
Smoothed Differentiation Efficiently Mitigates
Shattered Gradients in Explanations

Adrian Hill1 2 Neal McKee3 4 Johannes Maeß1 2

Stefan Blücher1 2 Klaus-Robert Müller1 2 5 6

1BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
2Machine Learning Group, TU Berlin, Berlin, Germany

3Bernstein Center for Computational Neuroscience, Berlin, Germany
4TU Berlin, Berlin, Germany

5Department of Artificial Intelligence, Korea University, Seoul, Korea
6Max Planck Institut für Informatik, Saarbrücken, Germany

hill@tu-berlin.de neal@bccn-berlin.de maess@tu-berlin.de
bluecher@tu-berlin.de klaus-robert.mueller@tu-berlin.de

Abstract

Explaining complex machine learning models is a fundamental challenge when
developing safe and trustworthy deep learning applications. To date, a broad selec4
tion of explainable AI (XAI) algorithms exist. One popular choice is SmoothGrad,
which has been conceived to alleviate the well4known shattered gradient problem
by smoothing gradients through convolution. SmoothGrad proposes to solve this
high4dimensional convolution integral by sampling – typically approximating the
convolution with limited precision. Higher numbers of samples would amount to
higher precision in approximating the convolution but also to higher computing
demand, therefore in practice only few samples are used in SmoothGrad. In this
work we propose a well founded novel method SmoothDiff to resolve this tradeoff
yielding a speedup of over two orders of magnitude. Specifically, SmoothDiff
leverages automatic differentiation to decompose the expected values of Jacobians
across a network architecture, directly targeting only the non4linearities respon4
sible for shattered gradients and making it easy to implement. We demonstrate
SmoothDiff’s excellent speed and performance in a number of experiments and
benchmarks. Thus, SmoothDiff greatly enhances the usability (quality and speed)
of SmoothGrad – a popular workhorse of XAI.

1 Introduction

XAI has in the past years become a popular resource to further a user’s understanding of various
machine learning models such as neural networks, kernel methods, LSTMs and transformers, see e.g.
[1]. Among others, XAI allows to debug models, scrutinize data sets and find Clever4Hans effects in
supervised and unsupervised models [2, 3]. Post4hoc explanation methods, see [1], can e.g. be based
on gradients [4, 5, 6], first4 and higher4order Taylor expansions around meaningful root points [7, 8,
9, 10], and Shapley values [11, 12].

In this work we will place our focus on the inner workings of a classifier by inspecting the gradient
of its prediction with respect to its input features. Usually, the focus is on the gradient ∇𝑓𝑐(𝒙) of the
maximally activated output logit, however any other logit can be inspected as well, resulting in an
explanation for that respective class (see Appendix A for notation). We limit ourselves to the fixed4
model regime, in which the model cannot be retrained for the purpose of interpretability.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:hill@tu-berlin.de
mailto:neal@bccn-berlin.de
mailto:maess@tu-berlin.de
mailto:bluecher@tu-berlin.de
mailto:klaus-robert.mueller@tu-berlin.de

Figure 1: (a) Visualization of the shattered gradient problem on a 1D deep ReLU network. Gaussian
convolution removes high4frequency components of the shattered gradient and is well approximated
by both SmoothDiff and SmoothGrad. (b) On high4dimensional ImageNet models, SmoothGrad
suffers from low sample efficiency, whereas at just 10 samples, SmoothDiff’s level of noise reduction
matches a fully converged SmoothGrad. See Appendix B for implementation details.

1.1 Preliminaries

Shattered gradient problem. With growing depth of neural networks, the vector field of gradients
over the input space 𝒳 gets increasingly noisy, as shown in [13]. For small changes in inputs 𝒙 ∈ 𝒳,
resulting gradient vectors ∇𝑓𝑐(𝒙) vary strongly, resembling white noise. This phenomenon has been
termed the shattered gradient problem (SGP), namely the SGP renders them uninformative due to a
bad signal to noise ratio, as shown in Figure 1: For a 14dimensional toy example we observe that the
SGP results in large step4wise fluctuations of the gradient; also for gradient explanations in vision
models (here VGG419 [14]), the SGP leads to highly noisy heatmaps.

Gaussian convolutions. Since the SGP closely resembles white noise in deep networks, it motivates
the use of a Gaussian filter in the input domain to suppress high4frequency signals: if images are
perceptually robust to small amounts of noise, explanations should also be stable with respect
to minor input variations. This implies that explanations should not vary rapidly and have little
high4frequency content in the input domain. Mathematically, the desired Gaussian filter operation
corresponds to a convolution with a Gaussian kernel 𝑔 over the input domain 𝒳. This in turn is equal
to the expected value

2

(∇𝑓𝑐 ∗ 𝑔)(𝒙) = ∫
𝒳
∇𝑓𝑐(𝒙̂)𝑔(𝒙 − 𝒙̂)𝑑𝒙̂ = 𝔼𝒙̂∼𝒩𝑔

[∇𝑓𝑐(𝒙̂)] , (1)

where 𝒩𝑔 is the Normal distribution analogous to the kernel 𝑔 in terms of covariances [15]. The
variance of this distribution represents a trade4off between the strength of the smoothing and using
information from regions of the input space that are no longer relevant to the actual input. It should
be chosen large enough to aggregate gradient information over similar inputs, but small enough to
not change the classification or subjective qualitative nature of the input to humans.

SmoothGrad. While the convolution in (1) is generally intractable or at least unfeasible, it can be
approximated via sampling [6]. Using 𝑛 samples 𝒙̂𝑖 drawn from 𝒩𝑔, we obtain the definition of
SmoothGrad (SG) as

SG𝑛(𝒙) =
1
𝑛
∑
𝑛

𝑖=1
∇𝑓𝑐(𝒙̂𝑖) . (2)

Since this corresponds to an averaging of input gradients over noisy inputs, the computational cost of
SG grows linearly in the amount of samples, requiring 𝑛 forward and 𝑛 backward passes through the
model, with a suggested sample size of 𝑛 = 50 [6]. While SG converges to the convolution (1) in the
infinite sample limit, it is well4known that computationally tractable amounts of samples may not be
sufficient in practice, say, for ImageNet samples, as is visually apparent in the heatmaps of Figure 1
(b) and demonstrated in Section 3.1. Due to this, SmoothGrad is commonly seen as a perturbation-
based method instead of one based on Gaussian convolution.

Gradient explanations rewritten as factorized Jacobians. For any function 𝑓 : ℝ𝑛 → ℝ𝑚, the
gradient of the 𝑐4th output corresponds to the 𝑐4th row of the Jacobian 𝑱𝑓(𝒙). For a deep neural
network 𝑓 = 𝑓𝑁 ∘ 𝑓𝑁−1 ∘ … ∘ 𝑓1 composed of 𝑁 functions 𝑓𝑛, this gradient can therefore be
derived via the chain rule as

∇𝑓𝑐(𝒙)𝑇 = [𝑱𝑓(𝒙)]𝑐,: = 𝒆
𝑇
𝑐 · 𝑱𝑓(𝒙)

= 𝒆𝑇𝑐 · 𝑱𝑓𝑁(𝒂𝑁) · 𝑱𝑓𝑁−1(𝒂𝑁−1) · … · 𝑱𝑓1(𝒙) ,
(3)

where we denote the input activation of the 𝑛4th function as 𝒂𝑛, such that the input 𝒙 = 𝒂1
and 𝒂𝑛+1 = 𝑓𝑛(𝒂𝑛). We would like to stress that such gradients can efficiently be computed
using reverse mode automatic differentiation (AD), sequentially accumulating the vector-Jacobian
products (VJPs) on the right4hand side of (3) from the left to the right [16, 17, 18]. Since this
computation requires knowledge of all activations 𝒂𝑁 to 𝒂1, a forward pass through the model must
first be computed, saving all activations in memory for the subsequent backward pass. By writing
the forward pass in AD frameworks such as PyTorch [19] and JAX [20], gradients explanations (3)
can be computed up to numerical accuracy without requiring any additional code.

1.2 Contributions

In this work, we provide the following key contributions:

1. We motivate Gaussian convolutions in embedding space as a solution to the shattered gradient
problem [13], emphasize that SmoothGrad numerically approximates said convolution in the
infinite sample limit, and demonstrate that commonly used SmoothGrad sample sizes are typi4
cally insufficient.

2. We introduce SmoothDiff based on AD, which is both faster and more sample efficient than
SmoothGrad in approximating Gaussian convolutions. We provide experimental benchmarks and
clear guidelines on how to implement SmoothDiff for arbitrary differentiable model architectures.

3. We demonstrate that SmoothDiff directly and efficiently addresses the shattered gradient
problem.

1.3 Related work

NoiseGrad is a variant of SG that computes an average of gradient explanations over perturbed model
weights instead of perturbed inputs [21]. It is therefore not connected to input space convolutions.

3

Perturbing both inputs and model weights results the FusionGrad method. In [22], a low4pass filter
is applied to gradient explanations in image space. Since the smoothing is not applied in input space,
this approach does not directly address the SGP and runs into the risk of removing meaningful high4
frequency spatial information from heatmaps. In [23], the high curvature of neural network decision
boundaries and how it can be exploited to manipulate explanations is explored. The proposed
𝛽-Smoothing method smoothes the decision boundary by replacing ReLUs with Softplus activations
on the backward pass. As we show in Appendix G, this is a good approximation of a Gaussian
convolution in the case of a single4layer neural network. However, as shown in Figure 1(a), the
approximation error grows with network depth, as after the first layer, subsequent activations may
not be Gaussian anymore.

