For any (x, t) ∈ Ω× [0, T ], there exists Rt ⩾ 0 depended on t, so that πt(x)
νt(x)

⩽ Rt.

Theorem 3 summarizes our main theoretical results of DPS. The proof can be found in Appendix A.4,
which is based on the convergence results of score-based generative modeling in Chen et al. (2023a).
Theorem 3. Suppose that T ⩾ 1, K ⩾ 2, and Assumptions 1-6 hold. For any δ > 0, let Ω be chosen
as in Assumption 5. For any positive constant ε > 0, we further assume that uθ(x, t) satisfies

ε

N∑
k=1

hkRtk∥rtk(·)∥2L2(Ω;νtk
) ⩽ δ1 and ε

N∑
k=1

hkRtkLPINN(tk;C1(ε)) ⩽ δ2. (20)

Then there is a universal constant α ⩾ 2 such that the following holds. Using step size hk =
hmin{max{tk, 1/(4K)}, 1}, 0 < h ⩽ 1/(αd), and st(x) = ∇xuθ(x, t) · 1{x ∈ Ω} in (19),
we have the following upper bound on the KL divergence between the target and the approximate
distribution

KL(π∥π̂T ) ≲ (d+M2) · e−T + d2h(logK +T )+Tδ+ δ1 +C5(ε)δ2 +C2

√√√√ N∑
k=1

hkRtkδ2. (21)

where C5(ε) := C1(ε) +Bν
0 , C2 and C1(ε) are defined in Theorem 2.
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5.3 THEORETICAL COMPARISON BETWEEN DIFFERENT SAMPLING METHODS FOR
COLLOCATION POINTS

In practice, we typically lack prior knowledge of the high-probability regions of the diffusion path
starting from the target distribution. As a result, specifying a sufficiently large support for uniform
sampling of collocation points, becomes challenging and inefficient, especially in high-dimensional
settings. In contrast, we employ a more sophisticated strategy for generating collocation points that
integrates Langevin Monte Carlo (LMC) with the forward pass (see Section 4.2 for details). Similar
to Theorem 2 and 3, theoretical guarantee of uniformly sampled collocation points can be established,
albeit in a weaker form. Specifically, our results indicate that employing LMC and the forward
pass for sampling collocation points is advantageous over uniform sampling. This is because, in the
uniform case, the KL bound includes a factor proportional to the volume of the support, Vol(Ω),
which can be prohibitively large in high dimensions. In contrast, our bound depends on the density
ratio πt/νt, which is more manageable due to LMC and converges to 1 as t increases, thanks to the
forward process. Detailed results and proofs for uniform collocation points are provided in Appendix
B.

6 NUMERICAL EXPERIMENTS

In this section, we conduct experiments on various sampling tasks to demonstrate the effectiveness
and efficiency of the Diffusion-PINN Sampler (DPS) compared to previous methods. Our sampling
tasks includes 9-Gaussians (d = 2), Rings (d = 2), Funnel (Neal, 2003) (d = 10), and Double-well
(d = 30), which are commonly used to evaluate diffusion-based sampling algorithms (Zhang &
Chen, 2021; Berner et al., 2022; Grenioux et al., 2024). For multimodal distributions, the modes
are designed to be well-separated, with challenging mixing proportions between different modes
(see more details in Appendix D.2). For DPS, we employ a time-rescaled forward process and use
a weight function β(t) = 2(1 − t) for the PINN residual loss to improve numerical stability. To
generate collocation points for each task, we run a short chain of LMC with a relatively large step size
for better coverage of the high-density domain. For 9-Gaussians, Rings, and Double-well, the PINN
residual loss alone suffices for good performance, so we set the regularization coefficient λ = 0.
For Funnel, however, regularization proves helpful, and we set λ = 1 (details in Section 6.3). More
details on experiment settings can be found in Appendix D.3.

0 100000 200000 300000 400000

iterations

10−5

10−4

10−3

10−2

10−1

100

101

L2 error of the score estimation (9-Gaussians)

PINN (log-density FPE)

Denoising score matching

Figure 2: Comparison between solving
log-density FPE by PINN and denoising
score matching on score estimation.

Baselines. We benchmark DPS performance against a
wide range of strong baseline methods. For MCMC meth-
ods, we consider the Langevin Monte Carlo (LMC). As
for sampling methods using reverse diffusion, we include
RDMC (Huang et al., 2023) and SLIPS (Grenioux et al.,
2024). We also compare with the VI-based PIS (Zhang &
Chen, 2021) and DIS (Berner et al., 2022). See Appendix
D.1 for more details.

6.1 SCORE ESTIMATION

We first evaluate the accuracy of score function estimates
obtained by solving the log-density FPE (Algorithm 1).
To do that, we conduct an experiment on the 9-Gaussians
target π where we know the ground truth scores throughout
the entire forward process. Figure 2 shows the L2(π) error
of the score estimation for our method compared to denoising score matching (Vincent, 2011; Song
et al., 2020a). We see clearly that our method provides more accurate score estimation than denoising
score matching.

6.2 SAMPLE QUALITY

In this section, we compare DPS with the aforementioned baseline methods on various target
distributions. We use KL divergence to evaluate the quality of samples provided by different methods
in low dimensional problems (9-Gaussians, Rings), and use the projected KL divergence instead for
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Figure 3: Sampling performance of different methods for 9-Gaussians (d = 2), Rings (d = 2), Funnel
(d = 10), and Double-well (d = 30).

Table 1: KL divergence (↓) to the ground truth obtained by different methods. Bold font indicates the
best results. We use the KL divergence of the first two dimensions for Funnel (d = 10) and the KL
divergence of the first five dimensions for Double-well (d = 30). All the KL divergence is computed
by the ITE package (Szabó, 2014).

Target LMC RDMC SLIPS PIS DIS DPS (ours)

9-Gaussians 1.6568±0.0189 1.0844±0.0132 0.0901±0.0071 2.0042±0.0203 2.2758±0.0240 0.0131±0.0093

Rings 2.4754±0.0302 0.7487±0.0073 0.4127±0.0144 2.6985±0.0290 2.3433±0.0275 0.0176±0.0059

Funnel 0.1908±0.0156 2.0250±0.0364 0.1971±0.0133 0.4377±0.0199 0.2383±0.0169 0.0846±0.0122

Double-well 0.1915±0.0122 1.5735±0.0162 0.4840±0.0145 0.0969±0.0114 0.6796±0.0139 0.0273±0.0113

Table 2: L2 error (↓) of the mixing proportions estimation when sampling multimodal target distribu-
tions using different methods. Bold font indicates the best results. All the estimation is computed
with 1,000 samples.

Target LMC RDMC SLIPS PIS DIS DPS (ours)

9-Gaussians 0.5199±0.0159 0.1313±0.0099 0.0018±0.0005 0.4893±0.0110 0.7268±0.0146 0.0006±0.0003

Rings 0.6005±0.0251 0.0537±0.0035 0.2471±0.0144 0.8016±0.0194 0.5233±0.0194 0.0006±0.0006

Double-well 0.0673±0.0082 0.2154±0.0075 0.1645±0.0113 0.0044±0.0011 0.0684±0.0035 0.0004±0.0002

Funnel and Double-well that are problems with relatively higher dimensions. The results are reported
in Table 1. Figure 3 visualizes the samples from different methods. We clearly see that DPS provides
the best approximation accuracy and sample quality among all methods. Although we use LMC to
generate collocation points, DPS greatly outperforms LMC, indicating the power of diffusion-based
sampling methods with learned score functions.

For multimodal distributions, we estimate the mixing proportions for different modes using samples
generated by different methods, and evaluate the estimation accuracy in terms of L2 error to the true
weights. The results are shown in Table 2. It is clear that DPS provides accurate weights estimation
while other baselines tend to struggle to learn the weights.

