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Abstract

We study reinforcement learning (RL) problems in which agents observe the reward
or transition realizations at their current state before deciding which action to
take. Such observations are available in many applications, including transactions,
navigation and more. When the environment is known, previous work shows that
this lookahead information can drastically increase the collected reward. However,
outside of specific applications, existing approaches for interacting with unknown
environments are not well-adapted to these observations. In this work, we close this
gap and design provably-efficient learning algorithms able to incorporate lookahead
information. To achieve this, we perform planning using the empirical distribution
of the reward and transition observations, in contrast to vanilla approaches that
only rely on estimated expectations. We prove that our algorithms achieve tight
regret versus a baseline that also has access to lookahead information – linearly
increasing the amount of collected reward compared to agents that cannot handle
lookahead information.

1 Introduction

In reinforcement learning (RL), agents sequentially interact with a changing environment, aiming
to collect as much reward as possible. While performing actions that yield immediate rewards is
enticing, agents must also bear in mind that actions influence the state of the environment, affecting
the potential reward that could be collected in future steps. When the environment is unknown, agents
also need to balance reward maximization based on previous data and exploration – gathering of data
that might improve future reward collection.

In the standard interaction model, at each timestep, agents first choose an action and only then observe
its outcome on the rewards and state dynamics. As such, agents can only maximize the expected
rewards, collected through the expected dynamics. Yet, in many applications, some information on
the immediate outcome of actions is known before actions are performed. For example, when agents
interact through transactions, prices and traded goods are usually agreed upon before performing any
exchange. Alternatively, in navigation problems, nearby traffic information is known to the agent
before choosing which path to go through.

In a recent work, Merlis et al. [25] shows that even for agents with full statistical knowledge of the
environment, such ‘lookahead’ information can drastically increase the reward collected by agents –
by a factor of up to AH when immediate rewards are revealed in advance and AH/2 when observing
the immediate future transitions.1 Intuitively, agents do not only gain from instantaneously using this
information – they can also adapt their planning to account for lookahead information being revealed
in subsequent states, significantly increasing their future values. However, the work of Merlis et al.
[25] only tackles planning settings in which the model is known and does not provide algorithms or
guarantees when interacting with unknown environments.

1A is the size of the action space and H is the interaction length.
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In this work, we aim to design provably-efficient agents that learn how to interact when given imme-
diate (‘one-step lookahead’) reward or transition information before choosing an action, under the
episodic tabular Markov Decision Process model. While such information can always be embedded
into the state of the environment, the state space becomes exponential at best, and continuous at
worst, rendering most theoretically-guaranteed approaches both computationally and statistically
intractable. To alleviate this, we start by deriving dynamic programming (‘Bellman’) equations in the
original state space that characterize the optimal lookahead policies. Inspired by these update rules,
we present two variants to the MVP algorithm [35] that allow incorporating either reward or transition
lookahead. In particular, we suggest a planning procedure that uses the empirical distribution of the
reward/transition observations (instead of the estimated expectations), which might also be applied to
other complex settings. We prove that these algorithms achieve tight regret bounds of Õ

(√
H3SAK

)
and Õ

(√
H2SK(

√
H +

√
A)
)

after K episodes (for reward and transition lookahead, respectively),
compared to a stronger baseline that also has access to lookahead information. As such, they can
collect significantly more rewards than vanilla RL algorithms.

Outline. We formally define RL problems with reward/transition lookahead in Section 2. Then,
we present our results in two complementary sections: Section 3 analyzes reward lookahead while
Section 4 analyzes transition lookahead. We end with conclusions and future directions in Section 5.

1.1 Related Work

Problems with varying lookahead information have been extensively studied in control, with model
predictive control [MPC, 6] as the most notable example. Conceptually, when interacting with an
environment that might be too complex or hard to model, it is oftentimes convenient to use a simpler
model that allows accurately predicting its behavior just in the near future. MPC uses such models to
repeatedly update its policy using short-term planning. In some cases, the utilized future predictions
consist of additive perturbations to the dynamics [32], while other cases involve more general future
predictions on the model behavior [21, 34, 22, 23]. To the best of our knowledge, these studies focus
on comparing the performance of the controller to one with full future information (and thus, linear
regret is inevitable), sometimes also considering prediction errors. They do not, however, attempt
to learn the predictions. In contrast, we estimate the reward/transition distributions and leverage
them to better plan, thus increasing the value gained by the agent. In addition, these works focus on
continuous (mostly linear) control problems, whereas we study tabular settings; results from any one
of these settings cannot be directly applied to the other.

In the context of RL, lookahead is mostly used as a planning tool; namely, agents test the possible
outcomes after performing multiple steps to decide which actions to take or to better estimate the
value [31, 11, 13, 26, 29, 15]. However, when agents actually interact with the environment, no
additional lookahead information is observed. One notable exception is [25], which analyzes the
potential value increase due to multi-step reward lookahead information (with some mentions to
transition lookahead). However, they only tackle planning settings where the model is known and
do not study learning. In this work, we continue a long line of literature on regret analysis for
tabular RL [18, 19, 9, 33, 12, 14, 30, 35, 36]. Yet, we are not aware of any work that performs regret
minimization with reward or transition lookahead information.

Finally, various applications that involve one-step lookahead information have been previously studied.
The most notable ones are prophet problems [8], where one-step reward lookahead is obtained, and
the Canadian traveler problem with resampling [27], which can be formulated through one-step
transition lookahead. We discuss the relation to these problems and the relevant existing results when
analyzing each type of feedback, and also discuss the relation between transition lookahead and
stochastic action sets [4].

2 Setting and Notations

We study episodic tabular Markov Decision Processes (MDPs), defined by the tuple M =
(S,A, H, P,R), where S is the state space (of size S), A is the action space (of size A) and H is the
interaction horizon. At each timestep h ∈ {1, . . . ,H} ≜ [H] of an episode k ∈ [K], an agent, located
in state skh ∈ S, chooses an action akh ∈ A and obtains a reward Rk

h = Rh(s
k
h, a

k
h) ∼ Rh(s

k
h, a

k
h).
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We assume that the rewards are supported by [0, 1] and of expectations rh(s, a). Afterward, the
environment transitions to a state skh+1 ∼ Ph(·|skh, akh) and the interaction continues until the end of
the episode. We use the notation R ∼ Rh(s) (or s′ ∼ Ph(s)) to denote reward (next-state) samples
for all actions simultaneously at step h and state s and assume independence between different
timesteps.2 On the other hand, samples from different actions at a specific state/timestep are not
necessarily independent.

Reward Lookahead. With one-step reward lookahead at timestep h and state s, agents first observe
the rewards for all actions Rh(s) ≜ {Rh(s, a)}a∈A and only then choose an action to perform.
Formally, we define the set of reward lookahead policies as ΠR =

{
π : [H]× S × [0, 1]A 7→ ∆A

}
,

where ∆A is the probability simplex, and denote ah = πh(sh,Rh). The value of a reward lookahead
agent is the cumulative rewards gathered by it starting at timestep h and state s, denoted by

V R,π
h (s) = E

[
H∑
t=h

Rt(st, πt(st,Rt(st))|sh = s

]
.