2 SmoothDiff

We now propose SmoothDiff, a computationally efficient approximation of the Gaussian convolu4
tion. Inserting the factorized neural network gradient (3) into the convolution (1), we obtain

(∇𝑓𝑐 ∗ 𝑔)(𝒙) = 𝒆𝑇𝑐 · 𝔼𝒙̂∼𝒩𝑔
[𝑱𝑓𝑁(𝒂̂𝑁) · 𝑱𝑓𝑁−1(𝒂̂𝑁−1) · … · 𝑱𝑓1(𝒙̂)] , (4)

in which all intermediate activations 𝒂̂𝑖 deterministically depend on the random variable 𝒙̂. By
neglecting cross4covariances between Jacobians, this expected value of a product of Jacobians can be
approximated as a product of expected values of Jacobians, resulting in the definition of SmoothDiff:

SD(𝒙) = 𝒆𝑇𝑐 · 𝔼𝒂̂𝑁[𝑱𝑓𝑁(𝒂̂𝑁)]⏟⏟⏟⏟⏟⏟⏟
≕𝑱𝑓𝑁

· … · 𝔼𝒙̂[𝑱𝑓1(𝒙̂)]⏟⏟⏟⏟⏟
≕𝑱𝑓1

. (5)

Note that this definition is based on the gradient decomposition (3), however, here we propose to
replace Jacobians 𝑱𝑓𝑖 by the expected values of Jacobians 𝑱𝑓𝑖 .

2.1 Jacobian factorization

The chain rule can be used to factorize neural network Jacobians to arbitrary levels of granularity:
from layer4wise Jacobians down to derivatives of elementary functions like addition and multipli4
cation. For SmoothDiff, this raises the question of optimal Jacobian factorization (5), as this choice
affects which cross4covariance terms are neglected, trading an approximation bias for increased
sample efficiency and computational performance. While in theory many options arise, in practice
the choice of factorization for a given model architecture is typically straightforward.

We provide the following intuition: Since neural networks 𝑓 : ℝ𝑛 → ℝ𝑚 are universal function
approximators, their Jacobians–which correspond to linearizations of said universal function–can be
arbitrary 𝑚× 𝑛 matrices. Instead of estimating such “unconstrained” network Jacobians directly (2),
sample efficiency can be improved by decomposing the network down to functions with constrained
Jacobian structure. This includes:

1. Linear and affine functions. Since their Jacobians are constant, 𝑱 = 𝑱 is known.
2. Functions with sparse Jacobians (i.e. containing mostly zeros). Examples include vectorized

scalar functions, such as element4wise activation functions, whose Jacobians are diagonal
matrices: Since the 𝑖4th output only depends on the 𝑖4th input, 𝐽𝑖,𝑗 = 𝐽𝑖,𝑗 =

𝜕𝑓𝑖
𝜕𝑥𝑗

= 0 for 𝑖 ≠ 𝑗.
3. Functions with bounded partial derivatives 𝜕𝑓𝑖𝜕𝑥𝑗

. This property appears in common activation
functions. For ReLU, softplus and tanh, it holds that 0 ≤ 𝜕𝑓

𝜕𝑥 ≤ 1.
4. Functions with a closed-form analytical solution to the expected Jacobian 𝑱 . Point 1 is a

special case of this.

Applied to common network architectures, these principles discourage us from naively applying the
factorization on a layer4wise basis. Instead, element4wise activation functions should be separated
from otherwise affine functions. The Jacobian of a dense layer 𝑓(𝒙) = 𝜎(𝑔(𝒙)) = 𝜎(𝑾𝒙+ 𝒃)
should therefore be decomposed as

𝑱𝑓 = 𝑱𝜎 ⋅ 𝑱𝑔 = 𝑱𝜎 ⋅ 𝑾 . (6)

4

In other words: instead of estimating the dense matrix 𝑱𝑓 containing 𝑚 ⋅ 𝑛 entries, where 𝑛 is the
input and 𝑚 the output dimensionality, we should leverage our knowledge of the constant Jacobian
𝑱𝑔 = 𝑱𝑔 =𝑾 and only estimate the 𝑚 bounded entries in the sparse diagonal matrix 𝑱𝜎, resulting
in a higher sample efficiency. We give an implementation example of this in the following.

2.2 Example implementation

SmoothDiff can be implemented as a modified-backprop method,¹ replacing the sequential compu4
tation of VJPs (3) by what we term vector4expected-Jacobian products (VEJPs) in (5), sequentially
evaluating 𝒗𝑇𝑱𝑓𝑛 on a single backward pass. For linear and affine functions with expected Jacobian
𝑱 = 𝑱 , it follows that 𝒗𝑇𝑱 = 𝒗𝑇𝑱 . Applying SmoothDiff to such functions requires no additional
code, as common AD frameworks such as PyTorch and JAX already implement corresponding VJPs.
SmoothDiff only requires implementing VEJPs for functions in the model which are non4linear with
respect to their input, such that 𝑱 ≠ 𝑱 . If the model contains functions for which 𝑱 has no analytical
solution, sampling estimates can be obtained by computing 𝑛 forward passes through the model. As
a motivating example, we now discuss how to implement a VEJP for ReLUs 𝜎. This should provide
a blueprint on how to implement SmoothDiff on a variety of current and future model architectures.

As discussed in the previous section, the Jacobian 𝑱𝜎 of any element4wise activation function is a
diagonal matrix. For ReLUs specifically, the diagonal entries correspond to

𝐽𝜎𝑖,𝑖(𝒂) = 𝟙𝑥≥0(𝑎𝑖) ≔ {1 if 𝑎𝑖 ≥ 00 else , (7)

where 𝟙𝑥≥0 is the indicator function returning one for inputs greater or equal zero. From this, we
can derive the expected Jacobian 𝑱𝜎 as

𝐽𝜎𝑖,𝑖 = 𝔼̂𝒂[𝐽𝜎𝑖,𝑖(𝒂̂)] = lim
𝑛→∞

1
𝑛
∑
𝑛

𝑗=1
𝟙𝑥≥0(𝑎𝑖)

⏟⏟⏟⏟⏟
≕𝑝𝑖

, (8)

where the right4hand side corresponds to the expected ratio of positive activations. A sampling
approximation of this term can be obtained by computing a finite amount of 𝑛 forward passes through
the model with inputs 𝒙̂ drawn from 𝒩𝑔, while keeping track of the count of non4zero activations
𝑝𝑖. For a given vector 𝒗, this results in the VEJP

[𝒗𝑇𝑱𝜎]𝑖 = 𝑣𝑖𝐽𝜎𝑖,𝑖 = 𝑣𝑖
𝑝𝑖
𝑛
, (9)

such that the SmoothDiff explanation (5) can be computed in a single matrix4free backward pass. An
analogous approach can be taken to estimate 𝑱 of max pooling layers, whose entries correspond to
binary indicator functions of maximally activated inputs, requiring a sampling estimate of the ratio
of activations with maximum value. Pseudocode implementation for both ReLUs and max pooling
layers are given in Appendix I. While our exposition emphasized sequential models for the sake of
simplicity, more complex, branching models such as ResNets [24] are automatically handled by AD
systems. In fact, implementing the two aforementioned VEJPs is all it takes to run SmoothDiff on
common vision models such as VGG and ResNets.

2.3 Fallback VEJP

SmoothDiff can be applied to arbitrary differentiable models. For any function (e.g. an arbitrary
layer), a fallback VEJP can be implemented that samples 𝑛 forward passes, computes the full
Jacobian for each sample, and approximates the expected value by keeping track of the running mean.
The naive computation of a Jacobian requires either as many VJPs as the function has outputs
(reverse mode) or as many Jacobian-vector products (JVPs) as it has inputs (forward mode). If
the Jacobian exhibits sparsity, automatic sparse differentiation [17, 25] can drastically reduce the
number of required VJPs/JVPs (see [26, 27] for applications in deep learning).

¹The term modified-backprop method is a misnomer based on implementation details. Backpropagation is a special
case of reverse mode AD, while Jacobian transformations (such as our expected Jacobians) can in many cases also be
implemented for forward mode AD systems. Refer to [17] and [15] for an overview of AD techniques.

5

For functions with diagonal Jacobians (e.g. activation functions) this fallback VEJP is efficient, only
requiring a single VJP per sample. For large and dense Jacobians however, it requires a lot of compute
and memory, negating SmoothDiff’s performance benefits over SG.

2.4 Computational performance and other properties

As we will demonstrate in Section 3.1, estimating factorized Jacobians according to Section 2.1
is significantly more sample efficient than estimating the Jacobian of the entire neural network. In
practice, SmoothDiff therefore requires an order of magnitude fewer samples than SG to achieve a
visually comparable (see Section 3.3 and Appendix K) amount of smoothing or noise reduction.

Additionally, for single class explanations of sample size 𝑛, SmoothDiff only requires 𝑛 forward
and a single backward pass, whereas SG requires 𝑛 forward and 𝑛 backward passes. Denoting the
unit time complexity of a single forward pass 𝑓(𝒙) by 𝜏 , the corresponding backward pass has
been shown to be in the same order of time complexity 𝑂(𝜏) [28], and we (conservatively) estimate
their costs to be equal. For single4class explanations with 𝑛 samples, SmoothDiff yields a stark
improvement requiring 𝑛 + 1 (forward or backward) passes in comparison to SG’s 2𝑛.

The largest performance gains occur when multiple explanations need to be computed for a given
input, e.g. multi4class explanations and explanations with respect to concepts or filters that restrict
the propagation through specific neurons. This is required for spectral analysis of explanations [29],
concept relevance propagation [30], and higher4order explanation techniques [9, 10, 31]. So far, such
methods have predominantly used the highly efficient LRP method [7, 8]. Assuming explanations
of 𝑘 classes (or concepts/filters), LRP requires only a single forward pass and 𝑘 backward passes. In
contrast, SG only estimates class4dependent smoothed gradients (2) and needs to compute 𝑛 forward
and 𝑛 backward passes for each of the 𝑘 classes, resulting in a total of 2𝑛𝑘 passes.
Since SmoothDiff estimates the full smoothed Jacobian (5) using matrix4free operators (VEJPs), it
can be applied at a similar time complexity to LRP. Once VEJPs are estimated in 𝑛 forward passes,
they don’t need to be recomputed and only one backward pass per class (or concept/filter) is needed,
resulting in a total of 𝑛 + 𝑘 passes. Assuming an explanation of all 𝑘 = 1000 ImageNet classes
using 𝑛 = 50 samples,² SmoothDiff yields a computational speedup of two orders of magnitude³
over SG’s approximation to Gaussian filtering and approaches three orders of magnitude including
the increased sample efficiency demonstrated in Section 3.