6.3 ABLATION STUDY

In this section, we compare the performance of score estimation between solving the score FPE and
the log-density FPE, and investigate the effect of regularization in DPS.

We first solve the corresponding score FPE and log-density FPE for a MoG with two distant modes:
πM = 0.2N ((−5,−5)′, I2) + 0.8N ((5, 5)′, I2). The left plot in Figure 4 show the PINN residual
loss and the score estimation error as functions of the number of iterations. We see that for the
score FPE, the score approximation error decreases rapidly at first but quickly levels off, while
the PINN residual loss continues to decrease with more iterations. In contrast, when solving the
log-density FPE, the PINN residual loss and the score approximation error decrease consistently,
resulting in more accurate score approximation overall. The middle and right plots in Figure 4 display
the histogram based on samples generated from the reverse SDE using the score estimates from both
methods, together with the true marginal density. We observe that the score FPE-based method fails
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Figure 4: Left: PINN residual loss and score approximation error during solving score/log-density
FPE; Middle/Right: Marginals of the first dimension from DPS by solving score/log-density FPE for
MoG with two modes.
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Figure 5: Left: KL divergence to the ground truth during solving log-density FPE with different
regularization for Funnel. Middle/Right: Sampling performance of DPS with/without regularization
for Funnel.

to identify the correct mixing proportions, whereas the log-density FPE-based method successfully
recovers the correct weights.

Next, we solve the log-density PFE with different regularization coefficients λ on the Funnel target.
Figure 5 (left) shows the KL divergence for various λ as a function of the number of iterations. We
see that, compared to the non-regularized case (λ = 0), both the convergence speed and overall
approximation accuracy have been greatly improved when regularization is applied. The middle and
right plots in Figure 5 show the samples generated from DPS with λ = 1 and λ = 0 respectively.
With regularization, DPS provides a better fit to the target distribution, more accurately capturing the
thickness in the tails. This indicates that regularization could be beneficial for heavy-tail distributions.

7 CONCLUSION

In this work, we proposed Diffusion-PINN Sampler (DPS), a novel method that leverages Physics-
Informed Neural Networks (PINN) and diffusion models for accurate sampling from complex target
distributions. By solving the log-density FPE that governs the evolution of the log-density of the
underlying SDE marginals via PINN, DPS demonstrates accurate sampling capabilities even for
distributions with multiple modes or heavy tails, and it excels in identifying mixing proportions when
the target features isolated modes. The control of log-density estimation error via PINN residual
loss ensures convergence guarantees to the target distribution, building upon established results
for score-based diffusion models. We demonstrated the effectiveness of our approach on multiple
numerical examples. Limitations are discussed in Appendix C.
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A PROOFS

A.1 PROOF OF THEOREM 1

Proof of Theorem 1. Recall that pt(x) denotes the marginal density of xt following the forward
process (1), and satisfies

∂tpt(x) =
1

2
g2(t)∆pt(x)−∇ · [f(x, t)pt(x)] (22)

Therefore, the log-density ut(x) := log pt(x) satisfies

∂tut(x) =
∂tpt(x)

pt(x)
=

1

2
g2(t)

∆pt(x)

pt(x)
− ∇ · [f(x, t)pt(x)]

pt(x)
(23)

Note that we have the identities
∆pt(x) = ∇ · [pt(x)∇xut(x)] = ∇xpt(x) · ∇xut(x) + pt(x)∆ut(x),

∇ · [f(x, t)pt(x)] = ∇xpt(x) · f(x, t) + pt(x) [∇ · f(x, t)] .
(24)

Plug (24) into (23), we have

∂tut(x) =
1

2
g2(t)∆ut(x) +

1

2
g2(t) ∥∇xut(x)∥2 − f(x, t) · ∇xut(x)−∇ · f(x, t)

Since log pt(x) is sufficiently smooth, we can swap the order of differentiations and get
∂tst(x) = ∂t∇xut(x) = ∇x∂tut(x)

Hence, the theorem is proved.

A.2 OMITTED PROOF IN EXAMPLE 1

Notations. For two probability measures ν1 and ν2 in Rd, we define theL2(p) error of their scores as
SEp(ν1∥ν2) := Ex∼p[∥∇x log ν1(x)−∇x log ν2(x)∥2] where p also denotes a probability measure.
Note that if we choose p = ν1, we have SEν1

(ν1∥ν2) = F (ν1, ν2) where F (ν1, ν2) denotes the
Fisher divergence between ν1 and ν2. For any a ∈ Rd, we denote γa(x) := exp(−∥x − a∥2/2).
For simplify, we denote Ex∼N (a,Id)[·] by Eγa [·]. Thus the probability density of N (a, Id) is
p(x) = γa(x)/(

√
2π)d. For the MoG πM = w1N (a1, Id) + w2N (a2, Id), the score is given by

∇x log πM (x) =
w1a1γa1(x) + w2a2γa2(x)

w1γa1
(x) + w2γa2

(x)
− x. (25)

Then we show our general results in Theorem 4 where we state a lower bound of KL(πM∥π̂M ) and
an upper bound of SEp(π

M∥π̂M ).
Theorem 4. Consider two MoGs in Rd: πM = w1N (a1, Id)+w2N (a2, Id), π̂M = ŵ1N (a1, Id)+
ŵ2N (a2, Id) where a1,a2 ∈ Rd, w1, w2, ŵ1, ŵ2 > 0, w1 + w2 = 1 and ŵ1 + ŵ2 = 1. Then
KL
(
πM∥π̂M

)
is lower bounded by

KL
(
πM∥π̂M

)
⩾ w1

(
logw1 − log

(
ŵ1 + exp

(
−∥a1 − a2∥2

4

)))

+ w2

(
logw2 − log

(
ŵ2 + exp

(
−∥a1 − a2∥2

4

)))

− (log 4 + d) exp

(
d

2
log 2− ∥a1 − a2∥2

64

) (26)

Let p(x) denotes any distribution that is absolutely continuous w.r.t. µ, then SEp(π
M∥π̂M ) is upper

bounded by

SEp(π
M∥π̂M ) ⩽ 2 exp

(
−∥a1 − a2∥2

2

)[
w2

2

w2
1

+
ŵ2

2

ŵ2
1

+
w2

1

w2
2

+
ŵ2

1

ŵ2
2

]
∥a1 − a2∥2

+ 8
[
∥a1∥2 + ∥a2∥2

] ∫
Ω3

p(x) dx

(27)
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where Ω1 =
{
x ∈ Rd : ∥x− a1∥ ⩽ ∥a1−a2∥

4

}
, Ω2 =

{
x ∈ Rd : ∥x− a2∥ ⩽ ∥a1−a2∥

4

}
, and

Ω3 = Ωc
1

⋂
Ωc

2.

Remark 2. If we choose p(x) = πM (x) in Theorem 4, the Fisher divergence F (πM , π̂M ) is upper
bounded by

F (πM , π̂M ) ⩽ 2 exp

(
−∥a1 − a2∥2

2

)[
w2

2

w2
1

+
ŵ2

2

ŵ2
1

+
w2

1

w2
2

+
ŵ2

1

ŵ2
2

]
∥a1 − a2∥2

+ 8
[
∥a1∥2 + ∥a2∥2

]
exp

(
d

2
log 2− ∥a1 − a2∥2

64

)
.

(28)

where we use the following inequality∫
Ω3

πM (x) dx =w1

∫
Ω3

1

(
√
2π)d

γa1
(x) dx+ w2

∫
Ω3

1

(
√
2π)d

γa2
(x) dx

⩽ w1 exp

(
d

2
log 2− ∥a1 − a2∥2

64

)
+ w2 exp

(
d

2
log 2− ∥a1 − a2∥2

64

)

=exp

(
d

2
log 2− ∥a1 − a2∥2

64

)
Thus Example 1 holds naturally.

