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ABSTRACT

We introduce LANGBRIDGE, a zero-shot approach to adapt language models for
multilingual reasoning tasks without multilingual supervision. LANGBRIDGE op-
erates by “bridging” two models, each specialized in different aspects: (1) one
specialized in understanding multiple languages (e.g., mT5 encoder) and (2) one
specialized in reasoning (e.g., MetaMath). LANGBRIDGE connects the two mod-
els by introducing minimal trainable parameters between them. Despite utilizing
only English data for training, LANGBRIDGE considerably enhances the perfor-
mance of language models on low-resource languages across mathematical rea-
soning, coding, and logical reasoning. Our analysis suggests that the efficacy of
LANGBRIDGE stems from the language-agnostic characteristics of multilingual
representations. We publicly release our code and models.1

1 INTRODUCTION

Prior works have mainly adapted English-centric LMs to other languages through continual training
on the target language (Marchisio et al., 2023; Oba et al., 2023; Zhu et al., 2023; Kew et al., 2023).
However, scaling this approach to a large number of languages is challenging, as it requires targeted
training corpora for each language. This issue is particularly pronounced for LMs such as MetaMath
(Yu et al., 2023) and Orca 2 (Mitra et al., 2023), which have undergone continuous domain-specific
adaptation from Llama 2 (Touvron et al., 2023b). These specialized, domain-specific datasets are
typically in English, complicating multilingual support for the underlying LM.

In this paper, we introduce LANGBRIDGE, a novel approach that adapts LMs to solve multilingual
reasoning tasks without explicitly training on multilingual data. Inspired from the multimodal liter-
ature that integrates two independently pretrained modalities (Alayrac et al., 2022; Li et al., 2023a;
Merullo et al., 2023; Liu et al., 2023b; Bavishi et al., 2023), we leverage the encoder from mT5
(Xue et al., 2021) and introduce a small number of trainable parameters between the encoder and
the target LM. Most importantly, our approach does not require multilingual supervision and solely
relies on English data while generalizing to multiple languages during test time, resembling zero-
shot cross-lingual transfer (Pires et al., 2019; Conneau et al., 2020; Xue et al., 2021; Li & Murray,
2023).

We demonstrate the effectiveness of LANGBRIDGE by applying our method to LMs specialized in
mathematical reasoning, coding, and logical reasoning.2 Our empirical results show LANGBRIDGE
substantially enhances the multilingual reasoning performance of LMs. Notably, LANGBRIDGE
applied to MetaMath-13B leveraging mT5-XXL encoder (6.7B) boosts the average accuracy on
MGSM (Shi et al., 2023) from 40.5% to 55.8%, matching the performance of PaLM-540B (Chowd-
hery et al., 2023), which stands at 51.3%.

We hypothesize that the effectiveness of LANGBRIDGE is anchored in the language-agnostic char-
acteristics of multilingual representations (Pires et al., 2019; Libovický et al., 2020). By mapping
these representations to the LMs’ input space, we conjecture that the LM is able to grasp the seman-
tics of these representations. As the representations are language-neutral, the comprehension makes

1https://github.com/kaistAI/LangBridge
2Experiments on coding and logical reasoning is available in Appendix A.
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Figure 1: Overview of LANGBRIDGE. Left: A multilingual encoder with an added linear layer is
aligned with the target language model using English data. We keep the language model frozen,
whereas the linear layer is trainable. The multilingual encoder is trainable when adapting pretrained
LMs and frozen when adapting finetuned LMs. Right: In test time, a LANGBRIDGE model can
effectively solve multilingual reasoning tasks.

the specific language of the input inconsequential. Our empirical analysis of LANGBRIDGE, using
principal component analysis (PCA) supports this hypothesis.

2 LANGBRIDGE

Building on the findings of previous works, where effective cross-modal understanding has been
achieved by mapping representations from non-linguistic modalities to the soft prompts (Lester
et al., 2021) of LMs (Merullo et al., 2023; Liu et al., 2023b; Bavishi et al., 2023), LANGBRIDGE
maps the final hidden states of multilingual encoders to the soft prompts of LMs to attain multilin-
gual understanding of the LM. Following the studies above, we adopt the setting of using a single
linear layer as the mapping function. Given the input token (padded if necessary) of the encoder
Xenc, the derived soft prompt Henc has the same dimensionality as the hidden state of the language
model. We ablate the effect of using more complex architectures in Appendix E.

In our experiments, we use the encoders of mT5 (Xue et al., 2021) as the multilingual encoders
due to their availability across a wide range of parameters,3 and their support for longer input se-
quences compared to other multilingual encoder models.4 Specifically, we use the “LM adaptated”
checkpoints from Vu et al. (2022). We align LMs of 7B parameters with mT5-XL encoder to adapt
9B-sized models and 13B-sized LMs with mT5-XL encoder and mT5-XXL encoder to obtain 15B
and 20B models, respectively. We ablate the effect of the encoder parameter size and encoder model
type in Appendix E.

3 MAIN EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Evaluation Datasets MGSM (Shi et al., 2023) comprises grade school math word problems in 11
typologically diverse languages, human translated from a sample of GSM8K (Cobbe et al., 2021).
For evaluating pretrained LMs, we adopt the cross-lingual transfer chain-of-thought (CoT) reasoning
(Wei et al., 2022) setting (NATIVE-EXEMPLARS + EN-COT) from Shi et al. (2023), where the few-
shot exemplars are given in the target language, but the CoT rationales to solve the exemplars are
provided in English. For finetuned LMs, we evaluate in zero-shot5 setting.

Language Models Llemma (Azerbayev et al., 2023) is a LM for mathematics, continually pre-
trained from Code Llama (Rozière et al., 2023) on Proof-Pile-2, a mixture of scientific papers, web
data containing mathematics, and mathematical code. MetaMath (Yu et al., 2023) was finetuned
from Llama 2 (Touvron et al., 2023b) on MetaMathQA, a mathematical dataset based on GSM8K
and MATH (Hendrycks et al., 2021b). As both Proof-Pile-2 and MetaMathQA are publicly avail-
able, we sample 200,000 instances from their respective training datasets to apply LANGBRIDGE.6

3270M (Small), 470M (Base), 820M (Large), 2.2B (XL) and 6.7B (XXL).
4mT5 was trained on input size of 1024 tokens, but can take longer sequences due to its use of relative

position embeddings (Shaw et al., 2018).
5Here, the term zero-shot refers to the lack of few-shot examples.
6Ablation study in Appendix E suggests LANGBRIDGE in practice may require much less data.
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AVG HRL URL EN DE FR ES RU ZH JA TH SW BN TE

Freq. (Llama 2, %) - - - 89.7 0.17 0.16 0.13 0.13 0.13 0.10 LESS THAN 0.005

FEW-SHOT CROSS-LINGUAL COT

Llama 2-7B 9.1 12.1 3.9 15.2 11.6 13.2 11.2 11.6 11.2 10.8 7.2 5.2 3.2 0.0
XGLM-7.5B 1.5 1.6 1.2 0.4 1.6 1.2 1.6 2.0 2.8 1.6 2.0 0.4 1.2 1.2
mT5-XXL (13B) 2.9 3.5 2.0 3.6 2.4 4.0 3.6 2.8 3.6 4.4 2.8 1.2 3.2 0.8
BLOOM-7.1B 2.4 2.6 2.0 3.6 1.2 3.6 2.4 2.0 3.2 2.0 0.0 2.4 2.8 2.8
BLOOM-7.1B-PP2 2.3 2.5 1.9 4.8 1.2 2.0 2.0 1.6 4.0 1.6 0.8 2.8 2.0 2.0
PaLM-540B 51.3 52.3 46.8 62.4 53.6 51.2 58.0 55.6 46.0 49.6 49.6 44.4 46.4 46.8