In addition to convergence and performance improvements, SmoothDiff directly addresses the SGP,
as we demonstrate in Appendix H. We further discuss in Appendix J how SmoothDiff’s expected
network Jacobian increases the rank compared to the regular network Jacobian 𝑱𝑓 , a desirable
property for explanation methods that has been found to allow for more expressiveness and higher
variation of explanations across classes [29].

2.5 Limitations

While SmoothDiff can be applied to arbitrary models, performance benefits are obtained by deriving
performant VEJP (see Section 2.3). Such VEJPs have yet to be derived for attention layers, currently
negating SmoothDiff’s performance benefits over SG on ViT [32]. This limitation could be addressed
through partial application of SmoothDiff, falling back to VJPs when no VEJPs are available.

3 Experiments

We evaluate SmoothDiff and SG on a pre4trained VGG419 model [14] and the ImageNet dataset
[33]. All experiments were run on a NVIDIA A100 80GB GPU and AMD EPYC 9124 CPU. We use
the Julia-XAI ecosystem [34, 35], Flux.jl deep learning framework [36, 37] and implement VEJPs
using ChainRules.jl [38] and Zygote.jl [39].

We provide the complete source code to reproduce our experiments at https://github.com/
adrhill/smoothdiff-experiments, including SmoothDiff reference implementations in Julia [40]
and PyTorch.

²The suggested sample size for SG [6].
³SmoothDiff requires 𝑛 + 𝑘 = 1050 forward and backward passes, whereas SG requires 2𝑛𝑘 = 105.

6

https://github.com/adrhill/smoothdiff-experiments
https://github.com/adrhill/smoothdiff-experiments

Figure 2: SmoothDiff improves on SG in terms of both sample efficiency and computational
performance. Left: Improvements in sample efficiency, measured by the similarity to converged SG
explanations in terms of SSIM [41]. At the recommended sample size of 50, SG achieves a SSIM
of 0.8. SmoothDiff requires five times fewer samples to achieve a similar SSIM, highlighted by the
green arrow. Right: Improvements in computational efficiency, measured by walltime per sample.
Both SmoothDiff and SG scale linearly, however SmoothDiff is approximately twice as fast across
sample sizes.

3.1 Convergence comparison

Since the Gaussian convolution (1) has no analytical solution, we use converged4 SG explanations
over a batch of 128 randomly drawn ImageNet [33] images as our reference. Convergence towards
this reference is quantified using the structural similarity index measure (SSIM) [41]. A standard
deviation of 𝜎 = 0.5 is used for the sampling distribution 𝒩𝑔 in both SmoothDiff and SG.

The resulting mean SSIM are shown on the left of Figure 2. Since SG is used as a reference, it by
construction approaches a SSIM of 1 with increasing sample counts. We observe that through the
factorization in (5), SmoothDiff trades a small inherent bias in form of neglected cross4covariance
terms for a large increase in sample efficiency. Using the recommended sample size of 𝑛 = 50, SG
reaches a SSIM of 0.8, whereas with SmoothDiff, the same SSIM is obtained in just 10 samples,
resulting in increased sample efficiency of factor 5. For a discussion of the neglected cross4covari4
ance terms, refer to Appendix E.

3.2 Benchmarks

We benchmark the performance of SmoothDiff and SG as a function of sample size 𝑛 by computing
explanations for batches of 128 ImageNet images. As shown on the right side of Figure 2, SmoothDiff
is approximately twice as fast as SG across all sample sizes, further compounding the increased
sample efficiency demonstrated in Section 3.1. These computational performance improvements
match theoretical considerations in Section 2.4, where single4class explanations using SmoothDiff
are shown to require 𝑛 + 1 forward and backward passes, whereas SG requires 2𝑛.

3.3 Heatmaps

For a qualitative comparison of SmoothDiff and SG convergence behavior we visualize heatmaps
over increasing sample sizes in Figure 3. Even at small sample sizes, SmoothDiff leads to well4
contoured heatmaps with little noise, while SG only progressively reduces noise effects as a function
of 𝑛; it becomes apparent from Figure 3 that even at the recommended parametrization of SG, i.e.
𝑛 = 50, there is further room for improvement. Further heatmaps including examples of multi4class
explanations can be found Appendix K.

3.4 Quantitative results

In addition to the qualitative results in Section 3.3, we use pixel4flipping to quantify SmoothDiff’s
performance. In the absence of a ground truth, pixel4flipping measures the faithfulness of an XAI
method by perturbing features in the order of their attribution strength. We use the symmetric

4More specifically, SmoothGrad explanations using 𝑛 = 106 samples.

7

Figure 3: Qualitative comparison of SmoothDiff and SG heatmap convergence over increasing
sample sizes. Even at very small sample sizes, SmoothDiff leads to well4contoured heatmaps with
little noise.

relevance gain (SRG) measure [42], which largely removes the influence of imputing methods on
pixel4flipping. This is achieved by computing the area under two pixel4flipping curves: one deleting
features in order of most influential first (MIF), the other in order of least influential first (LIF).5 The
SRG is defined as the difference between the LIF and MIF measures. Figure 4 shows the results using
mean imputing and a standard deviation of 𝜎 = 0.5 for SmoothDiff and SG. SmoothDiff reaches a
higher peak SRG and does so at a lower sample size. It remains superior or equal to SmoothGrad up
to approximately the recommended sample size of SmoothGrad.

We additionally compare optimal SmoothDiff and SmoothGrad settings from Figure 4 to regular
gradient explanations and 𝛽4Smoothing (see Section 1.3 and Appendix G), which also attempts
to smooth gradients. The pixel4flipping results are summarized in Table 1, demonstrating that
SmoothDiff outperforms other methods in the SRG, as well as the LIF and MIF measures [42].

Figure 4: Comparison of SmoothDiff and SG in terms of pixel4flipping performance, measured by
SRG [42]. While the performance of SG increases with sample size up to 𝑛 = 40, SmoothDiff’s
performance peaks at just 𝑛 = 4 samples.

5In terms of the area under the pixel4flipping curve, deleting LIF is equivalent to inserting MIF. The SRG measure
therefore combines insertion and deletion tests.

8

Table 1: Pixel4flipping results (↑: higher is better, ↓: lower is better).

Method Parameters LIF ↑ MIF ↓ SRG ↑

SmoothDiff 𝜎 = 0.5, 𝑛 = 4 0.382 0.066 0.316

SmoothGrad 𝜎 = 0.5, 𝑛 = 40 0.373 0.069 0.304

𝛽4Smoothing 𝛽 = 1.0 0.316 0.086 0.230

𝛽4Smoothing 𝛽 = 2.0 0.311 0.093 0.218

𝛽4Smoothing 𝛽 = 0.5 0.293 0.098 0.195

Gradient — 0.276 0.111 0.166

For additional quantitative results in terms of localization, complexity and robustness, refer to
Appendix F, which compares SmoothDiff with gradients, SG, SmootGrad-Squared [43], Integrated
Gradients [44], LRP composites [45, 46], GradCAM [47], and several random baselines.

4 Discussion

SmoothGrad is a popular gradient4based choice for explaining ML models based on convolving
gradients. While originally conceived for compensating shattered gradient effects, it is challenged
by the need to accurately approximate the convolution, which would, in principle, require expensive
sampling. In practice, SmoothGrad users compromise by trading accuracy with speed. In our work
we contributed by proposing SmoothDiff which is making use of the well4known mathematical
structure of the Jacobian in neural networks together with automatic differentiation functionalities.
Specifically, we show that the expected Jacobian can be decomposed efficiently into independent
parts, with a focus on the relevant network non4linearities only. Automatic differentiation helps to
readily implement this idea using vector4Jacobian products without further work. This results in
a higher accuracy of the smoothed gradient convolution estimation at fewer samples: resulting in
speedups of up to two orders of magnitude for multi4class explanations over the original Smooth4
Grad. This means that SmoothDiff helps to enhance the usability (speed and quality) of SmoothGrad
greatly – as seen across all simulations and benchmarks explored. As smoothing comes with a
reduction of curvature or second order derivatives, we conjecture that smoothed explanations as the
ones studied here may also provide a higher resilience in the spirit of [23].

We can see three potentially interesting directions to further improve SmoothDiff: (i) Instead of
approximating Gaussian convolutions by random samples, more efficient means of quadrature
should be investigated. (ii) Moving beyond Gaussian filtering over the entire input domain, the
geometry of the data manifold can be taken into account for convolutional smoothing, as shown in
[48]. Insights from SmoothDiff could also be applied to other methods integrating over sensitivities,
e.g. Integrated Gradients [44]. (iii) Instead of sampling activations on multiple forward passes,
probability distributions could be propagated in a single forward pass, possibly further accelerating
the method.

Future work will furthermore explore smoothed differentiation as in SmoothDiff beyond XAI, for
example in applications of AI for the sciences where smooth priors in terms of differential equations
exist, say, in the laws of physics.

Contributions

AH devised the project and main conceptual ideas. He wrote the majority of the manuscript,
including experiments, benchmarks, figures, tables and code. NM contributed to the initial design
of the method during his lab rotation under the guidance of AH. He evaluated the 1D example in
Figure 1(a) and Appendix B, compared color schemes in Appendix D, wrote the initial draft of
Appendix H, created the ReLU pseudocode listing in Appendix I, and plotted Figure 2 from AH’s
experimental results. JM wrote the PyTorch implementation of SmoothDiff, evaluated the GridPG
experiments in Appendix F.2 and contributed to Section 2.4. SB advised the pixel4flipping experi4

9

ments in Section 3.4 and helped frame the paper. KRM supervised the project and helped frame,
structure and write the paper. All authors discussed the results and commented on the manuscript.

Acknowledgements

We would like to thank the anonymous reviewers for their feedback, especially reviewer “Meht”.
We also thank Christopher Anders, Shinichi Nakajima, Anna Hedström, and Stefan Gugler for
their valuable feedback and insightful discussions. Furthermore, we gratefully acknowledge funding
from the German Federal Ministry of Education and Research under the grant BIFOLD25B. KRM
was partly supported by the Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS420194II190079, Artificial
Intelligence Graduate School Program, Korea University) and grant funded by the Korea government
(MSIT) (No. RS42024400457882, AI Research Hub Project).