Proof of Theorem 4. We first prove (26). We can decompose KL
(
πM∥π̂M

)
as

KL
(
πM∥π̂M

)
= EπM

[
log

(
πM (x)

π̂M (x)

)]
= w1Eγa1

[
log

(
w1γa1

(x) + w2γa2
(x)

ŵ1γa1
(x) + ŵ2γa2

(x)

)]
+ w2Eγa2

[
log

(
w1γa1(x) + w2γa2(x)

ŵ1γa1
(x) + ŵ2γa2

(x)

)] (29)

Note that

Eγa1

[
log

(
w1γa1

(x) + w2γa2
(x)

ŵ1γa1
(x) + ŵ2γa2

(x)

)]
=Eγa1

[
log

(
w1 + w2γa2

(x)/γa1
(x)

ŵ1 + ŵ2γa2
(x)/γa1

(x)

)]
⩾ logw1 − Eγa1

[
log

(
ŵ1 + ŵ2

γa2
(x)

γa1
(x)

)] (30)

Let Ω̃1 = {x ∈ Rd : ∥x − a1∥ ⩽ ∥a1−a2∥
4 }, Ω̃2 = Ω̃c

1

⋂{x ∈ Rd : ŵ2γa2
(x)/γa1

(x) ⩽ ŵ1},
and Ω̃3 = (Ω̃1

⋃
Ω̃2)

c = Ω̃c
1

⋂
Ω̃c

2. Then for any x ∈ Ω̃1, we have ∥x− a2∥ ⩾ ∥a1 − a2∥ −
∥x− a1∥ ⩾ 3

4 ∥a1 − a2∥, thus γa2
(x)/γa1

(x) = exp
(

∥x−a1∥2−∥x−a2∥2

2

)
⩽ exp

(
−∥a1−a2∥2

4

)
.

Then we have∫
Ω̃1

1(√
2π
)d γa1

(x) log

(
ŵ1 + ŵ2

γa2
(x)

γa1
(x)

)
dx

⩽ log

(
ŵ1 + ŵ2 exp

(
−∥a1 − a2∥2

4

))
⩽ log

(
ŵ1 + exp

(
−∥a1 − a2∥2

4

)) (31)

Note that∫
Ω̃c

1

1(√
2π
)d γa1 (x) dx ⩽

∫
Ω̃c

1

exp

(
−∥a1 − a2∥2

64

)
· 1(√

2π
)d exp

(
−∥x− a1∥2

4

)
dx

⩽ exp

(
d

2
log 2− ∥a1 − a2∥2

64

) (32)
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and ∫
Ω̃c

1

1(√
2π
)d γa1

(x)
∥x− a1∥2

2
dx

⩽
∫
Ω̃c

1

exp

(
−∥a1 − a2∥2

64

)
· 1(√

2π
)d exp

(
−∥x− a1∥2

4

)
∥x− a1∥2

2
dx

⩽ exp

(
d

2
log 2− ∥a1 − a2∥2

64

)
· Ex∼N (a1,2Id)

[
∥x− a1∥2

2

]

=exp

(
log d+

d

2
log 2− ∥a1 − a2∥2

64

)
(33)

For every x ∈ Ω̃2, we have log (ŵ1 + ŵ2γa2
(x)/γa1

(x)) ⩽ log 2. Use (32) and (33),∫
Ω̃2

1(√
2π
)d γa1 (x) log

(
ŵ1 + ŵ2

γa2
(x)

γa1(x)

)
dx ⩽ log 2 · exp

(
d

2
log 2− ∥a1 − a2∥2

64

)
(34)

Similarly, for any x ∈ Ω̃3, we have log (ŵ1 + ŵ2γa2
(x)/γa1

(x)) ⩽ log 2 + ∥x−a1∥2

2 . Thus

∫
Ω̃3

1(√
2π
)d γa1

(x) log

(
ŵ1 + ŵ2

γa2
(x)

γa1
(x)

)
dx ⩽ (log 2 + d) exp

(
d

2
log 2− ∥a1 − a2∥2

64

)
(35)

Putting (31), (34), and (35) together, Eγa1
[log (ŵ1 + ŵ2γa2

(x)/γa1
(x))] is upper bounded by

Eγa1

[
log

(
ŵ1 + ŵ2

γa2(x)

γa1
(x)

)]
=

(∫
Ω̃1

+

∫
Ω̃2

+

∫
Ω̃3

)
1(√
2π
)d γa1

(x) log

(
ŵ1 + ŵ2

γa2
(x)

γa1
(x)

)
dx

⩽ log

(
ŵ1 + exp

(
−∥a1 − a2∥2

4

))
+ (log 4 + d) exp

(
d

2
log 2− ∥a1 − a2∥2

64

) (36)

Plugging (36) into (30), we have

w1Eγa1

[
log

(
w1γa1

(x) + w2γa2
(x)

ŵ1γa1
(x) + ŵ2γa2

(x)

)]
⩾ w1

[
logw1 − log

(
ŵ1 + exp

(
−∥a1 − a2∥2

4

))]

− w1 (log 4 + d) exp

(
d

2
log 2− ∥a1 − a2∥2

64

) (37)

Similarly, we have

w2Eγa2

[
log

(
w1γa1

(x) + w2γa2
(x)

ŵ1γa1(x) + ŵ2γa2(x)

)]
⩾ w2

(
logw2 − log

(
ŵ2 + exp

(
−∥a1 − a2∥2

4

)))

− w2 (log 4 + d) exp

(
d

2
log 2− ∥a1 − a2∥2

64

) (38)
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Plugging (37) and (38) into (29), we obtain the lower bound (26) in Theorem 4. Then we prove (27).
Using (25), we obtain

∇x log πM (x)−∇x log π̂M (x)

=
w1a1γa1

(x) + w2a2γa2
(x)

w1γa1
(x) + w2γa2

(x)
− ŵ1a1γa1

(x) + ŵ2a2γa2
(x)

ŵ1γa1
(x) + ŵ2γa2

(x)

=
w1a1 + w2a2γa2(x)/γa1(x)

w1 + w2γa2
(x)/γa1

(x)
− ŵ1a1 + ŵ2a2γa2(x)/γa1(x)

ŵ1 + ŵ2γa2
(x)/γa1

(x)

=
w1a1γa1

(x)/γa2
(x) + w2a2

w1γa1
(x)/γa2

(x) + w2
− ŵ1a1γa1

(x)/γa2
(x) + ŵ2a2

ŵ1γa1
(x)/γa2

(x) + ŵ2

(39)

Recall that Ω1 = {x ∈ Rd : ∥x− a1∥ ⩽ ∥a1−a2∥
4 }, Ω2 = {x ∈ Rd : ∥x− a2∥ ⩽ ∥a1−a2∥

4 } and
Ω3 = Ωc

1

⋂
Ωc

2. For any x ∈ Ω1, we can rewrite (39) as

∇x log πM (x)−∇x log π̂M (x)

=a1 +
w2(a2 − a1)γa2

(x)/γa1
(x)

w1 + w2γa2
(x)/γa1

(x)
−
{
a1 +

ŵ2(a2 − a1)γa2
(x)/γa1

(x)

ŵ1 + ŵ2γa2
(x)/γa1

(x)

}
=
w2(a2 − a1)γa2

(x)/γa1
(x)

w1 + w2γa2(x)/γa1(x)
− ŵ2(a2 − a1)γa2

(x)/γa1
(x)

ŵ1 + ŵ2γa2(x)/γa1(x)

(40)

Note that |γa2
(x)/γa1

(x)|2 = exp(∥x − a1∥2 − ∥x − a2∥2) ⩽ exp(−∥a1 − a2∥2/2) for every
x ∈ Ω1. Then use (40), we obtain∫

