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Abstract001

Large language model (LLM) agents have002
demonstrated significant potential for address-003
ing complex tasks through mechanisms such004
as chain-of-thought reasoning and tool invo-005
cation. However, current frameworks lack ex-006
plicit supervision during the reasoning process,007
which may lead to error propagation across rea-008
soning chains and hinder the optimization of009
intermediate decision-making stages. This pa-010
per introduces a novel framework, AgentPro,011
which enhances LLM agent performance by012
automated process supervision. AgentPro em-013
ploys Monte Carlo Tree Search to automatically014
generate step-level annotations, and develops015
a process reward model based on these anno-016
tations to facilitate fine-grained quality assess-017
ment of reasoning. By employing a rejection018
sampling strategy, the LLM agent dynamically019
adjusts generation probability distributions to020
prevent the continuation of erroneous paths,021
thereby improving reasoning capabilities. Ex-022
tensive experiments on four datasets indicate023
that our method significantly outperforms exist-024
ing agent-based LLM methods (e.g., achieving025
a 6.32% increase in accuracy on the HotpotQA026
dataset), underscoring its proficiency in manag-027
ing intricate reasoning chains.028

1 Introduction029

Recent advancements in large language models030

(LLMs), such as GPT-4 (OpenAI, 2023), PaLM031

(Anil et al., 2023), and LLaMA (Dubey et al.,032

2024), have showcased impressive capabilities in033

semantic understanding, knowledge reasoning, and034

cross-task generalization. Meanwhile, research in-035

dicates that LLM-based agents can effectively de-036

compose complex, multi-step tasks through chain-037

of-thought prompting and tool invocation mecha-038

nisms (Schick et al., 2024). This has led to sig-039

nificant advancements in mathematical problem-040

solving (Lightman et al., 2023) and in scenarios in-041

volving embodied interaction (Shridhar et al., 2020;042

Wei et al., 2022; Yao et al., 2023).043

Despite the demonstrated potential of LLM 044

agents in managing complex tasks, existing frame- 045

works face significant challenges in utilizing pro- 046

cess supervision to train and improve these agents. 047

Conventional approaches, such as ReAct (Yao et al., 048

2022b), which decomposes tasks through alternat- 049

ing reasoning trajectory generation and actions; 050

and Reflexion (Shinn et al., 2024), which uses 051

self-reflection mechanisms for policy iteration, pri- 052

marily concentrate on the accuracy of final task 053

outcomes while neglecting explicit supervision of 054

intermediate reasoning steps. This design leads to 055

two major issues. First, the lack of real-time error 056

detection and correction mechanisms allows local 057

errors to propagate along reasoning chains during 058

extended inferences (Lightman et al., 2023). Sec- 059

ond, the absence of mechanisms in output feedback 060

optimization to discern subtle differences in rea- 061

soning quality hinders the identification of optimal 062

decision paths (Wang et al., 2024). For example, 063

QueryAgent (Huang et al., 2024) utilizes environ- 064

mental feedback for self-correction. However, this 065

feedback primarily relates to task outcomes and 066

fails to pinpoint specific errors in the process. 067

In mathematical reasoning tasks, process super- 068

vision techniques, such as the use of Process Re- 069

ward Models (PRMs), have proven to be highly ef- 070

fective (Lightman et al., 2023). However, integrat- 071

ing PRMs into LLM agents remains underexplored, 072

primarily due to the substantial costs associated 073

with manual, step-wise supervision. Specifically, 074

creating training datasets for PRMs necessitates 075

human labeling to assess the correctness of each 076

step. Therefore, developing cost-effective, auto- 077

mated process supervision methods is essential for 078

improving the reasoning capabilities and robust- 079

ness of LLM agents in handling complex tasks. 080

In this paper, we present AgentPro, a novel 081

framework for LLM Agents that incorporates an 082

Automated Process Supervision mechanism to ad- 083

dress complex tasks such as reasoning and decision 084
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making. Our approach employs Monte Carlo Tree085

Search (MCTS) (Wang et al., 2024; Świechowski086

et al., 2023) to generate step-level labels, which087

facilitate the training of a process reward model088

(PRM). The PRM improves its comprehension by089

learning from automatically annotated data, thereby090

providing detailed evaluations of each reasoning091

step. Our goal is to improve the reasoning abili-092

ties of an LLM agent by applying the Rejection093

Sampling (RS) (Liu et al., 2023; Yuan et al., 2023)094

strategy within the framework of reinforcement095

learning from human feedback (Bai et al., 2022).096

This approach adjusts the generation probability097

distributions based on feedback from the PRM,098

thereby minimizing error propagation along reason-099

ing paths. We evaluated AgentPro’s performance100

across four distinct datasets in various task do-101

mains, demonstrating its substantial enhancements102

in both the accuracy and robustness of LLM agents103

when addressing complex tasks. Specifically, our104

method achieved a 6.32% increase in accuracy on105

the HotpotQA dataset within multi-hop question106

answering scenarios, highlighting its proficiency in107

handling intricate reasoning chains.108

Our main contributions are as follows:109

• We present the first LLM agent framework that110

integrates automated process supervision to opti-111

mize reasoning and decision-making tasks. Our112

framework conducts real-time quality evaluation113

at each step, effectively mitigating the issue of er-114

ror propagation found in traditional approaches.115

• We propose an automated label generation al-116

gorithm based on Monte Carlo Tree Search117

(MCTS) that minimizes the cost of step-wise an-118

notation for training PRMs, thereby facilitating119

the feasibility of large-scale process supervision.120

• We conduct extensive experiments on four121

datasets, considering both reasoning and122

decision-making scenarios. The results indicate123

that our method achieves superior performance124

compared to existing agent-based methods.125

2 Related Work126

2.1 Large Language Model Agent127

LLM agents (Yao et al., 2023; Sumers et al., 2023;128

Gong et al., 2023) exhibit exceptional reasoning129

capabilities across a variety of problem domains,130

including embodied environments and reasoning131

tasks. CAMEL (Li et al., 2023) introduces a multi-132

agent role-playing framework that guides agents133

in task completion by utilizing initial prompts and134

detailed constraints while ensuring alignment with 135

human intentions. AutoAgents (Chen et al., 2023) 136

emphasize the autonomous generation of language 137

agents to adapt to diverse task requirements. Ex- 138

peL (Zhao et al., 2024) achieves continuous per- 139

formance enhancement and transfer learning in 140

decision-making tasks by autonomously collect- 141

ing experiences and extracting knowledge through 142

natural language. Existing approaches primarily fo- 143

cus on the final outcomes. In contrast, our approach 144

addresses error propagation in extensive reasoning 145

chains by providing explicit process supervision of 146

the intermediate reasoning steps. 147

2.2 Reasoning-Action Framework 148

Integrating actions with reasoning enhances the ef- 149

ficiency and accuracy of LLMs in multi-step, con- 150

ditional problems (Ding et al., 2023; Gong et al., 151

2023; Chen et al., 2023; Huang et al., 2024; Arora 152

et al., 2024). ReAct (Yao et al., 2022b) integrates 153

reasoning with action generation, decreasing hallu- 154

cination in chain-of-thought processes. AUTOACT 155

(Qiao et al., 2024) introduces a self-planning frame- 156

work for question-answering that facilitates agent 157

learning from scratch, addressing limitations of 158

single-model systems. LLM+AL (Ishay and Lee, 159

2025) merges LLMs with action languages, utiliz- 160

ing their strengths in semantic parsing, common- 161

sense generation, and automated reasoning tasks. 162

However, these methods do not thoroughly evaluate 163

the quality of intermediate steps, and we address 164

this by employing rejection sampling for dynamic 165

error correction during reasoning. 166

2.3 Process Reward Model 167

PRM enhances the accuracy of reasoning by su- 168

pervising and emphasizing intermediate steps, re- 169

warding correct inferences and penalizing errors, 170

in contrast to traditional methods that solely con- 171

centrate on final outcomes (Uesato et al., 2022; 172

Lightman et al., 2023; Wang et al., 2024; Zhang 173

et al., 2025). It allows for more precise pattern 174

learning and handles the misalignment between 175

correct conclusions and flawed derivations. For ex- 176

ample, Math-Shepherd (Wang et al., 2024) employs 177

automated annotation to provide step-level rewards, 178

and DeepMind’s Process Advantage Verifiers as- 179

sign rewards based on the correctness probability 180

changes at each step (Setlur et al., 2024). However, 181

existing PRM implementations are limited to math 182

problems. Our work expands PRM to a wider range 183

of reasoning and decision-making tasks. 184
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: The -th step of the solution .