References

[1] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.4R. Müller, “Explaining Deep
Neural Networks and Beyond: A Review of Methods and Applications,” Proceedings of the
IEEE, vol. 109, no. 3, pp. 247–278, Mar. 2021, doi: 10.1109/JPROC.2021.3060483.

[2] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, and K.4R. Müller, “Unmask4
ing Clever Hans predictors and assessing what machines really learn,” Nature communications,
vol. 10, p. 1096, 2019.

[3] J. Kauffmann, J. Dippel, L. Ruff, W. Samek, K.4R. Müller, and G. Montavon, “Explainable AI
reveals Clever Hans effects in unsupervised learning models,” Nature Machine Intelligence,
vol. 7, pp. 412–422, 2025.

[4] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.4R. Müller, “How
to Explain Individual Classification Decisions,” Journal of Machine Learning Research, vol.
11, no. 61, pp. 1803–1831, 2010, http://jmlr.org/papers/v11/baehrens10a.html.

[5] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional Networks: Visual4
ising Image Classification Models and Saliency Maps.” http://arxiv.org/abs/1312.6034

[6] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “SmoothGrad: removing noise
by adding noise.” http://arxiv.org/abs/1706.03825

[7] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.4R. Müller, and W. Samek, “On pixel4wise
explanations for non4linear classifier decisions by layer4wise relevance propagation,” PloS
one, vol. 10, no. 7, p. e130140, 2015.

[8] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.4R. Müller, “Explaining nonlinear
classification decisions with deep Taylor decomposition,” Pattern Recognition, vol. 65, pp.
211–222, May 2017, doi: 10.1016/j.patcog.2016.11.008.

[9] O. Eberle, J. Büttner, F. Kräutli, K.4R. Müller, M. Valleriani, and G. Montavon, “Building
and interpreting deep similarity models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 3, pp. 1149–1161, 2022.

[10] T. Schnake et al., “Higher4order explanations of graph neural networks via relevant walks,”
IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 11, pp. 7581–
7596, 2022.

[11] E. Štrumbelj and I. Kononenko, “An Efficient Explanation of Individual Classifications using
Game Theory,” Journal of Machine Learning Research, vol. 11, no. 1, pp. 1–18, 2010, http://
jmlr.org/papers/v11/strumbelj10a.html.

[12] S. M. Lundberg and S.4I. Lee, “A Unified Approach to Interpreting Model Predic4
tions,” in Advances in Neural Information Processing Systems, Curran Associates,

10

https://doi.org/10.1109/JPROC.2021.3060483
http://jmlr.org/papers/v11/baehrens10a.html
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1706.03825
https://doi.org/10.1016/j.patcog.2016.11.008
http://jmlr.org/papers/v11/strumbelj10a.html
http://jmlr.org/papers/v11/strumbelj10a.html

Inc., 2017. https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b
677674Abstract.html.

[13] D. Balduzzi, M. Frean, L. Leary, J. P. Lewis, K. W.4D. Ma, and B. McWilliams, “The Shattered
Gradients Problem: If resnets are the answer, then what is the question?,” in Proceedings of the
34th International Conference on Machine Learning, PMLR, Jul. 2017, pp. 342–350. https://
proceedings.mlr.press/v70/balduzzi17b.html.

[14] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large4Scale Image
Recognition.” http://arxiv.org/abs/1409.1556

[15] M. Blondel and V. Roulet, “The Elements of Differentiable Programming.” http://arxiv.org/
abs/2403.14606

[16] Y. A. LeCun, L. Bottou, G. B. Orr, and K.4R. Müller, “Efficient BackProp,” Neural Networks:
Tricks of the Trade: Second Edition. Springer, Berlin, Heidelberg, pp. 9–48, 2012. doi:
10.1007/97843464243528948_3.

[17] A. Griewank and A. Walther, Evaluating Derivatives. in Other Titles in Applied Mathematics.
Society for Industrial, Applied Mathematics, 2008. doi: 10.1137/1.9780898717761.

[18] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differentiation
in machine learning: a survey,” Journal of machine learning research, vol. 18, no. 153, pp. 1–
43, 2018.

[19] A. Paszke et al., “PyTorch: An Imperative Style, High4Performance Deep Learning
Library,” in Advances in Neural Information Processing Systems, Curran Associates,
Inc., 2019. https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2
bfa9f70127277404Abstract.html.

[20] J. Bradbury et al., “JAX: composable transformations of Python+NumPy programs.” http://
github.com/google/jax

[21] K. Bykov, A. Hedström, S. Nakajima, and M. M.4C. Höhne, “NoiseGrad — Enhancing
Explanations by Introducing Stochasticity to Model Weights,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 6, pp. 6132–6140, Jun. 2022, doi: 10.1609/
aaai.v36i6.20561.

[22] S. Muzellec, T. Fel, V. Boutin, L. Andéol, R. Vanrullen, and T. Serre, “Saliency strikes back:
How filtering out high frequencies improves white4box explanations,” in Proceedings of the
41st International Conference on Machine Learning, PMLR, Jul. 2024, pp. 37041–37075.
https://proceedings.mlr.press/v235/muzellec24a.html.

[23] A.4K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.4R. Müller, and P. Kessel, “Expla4
nations can be manipulated and geometry is to blame,” in Advances in Neural Information
Processing Systems, Curran Associates, Inc., 2019. https://papers.nips.cc/paper_files/paper/
2019/hash/bb836c01cdc9120a9c984c525e4b1a4a4Abstract.html.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp.
770–778. doi: 10.1109/CVPR.2016.90.

[25] A. H. Gebremedhin, F. Manne, and A. Pothen, “What Color Is Your Jacobian? Graph Coloring
for Computing Derivatives,” SIAM Review, vol. 47, no. 4, pp. 629–705, Jan. 2005, doi: 10/
cmwds4.

[26] A. Hill and G. Dalle, “Sparser, Better, Faster, Stronger: Sparsity Detection for Efficient
Automatic Differentiation,” Transactions on Machine Learning Research, Jun. 2025, https://
openreview.net/forum?id=GtXSN52nIW.

[27] A. Hill, G. Dalle, and A. Montoison, “An Illustrated Guide to Automatic Sparse Differenti4
ation,” in The Fourth Blogpost Track at ICLR 2025, 2025. https://openreview.net/forum?id=
ykZibuSbJj.

11

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.mlr.press/v70/balduzzi17b.html
https://proceedings.mlr.press/v70/balduzzi17b.html
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2403.14606
http://arxiv.org/abs/2403.14606
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1137/1.9780898717761
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1609/aaai.v36i6.20561
https://doi.org/10.1609/aaai.v36i6.20561
https://proceedings.mlr.press/v235/muzellec24a.html
https://papers.nips.cc/paper_files/paper/2019/hash/bb836c01cdc9120a9c984c525e4b1a4a-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bb836c01cdc9120a9c984c525e4b1a4a-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10/cmwds4
https://doi.org/10/cmwds4
https://openreview.net/forum?id=GtXSN52nIW
https://openreview.net/forum?id=GtXSN52nIW
https://openreview.net/forum?id=ykZibuSbJj
https://openreview.net/forum?id=ykZibuSbJj

[28] W. Baur and V. Strassen, “The complexity of partial derivatives,” Theoretical Computer
Science, vol. 22, no. 3, pp. 317–330, Feb. 1983, doi: 10.1016/030443975(83)901104X.

[29] J. Maeß, G. Montavon, S. Nakajima, K.4R. Müller, and T. Schnake, “Uncovering the Structure
of Explanation Quality with Spectral Analysis.” http://arxiv.org/abs/2504.08553

[30] R. Achtibat et al., “From attribution maps to human4understandable explanations through
Concept Relevance Propagation,” Nature Machine Intelligence, vol. 5, no. 9, pp. 1006–1019,
Sep. 2023, doi: 10.1038/s42256402340071148.

[31] L. Linhardt, K.4R. Müller, and G. Montavon, “Preemptively pruning Clever4Hans strategies
in deep neural networks,” Information Fusion, vol. 103, p. 102094, Mar. 2024, doi: 10.1016/
j.inffus.2023.102094.

[32] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale,” in International Conference on Learning Representations, 2021. https://openreview.
net/forum?id=YicbFdNTTy.

[33] J. Deng, W. Dong, R. Socher, L.4J. Li, K. Li, and L. Fei4Fei, “ImageNet: A large4scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, Jun. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[34] A. Hill, “Julia4XAI/VisionHeatmaps.jl: v2.0.1.” https://zenodo.org/records/15021377

[35] A. Hill, “ExplainableAI.jl.” https://zenodo.org/records/15176551

[36] M. Innes et al., “Fashionable Modelling with Flux,” CoRR, 2018, https://arxiv.org/abs/1811.
01457.

[37] M. Innes, “Flux: Elegant machine learning with Julia,” Journal of Open Source Software, vol.
3, no. 25, p. 602, May 2018, doi: 10.21105/joss.00602.

[38] F. White et al., “JuliaDiff/ChainRules.jl: v1.72.3.” https://zenodo.org/records/14926720

[39] M. Innes, “Don't Unroll Adjoint: Differentiating SSA4Form Programs,” CoRR, 2018, http://
arxiv.org/abs/1810.07951.

[40] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical
computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017, https://doi.org/10.1137/141000671.

[41] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error
visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp.
600–612, Apr. 2004, doi: 10.1109/TIP.2003.819861.

[42] S. Bluecher, J. Vielhaben, and N. Strodthoff, “Decoupling Pixel Flipping and Occlusion
Strategy for Consistent XAI Benchmarks,” Transactions on Machine Learning Research, Mar.
2024, https://openreview.net/forum?id=bIiLXdtUVM.

[43] S. Hooker, D. Erhan, P.4J. Kindermans, and B. Kim, “A Benchmark for Interpretability Meth4
ods in Deep Neural Networks,” in Advances in Neural Information Processing Systems, Curran
Associates, Inc., 2019. https://papers.nips.cc/paper_files/paper/2019/hash/fe4b8556000d0f0
cae99daa5c5c5a4104Abstract.html.

[44] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” in Interna-
tional conference on machine learning, PMLR, 2017, pp. 3319–3328.