We also define the optimal reward lookahead value to be V R,∗

h (s) = maxπ∈ΠR V R,π
h (s). When inter-

acting with an unknown environment for K episodes, agents sequentially choose reward lookahead
policies πk ∈ ΠR based on all historical information and are measured by their regret,

RegR(K) =

K∑
k=1

(
V R,∗
1 (sk1)− V R,πk

1 (sk1)
)
.

We allow the initial state of each episode sk1 to be arbitrarily chosen.

Transition Lookahead. Denoting s′h+1(s, a), the future state when playing action a at step h and
state s, one-step transition lookahead agents observe s′h+1(s) ≜

{
s′h+1(s, a)

}
a∈A before acting.

The set of transition lookahead agents is denoted by ΠT =
{
π : [H]× S × SA 7→ ∆A

}
with values

V T,π
h (s) = E

[
H∑
t=h

Rt(st, πt(st, s
′
t+1(st)))|sh = s

]
.

The optimal value is V T,∗

h (s) = maxπ∈ΠT V T,π
h (s), and we similarly define the regret versus optimal

transition lookahead agents as RegT (K) =
∑K

k=1

(
V T,∗
1 (sk1)− V T,πk

1 (sk1)
)
.

When the type of lookahead is clear from the context, we sometimes denote values by V π
h and V ∗

h .

Other Notations. For any p ∈ ∆n and V ∈ Rn, we define Varp(V ) =
∑n

i=1 piV
2
i −(

∑n
i=1 piVi)

2.
Also, given a transition kernel P and a vector V ∈ RS , we let PV (s, a) =

∑
s′∈S P (s′|s, a)V (s′)

and similarly define it for value or transition kernel differences. We denote by nk
h(s, a), the number

of times the pair (s, a) was visited at timestep h up to episode k (inclusive) and similarly denote
nk
h(s) =

∑
a∈A nk

h(s, a). We also let r̂kh(s, a) = 1
nk
h(s,a)

∑k
k′=1 1

{
sk

′

h = s, ak
′

h = a
}
Rk′

h and

P̂h(s
′|s, a) = 1

nk
h(s,a)

∑k
k′=1 1

{
sk

′

h = s, ak
′

h = a, sk
′

h+1 = s′
}

be the empirical expected rewards
and transition kernel at (sh, ah) = (s, a) using data up to episode k and assume they are initialized
to be zero. Finally, we denote by R̂k

h(s), the empirical reward distribution across all actions, and use
P̂ k
h (s) to denote the empirical joint next-state distribution for all actions. In particular, we assume

that a previous timestep where s was visited at step h is sampled uniformly at random and the
rewards/next-states for all actions are taken from this timestep.

When we want to indicate the distribution used to calculate an expectation, we sometimes state it in a
subscript, e.g., write ERh(s)[R(a)] to indicate that R(a) ∼ Rh(s, a) or use EM to emphasize that
all distributions are according to an environment M. In this paper, O-notation only hides absolute
constants while Õ hides factors of polylog(S,A,H,K). We also use the notation a∨ b = max{a, b}.

2This assumption is not used by our algorithms: it is only to ensure that the optimal policy is Markovian.
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3 Planning and Learning with One-Step Reward Lookahead

In this section, we analyze RL settings with one-step reward lookahead, in which immediate rewards
are observed before choosing an action. One well-known example of this situation is the prophet
problem [8], where an agent sequentially observes values from known distributions. Upon observing
a value, the agent decides whether to take it as a reward and stop the interaction, or discard it and
continue to observe more values. This problem has numerous applications and extensions concerning
auctions and posted-price mechanisms [7]. As shown in [25], it is critical to observe the distribution
values before taking a decision; otherwise, the agent’s revenue can decrease by a factor of H .

Figure 1: Two-state
prophet-like problem

To further illustrate this, consider a simple 2-state prophet-like example,
depicted in Figure 1. Starting at si, agents can either stay there by
playing a1, earning no reward, or play any other action and move to the
absorbing sf , obtaining a Bernoulli reward Ber(1/(A−1)H). Actions in
the terminal state sf yield no reward. Without observing the rewards,
agents will arbitrarily move from si to sf , obtaining a reward 1/(A−1)H in
expectation. On the other hand, when agents observe the rewards before
acting, they should move from si to sf only if a reward was realized for
some action (and otherwise, stay in si by playing a1). Such agents will
have (A−1)H opportunities to observe a unit reward across all timesteps
and actions, collecting in expectation (1− 1/(A−1)H)

(A−1)H ≥ 1− 1/e.
In other words, just by observing the rewards before acting, the agent’s
value multiplicatively increases by almost AH .

The most natural way to tackle this setting is to extend (augment) the state space to contain the
observed rewards; this way, we transition from a state and reward observations to a new state with
new reward observations and return to the vanilla MDP formulation. However, this comes at a great
cost – even for Bernoulli rewards, there are 2A possible reward combinations at any given state, so
the state space increases exponentially. Even worse, for continuous rewards, the augmented state
space becomes continuous, and any performance guarantees that depend on the size of the state space
immediately become vacuous. Hence, algorithms that naïvely use this reduction are expected to be
both computationally and statistically intractable.

We take a different approach and derive Bellman equations for this setting in the original state space.

Proposition 1. The optimal value of one-step reward lookahead agents satisfies

V R,∗
H+1(s) = 0, ∀s ∈ S,

V R,∗
h (s) = ER∼Rh(s)

[
max
a∈A

{
Rh(s, a) +

∑
s′∈S

Ph(s
′|s, a)V R,∗

h+1(s
′)

}]
, ∀s ∈ S, h ∈ [H].

Also, given reward observations R = {R(a)}a∈A at state s and step h, the optimal policy is

π∗
h(s,R) ∈ argmax

a∈A

{
R(a) +

∑
s′∈S

Ph(s
′|s, a)V R,∗

h+1(s
′)

}
.

We prove Proposition 1 in Appendix B.2, where we present an equivalent environment with extended
state space in which one could apply the standard Bellman equations [28] to calculate the value
with reward lookahead. In contrast to the previously discussed augmentation approach, we find it
more convenient to divide the augmentation into two steps – at odd steps 2h − 1, the augmented
environment would be in a state sh×0, while at even steps 2h, the state is sh×Rh. Doing so creates
an overlap between the values of the original and augmented environments at odd steps, simplifying
the proofs. We also use this augmentation to prove a variant of the law of total variance [LTV, e.g. 3]
and a value-difference lemma [e.g. 12].