Ω1

∥∥∇x log πM (x)−∇x log π̂M (x)
∥∥2 p(x) dx

=

∫
Ω1

∥∥∥∥w2(a2 − a1)γa2(x)/γa1(x)

w1 + w2γa2
(x)/γa1

(x)
− ŵ2(a2 − a1)γa2(x)/γa1(x)

ŵ1 + ŵ2γa2
(x)/γa1

(x)

∥∥∥∥2 p(x) dx
⩽ 2

∫
Ω1

∥∥∥∥w2(a2 − a1)

w1

∥∥∥∥2 ∣∣∣γa2
(x)

γa1
(x)

∣∣∣2p(x) dx+ 2

∫
Ω1

∥∥∥∥ ŵ2(a2 − a1)

ŵ1

∥∥∥∥2 ∣∣∣γa2
(x)

γa1
(x)

∣∣∣2p(x) dx
⩽ 2 exp

(
−∥a1 − a2∥2

2

)[
w2

2

w2
1

+
ŵ2

2

ŵ2
1

]
∥a2 − a1∥2

(41)

Similarly, we obtain ∫
Ω2

∥∥∇x log πM (x)−∇x log π̂M (x)
∥∥2 p(x) dx

⩽ 2 exp

(
−∥a1 − a2∥2

2

)[
w2

1

w2
2

+
ŵ2

1

ŵ2
2

]
∥a1 − a2∥2

(42)

Using (39), we obtain that∫
Ω3

∥∥∇x log πM (x)−∇x log π̂M (x)
∥∥2 p(x) dx

=

∫
Ω3

∥∥∥∥w1a1 + w2a2γa2
(x)/γa1

(x)

w1 + w2γa2
(x)/γa1

(x)
− ŵ1a1 + ŵ2a2γa2

(x)/γa1
(x)

ŵ1 + ŵ2γa2
(x)/γa1

(x)

∥∥∥∥2 p(x) dx
⩽ 4

∫
Ω3

∥∥∥∥ w1a1

w1 + w2γa2(x)/γa1(x)

∥∥∥∥2 p(x) dx+ 4

∫
Ω3

∥∥∥∥ ŵ1a1

ŵ1 + ŵ2γa2(x)/γa1(x)

∥∥∥∥2 p(x) dx
+ 4

∫
Ω3

∥∥∥∥ w2a2γa2(x)/γa1(x)

w1 + w2γa2
(x)/γa1

(x)

∥∥∥∥2 p(x) dx+ 4

∫
Ω3

∥∥∥∥ ŵ2a2γa2(x)/γa1(x)

ŵ1 + ŵ2γa2
(x)/γa1

(x)

∥∥∥∥2 p(x) dx
⩽ 8

[
∥a1∥2 + ∥a2∥2

] ∫
Ω3

p(x) dx

(43)
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Note that we have the following decomposition

SEp(π
M∥π̂M ) =

∫
Rd

∥∥∇x log πM (x)−∇x log π̂M (x)
∥∥2 p(x) dx

=

(∫
Ω1

+

∫
Ω2

+

∫
Ω3

)∥∥∇x log πM (x)−∇x log π̂M (x)
∥∥2 p(x) dx (44)

Plug (41), (42), and (43) into (44), we obtain the upper bound (27) in Theorem 4.

A.3 PROOF OF THEOREM 2

First, we present the divergence theorem and Green’s first identity, which is very useful in our proof.
Then we state the Grönwall’s inequality used in our proof. Finally, we state and prove Theorem 5
which includes Theorem 2 and sharper bounds when (49) holds.
Lemma 1 (divergence theorem). Let F(·) : Ω→ Rd, then

∫
Ω
∇ · F(x) dx =

∫
∂Ω

F · n dS.
Lemma 2 (Green’s first identity). Let v(·), u(·) : Ω→ R, then it holds that∫

Ω

∇xv · ∇xu dx+

∫
Ω

v∆u dx =

∫
∂Ω

v
∂u

∂n
dS.

Lemma 3 (Grönwall’s inequality). Let f(·), α(·), β(·) : [0, T ]→ R, and suppose that ∀ 0 ⩽ t ⩽ T ,
f ′(t) ⩽ α(t) + β(t)f(t),

Then we have ∀ 0 ⩽ t ⩽ T ,

f(t) ⩽ e
∫ t
0
β(s) dsf(0) +

∫ t

0

e
∫ t
s
β(r) drα(s) ds.

Proof of Lemma 3. Consider g(t) = e−
∫ t
0
β(s) dsf(t),∀ 0 ⩽ t ⩽ T . Then we have ∀ 0 ⩽ t ⩽ T ,

g′(t) = e−
∫ t
0
β(s) dsf ′(t)− β(t)e−

∫ t
0
β(s) dsf(t)

= e−
∫ t
0
β(s) ds (f ′(t)− β(t)f(t))

⩽ e−
∫ t
0
β(s) dsα(t).

(45)

Integrating (45), we obtain

e−
∫ t
0
β(s) dsf(t) ⩽ f(0) +

∫ t

0

e−
∫ s
0
β(r) drα(s) ds. (46)

Hence, we complete our proof.

Theorem 5. Suppose that Assumption 1, 2, and 3 hold. We further assume that uθ(x, 0) = u∗0(x)
for any x ∈ Ω. Then for any positive constant ε > 0, the following holds for any 0 ⩽ t ⩽ T ,

∥et(·)∥2L2(Ω;νt)
⩽ εLPINN(t;C1(ε)), (47)

Moreover, for any 0 ⩽ t ⩽ T ,

m1∥∇xet(·)∥2L2(Ω;νt)
⩽ ε∥rt(·)∥2L2(Ω;νt)

+ C3(ε)LPINN(t;C1(ε)) + C2

√
εLPINN(t;C1(ε)). (48)

In addition, if there exists constant Cν(Ω) > 0 such that the following holds for any 0 ⩽ t ⩽ T ,

∥∇xet(·)∥2L2(Ω;νt)
⩾ C2ν(Ω)∥et(·)∥2L2(Ω;νt)

, (49)

Then for any positive constant ε > 0, the following holds for any 0 ⩽ t ⩽ T ,
∥et(·)∥2L2(Ω;νt)

⩽ εLPINN(t;C4(ε)), (50)

Moreover, for any 0 ⩽ t ⩽ T ,

m1∥∇xet(·)∥2L2(Ω;νt)
⩽ ε∥rt(·)∥2L2(Ω;νt)

+ C3(ε)LPINN(t;C4(ε)) + C2

√
εLPINN(t;C4(ε)). (51)

where C2 := 2
√
2(B̂2

0 +B∗2
0 )1/2, C3(ε) := ε(C1(ε) +Bν

0 ), C4(ε) := C1(ε)−m1C2ν(Ω) and

C1(ε) :=
1

ε
+
M1

4
(Bν

1 + 2B∗
1 + 2B̂1) + c1(B

ν
1 +Bν

2 )−
c2
2
(B∗

2 + B̂2)

where

c1 :=

{
M1, if Bν

1 +Bν
2 ⩾ 0.

m1, if Bν
1 +Bν

2 < 0.
c2 :=

{
m1, if B∗

2 + B̂2 ⩾ 0.

M1, if B∗
2 + B̂2 < 0.
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Proof of Theorem 5. We first prove (47) and (50). Note that u∗t (x) satisfies

∂tu
∗
t (x) +∇xu

∗
t (x) · f(x, t) +∇ · f(x, t)−

1

2
g2(t)∆u∗t (x)−

1

2
g2(t) ∥∇xu

∗
t (x)∥2 = 0, (52)

And uθ(x, t) satisfies

∂tuθ(x, t)+∇xuθ(x, t)·f(x, t)+∇·f(x, t)−
1

2
g2(t)∆uθ(x, t)−

1

2
g2(t) ∥∇xuθ(x, t)∥2 = rt(x).