[45] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.4R. Müller, “Layer4wise relevance
propagation: an overview,” Explainable AI: interpreting, explaining and visualizing deep
learning, pp. 193–209, 2019.

[46] M. Kohlbrenner, A. Bauer, S. Nakajima, A. Binder, W. Samek, and S. Lapuschkin,
“Towards Best Practice in Explaining Neural Network Decisions with LRP,” in 2020 Inter-
national Joint Conference on Neural Networks (IJCNN), Jul. 2020, pp. 1–7. doi: 10.1109/
IJCNN48605.2020.9206975.

12

https://doi.org/10.1016/0304-3975(83)90110-X
http://arxiv.org/abs/2504.08553
https://doi.org/10.1038/s42256-023-00711-8
https://doi.org/10.1016/j.inffus.2023.102094
https://doi.org/10.1016/j.inffus.2023.102094
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1109/CVPR.2009.5206848
https://zenodo.org/records/15021377
https://zenodo.org/records/15176551
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://doi.org/10.21105/joss.00602
https://zenodo.org/records/14926720
http://arxiv.org/abs/1810.07951
http://arxiv.org/abs/1810.07951
https://doi.org/10.1137/141000671
https://doi.org/10.1109/TIP.2003.819861
https://openreview.net/forum?id=bIiLXdtUVM
https://papers.nips.cc/paper_files/paper/2019/hash/fe4b8556000d0f0cae99daa5c5c5a410-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/fe4b8556000d0f0cae99daa5c5c5a410-Abstract.html
https://doi.org/10.1109/IJCNN48605.2020.9206975
https://doi.org/10.1109/IJCNN48605.2020.9206975

[47] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad4cam:
Visual explanations from deep networks via gradient4based localization,” in Proceedings of
the IEEE international conference on computer vision, 2017, pp. 618–626.

[48] L. Zhou, C. Ma, Z. Wang, and X. Shi, “Rethinking the Principle of Gradient Smooth Methods
in Model Explanation.” http://arxiv.org/abs/2410.07711

[49] L. Arras, A. Osman, and W. Samek, “CLEVR4XAI: A benchmark dataset for the ground truth
evaluation of neural network explanations,” Information Fusion, vol. 81, pp. 14–40, May 2022,
doi: 10.1016/j.inffus.2021.11.008.

[50] F. Crameri, G. E. Shephard, and P. J. Heron, “The misuse of colour in science communication,”
Nature Communications, vol. 11, no. 1, p. 5444, Oct. 2020, doi: 10.1038/s41467402041916047.

[51] F. Crameri, “Scientific colour maps.” https://zenodo.org/records/8409685

[52] P. Kovesi, “Good Colour Maps: How to Design Them,” arXiv:1509.03700 [cs], Sep. 2015,
http://arxiv.org/abs/1509.03700.

[53] R. Bujack, T. L. Turton, F. Samsel, C. Ware, D. H. Rogers, and J. Ahrens, “The Good, the Bad,
and the Ugly: A Theoretical Framework for the Assessment of Continuous Colormaps,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 923–933, Jan. 2018,
doi: 10.1109/TVCG.2017.2743978.

[54] M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour4difference formula:
CIEDE2000,” Color Research & Application, vol. 26, no. 5, pp. 340–350, 2001, doi: 10.1002/
col.1049.

[55] A. Hedström et al., “Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural
Network Explanations and Beyond,” Journal of Machine Learning Research, vol. 24, no. 34,
pp. 1–11, 2023, http://jmlr.org/papers/v24/2240142.html.

[56] S. Gao, Z.4Y. Li, M.4H. Yang, M.4M. Cheng, J. Han, and P. Torr, “Large4scale Unsupervised
Semantic Segmentation,” TPAMI, 2022.

[57] N. Kokhlikyan et al., “Captum: A unified and generic model interpretability library for
pytorch,” arXiv preprint arXiv:2009.07896, 2020.

[58] C. J. Anders, D. Neumann, W. Samek, K.4R. Müller, and S. Lapuschkin, “Software for dataset4
wide XAI: from local explanations to global insights with Zennit, CoRelAy, and ViRelAy,”
arXiv preprint arXiv:2106.13200, 2021.

[59] D. Alvarez4Melis and T. S. Jaakkola, “On the Robustness of Interpretability Methods.” http://
arxiv.org/abs/1806.08049

[60] D. Alvarez Melis and T. Jaakkola, “Towards Robust Interpretability with Self4Explaining
Neural Networks,” in Advances in Neural Information Processing Systems, Curran Associates,
Inc., 2018. https://proceedings.neurips.cc/paper_files/paper/2018/hash/3e9f0fc9b2f89e043bc
6233994dfcf764Abstract.html.

[61] C.4K. Yeh, C.4Y. Hsieh, A. Suggala, D. I. Inouye, and P. K. Ravikumar, “On the (in) fidelity and
sensitivity of explanations,” Advances in neural information processing systems, vol. 32, 2019.

[62] M. Böhle, M. Fritz, and B. Schiele, “Convolutional Dynamic Alignment Networks for Inter4
pretable Classifications,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2021, pp. 10024–10033. doi: 10.1109/CVPR46437.2021.00990.

[63] M. Böhle, N. Singh, M. Fritz, and B. Schiele, “B4cos alignment for inherently interpretable
CNNs and vision transformers,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 46, no. 6, pp. 4504–4518, 2024.

[64] U. Bhatt, A. Weller, and J. M. F. Moura, “Evaluating and Aggregating Feature4based Model
Explanations,” in Proceedings of the Twenty-Ninth International Joint Conference on Artifi-

13

http://arxiv.org/abs/2410.07711
https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.1038/s41467-020-19160-7
https://zenodo.org/records/8409685
http://arxiv.org/abs/1509.03700
https://doi.org/10.1109/TVCG.2017.2743978
https://doi.org/10.1002/col.1049
https://doi.org/10.1002/col.1049
http://jmlr.org/papers/v24/22-0142.html
http://arxiv.org/abs/1806.08049
http://arxiv.org/abs/1806.08049
https://proceedings.neurips.cc/paper_files/paper/2018/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://doi.org/10.1109/CVPR46437.2021.00990

cial Intelligence, Yokohama, Japan: International Joint Conferences on Artificial Intelligence
Organization, Jul. 2020, pp. 3016–3022. doi: 10.24963/ijcai.2020/417.

[65] P. Chalasani, J. Chen, A. R. Chowdhury, X. Wu, and S. Jha, “Concise Explanations of Neural
Networks using Adversarial Training,” in Proceedings of the 37th International Conference
on Machine Learning, PMLR, Nov. 2020, pp. 1383–1391. https://proceedings.mlr.press/v119/
chalasani20a.html.

[66] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio, “On the Number of Linear Regions of Deep
Neural Networks,” in Advances in Neural Information Processing Systems, Curran Associates,
Inc., 2014. https://proceedings.neurips.cc/paper_files/paper/2014/hash/fa6f2a469cc4d61a92
d96e74617c3d2a4Abstract.html.

[67] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Towards better understanding of gradient4
based attribution methods for Deep Neural Networks,” Feb. 2018. https://openreview.net/
forum?id=Sy21R9JAW.

[68] A.4K. Dombrowski, J. E. Gerken, and P. Kessel, “Diffeomorphic Explanations with Normal4
izing Flows,” in ICML Workshop on Invertible Neural Networks, Normalizing Flows, and
Explicit Likelihood Models, 2021. https://openreview.net/forum?id=ZBR9EpEl6G4.

14

https://doi.org/10.24963/ijcai.2020/417
https://proceedings.mlr.press/v119/chalasani20a.html
https://proceedings.mlr.press/v119/chalasani20a.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/fa6f2a469cc4d61a92d96e74617c3d2a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/fa6f2a469cc4d61a92d96e74617c3d2a-Abstract.html
https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=ZBR9EpEl6G4

A Notation

We denote scalar quantities by lowercase letters 𝑥, vector quantities by bold lowercase letters 𝒙
and matrices by bold uppercase letters 𝑿. The coefficients in a vector 𝒙 are written as 𝑥𝑖, the
rows of a matrix 𝑿 as 𝑿𝑖,: and the coefficients as [𝑿]𝑖,𝑗 = 𝑋𝑖,𝑗, using row and column indices
respectively. All vectors 𝒙 are column4vectors and all 𝒙𝑇 are row4vectors. For a vector4to4scalar
function 𝑓 : ℝ𝑛 → ℝ, we use ∇𝑓(𝒙) ∈ ℝ𝑛 for the gradient vector. For a vector4to4vector function
𝑓 : ℝ𝑛 → ℝ𝑚, we denote as 𝑱𝑓(𝒙) ∈ ℝ𝑛×𝑚 the Jacobian matrix of first4order partial derivatives
𝜕𝑓𝑖(𝒙)
𝜕𝑥𝑗

. The 𝑖4th basis vector is written as 𝒆𝑖. We reserve the index 𝑐 for the selection of the output
neurons, such that for a neural network 𝑓 and an input 𝒙, the predicted logit for the 𝑐4th class
corresponds to 𝑓𝑐(𝒙).

B Experiment details – Figure 1

(a) 1-dimensional toy example: To demonstrate the SGP on gradient4based XAI methods in
Figure 1 (a), we define a deep neural network similar to [13]. We use a sequence of 16 fully connected
ReLU layers with 64 hidden neurons each, mapping scalar inputs to scalar outputs. Both weights
and biases are drawn from a normal distribution with mean zero and variance 1𝑁 . Both SmoothDiff
and SG explanations are computed using 𝜎 = 0.05 and 𝑛 = 10 samples. Since the explanations
are stochastic (inputs are randomly sampled), we visualize the means and 5th4 to 95th4percentile
bands over 1024 evaluations per input. 𝛽4Smoothing was computed using 𝛽 = log(2)√2𝜋

𝜎 𝐿 ≈ 117,
motivated by scaling up the analytical derivation for a single layer [23]. The Gaussian convolution
was computed numerically from the gradient.

(b) Vision model: Explanations are computed on a pretrained VGG419 model [14] and randomly
selected images from the ImageNet dataset [33]. They are visualized using the heatmapping tech4
niques described in Appendix D. Both SmoothDiff and SG are computed using 𝜎 = 0.5. Since the
analytical Gaussian convolution is intractable and an accurate numerical computation is infeasible,
it was approximated by computing SG with 𝑛 = 106 samples (see Section 3.1).