Generate Simulated Paths with MCTS

Act 4: go to desk 1
Obs 4: You arrive at desk 1. On the
desk 1, you see a bowl 1, a desklamp
1, a laptop 1, and a pen 1.
......

Act 49: think: I already took the
alarmclock 1. I need to look at it.
Act 50: look at alarmclock 1
Obs 50: Nothing happens.

Simulated Path 1 Simulated Path 2 Simulated Path 3

Generate Step-wise Response 

 =( , )

Act 4: go to shelf 1
Obs 4: You arrive at shelf 1. On the
shelf 1, you see a alarmclock 1.
.......

Act 11: think: I have now found a
desk lamp (1). The next step is to
use it.
Act 12: use desklamp 1
Obs 12: You turn on the desklamp 1
and examine mug 1.

Act 4: go to drawer 2
Obs 4: You arrive at drawer 2. On
the drawer 2, you see nothing.
.......

Act 17: think: Now I find a
desklamp (1). Next, I need to use it.

Act 18: use desklamp 1
Obs 18: You turn on the desklamp 1
and examine mug 1.

Generate Label of Each Step

Label( ):
+, if any simulated path's answer is correct.

-, if all simulated paths' answers are incorrect.

Generate Simulated Paths from Step 3

Act 1: think: To solve the task, I need to find and take a mug, then find and use a desklamp. First I need to ...
Act 2: go to drawer 1
Obs 2: You arrive at drawer 1. The drawer 1 is closed.
Act 3: open drawer 1
Obs 3: You open drawer 1. The drawer 1 is open. In it, you see a cd 2.

Task: You are in the middle of a room.
Looking quickly around you, you see a bed 1, a
desk 2, a desk 1, a drawer 6 ...
Your task is to: examine the mug with the
desklamp.

Figure 1: Overview of the Monte Carlo Tree Search-driven automatic labeling framework. First, the LLM Agent
generates a solution S for a given task q. Then, MCTS is employed to simulate multiple decision-making paths for
a given step si (in this case i = 3). Finally, the results of these simulations determine if the step si is labeled as
correct or incorrect, depending on whether any of the simulated trajectories reach the correct final answer.

3 Method185

Existing LLM frameworks often lack robust ver-186

ification mechanisms to ensure the accuracy of187

intermediate steps in complex problem-solving188

tasks. Furthermore, manual annotation methods189

are prohibitively expensive. To address these chal-190

lenges, we propose a novel framework, AgentPro,191

designed to enhance the reasoning capabilities of192

LLM agents while minimizing costs.193

AgentPro comprises two core components:194

• LLM Agent: The LLM Agent Magent is the195

core component responsible for generating196

step-by-step solutions (responses) and is the197

agent to be fine-tuned in the end. Given a198

query q, the agent generates a solution S ←199

Magent({q}), where S = {s1, s2, s3, . . . , sK}200

represents the sequence of steps and K de-201

notes the total number of steps in the solu- 202

tion. For decision-making tasks such as in 203

AlfWorld, each step si can defined as si = 204

(ai, oi), where ai is an executable action (e.g., 205

"Go to desk 1") and oi is an optional observa- 206

tion from the environment (e.g., "You arrive 207

at desk 1 and see a bowl 1 on the desk"). 208

• Process Reward Model: The process reward 209

model (PRM), denoted as Mprm, is utilized to 210

assess the step-wise accuracy of a solution S. 211

It assigns a score to each step si to quantify 212

the correctness of that specific step. 213

Building on these two components, we devised 214

a three-phase optimization framework that utilizes 215

Monte Carlo Tree Search to automatically generate 216

a training dataset for the PRM Mprm, which is then 217

employed to improve the reasoning abilities of the 218
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LLM Agent Magent through reinforcement learning.219

The framework functions as follows:220

1. Automated Process Annotation: We employ221

the LLM Agent to produce multi-step trajec-222

tories, with each intermediate step si being223

automatically annotated using labels obtained224

from MCTS simulations. This phase facili-225

tates the creation of a self-supervised dataset,226

which is subsequently used to train the PRM.227

2. Training of the Process Reward Model: Uti-228

lizing the annotated steps from Phase 1, we229

fine-tune the PRM Mprm to accurately predict230

correctness scores for each individual step si,231

thereby equipping the PRM with the capabil-232

ity to assess step-wise validity within complex233

problem-solving scenarios.234

3. Reinforcement Learning: We adopted the re-235

jection sampling strategy, a technique within236

the framework of reinforcement learning from237

human feedback (RLHF), to enhance the capa-238

bilities of our LLM Agent Magent, where the239

PRM Mprm functions as the reward model.240

3.1 Gathering Step-Wise Trajectories241

To enable effective process supervision, it is es-242

sential to ensure that the answers from the LLM243

Agent are generated in a step-by-step manner. A ro-244

bust base model is critical for generating structured,245

step-wise responses, leveraging its contextual un-246

derstanding and reasoning capabilities developed247

through extensive training on large-scale corpora.248

Consequently, a good base model ensures the high249

quality of the generated responses. In our setting,250

we utilize pre-trained LLMs, such as LLaMA-3.1-251

8B-Instruct (Dubey et al., 2024) , as the base model252

for our agent.253

Meanwhile, every step of a response must be254

meticulously documented to facilitate the subse-255

quent automatic labeling process, which is crucial256

for training the PRM. For each query q, the LLM257

agent performs a comprehensive semantic analy-258

sis to extract crucial information and delineate the259

inherent reasoning framework. This analysis in-260

volves consulting its internal knowledge base to261

construct logically coherent reasoning or decision-262

making trajectories. Specifically, the solution263

S ←Magent({q}) must be delineated in a step-wise264

manner and presented as S = {s1, s2, s3, . . . , sK}.265

Then the trajectory Tq can be represented as:266

Tq = {q, s1, s2, s3, . . . , sK} (1)267

For example, for a given decision-making task 268

(query) q illustrated in Fig. 1 within the AlfWorld 269

scenario, the agent generates a solution S compris- 270

ing K = 15 steps. Thus, the trajectory for task q 271

can be represented as Tq = {q, s1, s2, . . . , s15}. 272

3.2 Monte Carlo Tree Search-Driven 273

Automatic Labeling 274

To systematically evaluate the quality of each step 275

si generated by the LLM agent Magent, we de- 276

fine the following criterion: a step si is deemed 277

high-quality if it contributes to deriving the ground- 278

truth answer Acorrect. This criterion aligns with the 279

fundamental objective of multi-step reasoning and 280

decision-making tasks, where intermediate steps 281

should progressively lead to a correct final result. 282

Our goal is to design a method to automatically 283

assess the contribution of each step. 284

Monte Carlo Tree Search (MCTS) (Świechowski 285

et al., 2023) is a heuristic search algorithm 286

renowned for its effectiveness in navigating com- 287

plex decision spaces under uncertainty. Building 288

upon its strong simulation performance, we intro- 289

duce an MCTS-based automatic labeling frame- 290

work for training the PRM. For each step si, we 291

generate m simulated paths pi1 to pim for si using 292

the path from query q to si in the trajectory Tq 293

described by Eq. 1. Each path pij is constructed as: 294

pij ←Magent({q, s1, . . . , si}) (2) 295

Let A(j)
final denote the final answer of the j-th path 296

pij . The label for si is determined based on whether 297

any of the m paths from pi1 to pim result in Acorrect: 298

Label(si) =

{
+ if ∃ j ∈ [1,m], A

(j)
final = Acorrect,

− if ∀ j ∈ [1,m], A
(j)
final ̸= Acorrect.