Llemma-7B 21.6 29.9 7.2 44.8 27.2 33.2 29.2 26.0 26.4 22.4 14.0 8.4 6.4 0.0
Llemma-LB-9B 20.4 22.5 16.7 34.8 23.6 26.8 22.4 18.8 16.0 15.2 20.8 17.6 12.4 16.0

Llemma-34B 35.6 46.3 16.7 58.0 48.0 46.8 48.0 47.2 36.8 39.6 28.4 27.2 11.2 0.0

ZERO-SHOT COT

MathOctopus-7B 37.1 42.7 27.2 51.6 40.0 38.4 47.2 42.4 44.0 35.6 39.2 31.6 37.2 0.8
MathOctopus-13B 42.9 48.6 32.9 50.8 49.2 50.4 52.8 47.2 52.4 37.2 44.4 40.4 46.4 0.4
BLOOM-7.1B-MM 16.7 21.7 7.8 41.2 19.6 24.4 26.8 9.6 21.2 9.2 0.8 15.6 6.8 8.0

MetaMath-7B 34.4 51.8 3.9 64.8 57.6 55.6 56.4 50.4 42.4 35.6 4.0 6.4 4.4 0.8
MetaMath-LB-9B 48.8 52.3 42.8 63.2 50.8 52.4 58.0 56.4 45.2 40.0 50.4 43.2 42.8 34.8

MetaMath-13B 40.5 60.3 6.0 70.4 64.4 65.2 63.6 60.0 50.8 47.6 4.8 11.6 6.8 0.8
MetaMath-LB-15B 53.5 58.0 45.2 67.6 63.6 61.6 63.2 60.0 48.0 42.0 52.8 41.6 50.0 36.4
MetaMath-LB-20B 55.8 58.7 50.7 66.4 64.0 64.0 60.4 58.8 52.4 45.2 53.6 49.2 52.8 47.2

Table 1: Accuracy (%) on MGSM. Alongside average (AVG) accuracy, we also report average ac-
curacy of high-resource languages (HRL) and underrepresented languages (URL) classified by Shi
et al. (2023). We include the language distribution of Llama 2 for reference. For pretrained models
(Top), we prompt with 8-shot cross-lingual chain-of-thought (CoT) reasoning exemplars, except for
PaLM-540B, for which we reference the 6-shot cross-lingual CoT performance reported by Shi et al.
(2023). For finetuned models (Bottom), we evaluate zero-shot. The PP2 and MM suffixes denote
models trained on Proof-Pile-2 and MetaMath, respectively. We compare LANGBRIDGE models
(LB) to their original checkpoints and highlight the best-performing numbers in bold.

Baselines Llama 2 (Touvron et al., 2023b) is an English-centric LM in which 89.7% of the pre-
training data consists of English but has shown considerable performance on non-English languages
(Lai et al., 2023). mT57 (Xue et al., 2021), XGLM (Lin et al., 2022), and BLOOM (Scao et al.,
2022) are multilingual LMs. MathOctopus (Chen et al., 2023) is an LM for multilingual math-
ematical reasoning. It was initialized from Llama 2 and finetuned on translations of the GSM8K
dataset across ten languages.8 We use their best-performing checkpoints, xRFT-MathOctopusP ,
which were further enhanced by data augmentation through rejection sampling (Yuan et al., 2023).
We also report the performance of BLOOM models further trained on the training sets of LANG-
BRIDGE models, BLOOM-Proof-Pile-2 (PP2) and BLOOM-MetaMath (MM). This is done to
confirm that the capabilities of LANGBRIDGE models are derived from the language models’ inher-
ent strength rather than solely from the training set utilized. We additionally report the performance
of PaLM (Chowdhery et al., 2023) measured by Shi et al. (2023). Similar to Llama 2, PaLM was
pretrained on English-heavy corpora.

3.2 RESULTS

Table 1 shows the evaluation results of baselines and LANGBRIDGE models on MGSM. We high-
light six main observations. (1) Llama 2, Llemma, and MetaMath exhibit critical performance degra-
dation across languages that are underrepresented in the training data of Llama 2. (2) Despite this,
multilingual LMs underperform Llama 2, even in the context of underrepresented languages.9 This
disparity underscores the robust mathematical reasoning capabilities inherent in Llama 2 and ab-

7We use the language model checkpoint from Vu et al. (2022).
8The ten languages overlap with the 11 languages included in MGSM, except Telugu.
9Note BLOOM models were not trained in German, Russian, Japanese, and Thai.
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sent in multilingual LMs. (3) LANGBRIDGE enhances the multilingual performance of Llemma and
MetaMath, especially in underrepresented languages. Most notably, LANGBRIDGE is able to bring
Llemma and MetaMath performance on Telugu (TE) from zero or near zero to a range comparable to
other languages. (4) LANGBRIDGE models demonstrate competitive performance against baselines.
LANGBRIDGE models vastly outperform similar-sized multilingual models, establishing LANG-
BRIDGE as a viable approach for developing mathematical reasoning models for low-resource lan-
guages. Remarkably, MetaMath-LB models achieve performance on par with the significantly larger
PaLM-540B model. (5) Mathematical reasoning capabilities of LANGBRIDGE models come from
their original LMs, not their training data. This is evident from BLOOM-7.1B-PP2 and BLOOM-
7.1B-MM underperforming Llemma-LB-9B and MetaMath-LB-9B, respectively, by a large margin.
(6) Surprisingly, despite only being trained on English reasoning data, our MetaMath-LB models
are competitive against MathOctopus models, which were finetuned on translations of GSM8K on
ten out of 11 languages supported by MGSM. The performance gap between the two models on
Telugu, an unseen language by MathOctopus, spotlights the benefit of zero-shot multilingual adap-
tation of LANGBRIDGE. Continual training with curated target language data cannot generalize to
unseen languages, whereas LANGBRIDGE models, by nature, can generalize to the large scale of
languages included in the pretraining of mT5. We provide an example of CoT rationale generated
by MetaMath-LB in Appendix K. Additional experiments on other models, tasks, and datasets are
available in Appendix A, C, and D.

4 ANALYSIS OF LANGBRIDGE
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Figure 2: First two principal components of pooled representations obtained with FLORES. Note
that the scales of the two subplots differ.

Previous works show that representations of multilingual encoder models are moderately language-
agnostic (or language-neutral) out-of-the-box, facilitating zero-shot cross-lingual transfer (Pires
et al., 2019; Libovický et al., 2020). Based on this premise, we hypothesize that by aligning a
multilingual encoder model to the space of the target language model, the language model is able to
understand the semantics of the languages supported by the multilingual encoder without training
on a large set of languages.