We remark that calculating the exact value is not always tractable – even for S = H = 1 (bandit
problems) and Gaussian rewards, Proposition 1 requires calculating the expectation of the maximum
of Gaussian random variables, which does not admit any simple closed-form solution. On the other
hand, these equations allow approximating the value by using reward samples – in the following, we
show that it can be used to achieve tight regret bounds when the environment is unknown.
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Algorithm 1 Monotonic Value Propagation with Reward Lookahead (MVP-RL)
1: Require: δ ∈ (0, 1), bonuses brk,h(s), b

p
k,h(s, a)

2: for k = 1, 2, ... do
3: Initialize V̄ k

H+1(s) = 0
4: for h = H,H − 1, .., 1 do
5: Calculate the truncated values for all s ∈ S

V̄ k
h (s) = min

{
ER∼R̂k−1

h (s)

[
max
a∈A

{
R(a) + bpk,h(s, a) + P̂ k−1

h V̄ k
h+1(s, a)

}]
+ brk,h(s), H

}
6: end for
7: for h = 1, 2, . . . H do
8: Observe skh and Rk

h(s
k
h, a) for all a ∈ A

9: Play an action akh ∈ argmaxa∈A

{
Rk

h(s
k
h, a) + bpk,h(s

k
h, a) + P̂ k−1

h V̄ k
h+1(s

k
h, a)

}
10: Collect the reward Rk

h(s
k
h, a

k
h) and transition to the next state skh+1 ∼ Ph(·|skh, akh)

11: end for
12: end for

3.1 Regret-Minimization with Reward Lookahead

We now present a tractable algorithm that achieves tight regret bounds with one-step reward lookahead.
Specifically, we modify the Monotonic Value Propagation (MVP) algorithm [35] to perform planning
using the empirical reward distributions – instead of using the empirical reward expectations. To
compensate for transition uncertainty, we add a transition bonus that uses the variance of the optimistic
next-state values (w.r.t. the empirical transition kernel), designed to be monotone in the future value.
Such construction permits using the variance of optimistic values for the bonus calculation while
being able to later replace it with the variance of the optimal value (see discussion in Zhang et al.
35). A reward bonus is used for the value calculation, but does not affect the action choice in the
current state. Intuitively, this is because we get the same amount of information for all the actions of
a state, so they have the same level of uncertainty – there is no need for bonuses to encourage reward
exploration at the action level.

A high-level description of the algorithm is presented in Algorithm 1, while the full algorithm and
its bonuses are stated in Appendix B.3. Notice that the planning requires calculating the expected
maximum using the empirical distribution, whose support always contains at most K elements, so
both the memory and computations are polynomial. The algorithm ensures the following guarantees:
Theorem 1. When running MVP-RL, with probability at least 1− δ uniformly for all K ≥ 1, it holds
that RegR(K) ≤ O

(√
H3SAK ln SAHK

δ +H3S2A
(
ln SAHK

δ

)2)
.

See proof in Appendix B.7. Remarkably, our upper bound matches the standard lower bound
for episodic RL of Ω

(√
H3SAK

)
[10] up to log-factors; this lower bound is proved for known

deterministic rewards, so in particular, it also holds for problems with reward lookahead.

To our knowledge, the only comparable bounds in settings with reward lookahead were proven to
prophet problems; as agents observe (up to) n distributions at a fixed order, it can be formulated as a
deterministic chain-like MDP, with H = n, S = n+ 1 and A = 2. Agents start at the head of the
chain and can either advance without collecting a reward or collect the observed reward and move to
a terminal non-rewarding state (for more details, see Merlis et al. 25). For this problem, [17] proved
a regret bound of Õ(n3

√
K) (albeit requiring a weaker form of feedback), and [1] proved a bound of

Õ(n
√
T ) – slightly better than ours, but heavily relies on the ability to control which distributions to

observe, which is a specific instance of deterministic transitions. We are unaware of any previous
results that cover general Markovian dynamics.

3.2 Proof Concepts

When analyzing the regret of RL algorithms, a key step usually involves bounding the difference
between the value of a policy in two different environments (‘value-difference lemma’). In particular,
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for a given policy πk, many algorithms maintain a confidence interval on the value V πk

h (s) ∈[
¯
V k
h (s), V̄ k

h (s)
]
, calculated based on optimistic and pessimistic MDPs that use the empirical model

with bonuses/penalties [9, 33, 14]. Then, the instantaneous regret (without lookahead) is bounded
using the optimistic values by

V̄ k
h (sh)− V πk

h (sh) =
(
r̂k−1
h (sh, ah)− rh(sh, ah)

)
+
(
P̂ k−1
h − Ph

)
V̄ k
h (sh, ah)

+ Ph

(
V̄ k
h+1 − V πk

h+1

)
(sh, ah) + bonuses,

while the pessimistic values are used either as part of the bonuses or while bounding them. However,
when trying to perform a similar decomposition with reward lookahead, we do not have the difference
of expected rewards, but rather terms of the form

ER∼R̂k−1
h (sh)

[
R(πk

h(sh,R))
]
− ER∼Rh(sh)

[
R(πk

h(sh,R))
]

(see, e.g., the last term of Lemma 4 in the appendix). As the action can be an arbitrary function of the
reward realization, this term is extremely challenging to bound. For example, one could couple both
distributions while trying to relate this error term to a Wasserstein distance between the empirical and
real reward distribution; however, such distances exhibit much slower error rates than standard mean
estimation [16]. Instead, we follow a different approach and show that uniformly for all possible
expected next-state values P̂ V ∈ [0, H]A (as a function of the action at a given state), it holds w.h.p.
that ∣∣∣ER∼R̂k−1

h (s)

[
max

a

{
R(a) + P̂ V (s, a)

}]
− ER∼Rh(s)

[
max

a

{
R(a) + P̂ V (s, a)

}]∣∣∣
≲

√
A ln 1

δ

nk−1
h (s) ∨ 1

. (1)

Throughout the proof, whenever we face an expectation w.r.t. the empirical rewards, we reformulate
the expression to fit the form of Equation (1) and use it as a ‘change of measure’ tool. We remark that
while this confidence interval admits an extra A-factor compared to standard bounds, the counts only
depend on the visits to the state (and not to the state-action), which compensates for this factor.

The choice of MVP for the bonus is similarly motivated – unlike some other bonuses (e.g., Zanette
and Brunskill 33), MVP does not require pessimistic values – either in the bonus itself or in its
analysis. In contrast to the optimistic ones, the pessimistic values are not calculated via value iteration,
but rather by following the policy πk in the pessimistic environment. As such, they cannot be easily
manipulated to fit the form in Equation (1).

The analysis of the transitions adapts the techniques in [14], while requiring extra care in handling
the dependence of actions in the rewards.

4 Reinforcement Learning with One-Step Transition Lookahead

We now move to analyzing problems with one-step transition lookahead, where the resulting next
state due to playing any of the actions is revealed before deciding which action to play. For example,
consider the stochastic Canadian traveler problem with resampling [27, 4]. In this problem, an agent
wants to navigate on a graph as fast as possible from a source to a target, but observes which edges at
a node are available only upon reaching this node. When edge availability is stochastic and resampled
every time a node is visited, this is a clear case of one-step transition lookahead, as the information
on the availability of edges is given before trying to traverse them.

To illustrate the potential gain from transition lookahead, consider a chain of H/2 states. In each
state, one action deterministically keeps the agent in its current state, while all other actions move
the agent one state forward w.p. 1/A, but reset it to the head of the chain otherwise. If the reward
is located at the end of the chain, any standard RL agent can collect it only at an exponentially low
probability. On the other hand, transition lookahead agents could move forward only if there is an
action that allows it while staying at their current state otherwise; such agents will collect a reward
with constant probability, leading to an exponential improvement.