(3) 299

As illustrated in Fig. 1, we generated m = 3 sim- 300

ulated paths from p31 to p33 for step s3. Given that 301

the task q in AlfWorld pertains to decision-making, 302

each step si can be represented as si = (ai, oi), 303

where oi is optional. Consequently, each path p3j is 304

derived from p3j ← Magent({q, a1, a2, o2, a3, o3}). 305

Since the outcomes of both path p32 and path p33 306

lead to the correct answer, "You turn on desk lamp 307

1 and examine mug 1", we label step s3 as "+". 308

Utilizing the MCTS-based automatic labeling 309

framework, we label each step si within trajectory 310

Tq. Upon completion of the labeling process for all 311

steps across all queries Q = {qj}Nj=1, we generate 312

a labeled dataset Dprm = {dj}Nj=1. This dataset 313

consists of N samples, each corresponding to one 314
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A&S is a channel from
the United States 

Query

LLM

Agent

Generate Outputs

Step1: ... The final answer is: NOT ENOUGH INFO:r3

Step1: ... The final answer is: SUPPORTS:r2

Step1: ... The final answer is: SUPPORTS:r1
Process

Reward

Model

Supervised Fine-Tuning

R3=-0.95

R2=0.57

R1=0.94

Figure 2: Overview of the training process for LLM Agent Magent. For a given query q, the agent generates multiple
step-wise responses, and each response ri is subsequently evaluated by the PRM Mprm. The agent is then fine-tuned
based on the response r∗ with the highest reward score R∗. The whole process will repeat until the agent converges.

of the N queries in set Q. For each data sample315

dj , the input X = {qj , sj1, s
j
2, . . . , s

j
K}, which rep-316

resents the trajectory T j
q generated from the j-th317

query qj that includes K steps. The output (label)318

y is an array of K elements, where each element319

corresponds to the label associated with step si:320

dj = ({qj , sj1, . . . , s
j
K}︸ ︷︷ ︸

X

, {yjs1 , y
j
s2 , . . . , y

j
sK
}︸ ︷︷ ︸

y

) (4)321

where yjsi represents the label of step sji , Label(sji ).322

3.3 Process Reward Model Training323

We utilize the dataset Dprm in Sec. 3.2 to train our324

process reward model Mprm, enabling it to evaluate325

step-wise responses in complex problem-solving326

scenarios. The PRM is also constructed based on a327

pre-trained LLM. We adopt the full parameter fine-328

tuning strategy for training, where all parameters329

of Mprm are optimized by gradient descent to mini-330

mize prediction errors in step-wise assessments:331

Lprm = − 1

N

1

K

N∑
j=1

K∑
i=1

CrossEntropy(yj
si , ŷ

j
si) (5)332

where ŷjsi denotes the predicted correctness score333

for step sji of the j-th training sample, while334

CrossEntropy signifies the cross entropy loss.335

This full-parameter fine-tuning strategy effec-336

tively utilizes fine-grained supervisory labels from337

the training data, enabling the trained PRM to accu-338

rately determine if each generated step si logically339

progresses toward resolving the problem. Conse-340

quently, it provides high-quality reward scores for341

training LLM agents.342

3.4 LLM Agent Training 343

Drawing on the principles of reinforcement learn- 344

ing (Kaelbling et al., 1996), we introduce an opti- 345

mization mechanism that employs rejection sam- 346

pling (Liu et al., 2023) to enhance the performance 347

of our LLM agent. This mechanism involves itera- 348

tively generating multiple step-wise responses by 349

the LLM agent Magent, evaluating these responses 350

using our well-trained PRM Mprm, and selecting 351

the response with the highest reward score to train 352

the LLM agent through supervised fine-tuning. 353

Specifically, for each query q, the LLM agent 354

Magent first generates n candidate responses, rang- 355

ing from r1 to rn, defined as rj ← Magent({q}). 356

Similar to the solution S described in Sec. 3.1, 357

each response rj should be generated in a step- 358

wise format: rj = {s1, s2, s3, . . . , sK}. The PRM 359

Mprm will evaluate each step si in rj and assign 360

a label li (+ or −) to si, along with the probabil- 361

ity Pi for generating that label. The reward score 362

Rj for response rj is then calculated as the aver- 363

age probability of the label values across all steps. 364

During calculation, we negate those probabilities 365

associated with negatively labeled steps to reflect 366

our disinclination towards incorrect steps: 367

Rj =
1

K

K∑
i=1

(I(li = +) · Pi − I(li = −) · Pi) (6) 368

where I is the indicator function. The response r∗ 369

with the highest reward score R∗ is selected as the 370

optimal response for further training: 371

r∗ = argmax
rj

Rj (7) 372

After selecting the optimal responses for all 373

queries, we utilize these responses to fine-tune the 374
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LLM agent Magent. Consistent with Sec. 3.3, we375

employ the full-parameter fine-tuning strategy on376

Magent to maximize the likelihood of replicating377

the optimal reasoning steps:378

Lagent = −
1

Nr

Nr∑
i=1

Ti∑
t=1

logP (yi,t|xi) (8)379

where xi is the i-th query (prompt) among Nr train-380

ing samples, yi is the step-wise response for xi, yi,t381

is the t-th word of yi, and Ti is the length of yi.382

Fig. 2 illustrates an example of the agent training383

process, wherein the agent generates three step-384

wise responses. The first response, which exhibits385

the highest reward score (R1 = 0.94), is chosen for386

training the agent. The training process is repeated387

until the agent develops sufficient capabilities to388

manage complex multi-step reasoning tasks.389

In summary, our framework enhances the per-390

formance of the LLM agent through MCTS-based391

automated process supervision and rejection sam-392

pling training strategy. For additional details on the393

algorithm, please refer to Appendix A.394

4 Experiments395

4.1 Experimental Setup396

Datasets. We selected four representative bench-397

mark datasets to evaluate the performance of our398

method: FEVER (Thorne et al., 2018), HotpotQA399

(Yang et al., 2018), ALFWorld (Shridhar et al.,400

2020), and WebShop (Yao et al., 2022a). The401

FEVER dataset is utilized for assessing fact extrac-402

tion and verification. HotpotQA serves as a bench-403

mark for knowledge-intensive, multi-hop question404

answering. ALFWorld provides an embodied simu-405

lation environment for executing multi-step tasks in406

domestic contexts. Finally, WebShop functions as a407

benchmark for complex decision-making, simulat-408

ing multi-modal interactions and product filtering409

in online shopping settings.410

Baselines. We compare our method with four base-411

line methods: Act (Yao et al., 2022b), ReAct (Yao412

et al., 2022b), Reflexion (Shinn et al., 2024), and413

ExpeL (Zhao et al., 2024). The Act method gen-414

erates responses through single-step predictions415

without explicit reasoning abilities. ReAct adopts a416

more structured approach by integrating reasoning417

and action in a feedback loop to enhance task per-418

formance. Reflexion uses verbal reinforcement to419

enable agents to learn from past mistakes, thereby420

improving the quality of reasoning. ExpeL, the421

state-of-the-art agent-based method, focuses on422

autonomously gathering experience from a set of 423

training tasks to enhance the capabilities of LLM. 424

Implementation. Following ReAct, we use suc- 425

cess rate (SR) as the evaluation metric: exact match- 426

ing for HotpotQA and FEVER, timely task com- 427

pletion for ALFWorld, and purchasing an item 428

matching all attributes for WebShop. We utilize 429

the LLaMA-3.1-8B-Instruct model (Dubey et al., 430

2024) as the LLM agent for our method and all 431

baselines. For FEVER and HotpotQA, Wikipedia 432

information is appended to questions for additional 433

context, a common practice among all baselines. 434

For MCTS, we conduct m = 3 simulations to de- 435

termine the label for each step. Regarding rejection 436

sampling, n = 4 different responses are generated 437

over T = 5 iterations during the training of our 438

LLM agent. All results are averaged across three 439

different random seeds. For further implementation 440

details, please refer to Appendix B. 441

4.2 Main Results 442

Fig. 3 illustrates the average success rates of vari- 443

ous methods across all four datasets. Results show 444

that our method consistently outperforms existing 445

baselines, which underscores the effectiveness of 446

process supervision in enhancing the reasoning 447

and sequential decision-making abilities of LLM 448

agents. Specifically, in tasks requiring fine-grained 449

factual inference (e.g., FEVER) and multi-hop rea- 450

soning (e.g., HotpotQA), our method systemati- 451

cally refines the reasoning process step by step 452

using PRM. This leads to accuracy gains of 3.59% 453

and 6.32%, respectively, over the best-performing 454

baseline, ExpeL. These improvements suggest that 455

PRM effectively identifies flawed reasoning paths 456

and minimizes error accumulation, which is preva- 457

lent in traditional single-step predictions. 458

Furthermore, results from the ALFWorld envi- 459

ronment demonstrate the impact of process rewards 460

on physical reasoning. Across 134 household inter- 461

action scenarios, our approach achieves a 40.88% 462

success rate, outperforming the best baseline, Re- 463

flexion (34.08%). This suggests that the automati- 464

cally generated step-level annotations successfully 465

capture environmental state transitions. The most 466

significant improvement is observed in the Web- 467

Shop tasks, where our method achieves a 52.67% 468

success rate, which is substantially higher than 469

ExpeL (38.00%) and Reflexion (40.67%). This 470

finding indicates that PRM’s ability to evaluate the 471

quality of actions (such as price comparison and op- 472

tion matching), which helps the agent to build bet- 473
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Figure 3: Average task success rates (%, mean±std) comparison of our method to other baselines on various tasks.