If the conjecture holds, given a LANGBRIDGE model, the LM’s output representation of the soft
prompt Henc should also exhibit language-agnostic characteristics. It stands to reason that the LM
would not arbitrarily introduce additional language-specific features to a language-neutral input.

Figure 2 shows the first two principal components of pooled representations obtained with 300
samples of FLORES (Goyal et al., 2022; Costa-jussà et al., 2022), a parallel corpora. For Orca
2, high-resource languages, English (EN), Spanish (ES), and German (DE), are mapped closely to-
gether. Underrepresented languages, Telugu (TE) and Swahili (SW), exhibit a more distant mapping
in the representation space, forming three clusters. Conversely, Orca 2-LANGBRIDGE representa-
tions are mapped into a single cluster, indicating that the representations of Henc maintain a rela-
tively language-neutral status. In Appendix B we provide qualitative analysis that further supports
the hypothesis. Additional experimental details on Orca 2-LANGBRIDGE models are available in
Appendix A.

5 CONCLUSION

In this paper, we propose LANGBRIDGE, a simple yet effective method of extending the capabili-
ties of LMs to solve multilingual reasoning tasks without using multilingual supervision. We offer
analysis explaining the efficacy of LANGBRIDGE and attribute it to the language-agnostic nature of
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multilingual representations. We hope our findings benefit the low-resource language users and spur
further research advancing the development of LMs inclusive of the entire global community.
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Jindřich Libovický, Rudolf Rosa, and Alexander Fraser. On the language neutrality of pre-trained
multilingual representations. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 1663–1674, Online, November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.findings-emnlp.150. URL https://aclanthology.org/
2020.findings-emnlp.150.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle
Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh
Koura, Vishrav Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva,
Mona Diab, Veselin Stoyanov, and Xian Li. Few-shot learning with multilingual language models,
2022.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Kelly Marchisio, Patrick Lewis, Yihong Chen, and Mikel Artetxe. Mini-model adaptation: Effi-
ciently extending pretrained models to new languages via aligned shallow training. In Findings
of the Association for Computational Linguistics: ACL 2023, pp. 5474–5490, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.338.
URL https://aclanthology.org/2023.findings-acl.338.

Jack Merullo, Louis Castricato, Carsten Eickhoff, and Ellie Pavlick. Linearly mapping from image
to text space, 2023.

Arindam Mitra, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes, Sahaj Agar-
wal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, Hamid Palangi, Guoqing
Zheng, Corby Rosset, Hamed Khanpour, and Ahmed Awadallah. Orca 2: Teaching small lan-
guage models how to reason, 2023.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

Miyu Oba, Tatsuki Kuribayashi, Hiroki Ouchi, and Taro Watanabe. Second language acquisition
of neural language models. In Findings of the Association for Computational Linguistics: ACL
2023, pp. 13557–13572, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.856. URL https://aclanthology.org/2023.
findings-acl.856.

OpenAI. Gpt-4 technical report, 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//aclanthology.org/P02-1040.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 2080–
2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168.

Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual BERT? In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4996–5001, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1493. URL https://aclanthology.org/P19-1493.

7

https://aclanthology.org/2020.findings-emnlp.150
https://aclanthology.org/2020.findings-emnlp.150
https://aclanthology.org/2023.findings-acl.338
https://aclanthology.org/2023.findings-acl.856
https://aclanthology.org/2023.findings-acl.856
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/P19-1493


Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)
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A ADDITIONAL REASONING TASKS

A.1 CODE COMPLETION

A.1.1 EXPERIMENTAL SETUP

Evaluation Datasets Leveraging the competitive translation performance of GPT-4 (OpenAI,
2023), as demonstrated in the study by Jiao et al. (2023), we extend HumanEval (Chen et al.,
2021), a set of hand-written programming problems, into five underrepresented languages: Swahili,
Bengali, Punjabi, Telugu, and Urdu. We name the resulting dataset HumanEval-MT. We select
the five languages among those with reported MMLU (Hendrycks et al., 2021a) performance in the
technical report of GPT-4 while also being included in the pretraining corpora of BLOOM. This
choice is made to acquire high-quality translations from GPT-4, and give BLOOM-based baselines
an even chance. To guide GPT-4 to only translate the embedded natural language instruction of the
docstring while not modifying the code segments, we prompt GPT-4 with two human-annotated ex-
amples. Subsequently, the generated translations are executed in a Python interpreter environment
to assert the absence of syntax errors. We provide translation quality estimation of HumanEval-MT
in Appendix F.

The examples within the HumanEval dataset often feature self-explanatory function names, which
raises the possibility that LMs could potentially complete the associated code segments successfully
without fully comprehending the natural language comments embedded within them. Consequently,
we evaluate the models on anonymized versions of each language set, wherein the target function
names of the code segments are uniformly altered to “func”. An example of an anyonymized prompt
and evaluation result on the non-anonymized version is available in Appendix G.

Language Models Code Llama (Rozière et al., 2023) is a family of models initialized from
Llama 2 model weights and pretrained on a code-heavy dataset. In our experiments, we use Code
Llama-Python models, which were further pretrained on a Python-heavy dataset. Since the datasets
used to pretrain the Code Llama models are not publicly available, we sample from the Python
subset of StarCoder data (Li et al., 2023b) as the training corpora for LANGBRIDGE.

Baselines We use Llama 2 and BLOOM models as the baselines. Unlike other open multilin-
gual models, the pretraining corpora of BLOOM contain code data with a 10.8% ratio (Laurençon
et al., 2022). Additionally, we report the performance of BLOOM-StarCoder, a BLOOM model
continually pretrained on the sample of StarCoder data used to train LANGBRIDGE models.

A.1.2 RESULTS

AVG EN SW BN PA TE UR

Llama 2-7B 4.6 9.8 3.7 3.0 3.0 3.0 4.9
BLOOM-7.1B 4.9 7.3 2.4 5.5 4.3 6.1 3.7
BLOOM-7.1B-StarCoder 4.5 6.7 3.0 4.3 4.3 3.7 4.9

Code Llama-7B 16.9 36.0 14.0 14.6 10.4 9.8 16.5
Code Llama-LB-9B 19.4 31.7 17.1 15.2 18.3 15.2 18.9

Code Llama-13B 19.6 40.2 15.2 17.7 12.2 12.8 19.5
Code Llama-LB-15B 23.6 41.5 20.1 20.1 19.5 19.5 20.7
Code Llama-LB-20B 23.5 36.0 24.4 20.1 20.7 18.9 20.7

Code Llama-34B 22.7 43.9 17.1 23.8 15.9 12.8 22.6

Table 2: Pass@1 scores on HumanEval and HumanEval-MT. The models were evaluated on zero-
shot code completion using greedy decoding. We compare LANGBRIDGE (LB) models to their
original checkpoints and highlight the best-performing numbers in bold.

Table 2 presents the Pass@1 scores on HumanEval and HumanEval-MT. Code Llama-LB models
show consistent improvements over Code Llama across all underrepresented languages. Moreover,
LANGBRIDGE models could match their larger baselines on the average scores, with the 9B model
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slightly underperforming Code Llama-13B by 0.2%, while 15B and 20B models surpassing Code
Llama-34B. BLOOM trained on StarCoder data did not demonstrate noticeable improvements, re-
emphasizing that the strengths of LANGBRIDGE models predominantly stem from the capabilities
of original LMs.