(53)
Subtracting (52) for u∗ from (53) for uθ, we have

∂tet(x)+∇xet(x) ·f(x, t)−
1

2
g2(t)

(
∥∇xuθ(x, t)∥2 − ∥∇xu

∗
t (x)∥2

)
− 1

2
g2(t)∆et(x) = rt(x).

(54)
Note that 1

2∂te
2
t (x) = et(x)∂tet(x) and 1

2∇xe
2
t (x) = et(x)∇xet(x), then we obtain

1

2
∂te

2
t (x) =

1

2
g2(t)et(x)

(
∥∇xuθ(x, t)∥2 − ∥∇xu

∗
t (x)∥2

)
+

1

2
g2(t)et(x)∆et(x)

+ et(x)rt(x)− et(x)∇xet(x) · f(x, t)

=
1

2
g2(t)et(x)∇xet(x) · (∇xuθ(x, t) +∇xu

∗
t (x)) +

1

2
g2(t)et(x)∆et(x)

+ et(x)rt(x)− et(x)∇xet(x) · f(x, t)

=
1

4
g2(t)∇xe

2
t (x) · (∇xuθ(x, t) +∇xu

∗
t (x)) +

1

2
g2(t)et(x)∆et(x)

+ et(x)rt(x)−
1

2
∇xe

2
t (x) · f(x, t).

(55)

Note that ∂t(νt(x)e2t (x)) = e2t (x)∂tνt(x) + νt(x)∂te
2
t (x), then we have

∂t(νt(x)e
2
t (x)) =

1

2
g2(t)νt(x)∇xe

2
t (x) · (∇xuθ(x, t) +∇xu

∗
t (x))

+ g2(t)νt(x)et(x)∆et(x)

+ 2νt(x)et(x)rt(x)− νt(x)∇xe
2
t (x) · f(x, t)

+
1

2
g2(t)e2t (x)∆νt(x)− e2t (x)∇ · [f(x, t)νt(x)] .

(56)

We integrate (56) to get an equation for ∥et(·)∥2L2(Ω;νt)
given by

∂t ∥et(·)∥2L2(Ω;νt)
=

1

2
g2(t)

∫
Ω

νt(x)∇xe
2
t (x) · (∇xuθ(x, t) +∇xu

∗
t (x)) dx

+ g2(t)

∫
Ω

νt(x)et(x)∆et(x) dx

+ 2

∫
Ω

νt(x)et(x)rt(x) dx−
∫
Ω

νt(x)∇xe
2
t (x) · f(x, t) dx

+
1

2
g2(t)

∫
Ω

e2t (x)∆νt(x) dx−
∫
Ω

e2t (x)∇ · [f(x, t)νt(x)] dx.

(57)

Note that
∇ ·
[
νt(x)e

2
t (x)f(x, t)

]
= νt(x)∇xe

2
t (x) · f(x, t) + e2t (x)∇ · [νt(x)f(x, t)] ,

Then using Lemma 1 and et(x) = 0 for any (x, t) ∈ ∂Ω× [0, T ], we have∫
Ω

νt(x)∇xe
2
t (x) · f(x, t) dx+

∫
Ω

e2t (x)∇ · [νt(x)f(x, t)] dx = 0 (58)

Similarly, we have ∫
Ω

νt(x)∇xe
2
t (x) · (∇xuθ(x, t) +∇xu

∗
t (x)) dx

=−
∫
Ω

νt(x)e
2
t (x) (∆uθ(x, t) + ∆u∗t (x)) dx

−
∫
Ω

e2t (x)∇xνt(x) · (∇xuθ(x, t) +∇xu
∗
t (x)) dx,

(59)
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and∫
Ω

νt(x)et(x)∆et(x) dx = −1

2

∫
Ω

∇xνt(x) · ∇xe
2
t (x) dx−

∫
Ω

νt(x) ∥∇xet(x)∥2 dx. (60)

Plugging (58), (59), and (60) into (57), and using Lemma 2, we have

∂t∥et(·)∥2L2(Ω;νt)
=− 1

2
g2(t)

∫
Ω

(∆uθ(x, t) + ∆u∗t (x))e
2
t (x)νt(x) dx

− 1

2
g2(t)

∫
Ω

∇xνt(x) · (∇xuθ(x, t) +∇xu
∗
t (x)) e

2
t (x) dx

− g2(t)
∫
Ω

νt(x)∥∇xet(x)∥2 dx+ 2

∫
Ω

νt(x)et(x)rt(x) dx

+ g2(t)

∫
Ω

e2t (x)∆νt(x) dx.

(61)

Using∇xνt(x) = νt(x)∇x log νt(x) and ∆νt(x) = (∆ log νt(x) + ∥∇x log νt(x)∥2)νt(x),

∂t∥et(·)∥2L2(Ω;νt)
=− 1

2
g2(t)

∫
Ω

(∆uθ(x, t) + ∆u∗t (x))e
2
t (x)νt(x) dx

− 1

2
g2(t)

∫
Ω

∇x log νt(x) · (∇xuθ(x, t) +∇xu
∗
t (x)) e

2
t (x)νt(x) dx

− g2(t)
∫
Ω

νt(x)∥∇xet(x)∥2 dx+ 2

∫
Ω

νt(x)et(x)rt(x) dx

+ g2(t)

∫
Ω

e2t (x)νt(x)(∆ log νt(x) + ∥∇x log νt(x)∥2) dx.

(62)

By Assumption 2 and 3, then we have

∂t∥et(·)∥2L2(Ω;νt)
⩽ ε∥rt(·)∥2L2(Ω;νt)

+ C1(ε)∥et(·)∥2L2(Ω;νt)
−m1∥∇xet(·)∥2L2(Ω;νt)

⩽ ε∥rt(·)∥2L2(Ω;νt)
+ C1(ε)∥et(·)∥2L2(Ω;νt)

(63)

which follows from applying Young’s inequality and holds for any ε > 0. Note that e0(x) = 0 for
any x ∈ Ω, then using Lemma 3, we have ∀ 0 ⩽ t ⩽ T ,

∥et(·)∥2L2(Ω;νt)
⩽ ε

∫ t

0

eC1(ε)(t−s)∥rs(·)∥2L2(Ω;νs)
ds := εLPINN(t;C1(ε)). (64)

Hence, we have proved (47). In addition, if (49) holds, plugging (49) into (63), we have
∂t∥et(·)∥2L2(Ω;νt)

⩽ ε∥rt(·)∥2L2(Ω;νt)
+ C4(ε)∥et(·)∥2L2(Ω;νt)

(65)

Similarly, using Lemma 3, we obtain (50). Then we prove (48) and (51). From (63), we have
m1∥∇xet(·)∥2L2(Ω;νt)

⩽ ε∥rt(·)∥2L2(Ω;νt)
+ C1(ε)∥et(·)∥2L2(Ω;νt)

− ∂t∥et(·)∥2L2(Ω;νt)
(66)

By Assumption 3, we bound ∂t∥et(·)∥2L2(Ω;νt)
as follows∣∣∣∂t∥et(·)∥2L2(Ω;νt)

∣∣∣ = ∣∣∣∂t(∫
Ω

e2t (x)νt(x) dx

) ∣∣∣
=
∣∣∣ ∫

Ω

e2t (x)∂tνt(x) + 2νt(x)et(x)∂tet(x) dx
∣∣∣

⩽
∫
Ω

e2t (x)νt(x)|∂t log νt(x)| dx+ 2
∣∣∣ ∫

Ω

νt(x)et(x)∂tet(x) dx
∣∣∣

⩽ Bν
0∥et(·)∥2L2(Ω;νt)

+ 2

(∫
Ω

νt(x)e
2
t (x) dx

)1/2(∫
Ω

νt(x)
∣∣∂tet(x)∣∣2 dx)1/2

⩽ Bν
0∥et(·)∥2L2(Ω;νt)

+ 2
√
2
(
B̂2

0 +B∗2
0

)1/2
∥et(·)∥L2(Ω;νt).