As with reward lookahead, the future states for all actions can be embedded into the state, but doing
so increases the size of the state space by a factor of SA, again making this approach intractable. We
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once more show that this is not necessary; the transition-lookahead optimal values can be calculated
using the following Bellman equations:
Proposition 2. The optimal value of one-step transition lookahead agents satisfies

V T,∗
H+1(s) = 0, ∀s ∈ S,

V T,∗
h (s) = Es′∼Ph(s)

[
max
a∈A

{
rh(s, a) + V T,∗

h+1(s
′(s, a))

}]
, ∀s ∈ S, h ∈ [H].

Also, given next-state observations s′ = {s′(a)}a∈A at state s and step h, the optimal policy is

π∗
h(s, s

′) ∈ argmax
a∈A

{
rh(s, a) + V T,∗

h+1(s
′(a))

}
.

The proof can be found at Appendix C.2 and again relies on augmenting the state space to incorporate
the transitions; this time, we divide the episode into odd steps whose extended state is sh × s′0 (for an
arbitrary fixed s′0 ∈ SA) and even steps with the state sh × s′h+1. Beyond planning, this again allows
proving a variant of the LTV and of a value-difference lemma.

One important insight is that the policy π∗
h(s, s

′) admits the form of a list. Namely, consider the
values V ∗

h (s, s
′, a) = rh(s, a) + V T,∗

h+1(s
′) and assume some ordering of next-state-action pairs

{(s′i, ai)}
SA
i=1 such that V ∗

h (s, s
′
1, a1) ≥ · · · ≥ V ∗

h (s, s
′
SA, aSA). Then, an optimal policy would look

at all realized pairs (s′(a), a) and play the action with the highest location in this list. We refer the
readers to Appendix C.4 for an additional discussion on list representations in transition lookahead.

Similar results could be achieved through a reduction to RL problems with stochastic action sets
[4]. There, at every round, a subset of base actions is sampled, and only these actions are available
to the agent. In particular, one could sample A actions of the form (s′, a) ∈ S × A and impose a
deterministic transition to s′ given this extended action. However, since every original action must
be sampled exactly once, this sampling procedure creates a dependence between pairs even when
next-states at different actions are independent, adding unnecessary complications. We show that
when transitions are independent between states, the expectation in Proposition 2 can be efficiently
calculated (see Appendix C.4.1 for details), and otherwise, it can be approximated through sampling,
as we do in learning settings.

4.1 Regret-Minimization with Transition Lookahead

Relying on similar principals as with reward lookahead, we now present MVP-TL, an adaptation of
MVP to settings with one-step transition lookahead (summarized in Algorithm 2; the full details can
be found at Appendix C.3). This time, we estimate the empirical expected reward and add a standard
Hoeffding-like reward bonus, while performing planning using samples from the empirical joint
distribution of the next-state for all the actions simultaneously. A variance-based transition bonus is
added to the values; though this time, the variance also incorporates the rewards, namely

bpk,h(s) ≈

√√√√Var
s′∼P̂k−1

h
(s)

(V̄ k
h (s, s′))

nk−1
h (s) ∨ 1

, V̄ k
h (s, s′) = max

a∈A

{
r̂k−1
h (s, a) + brk,h(s, a) + V̄ k

h+1(s
′(a)

}
.

The motivation for this modification is the technical challenges described in Section 3.2, in the
context of reward lookahead. For reward lookahead, we analyzed a value term that included both the
rewards and next-state values, and used concentration arguments to move from the empirical reward
distribution to the real one. For transition lookahead, similar values are analyzed, but we require
variance-based concentration to obtain tighter regret bounds [3], so this variance naturally arises. The
bonus is again designed to be monotone, as in the original MVP algorithm, and does not affect the
immediate action choice – only the optimistic lookahead value. As before, the planning relies on
sampling the next-state observations at previous episodes, and so it is polynomial, even if the precise
joint distribution is complex. The algorithm enjoys the following regret bounds:
Theorem 2. When running MVP-TL, with probability at least 1− δ uniformly for all K ≥ 1, it holds
that RegT (K) ≤ O

(√
H2SK

(√
H +

√
A
)
ln SAHK

δ +H3S4A3
(
ln SAHK

δ

)2)
.

See proof in Appendix C.8. For transition lookahead, the regret bounds we provide exhibit two rates,
both corresponding to a natural adaptation of known lower bounds to transition lookahead.
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Algorithm 2 Monotonic Value Propagation with Transition Lookahead (MVP-TL)
1: Require: δ ∈ (0, 1), bonuses brk,h(s, a), b

p
k,h(s)

2: for k = 1, 2, ... do
3: Initialize V̄ k

H+1(s) = 0
4: for h = H,H − 1, .., 1 do
5: Calculate the truncated values for all s ∈ S

V̄ k
h (s) = min

{
Es′∼P̂k−1

h (s)

[
max
a∈A

{
r̂k−1
h (s, a) + brk,h(s, a) + V̄ k

h+1(s
′(a))

}]
+ bpk,h(s), H

}
6: end for
7: for h = 1, 2, . . . H do
8: Observe skh and s′kh+1(s

k
h, a) for all a ∈ A

9: Play an action akh ∈ argmaxa∈A

{
r̂k−1
h (skh, a) + brk,h(s

k
h, a) + V̄ k

h+1(s
′k
h+1(s

k
h, a))

}
10: Collect the reward Rk

h ∼ Rh(s
k
h, a

k
h) and transition to the next state skh+1 = s′kh+1(s

k
h, a

k
h)

11: end for
12: end for

1. ‘Bandit rate’ O(
√
H2SAK): this is the rate due to reward stochasticity. Consider a problem

where at odd timesteps 2h − 1 and across all states, all actions have rewards of mean 1/2 − ϵ,
except for one action of mean 1/2. Assuming that the state-distribution is uniform, each such
timestep forms a hard instance of a contextual bandit problem with S contexts, exhibiting a regret
of Ω(

√
SAK) [2, 5]. Since there are H/2 odd steps and we can design each step independently,

the total regret would be Ω(H
√
SAK). The even steps can be used to ‘remove’ the lookahead

and create a uniform state distribution. To do so, we set that when taking an action at odd steps,
we always transition to a fixed state sd. From this state, one action a1 leads uniformly to all states,
while the rest of the actions lead to an absorbing non-rewarding state – rendering them strictly
suboptimal. Thus, no-regret agents will only play a1, regardless of the lookahead information,
and the state distribution at odd timesteps will be uniform.

2. ‘Transition learning rate’ O(
√
H3SK): recall that the vanilla RL lower bound designs a tree

with Ω(S) leaves, to which agents need to navigate at the right timing (with Ω(H) options) and
take the right action (out of A). While all leaves might transition agents to a rewarding state, one
combination of state-action-timing has a slightly higher probability of doing so [10]. This roughly
creates a bandit problem with SAH arms, constructed such that the maximal reward is Ω(H),
yielding a total regret of H

√
HSAK. Now consider the following simple modification where in

each leaf, only one action can lead to a reward (and the rest of the actions are ‘useless’ – never
lead to rewards). Thus, the agent still needs to test all leaves at all timings, and so there are still
SH ‘arms’ with a corresponding regret of

√
H3SK. Moreover, to test a leaf at a certain timing,

we must navigate to it, and since the agent is going to play the single useful action at the leaf,
transition lookahead does not provide any additional information.