A.2 LOGICAL REASONING

A.2.1 EXPERIMENTAL SETUP

Evaluation Datasets We assess logical reasoning capabilities with Big-Bench Hard (BBH) (Suz-
gun et al., 2023), a collection of challenging subtasks where the application of Chain-of-Thought
(CoT) reasoning has the potential to enhance performance substantially. From the 23 subtasks of
BBH, we restrict the evaluation tasks to 14 subtasks that maintain relevancy even in another lan-
guage.10 We translate the selected subtasks to Bengali using GPT-4 to construct BBH-BN. We
prompt GPT-4 with three human-translated examples for each subtask. Two native Bengali speakers
iteratively curated the examples based on the translation quality of GPT-4 as feedback.

Language Models Orca 2 (Mitra et al., 2023) was finetuned on Llama 2 with a collection of
datasets augmented with rich reasoning traces collected from GPT-4 as well as fully synthetic
datasets created with GPT-4. Orca 2 effectively improved the reasoning abilities of smaller LMs,
enabling them to match the performance of models 5 to 10 times their size on complex tasks de-
manding advanced reasoning in zero-shot settings. As the training dataset of Orca 2 is not publicly
available, we sample the training data for LANGBRIDGE from OpenOrca dataset (Lian et al., 2023).
OpenOrca follows the data distribution of the first iteration of Orca (Mukherjee et al., 2023). We
employ CLD311 to filter any non-English data that mainly derives from translation datasets to ensure
the zero-shot setting of our experiments. Examples were included if their input text had a 99% or
greater probability of being English, while their target text also had a 95% or greater chance of being
English. A slightly lower threshold was adopted for the target text to not falsely filter single-word
responses, which CLD3 exhibits lower confidence.

Baselines In our evaluation of BBH, we assess whether Orca 2-LB models could acquire mul-
tilingual comprehension while retaining the zero-shot CoT capabilities of Orca 2. However, from
our limited testing, we found that no existing open multilingual LMs could generate CoT reliably
in a zero-shot setting. Consequently, they were not included as baselines. We still have BLOOM-
OpenOrca, a BLOOM model further trained on the same training set of LANGBRIDGE, as a base-
line.

A.2.2 RESULTS

EN BN
BLOOM-7B-OpenOrca 35.8 31.2

Orca 2-7B 53.9 36.7
Orca 2-LB-9B 46.9 41.8
Orca 2-13B 57.9 41.7
Orca 2-LB-15B 55.2 45.4
Orca 2-LB-20B 53.1 45.4

Table 3: Accuracy (%) on BBH (English) and BBH-BN (Bengali). We report the average accuracy
across selected 14 subtasks. We compare LANGBRIDGE (LB) models to their original checkpoints
and highlight the best-performing numbers in bold.

Table 3 shows the average accuracy across the subtasks for BBH and BBH-BN. Notably, the Orca
2-LB-9B model shows considerable improvement in BBH-BN, surpassing the larger Orca 2-13B

10List of selected subtasks is available in Appendix G.
11github.com/google/cld3
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model. However, the Orca 2-LB-9B model has a discernible decline in performance in BBH com-
pared to Orca 2-7B. Nonetheless, the performance decrease in English is substantially mitigated in
the larger-scale models. Another noteworthy observation is that the Orca 2-LB-20B model does
not surpass the performance of the Orca 2-LB-15B model in either BBH or BBH-BN. In Appendix
E, we analyze the impact of the encoder size on performance. Additionally, we present the eval-
uation results of individual subtasks in Appendix G and examples of generated CoT rationale in
Appendix K.

A.3 COMMONSENSE REASONING

A.3.1 EXPERIMENTAL SETUP

Evaluation Datasets COPA (Roemmele et al., 2011) is a commonsense reasoning dataset in En-
glish. XCOPA (Ponti et al., 2020) extends COPA to 11 languages.

Language Models We evaluate commonsense reasoning capabilities of Orca 2-LANGBRIDGE
models described in Appendix A.2.

Baselines We do not include multilingual LMs as baselines, as COPA was included in the training
set of Orca 2, making it challenging to draw meaningful comparisons.

A.3.2 RESULTS

EN AVG HRL URL ZH IT VI ID ET HT QU SW TA TH TR

Freq. (Llama 2, %) 89.7 - - - 0.13 0.11 0.08 0.03 LESS THAN 0.005

Orca 2-7B 98.0 67.3 86.4 63.0 85.6 87.2 83.4 82.4 54.4 52.2 49.8 54.2 58.0 62.0 71.0
Orca 2-LB-9B 90.0 76.6 83.4 75.1 85.4 81.4 79.8 84.6 78.2 74.4 50.8 74.4 78.0 78.4 77.6

Orca 2-13B 99.0 73.7 93.1 69.4 92.4 93.8 87.0 86.8 66.4 61.0 49.8 65.8 63.8 67.6 76.4
Orca 2-LB-15B 92.0 77.3 84.5 75.7 85.2 83.8 83.4 83.8 80.6 74.8 50.4 72.2 77.2 79.8 79.2
Orca 2-LB-20B 92.0 79.8 86.3 78.4 86.2 86.4 83.6 85.4 82.8 76.4 54.2 77.8 82.8 79.8 82.4

Table 4: Accuracy (%) on COPA and XCOPA. For XCOPA, we report the average accuracy across
11 languages. We compare LANGBRIDGE (LB) models to their original checkpoints and highlight
the best-performing numbers in bold.

Table 4 shows the evaluation results of Orca 2 and Orca 2-LANGBRIDGE models on COPA and
XCOPA. Despite reaching near-perfect accuracy for COPA, Orca 2 models’ performance drops
closer to random chance (50%) on some of the underrepresented languages of XCOPA. LANG-
BRIDGE successfully decreases this performance degradation, except for Quechua (QU). The dis-
crepancy is likely due to Quechua not being included in the 101 languages covered by mT5. This
observation reemphasizes that the large-scale linguistic proficiency of LANGBRIDGE models is pri-
marily derived from mT5.
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B FURTHER ANALYSIS OF LANGBRIDGE

Model Input

[⋯]
কোন বক্তব্যটি ব্যঙ্গাত্মক? (Which statement is sarcastic?)

Options:
(A) যেহেতু  কর্পো রেট নিয়ন্ত্রণ মানে স্বতন্ত্র ভাষণ,
এটি প্রকৃ তপক্ষে গণতন্ত্রের জন্য একটি বড় জয়
(Since corporate restriction equals free speech
 this is actually a big win for democracy)
(B) যেহেতু  কর্পো রেট মানি মানে স্বতন্ত্র ভাষণ,
এটি প্রকৃ তপক্ষে গণতন্ত্রের জন্য একটি বড় জয়
(Since corporate money equals free speech
this is actually a big win for democracy)

Model Output

[⋯]
Step 2: Analyze the given options.
(A) 因为企业主控制意味着独立演讲，
这实际上是民主的一个巨大胜利
(B) 因为企业主钱意味着独立演讲，
这实际上是民主的一个巨大胜利

Step 3: Translate the options to English.
(A) Since corporate control means independent speech,
this is actually a huge victory for democracy
(B) Since corporate money means independent speech,
this is actually a huge victory for democracy
[⋯]
Final answer: (B) 因为企业主钱意味着独立演讲，
这实际上是民主的一个巨大胜利

"Accidental
Translations"

Figure 3: Example of accidental translation of an Orca 2-LANGBRIDGE model prompted with the
SNARK subset of BBH-BN. Portions of the input prompt and several rational steps in the output are
truncated for brevity. Translations are provided in (blue with parenthesis) wherever required.