C Relevance pooling

Most XAI methods, including SmoothDiff, have in common that the dimensionality of their numer4
ical explanations matches that of the input features. The inputs to ImageNet models are (normalized)
RGB images: three4dimensional tensors that include width, height and color channel dimensions.
Explanations of these inputs therefore also contain three separate values per pixel, one for each color
channel (red, green, blue). For the purpose of heatmapping (see Appendix D) as well as several
evaluation metrics (see Appendix F), these three values need to be reduced to a single scalar value by
applying a relevance pooling function 𝑅pool : ℝ3 → ℝ to each pixel [49]. Popular options include
summation, max pooling and the ℓ24norm (hereafter referred to as norm4pooling).

As motivated in Section 1, explanations can be based on different mathematical objects, e.g. gradi4
ents, Taylor expansions and Shapley values. The choice of relevance pooling depends on the XAI
method: For LRP, summation is the most common choice, as it maintains its property of relevance
conservation [7]. Sum4pooled explanations can contain both positive and negative values and are
therefore commonly visualized using diverging color maps, see e.g. LRP’s characteristic red4white4
blue heatmaps.

For gradient4based methods however, summation is not an option. We want to illustrate this with a
thought experiment: When using a gradient4based method to explain why an image of a red fire truck
is correctly classified by an idealized robust model, we might expect the gradient to be positive on
the red color channel (a more intense red positively affecting the classification) and negative on the
blue and green color channels (also intensifying the red color). In this example, negative sensitivities
on the blue and green color channels do not imply that the pixel is of negative importance to the
classifier. Sum4pooling should therefore be avoided, as it can in the worst case result in a negative
value even though the pixel was of high sensitivity. Instead, we suggest the use of the norm4pooling,
measuring the pixel4wise gradient magnitude. Since norm4pooled explanations are non4negative,

15

they should be visualized with sequential color maps (see Appendix D). As we will demonstrate
in Appendix F, the choice of relevance pooling has a significant impact on the evaluation of XAI
methods, a crucial aspect that remains underexplored in the literature.

D Heatmapping

We visualize numerical explanations as heatmaps using the VisionHeatmaps.jl package [34] from the
Julia-XAI ecosystem [35]. To map gradient4based explanations onto a color scheme, we reduce the
color channel dimension by applying norm4pooling (see Appendix C). Finally, to avoid desaturation
due to numerical outliers, the color scheme is mapped to a range between 0 and the 99.9th percentile
of the pooled explanation, effectively normalizing values within the explanation.

Figure 5: Comparison of perceptual properties of the jet and batlow color maps.

We use the perceptually uniform batlow color map [50, 51]. For sequential color maps, a linear
increase in luminance is desirable, as it is the primary perceptual dimension perceived as intensity,
as well as the one best resolved at high frequencies [52]. Additionally, constant change in overall
perceptual difference between adjacent colors ensures uniformity [53]. Figure 5 compares batlow
with the popular jet color map, measuring luminance 𝐿∗ in the CIELab color space and overall
perceptual velocity using the CIEDE2000 distance metric [54]. While we discourage the use of the
jet color map due to its perceptual non4uniformity, especially in combination with highly processed
transparent overlays, we provide such SmoothDiff heatmaps in Figure 6 due to their ongoing
popularity in the field.

Figure 6: Comparison of heatmapping techniques on SmoothDiff explanations (𝑛 = 10, 𝜎 = 0.5).

16

E Characterizing neglected cross-covariances

As discussed in Section 3.1, SmoothDiff trades a small inherent bias in form of neglected cross4
covariance terms in (5) for a large increase in sample efficiency. To quantify the bias, we modify the
convergence experiment from Section 3.1, treating SmoothDiff and SG explanations (i.e. smoothed
gradients) as vectors. We then measure their similarity to the converged SG reference explanation
by computing cosine similarities and magnitudes.

The resulting convergence plots are shown Figure 7: In terms of cosine similarity, SmoothDiff shows
superior convergence behavior up to SG’s recommended sample size of 𝑛 = 50. This indicates that
the direction of SmoothDiff explanations aligns well with the reference. In terms of magnitude
however, SmoothDiff has a clear bias: While SG converges towards the magnitude of the reference
(i.e. a relative magnitude of one), SmoothDiff converges towards a much smaller relative magnitude
of 0.461. We suspect that this difference in magnitude is caused by the neglected cross4covariances.

As described in Appendix D, explanations are relevance pooled and normalized during heatmapping.
Heatmaps therefore only depend on the direction of the explanation vector, not the magnitude,
limiting the effect of neglected cross4covariances. This observation is in line with the SSIM conver4
gence plot in Figure 2.

Figure 7: Convergence behavior of SmoothDiff and SG towards the reference explanation in terms
of cosine similarity (upper) and relative magnitude of the explanation (lower). Convergence with
the reference is obtained at a cosine similarity and relative magnitude of one.

F Further quantitative results

In addition to the pixel4flipping experiments which evaluate faithfulness in Section 3.4, we also
evaluate metrics in the domains of robustness, localization and complexity using the Quantus toolkit
[55]. Since some localization metrics require ground truth segmentation masks that localize the
object of the target class, a dataset of 256 input images, labels and segmentation masks was created
by sub4sampling correctly classified images from the ImageNet4S450 dataset [56].

In addition to the Gradient, SmoothDiff and SG methods in Section 3, we also evaluate SmoothGrad-
Squared [43], Integrated Gradients [44], GradCAM [47], two LRP composites [45, 46], and three
random baselines. Reference implementations from the Captum software package [57] are used for
Integrated Gradients and GradCAM, while Zennit [58] is used for LRP, namely the EpsilonPlus
and EpsilonAlpha2Beta1 composites. Metrics are evaluated on pre4trained VGG419 and ResNet418
models using Quantus’ default parameters.

As motivated in Appendix C, relevance pooling significantly impacts both heatmapping and evalu4
ation metrics. Since the goal of XAI is to further humans’ understanding of machine learning models,

17

we argue that evaluation metrics should apply the same relevance pooling functions that are used
to compute heatmapping visualizations. We therefore evaluate gradient4based methods (Gradient,
SmoothGrad, SmoothDiff, Integrated Gradients) with norm4pooling and methods based on Taylor
expansions (LRP composites, Input x Gradient) with sum4pooling.

In [43], a variant of SG called SmoothGrad4Squared (SG4SQ) is shown to perform well using sum4
pooling. Instead of averaging gradients, SG4SQ averages squared gradients.6 While not exactly
analogous,7 we introduce SmoothDiff4Squared (SD4SQ), which we define as the square of a
SmoothDiff explanation

[SD-SQ(𝒙)]𝑖 = [SD(𝒙)]2𝑖 . (10)

We want to emphasize that a sum4pooled SD4SQ explanation is the square of a norm4pooled
SmoothDiff explanation, blurring the lines between XAI method and relevance pooling. To further
quantify the influence of relevance pooling on evaluation metrics, we introduce three random
baselines that are equally uninformative:

• Random (ℓ2): random explanation drawn from a normal distribution, norm4pooled
• Random (Σ): random explanation drawn from a normal distribution, sum4pooled
• Random-Squared (Σ): squared random explanation drawn from a normal distribution,

sum4pooled

For SmoothDiff, SmoothDiff4Squared, SmoothGrad, SmoothGrad4Squared, and Integrated Gradi4
ents, explanations are computed using 20 samples in an attempt to make them computationally
comparable. All evaluation metrics are evaluated on batches of 256 images described above. We
visualize the resulting distributions of scores as box plots in Figures 8 to 13, additionally reporting
means in the right4hand column. XAI methods and random baselines are purposefully arranged
in three groups: gradient4based methods using norm4pooling, squared methods with sum4pooling
(SG4SQ, SD4SQ, Random4Squared) and other sum4pooled methods.

F.1 Robustness

Robustness metrics evaluate how stable explanations are under slight input perturbations. We
evaluate two robustness metrics, the first being the Local Lipschitz Estimate (LLE), described
in [59, 60]. The resulting distribution of scores is visualized in Figure 8, where lower scores
indicate higher robustness. On VGG419, SmoothDiff4Squared outperforms all other methods by
a significant margin. Results on ResNet418 qualitatively mirror those of VGG419, indicating that
SmoothDiff and SmoothDiff4Squared explanations are robust across model architectures. LRP
EpsilonAlpha2Beta1 does however significantly improve on ResNet418, achieving a slightly lower
mean than SmoothDiff4Squared. Within gradient4based methods, SmoothDiff is the most robust on
both models. The three random baselines reveal that the LLE is biased towards Random4Squared,8

mirroring the fact that SmoothDiff4Squared outperforms SmoothDiff.

The second evaluated robustness metric is Average Sensitivity [61], shown in Figure 9. Once again,
lower scores indicate higher robutstness. SmoothDiff’s robustness on both VGG419 and ResNet418
is only outperformed by the two LRP composites. Within gradient4based methods, SmoothDiff again
is the most robust method across model architectures. The random baselines reveal that the metric is
biased towards norm4pooling, mirroring the fact that SmoothDiff outperforms SmoothDiff4Squared.

F.2 Localization

Localization metrics test whether the highest values of an explanation is located within a desired
region of interest. In case of the first metric, Relevance Rank Accuracy (RRA) [49], the region of
interest is specified by providing ground4truth segmentation masks, as described above. The resulting
RRA scores are shown in Figure 10, where higher scores are desirable. In the three random baselines,

6When talking about squared gradients and explanations, we refer to the element4wise square.
7In terms of (1), SG4SQ approximates the expected value of the squared gradients while SD4SQ approximates the

square of the expected value of gradients.
8Since all random baselines are equally informative, we would expect them to be equally robust.

18

Figure 8: Evaluation of the Local Lipschitz Estimate [59, 60] as a measure of robustness. Lower
scores indicate a higher robustness. We indicate relevance pooling functions next to XAI method
names, using ℓ2 for norm4pooling and Σ for sum4pooling.