As discussed before, transition lookahead can be formulated as an RL instance with stochastic action
sets. While Boutilier et al. [4] prove that with stochastic action sets, Q-learning asymptotically
converges, they provide no learning algorithm nor regret bounds. Therefore, to our knowledge, our
result is the first to achieve sublinear regret with transition lookahead.

4.2 Proof Concepts

Transition lookahead causes similar issues as reward lookahead. Hence, it is natural to apply a similar
analysis approach – first, formulate the value as the expectation w.r.t. the next-state observations of
the maximum of action-observation dependent values; then use uniform concentration as a ‘change
of measure’ tool between the empirical and real next-state distribution. In particular, if V (s, s′, a)
represents the value starting from state s, performing a and transitioning to s′, one can show that for
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all V (s, ·, ·) ∈ [0, H]SA (see Lemma 19),∣∣∣Es′∼P̂k−1
h (s)

[
max

a
V (s, s′(a), a)

]
− Es′∼Ph(s)

[
max

a
V (s, s′(a), a)

]∣∣∣
≲

√√√√SA ln 1
δVars′∼P̂k−1

h (s) maxa V (s, s′(a), a)

nk−1
h (s) ∨ 1

, (2)

where the variance term stems from using a Bernstein-like concentration bound. However, in contrast
to the reward lookahead, the

√
SA-factor propagates to the dominant term of the regret, so pursuing

this approach would lead to a worse regret bound of Õ
(√

H3S2AK
)

.

To avoid this, we pinpoint the two locations where this change of measure is needed – the proof that
V̄ k
h is optimistic and the regret decomposition – and make sure to perform this change of measure

only on a single value V ∗
h (s, s

′, a) = rh(s, a) + V ∗
h+1(s

′), mitigating the need to cover all possible
values and removing the additional

√
SA-factor. However, doing so leaves us with a residual term.

Defining V ∗
h (s, s

′) = maxa∈A{V ∗
h (s, s

′(a), a)} and assuming a similar optimistic value V̄ k
h (s, s′),

this term is of the form

Es′∼P̂k−1
h (s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]
− Es′∼Ph(s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]
.

While similar terms have been analyzed before [e.g., 33, 14], the analysis leads to a constant regret
term that depends on the support of the distribution in question; in our case, it is the distribution over
all possible next-states – of cardinality SA. Therefore, following the same derivation would lead to
an exponential additive regret term.

We overcome it by utilizing the fact that both the optimistic policy and the optimal one decide which
action to take according to a list of next-state-actions (s′, a). In other words, instead of looking at the
next-state s′ (with SA possible values) to determine a value, we look at the highest-ranked realized
pair (s′, a) in the list that corresponds to the policy that induces the value (with SA possible rankings).
Since we have two values, we need to calculate the probability of being at a certain list location for
both πk and π∗, but the cardinality of this space is (SA)2: polynomial and not exponential.

5 Conclusions and Future Work

In this work, we presented an RL setting in which immediate rewards or transitions are observed before
actions are chosen. We showed how to design provably and computationally efficient algorithms
for this setting that achieve tight regret bounds versus a strong baseline that also uses lookahead
information. Our algorithms rely on estimating the distribution of the reward or transition observations,
a concept that might be utilized in other settings. In particular, we believe that our techniques for
transition lookahead could be extended to RL problems with stochastic action sets [4], but leave this
for future work.

One natural extension to our work would be to consider multi-step lookahead information – observing
the transition/rewards L steps in advance. We conjecture that from a statistical point of view, a similar
algorithmic approach that samples from the empirical observation distribution would be efficient.
However, it is not clear how to perform efficient planning with such feedback.

Another possible direction would be to derive model-free algorithms [19], with the aim to improve
the computation efficiency of the solutions; our model-based algorithms require at most O(KS2AH)
computations per episode due to the planning stage, while model-free algorithms might potentially
allow just O(AH) computations per episode.

Finally, the notion of lookahead could be studied in various other decision-making settings (e.g.,
linear MDPs Jin et al. 20) and can also be generalized to situations where lookahead information
can be queried under some budget constraints [14] or when agents only observe noisy lookahead
predictions; we leave these problems for future research.
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A Structure of the Appendix

Both reward and transition lookahead appendices share the following structure. First, we describe our
assumption on the data generation process and analyze general properties of reward and transition
lookahead. This is done by looking at an extended MDP that incorporates the lookahead information
into the state. Then, we present the full algorithm and describe the relevant probabilistic events that
ensure the concentration of all the empirical quantities. For transition lookahead, we require some
additional notions for the event definitions (including the list representation of values and policies),
which are explained in a separate subsection.

Given the concentration-related good event, we can prove that the planning procedure in the algorithm
is optimistic, which we do in the subsequent subsection. Then, we define an additional good event
that allows adding and removing conditional expectations in a way that will be needed for the proof.

At this point, we provided all (almost all) the results required for the regret analysis, and the proof of
the main theorems is stated. The proofs also require some additional analysis for the bonuses (and
especially variance terms), which is located at the end of the regret analysis.

At the end of the appendix, we state and prove several lemmas that will be used throughout our
analysis, while also stating several existing results that will be of use.
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B Proofs for Reward Lookahead

B.1 Data Generation Process

To simplify the proofs, we assume the following ’tabular’ data-generation process: Before the game
starts, a set of K samples from the transition probabilities and rewards is generated for all (s, a, h).
Once a state s at step h is visited for the ith time, the ith sample from the reward distribution Rh(s)
is the reward realization for all action a ∈ A. When a state-action pair is visited for the ith time, the
ith sample from the transition kernel Ph(·|s, a) determines the next-state realization. In particular,
it implies that the reward samples from the first i visits to a state are i.i.d., and the same for the
next-states samples and state-action visitations. Throughout this appendix, we use the notation
Rk

h =
{
Rk

h(s
k
h, a
}
a∈A to denote the reward observation at episode k and timestep h for all the

actions.

For the proof, we define the following three filtrations. Let

Fk,h = σ

({
s1t , a

1
t ,R

1
t

}
t∈[H]

, . . . ,
{
sk−1
t , ak−1

t ,Rk−1
t

}
t∈[H]

,
{
skt , a

k
t ,R

k
t

}
t∈[h]

, skh+1

)
,

FR
k,h = σ

({
s1t , a

1
t ,R

1
t

}
t∈[H]

, . . . ,
{
sk−1
t , ak−1

t ,Rk−1
t

}
t∈[H]

,
{
skt , a

k
t ,R

k
t

}
t∈[h+1]

)
,

the filtrations that contains all information until episode k and step h, as well as the state at timestep
h+1, or all information of time h+1, respectively. We make this distinction so that Fk,h−1 contains
only skh, while FR

k,h−1 also contains akh. We also define

Fk = σ

({
s1t , a

1
t ,R

1
t

}
t∈[H]

, . . . ,
{
skt , a

k
t ,R

k
t

}
t∈[H]

, sk+1
1

)
,

which contains all information up to the end of the kth episode, as well as the initial state at episode
k + 1.