Figure 3 illustrates an example of “accidental translation” (Xue et al., 2021) by the Orca 2-
LANGBRIDGE-15B model. Despite being given the options in Bengali, the LANGBRIDGE model
perceives the options as Chinese and recites them in Chinese. With Bengali as input, accidental
translation in a third language other than English or Bengali suggests that multiple languages may
have similar representations in Henc (Li & Murray, 2023). Nonetheless, accidental translations
in languages other than English are uncommon for Orca 2-LANGBRIDGE models. We conduct a
qualitative analysis on the CoTs generated by Orca 2-LANGBRIDGE-15B for BBH-BN SNARKS
subtask, which we find is the combination with the most frequent accidental translations. Out of 178
CoT rationales generated, only eight examples contained accidental translations in Chinese, Danish,
Hindi, Japanese, Marathi, and Turkish, with one or two examples per language. Additionally, seven
examples had Bengali in their CoT rationales. The relatively high frequency of Bengali indicates
that Henc does not exhibit a perfectly language-agnostic behavior, and for some examples, the LM
could discern the input language as Bengali. This is not ideal, as it suggests that the LM had to
comprehend the input in Bengali, a language in which the LM lacks proficiency. We believe that
LANGBRIDGE performance can be further enhanced by relieving the zero-shot constraint and adapt-
ing the mT5 encoder to have enhanced language-neutrality (Reimers & Gurevych, 2020; Feng et al.,
2022) prior to alignment with the LM. However, we leave this exploration for future study.
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C MSVAMP

AVG HRL URL EN DE FR ES RU ZH JA TH SW BN

Freq. (Llama 2, %) - - - 89.7 0.17 0.16 0.13 0.13 0.13 0.10 LESS THAN 0.005

MathOctopus-7B 39.2 41.5 34.0 39.8 42.4 44.0 43.3 41.6 40.4 38.7 35.1 29.7 37.2
MathOctopus-13B 45.1 47.2 40.0 44.8 46.7 50.6 49.9 47.6 47.1 43.9 40.0 36.3 43.6
BLOOM-7.1B-MM 24.9 29.5 14.1 40.7 28.8 33.8 32.0 27.7 27.7 15.7 3.0 21.2 18.0

MetaMath-7B 47.8 61.1 16.9 66.3 63.5 64.1 64.9 60.3 55.0 53.4 19.5 16.8 14.4
MetaMath-LB-9B 52.0 54.9 45.1 60.6 58.1 57.0 56.9 55.8 50.4 45.5 46.3 42.1 46.8

MetaMath-13B 50.6 65.1 16.8 69.2 67.3 66.1 66.9 66.9 58.0 61.4 18.6 14.4 17.3
MetaMath-LB-15B 57.0 60.4 49.1 64.1 61.9 65.9 64.8 61.0 55.0 50.1 51.3 42.1 54.0
MetaMath-LB-20B 57.9 60.4 51.8 65.3 63.0 62.5 62.7 60.9 55.4 53.3 52.3 47.1 56.0

Table 5: Accuracy (%) on MSVAMP. MM suffix denotes the model was finetuned on MetaMath. We
compare LANGBRIDGE (LB) models to their original checkpoints and highlight the best-performing
numbers in bold.

MSVAMP (Chen et al., 2023) is a multilingual grade school level math word problem dataset trans-
lated from SVAMP (Patel et al., 2021) to 10 languages. We only evaluate MSVAMP in a zero-shot
setting, as no CoT rationale examples are provided with the dataset.

Table 5 presents the evaluation results on MSVAMP. MetaMath and MathOctopus were not trained
on SVAMP or MSVAMP, so MSVAMP can be seen as an out-of-domain test set to evaluate domain
generalization (Chen et al., 2023). Performance of LANGBRIDGE-MetaMath models indicates our
models can generalize to out-of-domain test sets successfully.

D GENERAL-DOMAIN LANGUAGE MODELS

AVG HRL URL EN DE FR ES RU ZH JA TH SW BN TE

Lang. Freq. (Llama 2, %) - - - 89.7 0.17 0.16 0.13 0.13 0.13 0.10 LESS THAN 0.005

Llama 2-7B 9.1 12.1 3.9 15.2 11.6 13.2 11.2 11.6 11.2 10.8 7.2 5.2 3.2 0.0
Llama-LB-9B 11.3 12.2 9.7 16.8 12.4 12.8 13.6 9.2 10.0 10.8 13.6 9.2 7.6 8.4

Mistral-7B 28.5 34.4 12.8 43.6 34.4 35.2 39.6 32.8 28.8 26.4 20.4 7.6 16.0 7.2
Mistral-LB-9B 26.1 27.9 20.7 32.4 29.6 30.8 29.6 28.8 25.2 18.8 24.4 18.8 22.4 17.2

Table 6: Accuracy (%) on MGSM of general-domain LMs. We compare LANGBRIDGE models
(LB) to their original checkpoints and highlight the best-performing numbers in bold.

Table 6 probes the effect of LANGBRIDGE on general-domain English-centric LMs, Llama 2 and
Mistral 7B (Jiang et al., 2023), using MGSM. Consistent with the findings on specialized LMs,
LANGBRIDGE enhances the performance of low-resource languages. As training corpora for Llama
2 and Mistral 7B are unavailable, we use a sample of the SlimPajama dataset (Soboleva et al., 2023)
as the training set.
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E ABLATIONS

E.1 FREEZING/UNFREEZING

Model
Trainable

AVG
Enc LM

MGSM

Llama 2-7B 9.6
! 11.3

Llemma-7B 14.4
! 20.4

MetaMath-7B 48.8
! 43.9

HUMANEVAL + HUMANEVAL-MT

Code Llama-7B 15.3
! 19.4

XCOPA

Orca-7B
76.6

! 71.1
! 74.0

Orca-13B 77.3
! 65.1

Table 7: Ablations on the effect of freezing the encoder and the language model during aligning of
LANGBRIDGE. !denotes the module is trainable (not frozen) during aligning.

We strictly keep the embedding layers of mT5 trainable throughout our experiments as we extend
the vocabulary and the embedding layer to incorporate whitespace characters. mT5 tokenizers do
not have whitespace characters in their vocabularies, and their default behavior is to truncate any
consecutive whitespaces to a single space. However, this could negatively affect understanding code
or following instructions considering the frequent use of whitespaces as delimiters (\n, \t, and “four
spaces”). Therefore, even when we freeze the encoder, we leave the embedding layer trainable for
the added whitespace vocabulary.