(67)

which follows from applying |∂tet(x)|2 = |∂tuθ(x, t)− ∂tu∗t (x)|2 ⩽ 2B̂2
0 + 2B∗2

0 . Then plugging
(67) into (66), we have
m1∥∇xet(·)∥2L2(Ω;νt)

⩽ ε∥rt(·)∥2L2(Ω;νt)
+(C1(ε)+B

ν
0 )∥et(·)∥2L2(Ω;νt)

+C2∥et(·)∥L2(Ω;νt) (68)

Plugging (47) and (50) into (68) gives (48) and (51) respectively.
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A.4 PROOF OF THEOREM 3

Given the L2 error of the score approximation, Chen et al. (2023a) provides an upper bound of
KL divergence between the data distrbution π and the distribution of approximated samples π̂T
drawn from the sampling dynamics (19). We first summarize the results from Chen et al. (2023a) in
Proposition 1. Then we prove Theorem 3 based on Proposition 1.
Proposition 1 (Theorem 2.5 in Chen et al. (2023a)). Suppose that T ⩾ 1, K ⩾ 2, and the L2 error
of the score approximation is bounded by

N∑
k=1

hkExtk
∼πtk

∥∇x log πtk(xtk)− stk(xtk)∥2 ⩽ Tε20. (69)

Then there is a universal constant α ⩾ 2 such that the following holds. Under Assumption 4, by
using the exponentially decreasing (then constant) step size hk = hmin{max{tk, 1/(4K)}, 1},
0 < h ⩽ 1/(αd), the sampling dynamic (19) results in a distribution π̂T such that

KL(π∥π̂T ) ≲ (d+M2) · e−T + Tε20 + d2h(logK + T ). (70)

where the number of sampling steps satisfies that N ≲ 1
h (logK + T ). Choosing T = log

(
M2+d

ε20

)
and h = Θ

(
ε20

d2(logK+T )

)
, we have N = O

(
d2(logK+T )2

ε20

)
and make the KL divergence Õ

(
ε20
)
.

Proof of Theorem 3. As st(x) = ∇xuθ(x, t) · 1{x ∈ Ω}, we have

N∑
k=1

hkExtk
∼πtk

∥∇x log πtk(xtk)− stk(xtk)∥2

=

N∑
k=1

hk

∫
Ωc

πtk(x)∥∇x log πtk(x)∥2 dx+

N∑
k=1

hk

∫
Ω

πtk(x)∥∇xetk(x)∥2 dx

⩽
N∑

k=1

hkδ +

N∑
k=1

hkRtk∥∇xetk(·)∥2L2(Ω;νtk
) (using Assumption 5 and 6)

⩽ Tδ + δ1 + C5(ε)δ2 + C2

√√√√ N∑
k=1

hkRtkδ2.

(71)

where the last inequality follows from Theorem 2 (m1 =M1 = 1) and

N∑
k=1

hkRtk

√
εLPINN(tk;C1(ε)) ⩽

(
ε

N∑
k=1

hkRtkLPINN(tk;C1(ε))

)1/2( N∑
k=1

hkRtk

)1/2

⩽

√√√√ N∑
k=1

hkRtkδ2.

(72)

Then combining (71) and Proposition 1 together gives the results in Theorem 3.

B THEORETICAL COMPARISON BETWEEN DIFFERENT SAMPLING METHODS
FOR COLLOCATION POINTS

B.1 CONVERGENCE GUARANTEE OF PINN FOR SOLVING LOG-DENSITY FPE

In this section, we present a convergence guarantee of PINN for solving the log-density FPE on a
constrained domain Ω and the convergence analysis of DPS when the collocation points are sampled
from νt ∼ Unif(Ω). We make the following assumptions.
Assumption 7. For any t ∈ [0, T ], g2(t) is lower-bounded: g2(t) ⩾ m1 for some m1 > 0.
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Assumption 8. u∗t (x), uθ(x, t) ∈ C2(Ω× [0, T ]).

Assumption 9. For any (x, t) ∈ Ω× [0, T ], ∇ · f(x, t) ⩽ m2 for some m2 ∈ R.

Based on Assumption 8, there exists B∗
0 , B̂0, B

∗
1 , B̂1 ∈ R+ and B∗

2 , B̂2 ∈ R depended on Ω such
that for any (x, t) ∈ Ω× [0, T ], we have

|∂tu∗t (x)| ⩽ B∗
0 , ∥∇xu

∗
t (x)∥2 ⩽ B∗

1 , ∆u∗t (x) ⩾ B∗
2 ,

|∂tuθ(x, t)| ⩽ B̂0, ∥∇xuθ(x, t)∥2 ⩽ B̂1, ∆uθ(x, t) ⩾ B̂2,

Theorem 6. Suppose that Assumption 1, 7, 8and 9 hold. And we define the PINN objective on Ω as

LUnif
PINN(t;C) :=

∫ t

0

eC(t−s) ∥rs(·)∥2L2(Ω) ds,

We further assume that uθ(x, 0) = u∗0(x) for any x ∈ Ω. Then for any positive constant ε > 0, the
following holds for any t ∈ [0, T ],

∥et(·)∥2L2(Ω) ⩽ εLUnif
PINN(t;C

U
1 (ε)), (73)

Moreover, for any t ∈ [0, T ],

m1∥∇xet(·)∥2L2(Ω) ⩽ ε∥rt(·)∥2L2(Ω) + ε · CU
1 (ε)L

Unif
PINN(t;C

U
1 (ε)) + CU

2

√
εLUnif

PINN(t;C
U
1 (ε)). (74)

where CU
2 := 2

√
2
(
B̂2

0 +B∗2
0

)1/2
and CU

1 (ε) :=
1
ε +m2 − m1

2

(
B∗

2 + B̂2

)
.

Proof of Theorem 6. Note that u∗t (x) satisfies

∂tu
∗
t (x) +∇xu

∗
t (x) · f(x, t) +∇ · f(x, t)−

1

2
g2(t)∆u∗t (x)−

1

2
g2(t) ∥∇xu

∗
t (x)∥2 = 0, (75)

And uθ(x, t) satisfies

∂tuθ(x, t)+∇xuθ(x, t)·f(x, t)+∇·f(x, t)−
1

2
g2(t)∆uθ(x, t)−

1

2
g2(t) ∥∇xuθ(x, t)∥2 = rt(x).

(76)
Subtracting (75) for u∗ from (76) for uθ, we have

∂tet(x)+∇xet(x) ·f(x, t)−
1

2
g2(t)

(
∥∇xuθ(x, t)∥2 − ∥∇xu

∗
t (x)∥2

)
− 1

2
g2(t)∆et(x) = rt(x).

(77)
Note that 1

2∂te
2
t (x) = et(x)∂tet(x) and 1

2∇xe
2
t (x) = et(x)∇xet(x), then we obtain

1

2
∂te

2
t (x) =

1

2
g2(t)et(x)

(
∥∇xuθ(x, t)∥2 − ∥∇xu

∗
t (x)∥2

)
+

1

2
g2(t)et(x)∆et(x)

+ et(x)rt(x)− et(x)∇xet(x) · f(x, t)

=
1

2
g2(t)et(x)∇xet(x) · (∇xuθ(x, t) +∇xu

∗
t (x)) +

1

2
g2(t)et(x)∆et(x)

+ et(x)rt(x)− et(x)∇xet(x) · f(x, t)

=
1

4
g2(t)∇xe

2
t (x) · (∇xuθ(x, t) +∇xu

∗
t (x)) +

1

2
g2(t)et(x)∆et(x)

+ et(x)rt(x)−
1

2
∇xe

2
t (x) · f(x, t).