B.2 Extended MDP for Reward Lookahead

In this appendix, we present an alternative formulation of the one-step reward lookahead that falls
under the vanilla (no-lookahead) model and would be helpful for the analysis.

Throughout the section, we study the relations between MDPs with and without reward lookahead,
and between different MDPs with lookahead. Therefore, for clarity, we state the concerning MDP in
the value, e.g. V R,π(s|M). Specifically in this subsection, we distinguish between values without
lookahead (denoted V π) and values with lookahead (denoted V R,π). In the following subsections,
unless stated otherwise, we will only consider lookahead values; for brevity, and with some abuse of
notations, we will then omit the R in the value notation.

For any MDP M = (S,A, H, P,R), define an equivalent extended MDP MR of horizon 2H that
separates the state transition and reward generation as follows:

1. Assume w.l.o.g. that M starts at some initial state s1. The extended environment starts at a
state s1 × 0, where 0 ∈ RA is the zeros vector.

2. For any h ∈ [H], at timestep 2h− 1, the environment MR transitions from state sh × 0 to
sh ×R, where R ∼ Rh(s) is a vector containing the rewards for all actions a ∈ A. This
transition occurs regardless of the action that was played. At timestep 2h, given an action
ah the environment transitions from sh ×R to sh+1 × 0, where sh+1 ∼ Ph(·|sh, ah).

3. The reward at a state s × R when playing an action a is R(a), namely, the reward is
deterministic and only obtained on even timesteps.

We emphasize that throughout the section, we assume that M and MR are coupled; that is, assume
that under a policy π in M, the agent visits a state sh, observes Rh, plays an action ah and transitions
to sh+1. Then, in MR, the agent starts from sh × 0, transitions to sh ×R (regardless of the action it
played), takes the action ah and finally transitions to sh+1 × 0.

Since the reward is embedded into the state, any state-dependent policy in MR is a one-step reward
lookahead policy in the original MDP. Moreover, the policy at the odd steps of M does not affect
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the value, and assuming that the policy at the even steps in MR is the same as the policy in M, we
trivially get the following relation between the values

V π
2h(s,R|MR) = E

[
H∑
t=h

Rt(st, at)|sh = s,Rh(s, ·) = R, π

]
≜ V R,π

h (s,R|M),

V π
2h−1(s,0|MR) = E

[
H∑
t=h

Rt(st, at)|sh = s, π

]
= V R,π

h (s|M). (3)

While MR has a continuous state space, which generally makes algorithm design impractical, this
representation permits applying classic results on MDPs to environments with one-step lookahead.

As a remark, rewards could be directly embedded into the state without separating the state and reward
updates. However, this creates unnecessary complications when analyzing the relations between
similar environments. This is because we are mainly interested in the value given the state – in
expectation over the realized rewards. In particular, value-difference are analyzed assuming a shared
initial state, but in our case, we do not want to assume the same reward realization, but rather also
account for the distance between reward distributions, which the step separation enables. For similar
reasons, this representation also simplifies the proof of the law of total variance [3].
Proposition 1. The optimal value of one-step reward lookahead agents satisfies

V R,∗
H+1(s) = 0, ∀s ∈ S,

V R,∗
h (s) = ER∼Rh(s)

[
max
a∈A

{
Rh(s, a) +

∑
s′∈S

Ph(s
′|s, a)V R,∗

h+1(s
′)

}]
, ∀s ∈ S, h ∈ [H].

Also, given reward observations R = {R(a)}a∈A at state s and step h, the optimal policy is

π∗
h(s,R) ∈ argmax

a∈A

{
R(a) +

∑
s′∈S

Ph(s
′|s, a)V R,∗

h+1(s
′)

}
.

Proof. We prove the result in the extended MDP MR and remind the reader that in this formulation,
the policy only uses state information, as in the standard RL formulation. In particular, it implies that
there exists a Markovian optimal policy that uniformly maximizes the value (in the extended state
space), and the optimal value is given through the dynamic-programming equations [28]
V ∗
2H+1(s,R|MR) = 0, ∀s ∈ S,R ∈ RA,

V ∗
2h(s,R|MR) = max

a

{
R(a) +

∑
s′∈S

Ph(s
′|s, a)V ∗

2h+1(s
′,0|MR)

}
, ∀h ∈ [H], s ∈ S,R ∈ RA,

V ∗
2h−1(s,0|MR) = ERh(s)

[
V ∗
2h(s,R|MR)

]
, ∀h ∈ [H], s ∈ S.

(4)

By the equivalence between M and MR for all policies, this is also the optimal value in M.
Specifically, combining both recursion equations and substituting the relation between the original
and extended values of Equation (3), we get the desired value recursion for any h ∈ [H] and s ∈ S:

V R,∗
h (s|M) = V ∗

2h−1(s,0|MR)

= ERh(s)

[
V ∗
2h(s,R|MR)

]
= ERh(s)

[
max

a

{
R(a) +

∑
s′∈S

Ph(s
′|s, a)V ∗

2h+1(s
′,0|MR)

}]

= ERh(s)

[
max

a

{
R(a) +

∑
s′∈S

Ph(s
′|s, a)V R,∗

h+1(s|M)

}]
.

Similarly, for any h ∈ [H], s ∈ S and R ∈ RA, the optimal policy at the even stages of the extended
MDP is

π∗
2h(s,R) ∈ argmax

a∈A

{
R(a) +

∑
s′∈S

Ph(s
′|s, a)V ∗

2h+1(s
′,0|MR)

}
,
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alongside arbitrary actions at odd steps. Playing this policy in the original MDP will lead to an
optimal one-step reward lookahead policy, as it achieves the optimal value of the original MDP.
This policy directly translates to the optimal policy in the statement, by the equivalence between the
original and extended MDPs and the relation V ∗

2h+1(s
′,0|MR) = V R,∗

h+1(s
′|M).

Remark 1. As in Equation (4), one could also write the dynamic programming equations for any
policy π ∈ ΠR, namely

V π
2h(s,R|MR) = R(πh(s,R)) +

∑
s′∈S

Ph(s
′|s, πh(s,R))V π

2h+1(s
′,0|MR), ∀h ∈ [H], s ∈ S,R ∈ RA,

V π
2h−1(s,0|MR) = ERh(s)

[
V π
2h(s,R|MR)

]
, ∀h ∈ [H], s ∈ S.

In particular, following the notation of Equation (3), one can also write

V R,π
h (s,R|M) = R(πh(s,R)) +

∑
s′∈S

Ph(s
′|s, πh(s,R))V R,π

h+1 (s
′|M), and,

V R,π
h (s|M) = ERh(s)

[
V R,π
h (s,R|M)

]
= ERh(s)

[
R(πh(s,R)) +

∑
s′∈S

Ph(s
′|s, πh(s,R))V R,π

h+1 (s
′|M))

]
.

We will use this notation in some of the proofs.