Table 7 presents the ablation study on the impact of parameter freezing during the alignment process.
We apply LANGBRIDGE with mT5-XL (2B) encoder on multiple LMs while varying the trainable
modules. Notably, freezing the encoder appears beneficial when adapting finetuned language models
(MetaMath and Orca), whereas it negatively affects pretrained models (Llama, Llemma, and Code
Llama). We speculate this divergence stems from differing entropy levels in the datasets: unlabeled
corpora typically exhibit higher entropy than relatively well-formatted finetuning datasets. Con-
sequently, we conjecture that for unlabeled data, keeping the encoder trainable enables the model
to acclimate to the training data better. Nonetheless, we leave a thorough investigation for future
research. Conversely, training the language model during the alignment phase does not improve
performance. We hypothesize this is due to the training datasets being strictly in-domain of the
LMs. As such, the models may not be learning additional information from the data.
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E.2 ENCODER SIZE
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Figure 4: XCOPA accuracy (%) of Orca 2-7B models adapted with LANGBRIDGE using five differ-
ent sizes of mT5 encoder. The dotted line shows the performance of base Orca 2-7B.

Figure 4 shows the effect of encoder size on LANGBRIDGE when applied to Orca 2-7B, measured
with XCOPA. We test five different sizes of mT5 encoder: 270M (Small), 470M (Base), 820M
(Large), 2.2B (XL) and 6.7B (XXL). We observe that LANGBRIDGE with the two smaller-sized
encoders underperforms the base Orca 2-7B. Nonetheless, performance increases rapidly as the
encoder size scales from 270M to 2.2B and saturates in the 2.2B to 6.7B range. These results,
coupled with the main experiments of Appendix A.2, highlight that scaling the encoder size past a
certain point provides diminishing returns.

E.3 TRAINING SET SIZE
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Figure 5: XCOPA accuracy (%) of Orca 2-7B models adapted with LANGBRIDGE using five differ-
ent sizes of training datasets.

While we fixed the training set size to 200,000 in our experiments, Figure 5 shows that XCOPA
performance peaks on 120,000 training examples, which is 60% of our experiment setting. This
suggests that in practice, LANGBRIDGE can be applied more efficiently.
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E.4 DIFFERENT ARCHITECTURES

XCOPA (Acc. %)
Linear 76.6
MLP 72.7
Resampler 49.7

Table 8: Ablations of different LANGBRIDGE architectures using Orca 2-7B and mT5-XL encoder.

Table 8 shows the ablations of different LANGBRIDGE architectures. Throughout the main exper-
iment, we adopt a single linear layer to connect the encoder and the language model. We ablate
the effect of using an MLP layer following the second iteration of LLaVa (Liu et al., 2023a), and
a “resampler” module that adopts the architecture of perceiver resampler employed by Flamingo
(Alayrac et al., 2022). In contrast to the finding of Liu et al. (2023a), we find that using an MLP
layer instead of a linear layer decreases the performance slightly. Using a resampler module results
in random performance.

E.5 DIFFERENT ENCODER MODELS

XCOPA (Acc. %)
umT5-XL 49.7
umT5-XL (F) 49.2
XGLM-1.7B 51.5
XGLM-1.7B (F) 49.7

Table 9: Ablations of different encoder models for LANGBRIDGE tested on Orca 2-7B model. (F)
denotes that the encoder was frozen during alignment.

Table 4 presents the results of using different encoder models. We test out umT5 (Chung et al.,
2023), which improves upon mT5 to include a higher proportion of low-resource languages during
pretraining. As umT5 does not have “LM adapted” checkpoints, unlike mT5, we use the original
checkpoints. However, we find using umT5 results in random performance. Since umT5 has nearly
identical architecture to mT5, except that it has relative position bias for every Transformer layer,
we speculate that using the encoder of non-LM Seq2Seq models resulted in failed alignment. We
also test XGLM Lin et al. (2022), a decoder LM, as an encoder, in which we also observe similar
results. In both cases, freezing the encoder made no difference. We leave further investigation for
future research.

F QUALITY ESTIMATION OF HUMANEVAL-MT

EN ⟲SW ⟲BN ⟲PA ⟲TE ⟲UR

CL-7B 36.0 35.4 35.4 36.6 36.6 37.8
CL-34B 43.9 36.6 46.3 42.1 42.1 45.7

BLEU - 88.3 90.5 93.4 90.5 96.1
crhF - 89.9 93.1 94.6 93.1 96.5

Table 10: Quality estimation of HumanEval-MT using backtranslations. CL prefix denotes Code
Llama Pass@1 score.

Table 10 presents the quality estimation for HumanEval-MT using backtranslation (Agrawal et al.,
2022; Zhuo et al., 2023). We translate HumanEval-MT back to English and measure Code Llama
Pass@1 scores. As explained in Appendix A.1, we anonymize all function names. In addition, we
report automatic evaluation metrics, BLEU (Papineni et al., 2002) and chrF (Popović, 2015), against
the original HumanEval. We use the docstrings only for calculating the metrics.
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Overall, Code Llama’s performance on the backtranslations matches the original HumanEval bench-
mark, with the exception of Code Llama-34B’s performance on Swahili backtranslation. However,
Code Llama-7B achieves comparable results on the Swahili backtranslation. This suggests that for
Swahili, GPT-4 may struggle with accurately translating complex examples that only larger models
can solve. Lower automatic evaluation scores in Swahili further support the idea.

G ADDITIONAL EVALUATION RESULTS

G.1 BBH

CAUSAL DATE DISAM. FORMAL LOGIC. 3 LOGIC. 5 LOGIC. 7

EN BN EN BN EN BN EN BN EN BN EN BN EN BN

BLOOM-7B-OO 49.7 4.8 32.8 48.7 48.4 31.2 43.2 35.2 36.0 12.4 24.8 55.2 20.0 23.6

Orca 2-7B 62.0 47.1 52.4 42.0 62.8 42.4 60.0 50.4 60.0 37.2 43.2 25.6 39.6 20.8
Orca 2-LB-9B 57.2 52.9 26.8 24.4 64.0 46.8 55.2 57.2 52.4 42.0 36.0 30.0 38.8 28.8

Orca 2-13B 56.1 46.5 64.0 50.0 66.8 52.0 52.0 52.0 68.4 45.2 46.8 35.6 49.2 31.2
Orca 2-LB-15B 57.2 59.9 44.8 43.6 56.0 46.8 55.6 48.0 66.8 56.4 47.2 33.2 44.4 34.4
Orca 2-LB-20B 64.7 58.3 34.4 35.2 59.2 56.0 52.0 54.8 62.4 46.8 44.8 38.0 45.2 32.0

Table 11: Full results on BBH and BBH-BN (Part 1 of 2). OO suffix denotes the model was finetuned
on OpenOrca.

NAVI. PENG. REASON. SNARKS SPORTS TEMPO. WEB

EN BN EN BN EN BN EN BN EN BN EN BN EN BN

BLOOM-7B-OO 41.6 34.4 27.4 44.0 25.2 22.6 41.8 20.8 49.6 41.2 6.8 50.4 53.2 12.0

Orca 2-7B 58.8 46.4 57.5 24.0 47.2 25.6 67.8 42.9 68.0 51.6 20.4 13.6 54.4 43.6
Orca 2-LB-9B 48.8 50.4 44.5 39.7 41.6 33.6 56.5 53.7 66.4 53.2 17.6 17.2 50.8 54.8

Orca 2-13B 53.2 49.2 59.6 30.1 61.6 26.4 65.5 48.0 76.4 49.2 39.6 22.8 52.0 45.2
Orca 2-LB-15B 58.4 62.0 56.8 43.2 60.0 32.8 60.5 50.8 73.6 52.4 34.0 20.0 57.6 52.0
Orca 2-LB-20B 60.0 51.2 50.7 39.0 59.6 37.2 62.1 54.8 72.0 53.6 24.0 19.2 52.8 59.2

Table 12: Full results on BBH and BBH-BN (Part 2 of 2). OO suffix denotes the model was finetuned
on OpenOrca.