Figure 9: Evaluation of Average Sensitivity [61] as a measure of robustness. Lower scores indicate
a higher robustness. We indicate relevance pooling functions next to XAI method names, using ℓ2
for norm4pooling and Σ for sum4pooling.

19

Figure 10: Evaluation the Relevance Rank Accuracy [49] as a measure of localization. Higher scores
indicate better localization. We indicate relevance pooling functions next to XAI method names,
using ℓ2 for norm4pooling and Σ for sum4pooling.

the RRA shows no visible bias towards any of the evaluated relevance4pooling functions. SG4SQ
performs best on both VGG419 and ResNet418, followed by SG, SmoothDiff and SmoothDiff4
Squared, which all perform similarly well.

The second localization metric is the Grid Pointing Game (GridPG) [62, 63], an artificial benchmark
in which four images from different classes are tiled in a 2 × 2 grid. The metric selects one of the
images as the region of interest and target class of the explanation. Scores correspond to the sum
of positive values within the target quadrant, divided by the sum of all positive values, normalizing
scores between zero and one. The results are shown in Figure 11, where higher scores indicate better
localization. Since explanations from all three random baselines are distributed equally across all
four quadrants, all baselines obtain a score of 0.25. Due to its normalization, the GridPG appears
to favor XAI methods (and corresponding relevance pooling functions) like LRP that can return
negative values.9 Since this is neither the case for gradient4based methods, nor for squared methods,
these perform significantly worse than LRP composites and GradCAM.

F.3 Complexity

The final category of evaluation metrics quantifies the conciseness of explanations, favoring
highlighting few features. The first metric is Complexity [64], shown in Figure 12. On VGG419,
GradCAM performs best, followed by SmoothDiff4Squared. On ResNet418, SmoothDiff4Squared
performs best (in terms of mean score) as Captum’s GradCAM implementation could not be eval4
uated on the model. The random baselines reveal a bias for Random4Squared and the sum4pooled
random explanation, mirroring the fact that SmoothDiff4Squared outperforms SmoothDiff.

The second and final complexity metric is Sparseness [65], which is based on the Gini Index. Results
are shown in Figure 13. On VGG419, they qualitatively mirror those of the complexity metric in Fig4
ure 12: GradCAM performs best, followed by SmoothDiff4Squared and LRP EpsilonAlpha2Beta1.
On ResNet418, SmoothDiff4Squared is a close second behind the LRP EpsilonAlpha2Beta1.

9Non4negative explanations will result in a larger denominator.

20

Figure 11: Evaluation of the Grid Pointing Game [62, 63] as a measure of localization. Higher scores
indicate better localization. We indicate relevance pooling functions next to XAI method names,
using ℓ2 for norm4pooling and Σ for sum4pooling.

Figure 12: Evaluation of Complexity [64]. Lower scores indicate a better complexity. We indicate
relevance pooling functions next to XAI method names, using ℓ2 for norm4pooling and Σ for sum4
pooling.

21

Figure 13: Evaluation of Sparseness [65] as a measure of complexity. Higher scores indicate a
better complexity. We indicate relevance pooling functions next to XAI method names, using ℓ2 for
norm4pooling and Σ for sum4pooling.

The metric shows a significant bias against the norm4pooled random explanation, which can also be
seen in the comparatively low scores of all gradient4based explanations.

In conclusion, SmoothDiff and SmoothDiff4Squared perform very well in terms of localization,
robustness and complexity, three desired properties in XAI, while being performant and simple
to implement. Using three equally uninformative random baselines (which should have performed
equally well in terms of robustness, localization and complexity), we demonstrated that relevance
pooling functions strongly alter the scores of most metrics, highlighting their significant (but
underexplored) impact on the evaluation and development of XAI methods, as well as the resulting
difficulty of comparing methods that require different relevance pooling functions.

G 𝛽-Smoothing and Gaussian convolutions

In [15], the analytical solution for the convolution of a ReLU activation function 𝑟 with a Gaussian
kernel 𝑔𝜎 is shown to be

(𝑟 ∗ 𝑔𝜎)(𝑥) =
1
2
[1 + erf(𝑥√

2𝜎
)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Φ𝜎(𝑥)

𝑥 + 𝜎2𝑔𝜎(𝑥) (11)

with derivative (𝑟 ∗ 𝑔𝜎)
′(𝑥) = Φ𝜎(𝑥), where erf is the error function. The authors term these

functions smoothed ReLU and smoothed Heaviside respectively. For a single4layer neural network,
SmoothDiff’s expected ReLU Jacobians (8) are the sampling approximation to the smoothed Heav4
iside function.

22

Figure 14: Comparison of ReLU, smoothed ReLU, and softplus functions (left) and their derivatives
(right).

In [23], it is shown that gradient4based explanations on deep ReLU networks can be manipulated
with hardly perceptible perturbations. The authors argue that this vulnerability is due to the large
curvature of such networks and propose 𝛽4Smoothing as a robust explanation method, replacing
ReLU activation functions by softplus activations

softplus𝛽(𝑥) =
1
𝛽
log(1 + 𝑒𝛽𝑥) (12)

with small parameters 𝛽 around one (matching pixel4flipping results in Table 1, in which 𝛽 = 1
performed best).

The authors demonstrate that for single4layer neural networks, 𝛽4Smoothing can be understood as
an approximation to the infinite sample limit of SG and therefore an approximation to the Gaussian
convolution (1). Figure 14 compares ReLU, smoothed ReLU and softplus functions, as well as their
derivatives. 𝛽4Smoothing provides a good approximation of the smoothed ReLU and can be further
improved by tuning the 𝛽 parameter.

While Gaussian convolutions are well approximated by 𝛽4Smoothing for single4layer networks,
non4linear functions break the assumption of Gaussian activations in subsequent layers. Resulting
heatmaps for 𝛽4Smoothing are shown in Figure 17. While the method qualitatively improves upon
regular gradients, it results in heatmaps that approximate neither SG nor SmoothDiff and are more
noisy and less contoured.

H SmoothDiff directly addresses the shattered gradient problem

Deep ReLU networks are piece4wise linear functions. The vector field of gradients of such networks
is piece4wise constant and discontinuous, as shown in Figure 1 (a). In [66], it is shown that
with increasing network depth, the number of linear regions and therefore discontinuities grows
exponentially. These discontinuities are the source of the SGP for deep ReLU networks, which can
be demonstrated using a path formulation of the gradient [13]. In Appendix H.1, we introduce our
notation for a general path formulation similar to that of [67]. We apply it to deep ReLU networks
in Appendix H.2, and demonstrate how SmoothDiff directly addresses it in Appendix H.3. We then
extend the same formulation to general non4linearities in Appendix H.4.

H.1 Notation

Given a neural network’s directed computational graph, we denote by 𝑃𝑖→𝑐 the set of all paths 𝑝
from input 𝑖 to output 𝑐. Applying this notation to (3), the 𝑖4th entry of the gradient ∇𝑓𝑐(𝒙) can be
written as

[∇𝑓𝑐(𝒙)]𝑖 =
𝜕𝑓𝑐(𝒙)
𝜕𝑥𝑖

= ∑
𝑝∈𝑃𝑖→𝑐

∏
𝑛
[𝑱𝑓𝑛(𝒂𝑛)]𝑝 , (13)

where [𝑱𝑓𝑛]𝑝 are scalar Jacobian entries of functions 𝑓𝑛 along the path.

23

We further factorize this product into:

• Linear or affine functions, whose Jacobian entries [𝑱𝑓𝑛]𝑝 = 𝑊
𝑛
𝑝 are constant (for dense

and convolutional layers, these correspond to individual weights).
• Non4linear functions, whose Jacobians entries [𝑱𝑓𝑛(𝒂𝑛)]𝑝 = 𝑔

𝑛
𝑝 (𝒂𝑛) depend on one or

more values in the input activation 𝒂𝑛 (which in turn depend on 𝒙, see Section 1).

This results in the path formulation

𝜕𝑓𝑐(𝒙)
𝜕𝑥𝑖

= ∑
𝑝∈𝑃𝑖→𝑐

∏
𝑖
𝑊 𝑖
𝑝

⏟
≕𝑊𝑝

∏
𝑗
𝑔𝑗𝑝(𝒂𝑗)

⏟⏟⏟⏟⏟
≕𝐺𝑝(𝒙)

= ∑
𝑝∈𝑃𝑖→𝑐

𝑊𝑝 · 𝐺𝑝(𝒙) . (14)

Analogous to [13], we refer to the product 𝑊𝑝 as the path-weight. Note that since all Jacobian
entries in (13) are scalar, products commute and the order of functions in the computational graph
doesn’t affect their contribution to 𝜕𝑓𝑐/𝜕𝑥𝑖. Equation (14) therefore generalizes to both arbitrary
compositional structures and arbitrary non4linearities.

H.2 Deep ReLU networks

We now apply the path formulation of the gradient (14) to deep ReLU networks, which exclusively
contain ReLU and max pooling non4linearities. For such networks, terms 𝑔𝑗𝑝 are indicator functions
and evaluate to either one or zero (see Section 2.2). We denote a path 𝑝 as active if its product 𝐺𝑝 is
non4zero. This is the case if and only if the path contains the largest inputs into every max pooling
filter and all inputs to ReLUs on the path are positive. If a path is active, it contributes the path4
weight 𝑊𝑝 to the gradient.

Since changes in the input 𝒙 alter all activations 𝒂𝑗, they also affect terms 𝑔𝑗𝑝(𝒂𝑗). If even a single
of these terms turns zero (e.g. because an activation into a ReLU becomes negative), contributions
from the path4weight 𝑊𝑝 vanish. Reversely, changes in the input can also activate new paths, adding
their respective path4weight 𝑊𝑝. With deeper networks, the length of paths increases linearly and
their number exponentially, increasing the density of path activity changes over the input domain. As
a result, small changes in the input cause more and more frequent changes in the gradient, eventually
resembling white noise [13]. We can express this sensitivity of paths by the second4order partial
derivative

𝜕2𝑓𝑐(𝒙)
𝜕𝑥𝑖𝜕𝑥𝑗

= ∑
𝑝∈𝑃𝑖→𝑐

𝑊𝑝 ·
𝜕𝐺𝑝(𝒙)
𝜕𝑥𝑗

. (15)

Since 𝐺𝑝 are indicator functions, their derivatives at points of path activity change are infinite (or
undefined). The sensitivity of paths in (15) directly depends on the curvature of 𝑓𝑐. Since 𝑓𝑐 is a
piece4wise linear function, its curvature is either zero within a linear region or infinite (or undefined)
at junction points of regions.