(78)
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We integrate (78) to get an equation for ∥et(·)∥2L2(Ω) given by

∂t ∥et(·)∥2L2(Ω) =
1

2
g2(t)

∫
Ω

∇xe
2
t (x) · (∇xuθ(x, t) +∇xu

∗
t (x)) dx+ g2(t)

∫
Ω

et(x)∆et(x)dx

+ 2

∫
Ω

et(x)rt(x)dx−
∫
Ω

∇xe
2
t (x) · f(x, t)dx

= − 1

2
g2(t)

∫
Ω

e2t (x) · (∆uθ(x, t) + ∆u∗t (x)) dx− g2(t)
∫
Ω

∥∇xet(x)∥2 dx

+ 2

∫
Ω

et(x)rt(x)dx+

∫
Ω

e2t (x) · [∇ · f(x, t)] dx

⩽ − m1

2

(
B∗

2 + B̂2

)
∥et(·)∥2L2(Ω) −m1 ∥∇xet(·)∥2L2(Ω) + ε ∥rt(·)∥2L2(Ω)

+
1

ε
∥et(·)∥2L2(Ω) +m2 ∥et(·)∥2L2(Ω)

= CU
1 (ε) ∥et(·)∥2L2(Ω) + ε ∥rt(·)∥2L2(Ω) −m1 ∥∇xet(·)∥2L2(Ω)

⩽ CU
1 (ε) ∥et(·)∥2L2(Ω) + ε ∥rt(·)∥2L2(Ω) .

(79)
Note that e0(x) = 0 for any x ∈ Ω, then using the Grönwall inequality, we have for any t ∈ [0, T ],

∥et(·)∥2L2(Ω) ⩽ ε

∫ t

0

eC
U
1 (ε)(t−s) ∥rs(·)∥2L2(Ω) ds := εLUnif

PINN(t;C
U
1 (ε)). (80)

Note that from (79),

m1∥∇xet(·)∥2L2(Ω) ⩽ ε∥rt(·)∥2L2(Ω) + CU
1 (ε)∥et(·)∥2L2(Ω) − ∂t∥et(·)∥2L2(Ω) (81)

We can bound ∂t∥et(·)∥2L2(Ω) as follows∣∣∣∂t∥et(·)∥2L2(Ω)

∣∣∣ = ∣∣∣∣∂t(∫
Ω

e2t (x)dx
)∣∣∣∣ = 2

∣∣∣∣∫
Ω

et(x)∂tet(x)dx
∣∣∣∣

⩽ 2

(∫
Ω

e2t (x)dx
)1/2(∫

Ω

|∂tet(x)|2 dx
)1/2

⩽ 2
√
2
(
B̂2

0 +B∗2
0

)1/2
∥et(·)∥L2(Ω).

(82)

which follows from applying |∂tet(x)|2 = |∂tuθ(x, t)− ∂tu∗t (x)|2 ⩽ 2B̂2
0 + 2B∗2

0 . Then plugging
(82) into (81), we have

m1∥∇xet(·)∥2L2(Ω) ⩽ ε∥rt(·)∥2L2(Ω) + CU
1 (ε)∥et(·)∥2L2(Ω) + CU

2 ∥et(·)∥L2(Ω) (83)

Plugging (81) into (83), we complete the proof.

B.2 CONVERGENCE ANALYSIS OF DIFFUSION-PINN SAMPLER

In this section, we present our convergence analysis of DPS based on Theorem 6 and the analysis of
score-based generative models in Chen et al. (2023a) when the collocation points are sampled from
uniform distribution within the similar setting in section 5.2.
Theorem 7. Suppose that T ⩾ 1,K ⩾ 2, and Assumption 1, 4, 5, 7, 8and 9 hold. For any δ > 0, let
Ω be chosen as in Assumption 5. For any positive constant ε > 0, we further assume that uθ(x, t)
satisfies the following2,

ε

N∑
k=1

hk max
x∈Ω
{πtk(x)} · ∥rtk(·)∥2L2(Ω) ⩽ δ1 · Vol(Ω),

ε

N∑
k=1

hk max
x∈Ω
{πtk(x)} · LUnif

PINN(tk;C
U
1 (ε)) ⩽ δ2 · Vol(Ω).

(84)

2Here, we contain the term Vol(Ω) since the PINN residual objective used for uniform collocation points is
given by ∥rt(·)∥2L2(Ω)/Vol(Ω).
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Then there is a universal constant α ⩾ 2 such that the following holds. Using step size hk :=
hmin{max{tk, 1

4K }} for 0 < h ⩽ 1
αd , and st(x) = ∇xuθ(x, t) ·1{x ∈ Ω}, we have the following

upper bound on the KL divergence between the target and the approximate distribution,

KL (π∥π̂T ) ≲ (d+M2) · e−T + d2h (logK + T ) + Tδ +
(
δ1 + CU

1 (ε)δ2
)
· Vol(Ω)

+ CU
2

√√√√ N∑
k=1

hk max
x∈Ω
{πtk(x)} · δ2 · Vol(Ω).

where CU
1 (ε) and CU

2 are defined in Theorem 6.

Proof of Theorem 7. As st(x) = ∇xuθ(x, t) · 1{x ∈ Ω}, we have

N∑
k=1

hkExtk
∼πtk

∥∇x log πtk(xtk)− stk(xtk)∥2

=

N∑
k=1

hk

∫
Ωc

πtk(x)∥∇x log πtk(x)∥2dx+

N∑
k=1

hk

∫
Ω

πtk(x)∥∇xetk(x)∥2dx

⩽
N∑

k=1

hkδ +

N∑
k=1

hk max
x∈Ω
{πtk(x)} · ∥∇xetk(·)∥2L2(Ω)

⩽ Tδ + δ1 · Vol(Ω) + CU
1 (ε)δ2 · Vol(Ω) + CU

2

√√√√ N∑
k=1

hk max
x∈Ω
{πtk(x)} · δ2 · Vol(Ω).

(85)

where the last inequality follows from the result in Theorem 6 and

N∑
k=1

hk max
x∈Ω
{πtk(x)} ·

√
εLUnif

PINN(tk;C
U
1 (ε))

⩽

(
ε

N∑
k=1

hk max
x∈Ω
{πtk(x)} · LUnif

PINN(tk;C
U
1 (ε))

)1/2( N∑
k=1

hk max
x∈Ω
{πtk(x)}

)1/2

⩽

√√√√ N∑
k=1

hk max
x∈Ω
{πtk(x)} · δ2 · Vol(Ω).

(86)

Combining (85) and Proposition 1, we complete our proof.

C LIMITATIONS

As we use LMC for collocation generation in DPS, there is a risk of missing modes if short LMC
runs do not adequately cover the high-density domain. In such cases, running LMC for an annealed
path of target distributions or adopting the adversarial training method in Wang et al. (2022) for
collocation points maybe helpful. Also, solving high dimensional PDEs via PINN can be challenging,
and we may use techniques such as stochastic dimension gradient descent or the Hutchinson trick to
scale DPS to high dimensional problems (Hu et al., 2024b;a).