Table 11 and 12 showcase the complete results for the 14 subtasks of BBH and BBH-BN. The se-
lected 14 subtasks are: CAUSAL JUDGEMENT, DATE UNDERSTANDING, DISAMBIGUATION QA,
FORMAL FALLACIES, LOGICAL DEDUCTION (3, 5 AND 7), NAVIGATE, PENGUINS IN A TABLE,
REASONING ABOUT COLORED OBJECTS, SNARKS, SPORTS UNDERSTANDING, TEMPORAL SE-
QUENCES, AND WEB OF LIES.

Orca 2-LB models show noticeable performance degradation in DATE UNDERSTANDING. From
our qualitative analysis of the CoT, we observe that Orca 2-LANGBRIDGE models frequently falsely
assume an arbitrary date as the current date at the beginning of CoT (Figure 8), whereas the original
Orca 2 models do not exhibit this behavior. Our exploration of the OpenOrca datasets reveals that
examples often require the model to assume a specific current date. For example, an input text is
given as “The current senate majority leader in the US is Chuck Schumer. Options: - yes - no”,
and the target text contains “...Today’s date is October 12, 2021...”. As we do not have access to
Orca 2’s original training dataset, we cannot ablate the effect of such examples. Nevertheless, we
conjecture this problematic emergent behavior in Orca 2-LANGBRIDGE models is partially due to
the distribution shift of the training data from the original Orca 2 corpora to the OpenOrca dataset.
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G.2 HUMANEVAL

def greatest common divisor(a: int, b: int) -> int:
""" Rudi kipengele kikubwa zaidi cha pamoja cha
integers mbili a na b
>>> greatest common divisor(3, 5)
1
>>> greatest common divisor(25, 15)
5
"""

def func(a: int, b: int) -> int:
""" Rudi kipengele kikubwa zaidi cha pamoja cha
integers mbili a na b
>>> func(3, 5)
1
>>> func(25, 15)
5
"""

Table 13: Comparison between original (Top) and anonymized (Bottom) prompts of HumanEval-
MT Swahili.

AVG EN SW BN PA TE UR

An. An. An. An. An. An. An.

Llama2-7B 10.2 4.6 11.0 9.8 11.6 3.7 11.0 3.0 7.9 3.0 8.5 3.0 11.0 4.9
BLOOM-7.1B 6.7 4.9 8.5 7.3 6.1 2.4 6.1 5.5 6.7 4.3 6.7 6.1 6.1 3.7
BLOOM-7.1B-SC 8.4 4.5 11.0 6.7 9.8 3.0 7.9 4.3 6.7 4.3 7.9 3.7 7.3 4.9

Code Llama-7B 23.0 13.0 36.0 36.0 21.3 14.0 21.3 14.6 17.7 10.4 16.5 9.8 25.0 16.5
LB-Code Llama-9B 24.9 19.4 34.2 31.7 27.4 17.1 23.2 15.2 23.2 18.3 19.5 15.2 22.0 18.9

Code Llama-13B 26.0 19.6 42.7 40.2 24.4 15.2 26.2 17.7 17.7 12.2 17.7 12.8 27.4 19.5
LB-Code Llama-15B 26.3 23.6 36.6 41.5 22.6 20.1 23.8 20.1 26.8 19.5 23.8 19.5 24.4 20.7
LB-Code Llama-20B 26.2 23.5 35.4 36.0 25.6 24.4 22.6 20.1 25.6 20.7 20.7 18.9 27.4 20.7

Code Llama-34B 29.7 22.7 46.3 43.9 28.7 17.1 32.2 23.8 22.0 15.9 19.5 12.8 29.3 22.6

Table 14: HumanEval-MT Pass@1 performance.

Table 13 compares the original and anonymized prompts of HumanEval-MT. Top can be solved
without comprehending Swahili whereas Bottom is not. Table 14 presents the evaluation results on
the non-anonymized version of HumanEval and HumanEval-MT. Compared to LANGBRIDGE mod-
els, Code Llama models show a sharper decline in performance when evaluated on the anonymized
version, suggesting that they are less capable of comprehending natural text in another language.

H CONFIGURATIONS

We use a maximum input length of 1024 and a maximum target length of 128 for training. However,
as mentioned in Section 2, we vary the input length for every example within the 1024 window to
expose the LM to diverse lengths of soft prompts. Leveraging AdamW (Loshchilov & Hutter, 2019),
we use a learning rate of 6e−4 for the linear layer and 2e−5 for the encoder if trainable. We do not
use any learning rate scheduling. We use an effective batch size of 128. On a machine with 4 A100
80GB GPUs, the training takes under four hours for 9B models with the encoder frozen and under
five hours with their encoder trainable. The maximum training time in our main experiments is ten
hours for 20B models with encoder trainable. For further training BLOOM baselines, we keep all
the hyperparameters the same as LANGBRIDGE models, except for the learning rate in which we
used a uniform value of 2e−5 across the entire model.

19



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

I RELATED WORKS

I.1 ENGLISH-CENTRIC LANGUAGE MODELS

Previous works have enhanced the reasoning capabilities of LMs in mathematical reasoning, code
generation, and logical reasoning (Azerbayev et al., 2023; Yu et al., 2023; Rozière et al., 2023;
Mitra et al., 2023; Chen et al., 2023). However, the majority of these LMs are derived from English-
centric LMs (Touvron et al., 2023a;b) and adapted with English domain-specific datasets. As a
result, these LMs inherit limited proficiency in low-resource languages, which results in a significant
performance discrepancy between high-resource and low-resource languages. The motivation of our
proposed method, LANGBRIDGE, is to narrow this gap.

I.2 ZERO-SHOT CROSS-LINGUAL TRANSFER

Multilingual models demonstrate remarkable zero-shot cross-lingual transfer capability, enabling
them to perform tasks in languages different from the ones used during their finetuning stage (Con-
neau et al., 2020; Xue et al., 2021; Li & Murray, 2023). This feature significantly aids the low-
resource language community, allowing multilingual models to handle tasks across a wide range of
languages after being finetuned on high-resource languages. Our method, which leverages multilin-
gual models, exhibits a similar ability, as it can enhance the reasoning capabilities of LMs across
multiple languages while solely relying on English data during adaptation.

I.3 ALIGNING PRETRAINED REPRESENTATIONS

The concept of combining independently pretrained representations has been widely explored in the
realm of cross-modal alignment (Alayrac et al., 2022; Li et al., 2023a; Merullo et al., 2023; Liu
et al., 2023b; Bavishi et al., 2023). These works focus on aligning visual encoder models with LMs
to facilitate the visual comprehension abilities of LMs. In a concurrent work, Bansal et al. (2024)
align two large language models to augment each other’s capabilities. One of their experiments
showcases that aligning a multilingual language model with another language model can lead to
improved performance in multilingual tasks. However, in contrast to our method, their approach
employs multilingual supervision for aligning.