Figure 4: Performance of the trained process reward
model (PRM) on the FEVER and HotpotQA datasets.

ter decision-making chains in shopping scenarios.474

All these experiments confirm that PRM, trained475

automatically using step-wise labels from MCTS,476

significantly improves the LLM agents.477

4.3 Effectiveness of Process Reward Model478

To evaluate the effectiveness of the trained process479

reward model (PRM), we employ two performance480

metrics: last-step accuracy and all-steps accuracy.481

Last-step accuracy measures the PRM’s ability to482

correctly evaluate the label of the final reasoning483

step. In contrast, all-steps accuracy calculates the484

average accuracy of the PRM across all reason-485

ing steps, thereby reflecting its overall capacity to486

assess the entire reasoning process.487

As shown in Fig. 4, the PRM exhibits signifi-488

cant progressive convergence on both the FEVER489

and HotpotQA datasets. During the training iter-490

ations from 2,000 to 20,000, both last-step accu-491

racy and all-steps accuracy display a consistent492

upward trend, with convergence speed showing493

Table 1: Performance comparison (%) of different meth-
ods with the deepseek-llm-7b-chat model structure.

Dataset Act ReAct Reflexion ExpeL AgentPro
Fever 40.01 44.89 49.97 51.87 57.07

WebShop 20.00 14.00 27.00 24.00 39.00

marked nonlinearity. Specifically, on the FEVER 494

dataset, last-step accuracy increases by 9% dur- 495

ing this phase. Conversely, between 20,000 and 496

33,000 iterations, performance stabilizes, yielding 497

only a marginal increase of 0.17%. On the Hot- 498

potQA dataset, all-steps accuracy reaches 80.00% 499

by 20,000 iterations, after which improvements be- 500

come negligible, maintaining stable performance 501

for the remainder of training. Although all-steps ac- 502

curacy is slightly lower than last-step accuracy, it re- 503

mains adequate (78.82%) for the PRM to correctly 504

evaluate and score the reasoning steps. Overall, 505

these results indicate that the PRM demonstrates 506

excellent stability during training and effectively 507

scores the reasoning steps. 508

4.4 Impact of Model Structure 509

To validate the robustness of our method across dif- 510

ferent base models, we conducted comparative ex- 511

periments using the deepseek-llm-7b-chat (Bi et al., 512

2024) model architecture. This model has a simi- 513

lar parameter size to LLaMA-3.1-8B-Instruct but 514

features a significantly different architecture. Table 515

1 illustrates that although the deepseek model ex- 516

hibits weaker reasoning abilities compared to llama, 517

our method consistently surpasses all other base- 518

lines. Notably, for the knowledge reasoning tasks 519

in FEVER, our method surpasses the best base- 520

line, ExpeL, by 5.2%. For the interactive decision- 521

making tasks in WebShop, the success rate of our 522

7



Figure 5: Impact of hyperparameters on agent perfor-
mance for the FEVER dataset.

method reaches 39%, significantly outperforming523

the best baseline (27%). These results indicate that524

guiding the reasoning path of the LLM agent with525

PRM significantly boosts reasoning capabilities,526

irrespective of the base model architecture.527

4.5 Ablation Studies528

Hyperparameter sensitivity. We investigate the529

impact of the hyperparameters top_p and temper-530

ature of our method on LLM agent performance531

in generating step-wise responses. As shown in532

Fig. 5, when the temperature is fixed at 0.5, ad-533

justing top_p within the range of 0.45 to 0.95 leads534

to less than a 0.54% variation in accuracy on the535

FEVER dataset (65.38% compared to 64.84%).536

This finding indicates that the model exhibits strong537

robustness to these hyperparameters. Similarly, fix-538

ing top_p at 0.85 and varying the temperature be-539

tween 0.4 and 0.9 results in model accuracy remain-540

ing consistently within a 0.62% range, peaking at541

65.38% at a temperature of 0.5. Notably, even542

under extreme temperature settings such as 0.4,543

the model maintained performance levels above544

64.76%. This highlights the positive effect of pro-545

cess supervision mechanisms on the stability of the546

step-wise generation process.547

Effect of MCTS simulation iterations. Table 2548

shows how different numbers of MCTS simula-549

tion iterations impact the agent performance of550

our method on the HotpotQA dataset. The results551

demonstrate a significant increase in accuracy from552

32% to 39% as the number of simulations rises553

from 1 to 3. Increasing the simulations to 5 yields554

a marginal improvement of 2% (from 39% to 41%).555

Beyond 5 simulations, the performance stabilizes556

at 42%. These findings suggest that the MCTS al-557

gorithm effectively identifies crucial path informa-558

tion within the first three simulations, and provides559

empirical evidence that a balance can be achieved560

between computational efficiency and model per-561

formance, as three simulations are adequate for562

Table 2: Success rates (%) of our method with different
number of MCTS iterations on the HotpotQA dataset.

No. of MCTS iterations 1 3 5 7 9
Accuracy 32 39 41 42 42

Table 3: Accuracy (%) of our method with various num-
ber of generated responses during rejection sampling.

No. of Responses 3 4 5 6 7 8
AlfWorld 38 40 41 42 42 43
WebShop 47 50 52 54 55 55

achieving near-optimal outcomes. 563

Effect of number of generated responses during 564

rejection sampling. We evaluated the effect of the 565

number of generated responses (n) during rejec- 566

tion sampling on the performance of our method 567

observed on the AlfWorld and Webshop datasets. 568

As illustrated in Table 3, there is a clear pattern 569

of "diminishing marginal returns" associated with 570

increasing n. For instance, in the AlfWorld tasks, 571

performance levels off when n reaches 6, with a 572

marginal improvement from 42% to 43%. Sim- 573

ilarly, in WebShop tasks, the accuracy improved 574

from 47% to 55% when n increased from 3 to 7, 575

with no notable improvements beyond this point. 576

This pattern indicates that while initial increases 577

in the number of generated responses significantly 578

enhance the diversity and quality of candidate re- 579

sponses, further increases eventually result in mini- 580

mal gains as the selection mechanism driven by the 581

reward model reaches stabilization. 582

5 Conclusion 583

This paper presents AgentPro, a novel framework 584

designed to improve the reasoning and decision- 585

making abilities of LLM agents through automated 586

process supervision and rejection sampling. Our 587

framework leverages Monte Carlo Tree Search to 588

automatically generate step-level labels and train a 589

process reward model, which greatly reduces error 590

propagation in the responses generated by large lan- 591

guage model agents and facilitates real-time quality 592

assessment of these responses. Extensive experi- 593

ments on four datasets demonstrate that our method 594

significantly enhances the accuracy and robustness 595

of LLM agents. This work provides a scalable 596

solution to the challenges associated with manual 597

process supervision in complex and practical real- 598

world tasks, thereby broadening the applicability 599

of LLM agents across various domains. 600
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6 Limitation601

In contrast to prompt-based methods, our method602

necessitates further training of large language mod-603

els to develop the process reward model and en-604

hance the LLM agent. Specifically, we utilize605

MCTS to generate labels for intermediate steps and606

need to fine-tune all model parameters, which re-607

sults in increased computational resource usage and608

extended training time. It is important to note that609

while our approach incurs higher training costs due610

to additional fine-tuning and inference of large lan-611

guage models, it remains significantly more cost-612

effective compared to manual process supervision613

requiring human labeling. In the future, we aim to614

explore more efficient training strategies, such as615

parameter-efficient fine-tuning and distillation tech-616

niques, to minimize resource consumption during617

the training process.618
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A Algorithm Details811