H.3 Addressing shattered gradients

As described in Section 1, applying Gaussian convolutions (1) to piece4wise constant gradients
∇𝑓𝑐(𝒙) results in smooth continuous functions, introducing curvature (see Figure 1 a). Even though
it doesn’t directly act on the mechanisms described in Appendix H.2, SG therefore addresses the
shattered gradient problem by approximating said Gaussian convolution in the infinite sample limit.

SmoothDiff addresses the issues in Appendix H.2 directly. By replacing Jacobians with expected
Jacobians, SmoothDiff replaces indicator functions 𝑔𝑛𝑝 by smoothed, continuously differentiable
functions 𝑔𝑛𝑝 = [𝑱𝑓𝑛]𝑝. As a product of continuously differentiable functions, the resulting product
𝐺̂𝑝(𝒙) is also continuously differentiable, avoiding the issue of path sensitivity (15) that characterize
the SGP. Looking at sampling estimates more specifically (see Section 2.2), SmoothDiff activates
all paths 𝑝 in which 𝑔𝑛𝑝 are non4zero in at least one sample. However, by ignoring covariances, it also

24

activates paths whose neurons are never jointly active in any individual sample and underestimates
paths which are frequently active.

H.4 General non-linearities

While Appendix H.2 is limited to deep ReLU networks, for which 𝐺𝑝 is an indicator function, the
path sensitivity (15) also applies to general non4linearities. If a model contains non4linear functions
with large second4order derivatives, the resulting terms 𝜕𝐺𝑝/𝜕𝑥𝑗 can also become very large,
directly increasing the sensitivity of path contributions and shattering the gradient. For a theoretical
analysis of the influence of the curvature of 𝑓𝑐 on gradient shattering, refer to [68].

I Example VEJP implementations

Algorithms 1 and 2 demonstrate the VEJP implementations for ReLUs and max pooling layers
from Section 2.2. After replacing all ReLU activation functions in a model with ReLU_SmoothDiff,
as well as replacing all MaxPool layers with corresponding MaxPool_SmoothDiff, 𝑛 forward passes
of the model are computed with samples 𝒙̂ ∼ 𝒩𝑔, incrementing sample and activation counters.
SmoothDiff can then be computed in a single backward pass through the model evaluating VEJPs
𝒗𝑇𝑱 (in the pseudocode, 𝒗𝑇 is named v and 𝑱 is named J). For ReLUs, this computation corresponds
to (9).

1 class ReLU_SmoothDiff
2 ReLU
3 sample_count = 0
4 activation_count = 0
5 function forward(input)
6 sample_count += 1
7 activation_count += input > 0
8 return ReLU(input)
9 function backward(v)

10 J = activation_count / sample_count
11 return v * J

Algorithm 1: SmoothDiff VEJP for ReLUs.

1 class MaxPool_SmoothDiff
2 MaxPool
3 sample_count = 0
4 activation_count = 0
5 function forward(input)
6 sample_count += 1
7 activation_count += is_max(input)
8 return MaxPool(input)
9 function backward(v)

10 J = activation_count / sample_count
11 return v * J

Algorithm 2: SmoothDiff VEJP for max pooling
layers.

J Rank

For two matrices 𝑨 ∈ ℝ𝑚×𝑘, 𝑩 ∈ ℝ𝑘×𝑛, Sylvester’s rank inequality tells us that

rank(𝑨) + rank(𝑩) − 𝑘 ≤ rank(𝑨𝑩) ≤ min(rank(𝑨), rank(𝑩)) . (16)

Using the factorization in (3), the rank of neural network Jacobians 𝑱𝑓 is therefore upper4bounded
by the lowest4rank Jacobian 𝑱𝑓𝑛 :

rank(𝑱𝑓) = rank(∏
𝑛
𝑱𝑓𝑛) ≤ min

𝑛
rank(𝑱𝑓𝑛) . (17)

In practice, the lowest4rank Jacobians of deep ReLU networks are those of element4wise ReLU
activation functions (since weight matrices tend to have full rank). As discussed in Section 2.2,
ReLU Jacobians are diagonal matrices with entries 𝐽𝜎𝑖,𝑖(𝒂) = 𝟙𝑥≥0(𝑎𝑖). Since the rank of a diagonal
matrix corresponds to the number of non4zero entries, it is determined by the number of strictly
positive activations 𝑎𝑖. SmoothDiff’s expected Jacobian entries (8) are non4zero if a single sample
leads to a positive activation 𝑎𝑖 (as discussed in Section 2.2 and Appendix H), directly increasing
the rank of the Jacobian computed in (5).

25

K Sample heatmaps

Figure 15: Qualitative comparison of SmoothDiff and SmoothGrad heatmap convergence over
increasing sample sizes. Heatmaps are computed on VGG419 using 𝜎 = 0.5.

Figure 16: SmoothDiff multi4class explanations for the target classes “castle”, “street sign”, and
“station wagon”. While gradient4based methods can’t distinguish between positive and negative
contributions on the pixel level, explanations change significantly between classes and their highest
values visibly lie within the object of the selected class. Heatmaps are computed on VGG419 with
𝑛 = 10 and 𝜎 = 0.5.

26

Figure 17: Comparison of gradient4based explanations on VGG419. All SmoothDiff and Smooth4
Grad explanations use 𝜎 = 0.5.

27

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [YES]

Justification:

• The superior convergence of SmoothDiff over SmoothGrad is demonstrated in experiments
in Section 3.1 and Section 3.2, as well as qualitatively in Section 3.3.

• The claimed performance increase of more than two orders of magnitude is derived in
Section 2.4.

• The ease of implementation is demonstrated in Section 2.2 and Appendix I
• We demonstrate that SmoothDiff directly addresses the shattered gradient problem in

Appendix H.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contri4
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [YES]

Justification:

• Limitations on ViT are documented in Section 2.5
• SmoothDiff efficiently approximates Gaussian convolutions by ignoring cross4covariances

between Jacobians in Equation (5). This limitation is repeatedly discussed in Section 2,
Section 2.1, Section 2.4 and Section 3. Neglected cross4covariances are discussed in
Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well4specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution

28

is low or images are taken in low lighting. Or a speech4to4text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [YES]

Justification:

• We provide a full derivation of SmoothDiff starting from the chain rule. In Equation (5),
the assumption of negligible cross4covariances is made. This assumption is repeatedly
discussed in Section 2 (including Section 2.1, Section 2.4) and Section 3.

• The paper contains no proofs or theorems.
• Formulas are numbered and cross4referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross4

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [YES]

Justification:

• Experiments are run on the widely available ImageNet dataset using the widely available,
pre4trained VGG419 model.

• We provide SmoothDiff reference implementations in PyTorch and Julia.
• The method is simple to reproduce in other code bases, as it requires very little code.

Pseudocode is provided in Appendix I.
• We provide the entire code used to run experiments, evaluations and visualizations, includ4

ing virtual environments.

29

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open4source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed4source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [YES]

Justification:

• We provide reference implementations of our method in PyTorch and Julia
• We provide all scripts used to run experiments, evaluations and visualizations, including

virtual environments.
• No specialized hardware is required
• No non4open4sourced or non4free libraries or languages are required

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not includ4
ing code, unless this is central to the contribution (e.g., for a new open4source benchmark).

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://
nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new pro4
posed method and baselines. If only a subset of experiments are reproducible, they should
state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpara4
meters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [YES]

Justification:

• For all methods we evaluate, the full set of hyperparameters is specified (see e.g column
“Parameters” in Table 1)

• We provide all scripts for all experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification:

• The paper does not contain error bars, as the approximated Gaussian convolution has no
analytic solution and is computationally intractable. However, we demonstrate that we
outperform previous approximations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

• It is OK to report 14sigma error bars, but one should state it. The authors should preferably
report a 24sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [YES]

Justification:

• Details on compute resources used are provided in Section 3, including CPU and GPU, as
well as memory.

• The run4times of benchmarked methods are reported in Section 3.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make
it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines

Answer: [YES]

Justification:

• We have read the NeurIPS Code of Ethics and our research fully conforms with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification:

32

https://neurips.cc/public/EthicsGuidelines

• We provide a computationally more efficient alternative to the SmoothGrad method, esti4
mating Gaussian convolutions of gradients, potentially reducing the energy consumption
of such computations.

• We see no potential malicious or unintended uses.
• We see no harms that could arise from the method.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha4
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [YES]

Justification:

• We release no model
• We release no dataset

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual4use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

33

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [YES]

Justification:

• We cite the VGG model architecture and ImageNet dataset in Section 3, the ImagenNet4S
dataset in Appendix F

• We cite used software libraries in Section 3

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC4BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, https://paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license of
a dataset.

• For existing datasets that are re4packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

• The paper does not introduce or release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, limita4
tions, etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification:

34

https://paperswithcode.com/datasets

• The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification:

• The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non4
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification:

• LLMs were not involved in the research beyond writing and editing assistance and as a
surface level search engine to look up technical concepts.

Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non4standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should
or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Contributions
	Related work

	SmoothDiff
	Jacobian factorization
	Example implementation
	Fallback VEJP
	Computational performance and other properties
	Limitations

	Experiments
	Convergence comparison
	Benchmarks
	Heatmaps
	Quantitative results

	Discussion
	Contributions
	Acknowledgements
	References
	Notation
	Experiment details – Figure 1
	Relevance pooling
	Heatmapping
	Characterizing neglected cross-covariances
	Further quantitative results
	Robustness
	Localization
	Complexity

	β-Smoothing and Gaussian convolutions
	SmoothDiff directly addresses the shattered gradient problem
	Notation
	Deep ReLU networks
	Addressing shattered gradients
	General non-linearities

	Example VEJP implementations
	Rank
	Sample heatmaps
	NeurIPS Paper Checklist