J LIMITATIONS

As LANGBRIDGE solely utilizes English data for training, LANGBRIDGE models may not be profi-
cient in generating text in languages other than English. Although LANGBRIDGE successfully nar-
rows the performance gap between high-resource and low-resource languages, a noticeable perfor-
mance gap remains. Also, while multilingual representations are known to have language-agnostic
characteristics to some degree, previous works suggest that there is room for improvements (Li-
bovický et al., 2020; Feng et al., 2022). While LANGBRIDGE has the potential to generalize to all
languages supported by the multilingual encoder, the extent to which LANGBRIDGE enhances the
reasoning capability of a specific language depends on two key factors: (1) The original proficiency
of the language model in that particular language. (2) The proficiency of the encoder model in that
particular language.
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K COT EXAMPLES

In this section, we provide three examples of CoT generated by LANGBRIDGE models. One
example (Figure 6) is from the MetaMath-LANGBRIDGE-15B model prompted with an exam-
ple from MGSM Telugu. Two examples (Figure 7 and 8) are from Orca 2-LANGBRIDGE-15B
model prompted with examples from BBH-BN CAUSAL JUDGEMENT and BBH-BN DATE UNDER-
STANDING. We select these two subtasks from BBH-BN as LANGBRIDGE substantially increased
the performance of Orca 2-13B for the former (+13.4%) but caused a considerable decrease for the
latter (−6.4%). We show a success case for the former and a failure case for the other. In Section G,
we provide an explanation for the performance decrease in BBH-BN DATE UNDERSTANDING.

Kristin invited 16 friends, so she needs 16 x 0.75 = 12 gift bags.

Each gift bag costs $2, so she will spend 12 x $2 = $24 on gift bags.

#### 24

The answer is: 24 ✅

ప్రశ్న : జీనీ పాత సావనీర్ టి-షర్టులు ఉపయోగించి ఒక బొంత కుడుతున్నా డు. అతడికి ప్రతి విహారయాత్రకు ఒక

చొక్కా  ఉంది. ప్రతి షర్టుకు బొంతపై ఒక ప్రత్యే కమైన బ్లా క్ ఉంది. ప్రతి వరస కూడా విభిన్న  సంవత్స రాల్లో

వెళ్లిన విహారయాత్రల బ్లా క్‌లతో తయారు చేశాడు. అతడు సంవత్స రానికి నాలుగుసార్లు విహారయాత్రకు వెళతాడు,

అతడు 23 సంవత్స రాల వయస్సు  నుంచి విహారయాత్రకు వెళుతున్నా డు, అతడి వయస్సు  ఇప్పు డు 34.

అతడికి మొత్తం ఎన్ని  క్వి ల్ట్ బ్లా క్‌లు ఉన్నా యి?

(Question: Christina is planning a birthday party and needs .75 gift bags per invited guest, because
1/4 of attendees don't show up. She invited 16 friends. Gift bags are $2 each. How much will she
spend?)

Model Input

Model Output

Figure 6: Example of zero-shot CoT generated by MetaMath-LANGBRIDGE-15B when prompted
with an example from MGSM Telugu. For brevity, any instructional prompts are truncated. Trans-
lation of the input is provided in (blue with parenthesis).
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Step 1: Understand the context of the question.

The question is asking whether Jo intentionally took the special commemorative

cup along with the mega-sized smoothie.

Step 2: Analyze the information provided.

Jo was overly excited and wanted the largest possible beverage. The cashier

offered a special commemorative cup for purchasing the mega-sized smoothie. Jo

did not express any concern about the cup and only wanted the largest smoothie.

Step 3: Determine the answer based on the information.

Since Jo did not express any concern about the cup and only wanted the largest

smoothie, it can be inferred that Jo did not intentionally take the special

commemorative cup.

Step 4: Choose the appropriate answer from the options.

The appropriate answer is (B) no. 

Model Output

✅

কিভাবে একজন সাধারণ ব্যক্তি কার্য কারণ সম্পর্কে নিম্নলিখিত প্রতিটি প্রশ্নের উত্তর দেবেন?
জো খুব অতিশীত অনুভব করছিল, সে স্থানীয় স্মুথি দোকানে স্থগিত হয়ে সর্বা ধিক আকারের পানীয় কিনতে
গেল। অর্ডার দেওয়ার আগে, ক্যাশিয়ার তাকে বললেন যে যদি সে একটি মেগা-সাইজড স্মুথি কিনে তাহলে
সে এটি একটি বিশেষ স্মারকীয় কাপে পাবে। জো জবাব দিলেন, 'আমি স্মারকীয় কাপ এর ব্যাপারটা নিয়ে
যতো চিন্তা করছি না, আমি শুধু আপনাদের সাথে থাকা সবচেয়ে বড় স্মুথি চাই।' আশনুরূপভাবে, জো
স্মারক কাপে মেগা-সাইজড স্মুথি পেল। জো কি ইচ্ছাকৃ তভাবে স্মারক কাপ নিল?
(How would a typical person answer each of the following questions about causation?
Joe was feeling quite dehydrated, so he stopped by the local smoothie shop to buy the largest sized
drink available. Before ordering, the cashier told him that if he bought a Mega-Sized Smoothie he
would get it in a special commemorative cup. Joe replied, 'I don't care about a commemorative cup, I
just want the biggest smoothie you have.' Sure enough, Joe received the Mega-Sized Smoothie in a
commemorative cup. Did Joe intentionally obtain the commemorative cup?)
Options:

(A) হ্যাঁ  (Yes)
(B) না (No)

Model Input

Figure 7: Example of zero-shot CoT generated by Orca 2-LANGBRIDGE-15B when prompted with
an example from BBH-BN CAUSAL JUDGEMENT. For brevity, any instructional prompts are trun-
cated. Translation of the input is provided in (blue with parenthesis).

22



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Step 1: Identify the current date.

The current date is 7/9/2021.

Step 2: Determine the date one week before the current date.

To find the date one week before the current date, we need to subtract 7 days

from the current date.

Step 3: Calculate the date one week before the current date.\n7/9/2021 - 7 days

= 7/2/2021

[⋯]
Step 11: Match the calculated date with the given options.

The calculated date matches option (A) 05/18/2021.

Final answer: (A) 05/18/2021 ❌

Model Output

Model Input

আজ 9/7। জেন NFL 2003 দেখছে। MM/DD/YYYY-তে আজ থেকে এক সপ্তাহ আগের তারিখ কী?
(Today is 9/7. Jane is watching NFL 2003. What is the date one week ago from today in MM/DD/YYYY?)
Options:

(A) 09/05/2003 (B) 08/30/2003 (C) 08/31/2074 (D) 08/31/2003 (E) 06/30/2004

Figure 8: Example of zero-shot CoT generated by Orca 2-LANGBRIDGE-15B when prompted with
an example from BBH-BN DATE UNDERSTANDING. For brevity, any instructional prompts are
truncated. Translation of the input is provided in (blue with parenthesis).
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