The details of our method are formally delineated812

in Algorithms 1 and 2. Our framework functions813

across three distinct phases:814

• Phase 1: Automated Step Annotation via815

MCTS (Alg. 1, lines 1-24). For each query816

qk from the Query Set Q, an initial step-wise817

solution S is generated using the LLM agent818

Magent (line 4). Then, for each step si in S,819

we generate m MCTS simulations (lines 8-14)820

through path expansion. A step si is labeled821

positively (+) if any simulation path results822

in the correct final answer Acorrect (line 17).823

Otherwise a negative label (−) is assigned if824

no path concludes correctly (line 19). Then,825

the dataset Dprm is constructed (lines 22-23)826

for training the PRM.827

• Phase 2: Process Reward Model Training828

(Alg. 1, lines 25-29). We conducted super-829

vised, full-parameter fine-tuning of the model830

Mprm across Eprm epochs utilizing the anno-831

tated dataset Dprm. This procedure enabled832

Mprm to acquire precise, step-wise evaluative833

capabilities essential for the subsequent train-834

ing in rejection sampling.835

• Phase 3: LLM Agent Training via PRM-836

Guided Rejection Sampling (Alg. 2). In each837

round t, we generate n candidate paths from838

r1 to rn for each query q using Magent (line 8).839

Subsequently, we compute the reward score840

Rj for each j-th response rj (lines 10-12) and841

select the response r∗ with the highest reward842

score among all evaluated responses (line 15).843

The dataset Drs is then updated to include844

these responses (line 16), which facilitates the845

full-parameter fine-tuning of Magent (lines 18-846

20). Over T iterations, Magent incrementally847

optimizes its alignment with trajectories that848

yield high rewards, while Mprm remains un-849

changed during the whole rejection sampling850

training process.851

B Implementation Details852

B.1 Details of datasets853

As illustrated in Table 4, our study utilized four854

datasets: FEVER, HotpotQA, ALFWorld, and855

WebShop. The FEVER dataset initially comprised856

of 145,000 training and 19,000 test samples, and857

we selected 30,000 training samples to train the858

process reward model and 9,999 test samples to 859

evaluate the performance of LLM agents. For Hot- 860

potQA, we analyzed its performance using 100 861

validation tasks from the distractor dev split of the 862

dataset, which is also used by Expel, ReAct and 863

Reflexion in their studies. In the case of ALF- 864

World, we utilized the same set of 134 solvable 865

tasks previously used by Expel, ReAct and Reflex- 866

ion. Likewise, the evaluation of the WebShop tasks 867

involved the same 100 tasks as those used in prior 868

studies by Expel, ReAct, and Reflexion. 869

Algorithm 1: MCTS-Based Automatic La-
beling and PRM Training
Input: LLM agent Magent, PRM model

Mprm, Query set Q, number of
MCTS simulations m, PRM training
epochs Eprm

Output: Trained PRM model Mprm
1 Phase 1: Auto-labeling with MCTS
2 Dprm ← ∅
3 for each query qk ∈ Q do
4 S ←Magent({qk})
5 // S = {s1, s2, s3, . . . , sK}
6 for each step si ∈ S do
7 correct_flag ← False
8 for j = 1 to m do
9 pij ←Magent({qk, s1, . . . , si})

10 if A(j)
final = Acorrect then

11 correct_flag ← True
12 break
13 end
14 end
15 if correct_flag then
16 // Label si as +
17 yksi ← +

18 else
19 yksi ← −
20 end
21 end
22 dk =

({qk, sk1, . . . , skK}, {yks1 , y
k
s2 , . . . , y

k
sK
})

23 Dprm ← Dprm ∪ {dk}
24 end
25 Phase 2: PRM Training
26 for epoch e = 1 to Eprm do
27 Update Mprm via supervised

full-parameter fine-tuning on Dprm

28 end
29 return Mprm
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Dataset Training Set Size Training Samples Used Test Set Size Test Samples Used
FEVER 145,449 30,000 19,998 9,999
HotpotQA 90,443 30,000 7,405 100
ALFWorld 3,553 355 134 134
WebShop 10,587 1,000 500 100

Table 4: Training and Test Set sizes for each dataset, along with sampled data for training and evaluation.

As detailed in Sec. 4.3, to assess the efficacy870

of the trained process reward model (PRM), we871

divided the 30,000 FEVER and HotpotQA training872

samples into a reward training set (24,000 samples,873

80%) and a reward test set (6,000 samples, 20%).874

B.2 Computational and Storage Resources875

All our experiments were conducted on a single ma-876

chine with 1TB RAM and 256-core AMD EPYC877

7742 64-Core Processor @ 3.4GHz CPU. We use878

the NVIDIA H100 GPU with 80GB memory. The879

software environment settings are: Python 3.9.21,880

PyTorch 2.5.1 with CUDA 12.4 on Ubuntu 22.04.4881

LTS. Specifically, the computational experiments882

were conducted using two NVIDIA H100 GPUs883

with 80 GB of memory each. We utilized the884

Llama-3.1-8B-Instruct as the base model, which885

possesses a total of 8 billion parameters; each886

model checkpoint demanded 106 GB of disk space.887

To improve inference efficiency, we incorporated888

the vLLM framework (Kwon et al., 2023), which889

features optimized attention computation and en-890

hanced memory management.891

The time required for processing varies across892

different datasets. For example, each stage of the893

FEVER dataset’s processing pipeline requires vary-894

ing amounts of time. The generation of step-wise895

responses phase takes about 25 minutes and 33 sec-896

onds, focusing on generating responses in a step-897

by-step manner for each claim. Following that,898

Monte Carlo Tree Search (m=3) is a more compu-899

tationally intensive process, lasting approximately900

5 hours and 12 minutes to evaluate all generated901

steps. Next, training the process reward model for902

Eprm = 5 epochs requires 11 hours and 25 min-903

utes, during which the model learns to assign re-904

ward scores to step-by-step responses. For a single905

round of the rejection sampling process, where mul-906

tiple responses are generated for each claim (n=4),907

the process takes 45 minutes and 15 seconds. After-908

ward, the reward scores for all generated responses909

are calculated, which takes 8 hours and 53 minutes910

because vllm cannot be used here to calculate the911

probability of every generated token, therefore the 912

original transformer library is applied here which 913

is much more slower than vllm. Lastly, the model 914

undergoes supervised fine-tuning, taking 2 hours 915

and 26 minutes to further improve its performance 916

based on labeled data. This entire pipeline sums up 917

to around 33 hours and 34 minutes for completion. 918

B.3 Hyperparameters 919

In our experiments, we use the vllm and the trans- 920

former library to generate step by step responses. 921

The sampling process is controlled by a tempera- 922

ture of 0.9, which adjusts the randomness of the out- 923

put, and a top-p value of 0.85 for nucleus sampling, 924

determining the smallest set of tokens to consider 925

based on cumulative probability. The model gen- 926

erates a maximum of 2048 tokens per output, with 927

a repetition penalty of 1.0 to discourage repetitive 928

phrases. Additionally, the tokenizer processes the 929

text before it is passed to the model for generation 930

and decodes the output back into human-readable 931

text. All these parameters were conducted through 932

grid search and the hyper-parameters with the best 933

performance are selected as the final parameters. 934

We generated three different responses for Monte 935

Carlo Tree Search with seeds 0, 1 and 3407. For 936

Rejection Sampling, we run five iterations, and for 937

every iteration we generate four different responses 938

with seeds 0, 3407, 314159, 271828, respectively. 939

The LLaMA-Factory library is used to fine-tune 940

the large language models, including the process 941

reward model and the LLM agent. In our experi- 942

ments, the adopted fine-tuning approach involves 943

full fine-tuning with the SFT (Supervised Fine- 944

Tuning) stage. Training is conducted using Deep- 945

Speed, which is well-suited for large-scale training 946

environments and incorporates ZeRO-3 optimiza- 947

tion. The maximum input sequence length is con- 948

strained to 2048 tokens. During training, the batch 949

size per device is set to 1, and gradient accumula- 950

tion is used over 2 steps to simulate a larger batch. 951

The learning rate is set to 1.0e-5 with a cosine 952

learning rate scheduler, a warmup ratio of 0.1, and 953
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Algorithm 2: LLM Agent Training Process
Input: LLM agent Magent, PRM model

Mprm, Query set Q, number of
candidate responses n, training
iterations T , LLM Agent training
epochs Ers