Another useful application of the extended MDP is a variation of the law of total variance (LTV),
which will be useful in our analysis
Lemma 3. For any deterministic one-step reward lookahead policy π ∈ ΠR, it holds that

E

[
H∑

h=1

VarPh(·|sh,ah)(V
R,π
h+1 (sh+1))|π, s1

]
≤ E

( H∑
h=1

Rh(sh, ah)− V R,π
1 (s1)

)2

|π, s1

.
Proof. We apply the law of total variance (Lemma 27) in the extended MDP; there, the rewards are
deterministic and equal to either 0 (at odd steps) or Rh(sh, ah) (at even steps), so the total expected
rewards are

∑H
h=1 Rh(sh, ah).

E

( H∑
h=1

Rh(sh, ah)− V π
1 (s1,0|MR)

)2

|π, s1



= E


H∑

h=1

Var(V π
2h(sh,Rh(sh)|MR)|(sh,0))︸ ︷︷ ︸

Odd steps

+

H∑
h=1

Var(V π
2h+1(sh+1,0|MR)|(sh,Rh(sh)))︸ ︷︷ ︸

Even steps

|π, s1


≥ E

[
H∑

h=1

Var(V π
2h+1(sh+1,0|MR)|(sh,Rh(sh)))|π, s1

]

= E

[
H∑

h=1

VarPh(·|sh,ah)(V
π
2h+1(sh+1,0|MR))|π, s1

]

= E

[
H∑

h=1

VarPh(·|sh,ah)(V
R,π
h+1 (sh+1|M))|π, s1

]
.

Noting that V π
1 (s1,0|MR) = V R,π

1 (s1|M) concludes the proof.

Finally, though not needed in our analysis, we use the extended MDP to prove the following value-
difference lemma, which could be of further use in follow-up works. While we prove decomposition
just using the next-step values, one could recursively apply the formula until the end of the episode to
immediately get another formula that does not depend on the next value.
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Lemma 4 (Value-Difference Lemma with Reward Lookahead). Let M1 = (S,A, H, P 1,R1) and
M2 = (S,A, H, P 2,R2) be two environments. For any deterministic one-step reward lookahead
policy π ∈ ΠR, any h ∈ [H] and s ∈ S, it holds that

V R,π
h (s|M1)− V R,π

h (s|M2)

= EM1

[
V R,π
h+1 (sh+1|M1)− V R,π

h+1 (sh+1|M2)|sh = s
]

+ EM1

[∑
s′∈S

(
P 1
h (s

′|sh, πh(sh,Rh))− P 2
h (s

′|sh, πh(sh,Rh))
)
V R,π
h+1 (s

′|M2)|sh = s

]
+ EM1

[
ER1

h(s)

[
V R,π
h (sh,R|M2)

]
− ER2

h(s)

[
V R,π
h (sh,R|M2)

]
|sh = s

]
,

where V R,π
h (s,R|M) is the value at a state given the reward realization, defined in Equation (3)

and given in Remark 1.

Proof. We again work with the extended MDPs MR
1 ,MR

2 . Since under the extension, both the
environments and the policy are Markovian, all values obey the following Bellman equations:

V π
2h(s,R|MR) = R(πh(s,R)) +

∑
s′∈S

Ph(s
′|s, π(s,R))V π

2h+1(s
′,0|MR), ∀h ∈ [H], s ∈ S,R ∈ RA

V π
2h−1(s,0|MR) = ERh(s)

[
V π
2h(s,R|MR)

]
, ∀h ∈ [H], s ∈ S.

Using the relation between the value of the original and extended MDP (eq. (3)) and the Bellman
equations of the extended MDP, for any h ∈ [H], we have

V R,π
h (s|M1)− V R,π

h (s|M2)

= V π
2h−1(s,0|MR

1 )− V π
2h−1(s,0|MR

2 )

= ER1
h(s)

[
V π
2h(s,R|MR

1 )
]
− ER2

h(s)

[
V π
2h(s,R|MR

2 )
]

= ER1
h(s)

[
V π
2h(s,R|MR

1 )− V π
2h(s,R|MR

2 )
]
+ ER1

h(s)

[
V π
2h(s,R|MR

2 )
]
− ER2

h(s)

[
V π
2h(s,R|MR

2 )
]

= ER1
h(s)

[
V π
2h(s,R|MR

1 )− V π
2h(s,R|MR

2 )
]
+ ER1

h(s)

[
V R,π
h (s,R|M2)

]
− ER2

h(s)

[
V R,π
h (s,R|M2)

]
= EM1

[
V π
2h(sh,Rh|MR

1 )− V π
2h(sh,Rh|MR

2 )|sh = s
]

+ ER1
h(s)

[
V R,π
h (s,R|M2)

]
− ER2

h(s)

[
V R,π
h (s,R|M2)

]
. (5)

We now focus on the first term. Denoting ah = πh(sh,Rh) the action taken by the agent at
environment M1, We have

V π
2h(sh,Rh|MR

1 )− V π
2h(sh,Rh|MR

2 )

=

(
Rh(ah) +

∑
s′∈S

P 1
h (s

′|sh, ah)V π
2h+1(s

′,0|MR
1 )

)

−

(
Rh(ah) +

∑
s′∈S

P 2
h (s

′|sh, ah)V π
2h+1(s

′,0|MR
2 )

)
=
∑
s′∈S

P 1
h (s

′|sh, ah)V R,π
h+1 (s

′|M1)−
∑
s′∈S

P 2
h (s

′|sh, ah)V R,π
h+1 (s

′|M2)

=
∑
s′∈S

P 1
h (s

′|sh, ah)
(
V R,π
h+1 (s

′|M1)− V R,π
h+1 (s

′|M2)
)

+
∑
s′∈S

(
P 1
h (s

′|sh, ah)− P 2
h (s

′|sh, ah)
)
V R,π
h+1 (s

′|M2)

= EM1

[
V R,π
h+1 (sh+1|M1)− V R,π

h+1 (sh+1|M2)|sh, ah
]

+
∑
s′∈S

(
P 1
h (s

′|sh, ah)− P 2
h (s

′|sh, ah)
)
V R,π
h+1 (s

′|M2).
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Substituting this back into Equation (5), we have

V π
h (s|M1)− V π

h (s|M2)

= EM1

[
EM1

[
V R,π
h+1 (sh+1|M1)− V R,π

h+1 (sh+1|M2)|sh, ah
]
|sh = s

]
+ EM1

[∑
s′∈S

(
P 1
h (s

′|sh, ah)− P 2
h (s

′|sh, ah)
)
V R,π
h+1 (s

′|M2)|sh = s

]
+ ER1

h(s)

[
V R,π
h (s,R|M2)

]
− ER2

h(s)

[
V R,π
h (s,R|M2)

]
= EM1

[
V R,π
h+1 (sh+1|M1)− V R,π

h+1 (sh+1|M2)|sh = s
]

+ EM1

[∑
s′∈S

(
P 1
h (s

′|sh, πh(sh,Rh))− P 2
h (s

′|sh, πh(sh,Rh))
)
V R,π
h+1 (s

′|M2)|sh = s

]
+ EM1

[
ER1

h(s)