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

D.1 BASELINES

We benchmark DPS performance against a wide range of strong baseline methods. For MCMC
methods, we consider the Langevin Monte Carlo (LMC). For LMC, we run 100,000 iterations with
step sizes 0.02, 0.002, 0.0002. Then we choose the samples with the best performance. As for
sampling methods using reverse diffusion, we include RDMC (Huang et al., 2023), and SLIPS
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Table 3: Mixing proportions between 9 modes in 9-Gaussians.
Modes (−5,−5)′ (−5, 0)′ (−5, 5)′ (0,−5)′ (0, 0)′ (0, 5)′ (5,−5)′ (5, 0)′ (5, 5)′

Weight 0.2 0.04 0.2 0.04 0.04 0.04 0.2 0.04 0.2

Table 4: Mixing proportions between 4 modes in rings.
Modes r = 2 r = 4 r = 6 r = 8
Weight 0.05 0.45 0.05 0.45

(Grenioux et al., 2024). We use the implementation of SLIPS and RDMC from Grenioux et al.
(2024) and choose Geom(1, 1) as the SL scheme for SLIPS. For each algorithm, we search its
hyper-parameters within a predetermined grid, similar to Grenioux et al. (2024). We also compare
with VI-based PIS (Zhang & Chen, 2021) and DIS (Berner et al., 2022). We use the implementation
of PIS and DIS from Berner et al. (2022).

D.2 TARGETS

9-Gaussians is a 2-dimensional Mixture of Gaussians where there are 9 modes designed to be
well-separated from each other. The modes share the same variance of 0.3 and the means are located
in the grid of {−5, 0, 5} × {−5, 0, 5}. We set challenging mixing proportions between different
modes as shown in Table 3.

Rings is the inverse polar reparameterization of a 2-dimensional distribution pz which has itself a
decomposition into two univariate marginals pr and pθ: pr is a mixture of 4 Gaussian distributions
N (i, 0.22) with i = 2, 4, 6, 8 describing the radial position and pθ is a uniform distribution over
[0, 2π), which describes the angular position of the samples. We also set challenging mixing
proportions between different modes of pr as shown in Table 4.

Funnel is a classical sampling benchmark problem from Neal (2003); Hoffman et al. (2014). This
10-dimensional density is defined by

µ(x) := N (x0; 0, 9)N (x1:9;0, exp(x0)I9).

Double-well is a high-dimensional distribution which share the unnormalized density:

µ(x) := exp

(
w−1∑
i=0

−x4i + 6x2i + 0.5xi −
d−1∑
i=w

0.5x2i

)
.

We choose w = 3 and d = 30 leading to a 30-dimensional distribution contained 8 modes with
challenging mixing proportions between different modes.

D.3 DIFFUSION-PINN SAMPLER

Model. The model architecture of NNθ(x, t) : Rd × [0, T ]→ R in uθ(x, t) is

NNθ(x, t) = MLPdec (MLPembx(x) +MLPembt(emb(t))
)
,

where MLPdec represents a decoder implemented as MLPs with layer widths [128, 128, 128, 1]. The
component MLPembx serves as a data embedding block and is implemented as MLPs with layer widths
[2, 128]. MLPembt functions as a time embedding block, implemented as MLPs with layer widths
[256, 128, 128]. The input to MLPembt is derived from the sinusoidal positional embedding (Vaswani
et al., 2017) of t. All these three MLPs utilize the GELU activation function.

Training. In our implementation, we choose f(x, t) = − x
2(1−t) and g(t) =

√
1

1−t which lead to
the following forward process

dxt = −
xt

2(1− t) dt+

√
1

1− t dBt, x0 ∼ π, Tmin ⩽ t ⩽ Tmax. (87)
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Table 5: Hyper-parameters used in LMC for generating collocation points.
9-Gaussians Rings Funnel Double-well

step size 1.0 0.15 0.02 0.02
iterations 60 100 10, 000 100
batch size 128 200 200 700

refresh samples per iteration ! ! % !

Table 6: Hyper-parameters for training PINN.
9-Gaussians Rings Funnel Double-well

learning rate 0.0005 0.0005 0.0001 0.0005
max norm of gradient clipping 1.0 1.0 1000.0 1.0

regularization coefficient λ 0 0 1 0
total training iterations 400k 1, 000k 800k 1, 500k

This admits the explicit conditional distribution πt|0(xt|x0) = N (xt;
√
1− t · x0, tId). We choose

Tmin = 0.001 and Tmax = 0.999 in practice. The corresponding log-density FPE becomes

∂tut(x) =
1

2(1− t)
[
∆ut(x) + ∥∇xut(x)∥2 + x · ∇xut(x) + d

]
:=

1

2(1− t)L
prac
L-FPEut(x).

(88)
We choose β(t) = 2(1− t) to make training more stable, leading the following training objective

Lprac
train(uθ) :=Et∼U [0,T ]Ext∼νt

[∥∥2(1− t) · ∂tuθ(xt, t)− Lprac
L-FPEuθ(xt, t)

∥∥2]
+ λ · Ez∼N (0,Id)

[
∥∇xuθ(x, t) + z∥2

]
,

(89)

where λ is the regularization coefficient. It is enough for us to use PINN residual loss without
regularization except for Funnel where the regularization is quite useful and we use λ = 1. To
generate collocation points for PINN, we run a short chain of LMC with a large step size. The
hyper-parameters used in LMC for different targets are reported in Table 5. We generate fresh
collocation points per iteration except for Funnel where we resample new collocation points per
10, 000 iterations.

We train all models with Adam optimizer (Kingma & Ba, 2014). The hyper-parameters used in
training are summarized in Table 6. We use a linear decay schedule for the learning rate in all
experiments.

Sampling. The corresponding reverse process is given by

dxt =

(
xt

2t
+
∇x log π1−t(xt)

t

)
dt+

√
1

t
dBt, x0 ∼ πTmax , Tmin ⩽ t ⩽ Tmax. (90)

To simulate (90), we approximate πTmax ≈ N (0, Id) and use the exponential integrator scheme with
the score approximation st(x) ≈ ∇x log πt(x). In practice, we use st(x) := ∇xuθ(x, t)·1{x ∈ Ω}
where uθ(x, t) is the approximated log-density provided by PINN which is trained by Algorithm 1
and Ω is a chosen bounded region that covers the high density domain of πt for any t ∈ [Tmin, Tmax].
We use Ω := {x ∈ Rd : ∥x∥ ⩽ R} in all experiments, the choice of R is reported in Table 7.
Our sampling process is summarized in Algorithm 2. We provide more sampling performances of
different methods for different targets in Figure 6 and sample trajectories from DPS in Figure 7.

Table 7: The diameter of the truncated region for different targets.
9-Gaussians Rings Funnel Double-well

R 20 20 2000 30
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Algorithm 2 : Sampling from reverse process
Require: Starting time Tmin, Terminal time Tmax, Sample size M , Discretization steps N , Bounded

domain Ω, Approximated log-density uθ(x, t) provided by PINN.
1: Compute the step size h := (Tmax − Tmin)/N .
2: Obtain the approximated score function st(x) := ∇xuθ(x, t) · 1{x ∈ Ω}.
3: Sample i.i.d. x0

i ∼ N (0, Id), ∀1 ⩽ i ⩽M
4: for n = 1, · · · , N do
5: Sample i.i.d. zi ∼ N (0, Id), ∀1 ⩽ i ⩽M .
6: Compute tn−1 := Tmin + (n− 1)h.
7: Update by simulating the reverse process: ∀1 ⩽ i ⩽M

xn
i ←

√
1 +

h

tn−1
xn−1
i + 2

(√
1 +

h

tn−1
− 1

)
s1−tn−1

(xn−1
i ) +

√
h

tn−1
zi,

8: end for
9: return Approximated samples xN

1 , · · · ,xN
M .
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Figure 6: Sampling performance of different methods for 9-Gaussians (d = 2), Rings (d = 2), Funnel
(d = 10) and Double-well (d = 30).
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Figure 7: Sample trajectories from DPS for 9-Gaussians (d = 2), Rings (d = 2), Funnel (d = 10)
and Double-well (d = 30).
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D.3.1 ABLATION STUDY
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Figure 8: Left: PINN loss and (log-density and score) approximation error on 9-Gaussians for our
method. Right: Comparison of score approximation error with and without parameterization based
on the initial log density.
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Figure 9: Sampling performance of DPS with/without regularization for Funnel.
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