Output: Optimized LLM agent Magent
1 Phase 3: Rejection Sampling
2 for round t = 1 to T do
3 Drs ← ∅;
4 for each query q ∈ Q do
5 // Generate n candidate responses
6 for j = 1 to n do
7 // rj = {s1, s2, s3, . . . , sK}
8 rj ←Magent({q})
9 // Generate labels and associated

probabilities for every step of
current response rj

10 {(li, Pi)}Ki=1 ←Mprm(rj)
11 // Calculate the reward score Rj

for current response rj
12 Rj =

1
K

∑K
i=1(I(li = +) · Pi

−I(li = −) · Pi)
13 end
14 // Select the best response
15 r∗ = argmaxrj Rj

16 Drs ← Drs ∪ {(q, r∗)}
17 end
18 for epoch e = 1 to Ers do
19 Update Magent via supervised

full-parameter fine-tuning on Drs

20 end
21 end
22 return Magent

training will run for Ers = 5 epochs and T = 5954

iterations. Every epoch will train the model for955

2250 steps. Mixed precision training with bf16 is956

enabled for efficiency. The training pipeline uses957

16 workers for data preprocessing. For evaluation,958

10% of the dataset is used for validation, with the959

batch size set to 1 for evaluation as well.960

C License961

Our implementation employs the LLaMA-3.1-8B-962

Instruct model (Dubey et al., 2024), a cutting-edge963

large language model tailored for a range of natural964

language processing (NLP) tasks, including ques-965

tion answering and text generation. This model966

is subject to the LLaMA 3.1 Community License967

Agreement. Additionally, the LLaMA-Factory, 968

which facilitates efficient training and deployment 969

of large language models and is likely employed 970

for fine-tuning LLaMA models, is governed by 971

the Apache-2.0 license (Zheng et al., 2024). The 972

vLLM framework, designed to optimize large lan- 973

guage models for both training and inference with a 974

focus on efficient memory usage and computational 975

performance, adheres to the Apache-2.0 License 976

(Kwon et al., 2023). 977

Our implementation also utilizes the transform- 978

ers library, a widely recognized open-source tool 979

for NLP that offers easily accessible pre-trained 980

models for various tasks such as text classification, 981

question answering, and translation. This library, 982

supporting multiple architectures including BERT, 983

GPT, and T5, is governed by the Apache-2.0 Li- 984

cense (Wolf et al., 2020). 985

Regarding datasets, the FEVER dataset (Thorne 986

et al., 2018), utilized for fact verification where 987

models determine the veracity of claims against 988

provided texts, is licensed under the Apache-2.0 989

License. The HotpotQA dataset (Yang et al., 2018), 990

used for multi-hop question answering that requires 991

synthesizing information from multiple documents, 992

operates under the Apache-2.0 License. The ALF- 993

World dataset (Shridhar et al., 2020), designed for 994

training agents in virtual environments through nat- 995

ural language for interactive task-oriented dialogue 996

and situated learning, is available under the MIT 997

License. Lastly, the WebShop dataset (Yao et al., 998

2022a), aimed at developing conversational agents 999

for e-commerce applications where users interact 1000

with a shopping assistant, is also available under 1001

the MIT License. 1002

D Experiment Details and Discussion 1003

Table 5 presents the detailed numerical values of 1004

all the datasets depicted in Fig. 3, serving as a 1005

reference for further analysis and comparison. 1006

The ablation studies discussed in Section 4.5 1007

conclusively show that our method ensures robust 1008

hyperparameter selection and exhibits distinct con- 1009

vergence behaviors during critical processes like 1010

MCTS simulations and rejection sampling. These 1011

findings affirm the effectiveness of our method in 1012

reducing the need for manual adjustments of hy- 1013

perparameters, while the automated process super- 1014

vision framework improves the model’s resilience 1015

to parameter fluctuations by optimizing explicit 1016

reasoning paths. Importantly, these experimen- 1017
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Method FEVER HotpotQA ALFWorld WebShop
Act 59.89±0.08 21.67±1.25 19.15±0.93 27.00±1.63

ReAct 60.92±0.83 24.00±1.63 24.62±2.20 28.33±2.49
Reflexion 60.69±1.00 27.33±1.25 34.08±0.93 40.67±2.49

ExpeL 61.80±0.73 33.67±0.94 30.34±2.46 38.00±1.41
AgentPro 65.39±0.09 39.33±1.25 40.88±1.22 52.67±1.70

Table 5: The specific numerical results from the experiments shown in Fig. 3.

tal results offer practical implications for deploy-1018

ment: users can efficiently manage computational1019

resources by moderately decreasing the number of1020

MCTS simulations and rejection sampling itera-1021

tions without compromising performance.1022

E Prompt Templates1023

E.1 Prompt for generating step by step1024

responses1025

For the FEVER dataset, we employed the prompt1026

illustrated in Fig. 6 to guide the LLM agent in1027

generating detailed, step-by-step responses to the1028

corresponding claims. Similarly, for the HotpotQA1029

dataset, we used the prompt shown in Fig. 7 to1030

direct the agent toward producing step-wise re-1031

sponses to the questions. For both the AlfWorld1032

and WebShop datasets, we applied the prompts1033

from the ReAct dataset to generate step-by-step,1034

action-based outputs from the LLM agent.1035

E.2 Prompt for MCTS1036

Fig. 8 presents the prompt used for labeling each1037

step in the Monte Carlo Tree Search. This prompt1038

contains the original trajectories before the current1039

step that awaits labeling.1040

E.3 Prompt for process reward model1041

Fig. 9 shows the prompt employed to train the1042

process reward model. This prompt annotates each1043

step in the responses generated by the LLM agent,1044

assigning a single binary label (+ or -) to each step.1045

F Case Study1046

In this section, we present a detailed case study on1047

the FEVER dataset to illustrate the entire process of1048

our AgentPro framework. This includes generating1049

step-by-step answers, utilizing Monte Carlo Tree1050

Search to train the process reward model, and em-1051

ploying the rejection sampling strategy to train our1052

LLM agent. This comprehensive demonstration1053

aims to provide a clear and efficient understanding1054

of our framework.1055

First of all, we need to generate step-by-step re- 1056

sponses for a given claim by our pre-trained LLM 1057

agent. Take the claim "The 84th Academy Awards’ 1058

winners included Beginners" as an example, Fig. 1059

10 illustrates how our LLM agent Magent generates 1060

a step-by-step solution for the claim: the agent ana- 1061

lyzes the claim, verifies the ceremony year (2012), 1062

checks the film’s eligibility (2011 release), and fi- 1063

nally confirms its award (Best Supporting Actor). 1064

Next, we need to use Monte Carlo Tree Search 1065

to label each step generated in Fig. 10, in order 1066

to create the training set required for training the 1067

process reward model. Fig. 11 showcases three 1068

MCTS simulations, with each simulation exploring 1069

alternative reasoning paths: 1070

• Response 1 correctly identifies Beginners’ 1071

Best Supporting Actor and gives the SUP- 1072

PORTS conclusion. 1073

• Response 2 erroneously attributes a Best Orig- 1074

inal Screenplay win but still reaches a SUP- 1075

PORTS conclusion. 1076

• Response 3 mistakenly assumes that "Be- 1077

ginners" was solely a Best Picture nomi- 1078

nee, which results in the conclusion of NOT 1079

ENOUGH INFO. 1080

We employ the same pre-trained LLM agent as 1081

in Fig. 10 to generate all three responses. Given 1082

that the correct response to the claim is SUP- 1083

PORTS, and 2 out of the 3 responses arrived at 1084

this conclusion, our method consequently auto- 1085

annotates this step (Step 2) as correct (+). 1086

After labeling all four steps in Fig. 10 via MCTS, 1087

we generated a sample based on the claim for train- 1088

ing the process reward model, as illustrated in Fig. 1089

12. Notably, all steps in the original response (as 1090

shown in Fig. 10) received a positive label, demon- 1091

strating the effectiveness of our LLM agent in step 1092

by step reasoning on this claim. We will use the 1093

method described from Fig. 10 to Fig. 12 to gener- 1094

ate training samples for the process reward model. 1095
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After training the process reward model, we can1096

then employ the Rejection Sampling strategy to1097

train our LLM agent. For instance, consider the1098

claim "A&E is a channel from the United States"1099

in the FEVER dataset. Initially, our LLM agent1100

is tasked with generating multiple, step by step re-1101

sponses based on this claim, using the prompt as1102

depicted in Fig. 13 with Wikipedia background1103

information. Figures 14 and 15 present four candi-1104

date responses, among which three conclude with1105

SUPPORTS and one with NOT ENOUGH INFO.1106

Subsequently, the trained PRM evaluates the1107

four candidate responses and selects the one with1108

the highest average probability as the sample to1109

fine-tune our LLM agent. As depicted in Fig. 16,1110

the PRM assigns labels to each step of the re-1111

sponses and calculates the associated probabilities.1112

A higher probability signifies higher confidence1113

in the correctness of that label. We then negate1114

those probabilities associated with negatively la-1115

beled steps to reflect our disinclination towards1116

incorrect steps and calculate the average of all the1117

probabilities across the steps. This average prob-1118

ability quantifies the likelihood of each candidate1119

response being correct, which is essentially the re-1120

ward value of PRM. Finally, the response with the1121

highest average probability, in this case, the second1122

response, is selected as the training sample for fur-1123

ther supervised fine-tuning of our LLM agent. This1124

method is consistently applied to each sample in1125

the training set during rejection sampling.1126

The procedure shown from Figures 13 to 16 is1127

repeated through multiple rounds until the agent1128

can reliably generate high-quality responses appro-1129

priate to the current dataset.1130
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Prompt for generating step by step responses (FEVER)

You are an assistant tasked with analyzing claims and determining their validity. Your 

goal is to evaluate whether a given Claim is SUPPORTS, REFUTES, or if there is NOT ENOUGH 

INFO.

Follow these guidelines strictly:

1. Carefully analyze the information provided in the Claim.

2. Think step by step and provide reasoning for your conclusion.

3. At the end of your analysis, choose one of the following outcomes:

- SUPPORTS

- REFUTES

- NOT ENOUGH INFO

The final result must follow this format:

Step 1: [Solution process for Step 1].

Step 2: [Solution process for Step 2].

...

"The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO]

Claim: The 84th Academy Awards' winners included Beginners.

Evaluate the claim step by step and determine its validity.

Your response must end with:

"The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO]"

Figure 6: Example prompt for generating step-by-step responses on the FEVER dataset.

Prompt for generating step by step responses (HotpotQA)

Solve a question answering task with steps. Please think step by step to determine the 

answer to the question.

Question: [Insert your question here].

Step 1:[Provide the solution process for Step 1].

Step 2:[Provide the solution process for Step 2].

Step 3:[Provide the solution process for Step 3].

The final answer is: [Provide the final answer].

Based on the example above, solve the following question step by step. The number of 

steps to solve the problem is not limited. Your response to me must end with: The final 

answer is: [Provide the final answer]

Question: What nationality were the Tag team wrestlers the Haas Brothers?

Figure 7: Example prompt for generating step-by-step responses on the HotpotQA dataset.
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Prompt for MCTS

You are an assistant tasked with analyzing question and determining their validity. Your 

goal is to evaluate whether a given claim is SUPPORTS, REFUTES, or if there is NOT ENOUGH 

INFO.

Follow these guidelines strictly:

1. Carefully analyze the information provided in the Claim.

2. Think step by step and provide reasoning for your conclusion.

3. At the end of your analysis, choose one of the following outcomes:

- SUPPORTS

- REFUTES

- NOT ENOUGH INFO

The final result must follow this format:

Step 1: [Solution process for Step 1].

Step 2: [Solution process for Step 2].

...

The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO]

Continue generating the steps for the claim in a step-by-step manner. Each response must 

contain only the solution steps and, when available, the final answer in the specified 

format. The final answer should be given as: 'The final answer is: [SUPPORTS/REFUTES/NOT 

ENOUGH INFO]'. No other explanations or symbols are allowed. If the final answer has 

already been reached, output the final answer directly in the specified format.

Claim: The 84th Academy Awards' winners included Beginners.

Figure 8: Example prompt for MCTS.

Prompt for process reward model 

Label each step: if a step contributes to deriving the correct result, mark it as '+'. If 

a step hinders the derivation of the correct result, mark it as '-'.

Claim: The 84th Academy Awards' winners included Beginners.

Step 1: Analyze the Claim: The Claim states that the 84th Academy Awards' winners 

included "Beginners." This implies that "Beginners" is a film that won at least one 

category at the 84th Academy Awards.

Step 2: Recall the year the 84th Academy Awards took place. The 84th Academy Awards 

ceremony was held in 2012.

Step 3: Check if "Beginners" is a film released in 2011, which would make it eligible for 

the 84th Academy Awards. After verifying, it is confirmed that "Beginners" is a 2011 film 

directed by Mike Mills.

Step 4: Verify if "Beginners" won any awards at the 84th Academy Awards. Upon reviewing 

the list of winners, it is confirmed that "Beginners" indeed won the award for Best 

Supporting Actor for Christopher Plummer's performance.

The final answer is: SUPPORTS

Figure 9: Example prompt for training the process reward model.
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Trajectory for generating a step by step response

Claim: The 84th Academy Awards' winners included Beginners.

Response: 
Step 1: Analyze the Claim: The Claim states that the 84th Academy Awards' winners 
included "Beginners." This implies that "Beginners" is a film that won at least one 

category at the 84th Academy Awards.

Step 2: Recall the year the 84th Academy Awards took place. The 84th Academy Awards 
ceremony was held in 2012.

Step 3: Check if "Beginners" is a film released in 2011, which would make it eligible for 

the 84th Academy Awards. After verifying, it is confirmed that "Beginners" is a 2011 film 

directed by Mike Mills.

Step 4: Verify if "Beginners" won any awards at the 84th Academy Awards. Upon reviewing 
the list of winners, it is confirmed that "Beginners" indeed won the award for Best 

Supporting Actor for Christopher Plummer's performance.

The final answer is: SUPPORTS

Figure 10: Trajectory for generating a step-by-step response on a claim in the FEVER dataset.

18



Trajectory for MCTS

Claim and Step 1&2:
The 84th Academy Awards‘ winners included Beginners.

Step 1: Analyze the Claim: The Claim states that the 84th Academy Awards' winners 

included "Beginners." This implies that "Beginners" is a film that won at least one 

category at the 84th Academy Awards.

Step 2: Recall the year the 84th Academy Awards took place. The 84th Academy Awards 
ceremony was held in 2012.

First Response: 
Step 3: Determine the nominees and winners of the 84th Academy Awards to verify if 
"Beginners" won in any category. The 84th Academy Awards took place in 2012, and "The 

Artist" won the award for Best Picture, Best Director, and several other categories.

Step 4: Verify if "Beginners" won any awards at the 84th Academy Awards. "The Artist" 
received the award for Best Picture, but "Beginners" received a win for Best Supporting 

Actor for Christopher Plummer.

Step 5: Since "Beginners" won a category at the 84th Academy Awards, we can conclude that 
the claim is accurate.

The final answer is: SUPPORTS

Second Response: 
Step 3: Identify major films from 2011, the year before the 84th Academy Awards. 
"Beginners" is a film released in 2011 and received critical acclaim.

Step 4: Check the 84th Academy Awards winners. The 84th Academy Awards took place in 2012 

and recognized the best in film for 2011. "Beginners" won the award for Best Original 

Screenplay.

Step 5: Determine if the claim is supported by the information. The claim that 
"Beginners" is a film that won at least one category at the 84th Academy Awards is 

supported by the fact that it won the award for Best Original Screenplay.

The final answer is: SUPPORTS

Third Response: 

Step 3: Research the winners of the 84th Academy Awards. According to my knowledge, the 
84th Academy Awards, held in 2012, had a number of winners but most notable were "The 

Artist" as the Best Picture and Michel Hazanavicius for Best Director.

Step 4: Look up the nominees for Best Picture to confirm if "Beginners" was among them. 

"Beginners" was indeed a nominee for Best Picture at the 84th Academy Awards but not the 

actual winner. 

The final answer is: NOT ENOUGH INFO

Figure 11: Trajectory for MCTS simulation on the same claim in Fig. 10 with m = 3 simulations.
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Generated sample for training the process reward model

Label each step: if a step contributes to deriving the correct result, mark it as '+'. If 

a step hinders the derivation of the correct result, mark it as '-'.

Claim: The 84th Academy Awards' winners included Beginners.

Step 1: Analyze the Claim: The Claim states that the 84th Academy Awards' winners 

included "Beginners." This implies that "Beginners" is a film that won at least one 

category at the 84th Academy Awards.

Step 2: Recall the year the 84th Academy Awards took place. The 84th Academy Awards 

ceremony was held in 2012.

Step 3: Check if "Beginners" is a film released in 2011, which would make it eligible for 

the 84th Academy Awards. After verifying, it is confirmed that "Beginners" is a 2011 film 

directed by Mike Mills.

Step 4: Verify if "Beginners" won any awards at the 84th Academy Awards. Upon reviewing 

the list of winners, it is confirmed that "Beginners" indeed won the award for Best 

Supporting Actor for Christopher Plummer's performance.

The final answer is: SUPPORTS

Output: 

Step 1: +

Step 2: +

Step 3: +

Step 4: +

Figure 12: Generated sample for training the process reward model for the claim in Fig. 10.
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Prompt for rejection sampling

You are an assistant tasked with analyzing claims and determining their validity. Your 

goal is to evaluate whether a given Claim is SUPPORTS, REFUTES, or if there is NOT ENOUGH 

INFO. Follow these guidelines strictly:

1. Carefully analyze the information provided in the Claim.

2. Think step by step and provide reasoning for your conclusion.

3. At the end of your analysis, choose one of the following outcomes:

- SUPPORTS

- REFUTES

- NOT ENOUGH INFO

The final result must follow this format:

Step 1: [Solution process for Step 1].

Step 2: [Solution process for Step 2].

...

The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO]

Claim: A&E is a channel from the United States.

Background Information about the Claim: The information about A&E is as follows: A or a 

is the first letter and the first vowel letter of the Latin alphabet, used in the modern 

English alphabet, and others worldwide. Its name in English is a (pronounced 

/\u02c8e\u026a/ AY), plural aes. It is similar in shape to the Ancient Greek letter alpha, 

from which it derives. The uppercase version consists of the two slanting sides of a 

triangle, crossed in the middle by a horizontal bar. The lowercase version is often 

written in one of two forms: the double-storey |a| and single-storey |\u0251|. The latter 

is commonly used in handwriting and fonts based on it, especially fonts intended to be 

read by children, and is also found in italic type..\n\nThe information about United 

States is as follows:\nThe United States of America (USA), commonly known as the United 

States (U.S.) or America, is a country primarily located in North America. It is a 

federal union of 50 states and a federal capital district, Washington, D.C. The 48 

contiguous states border Canada to the north and Mexico to the south, with the State of 

Alaska in the northwest and the archipelagic State of Hawaii in the Pacific Ocean. The 

United States also asserts sovereignty over five major island territories and various 

uninhabited islands. The country has the world's third-largest land area, second-largest 

exclusive economic zone, and third-largest population, exceeding 340 million. Its three 

largest metropolitan areas are New York, Los Angeles, and Chicago, and its three most 

populous states are California, Texas, and Florida. Paleo-Indians migrated across the 

Bering land bridge more than 12,000 years ago, and formed various civilizations and 

societies.

Evaluate the claim step by step and determine its validity. Your response must end with:

The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO]

Figure 13: Example prompt for the claim "A&E is a channel from the United States" during rejection sampling,
where Wikipedia information is appended as background information.
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Trajectory for rejection sampling (1th&2th response)

First response:
Step 1: Determine the relevance of the provided information to the claim. The provided 
information about A&E and the United States seems unrelated at first glance, as one 

pertains to the Latin alphabet and the other is about a country. However, looking closely, 

"A&E" can refer to "Arts & Entertainment," a global cable and satellite television 

network. This network is often associated with the United States.

Step 2: Check if "A&E" refers to a television network that originated or is headquartered 
in the United States. From general knowledge, A&E (Arts & Entertainment) is a well-known 

cable television network in the United States. While it has global presence, its origins 

and a significant portion of its content are tailored to the American audience, making it 

a US-centric channel.

Step 3: Analyze the definition of A&E in relation to its original context of the claim. 

Since the provided background information about A&E does not directly mention its 

association with television, it is unclear whether the claim refers to the original Latin 

letter or the television network. However, the lack of any information suggesting an 

alternative meaning of A&E in the context of the United States makes it more plausible 

that the claim refers to the television network, which is indeed based in the United 

States.

Step 4: Determine the validity of the claim. Considering the information about A&E as a 
television network, the claim that A&E is a channel from the United States is true. A&E 

(Arts & Entertainment) is indeed a television channel that originated in the United 

States. 

The final answer is: SUPPORTS

Second response:
Step 1: Analyze the Claim: The claim is that A&E is a channel from the United States. The 
key components of the claim are "A&E" and "United States."

Step 2: Identify relevant information from the background: We have information about A&E, 

which describes it as an English alphabet letter, but it also mentions the word "A&E," 

which could refer to several things. We also have extensive information about the United 

States, describing its geography, population, and other characteristics.

Step 3: Consider the context of the acronym A&E: The provided background information 

about the letter "A" and "E" in the Latin alphabet does not directly relate to the 

context of a TV channel. However, A&E is indeed an acronym that can be expanded to mean 

"Arts and Entertainment." A search of the internet would show that A&E is an American pay 

television network that airs content related to documentary, drama, and reality TV.

Step 4: Connect the information to the claim: Since A&E refers to the Arts and 
Entertainment network, which is indeed based in the United States, this would support the 

claim that A&E is a channel from the United States.

Step 5: Evaluate the information for consistency and reliability: Based on external 

knowledge, the information is consistent and reliable.

The final answer is: SUPPORTS

Figure 14: Generated responses for the claim "A&E is a channel from the United States" during rejection sampling
(1th&2th response).
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Trajectory for rejection sampling (3th&4th response)

Third response:
Step 1: Identify the components of the claim. The claim is about A&E being a channel from 
the United States. The two main components are A&E (a channel) and the United States (a 

country).

Step 2: Analyze the information provided about A&E in the background. The given text 
about A&E discusses its origin, pronunciation, shape, and usage in different fonts, but 

does not mention its location or origin country.

Step 3: Analyze the information provided about the United States in the background. The 

given text about the United States describes its geographical location, size, population, 

and history, but does not mention any TV channels or media networks by name.

Step 4: Determine the relevance of the information. The text about A&E does not mention 
its location or affiliation, while the text about the United States does not mention any 

media networks. There is no direct information linking A&E to the United States.

Step 5: Draw a conclusion. Since there is no direct information in the provided 
background that links A&E to the United States, the claim is unsubstantiated by the given 

information. 

The final answer is: NOT ENOUGH INFO

Fourth response:
Step 1: Analyze the claim "A&E is a channel from the United States." The claim is about a 

media channel named A&E, not the letter 'a'. Therefore, this claim is unrelated to the 

background information about the letter 'a' provided in the background information.

Step 2: Look for information about A&E in the background information. There is no mention 

of A&E in the background information.

Step 3: Search for external information about A&E. From external knowledge, A&E is known 
to be a channel that is a joint venture between Hearst Communications and Disney-ABC 

Television Group. A&E stands for Arts and Entertainment. A&E networks is a US-based 

American cable television network.

Step 4: Determine the origin of A&E based on the external information. Given the external 

information that A&E is a joint venture between US-based companies, it is plausible that 

A&E has its origins in the United States. 

The final answer is: SUPPORTS

Figure 15: Generated responses for the claim "A&E is a channel from the United States" during rejection sampling
(3th&4th response).
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Trajectory for rejection sampling (scoring)

First response:
Probability:

Step 1: - 0.8839759230613708

Step 2: + 0.9774795174598694

Step 3: + 0.9435433745384216

Step 4: + 0.9968554973602295

Second response:
Probability:

Step 1: + 0.9885740280151367

Step 2: - 0.958041250705719

Step 3: + 0.9999788999557495

Step 4: + 0.9999936819076538

Step 5: + 0.9998918771743774

Third response:
Probability:

Step 1: - 0.9888468384742737

Step 2: - 0.9226863980293274

Step 3: - 0.8883765935897827

Step 4: - 0.9999895095825195

Step 5: - 0.9771665334701538

Fourth response:
Probability:

Step 1: - 0.9190813302993774

Step 2: - 0.9998040795326233

Step 3: + 0.9996646642684937

Step 4: + 0.9998919963836674

Average Probability: 0.5085 Average Probability: 0.6061

Average Probability: -0.9552 Average Probability: 0.0202

Figure 16: The scoring process of the process reward model for the four responses shown in Fig. 14 and Fig.
15. The response with the highest average probability (the second response) is selected as the training sample for
subsequent supervised fine-tuning.
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