[
V R,π
h (sh,R|M2)

]
− ER2

h(s)

[
V R,π
h (sh,R|M2)

]
|sh = s

]
.
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B.3 Full Algorithm Description for Reward Lookahead

Algorithm 3 Monotonic Value Propagation with Reward Lookahead (MVP-RL)
1: Require: δ ∈ (0, 1), bonuses brk,h(s), b

p
k,h(s, a)

2: for k = 1, 2, ... do
3: Initialize V̄ k

H+1(s) = 0
4: for h = H,H − 1, .., 1 do
5: for s ∈ S do
6: if nk−1

h (s) = 0 then
7: V̄ k

h (s) = H
8: else
9: Calculate the truncated values

V̄ k
h (s) = min

 1

nk−1
h (s)

nk−1
h

(s)∑
t=1

max
a∈A

{
R

kt
h(s)

h (s, a) + bpk,h(s, a) + P̂ k−1
h V̄ k

h+1(s, a)
}
+ brk,h(s), H


10: end if
11: For any vector R ∈ RA, define the policy πk

πk
h(s,R) ∈ argmax

a∈A

{
R(a) + bpk,h(s, a) + P̂ k−1

h V̄ k
h+1(s, a)

}
12: end for
13: end for
14: for h = 1, 2, . . . H do
15: Observe skh and Rk

h =
{
Rk

h(s
k
h, a)

}
a∈A

16: Play an action akh = πk
h(s

k
h,R

k
h)

17: Collect the reward Rk
h(s

k
h, a

k
h) and transition to the next state skh+1 ∼ Ph(·|skh, akh)

18: end for
19: Update the empirical estimators and counts for all visited state-actions
20: end for

We use a variant of the MVP algorithm [35] while adapting their proof and the one from [14]. The
algorithm is described in Algorithm 3 and uses the following bonuses:

brk,h(s) = 3

√
ALk

δ

2(nk−1
h (s) ∨ 1)

,

bpk,h(s, a) = min

20

3

√√√√VarP̂k−1
h (·|s,a)(V̄

k
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
400

9

HLk
δ

nk−1
h (s, a) ∨ 1

, H


where Lk

δ = ln 144S2AH2k3(k+1)
δ , and for brevity, we shorten VarP̂k−1

h (·|s,a)(V̄
k
h+1(s

′)) to

VarP̂k−1
h (·|s,a)(V̄

k
h+1) (omitting the state from the value).

For the optimistic value iteration, we use the notation kth(s) to represent the tth episode where the
state s was visited at the hth timestep. Thus, line 9 of Algorithm 3 is the expectation w.r.t. the
empirical reward distribution R̂k−1

h (s) (when defining its realization to be zero when nk−1
h (s) = 0).

Since the bonuses are larger than H when nk−1
h (s) = 0, one could write the update in more concisely

as

V̄ k
h (s) = min

{
ER∼R̂k−1

h (s)

[
max
a∈A

{
R(a) + bpk,h(s, a) + P̂ k−1

h V̄ k
h+1(s, a)

}]
+ brk,h(s), H

}
.

We will often use this representation in our analysis.
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B.4 The First Good Event – Concentration

We now define the first good event, which ensures that all empirical quantities are well-concentrated.
For the transitions, we require each element to concentrate well, as well as both the inner product and
the variance w.r.t. the optimal value function. For the reward, we make sure that the maximum of
the rewards to concentrate well (with any possible bias, that will later correspond with the next-state
values). Formally, for any fixed vector u ∈ RA, denote

mh(s, u) = ER∼Rh(s)

[
max

a
{Rh(a) + u(a)}

]
,

m̂k
h(s, u) = ER∼R̂k

h(s)

[
max

a
{Rh(a) + u(a)}

]
with the convention that m̂k

h(s, u) = maxa u(a) if nk
h(s) = 0. We define the following good events:

Ep(k) =

{
∀s, s′, a, h : |Ph(s

′|s, a)− P̂ k−1
h (s′|s, a)| ≤

√
2P (s′|s, a)Lk

δ

nk−1
h (s, a) ∨ 1

+
Lk
δ

nk−1
h (s, a) ∨ 1

}

Epv1(k) =

{
∀s, a, h :

∣∣∣(P̂ k−1
h − Ph

)
V ∗
h+1(s, a)

∣∣∣ ≤√2VarPh(·|s,a)(V
∗
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
HLk

δ

nk−1
h (s, a) ∨ 1

}

Epv2(k) =

{
∀s, a, h :

∣∣∣√VarPh(·|s,a)(V
∗
h+1)−

√
VarP̂k−1

h (·|s,a)(V
∗
h+1)

∣∣∣ ≤ 4H

√
Lk
δ

nk−1
h (s, a) ∨ 1

}

Er(k) =

{
∀s, h,∀u ∈ [0, 2H]A :

∣∣mh(s, u)− m̂k−1
h (s, u)

∣∣ ≤ 3

√
ALk

δ

2(nk−1
h (s) ∨ 1)

}
where we again use Lk

δ = ln 144S2AH2k3(k+1)
δ . Then, we define the first good event as

G1 =
⋂
k≥1

Er(k)
⋂
k≥1

Ep(k)
⋂
k≥1

Epv1(k)
⋂
k≥1

Epv2(k),

for which, the following holds:
Lemma 5 (The First Good Event). The good event G1 holds w.p. Pr(G1) ≥ 1− δ/2.

Proof. The proof of the first three events uses standard concentration arguments (see, e.g., Efroni
et al. 14) and is stated for completeness. For any fixed k ≥ 1, s, a, h and number of visits n ∈ [k],
we utilize Lemma 16 w.r.t. the transition kernel Ph(·|s, a), the value V ∗

h+1 ∈ [0, H] and probability
δ′ = δ

8SAHk2(k+1) ; notice that by the assumption that samples are generated i.i.d. before the
game starts, given the number of visits, all samples are i.i.d., so standard concentration could
be applied. By taking the union bound over all n ∈ [k] and slightly increasing the constants
to ensure that n = 0 trivially holds, we get that the events also hold for any number of visit
nk−1
h (s, a) ∈ {0 . . . , k}, and taking another union bound over all k ≥ 1, s, a, h ensures that each of

the events ∩k≥1E
p(k),∩k≥1E

pv1(k) and ∩k≥1E
pv2(k) holds w.p. at least 1− δ

8

We now focus on bounding the probability of the event ∩kE
r(k). For any fixed k, h and s, observe

that the event trivially holds if nk
h = 0, then the event trivially holds, since for all u ∈ [0, 2H]A,∣∣mh(s, u)− m̂k−1

h (s, u)
∣∣ = ∣∣∣ER∼Rh(s)

[
max

a
{Rh(s, a) + u(a)}

]
−max

a
{u(a)}

∣∣∣ (∗)≤ 1 ≤ 3

√
ALk

δ

2
,

where (∗) uses the boundedness of the rewards in [0, 1]. Next, recall that for any fixed nk−1
h = n ∈ [k],

the rewards samples at state s and step h are i.i.d. vectors on [0, 1]A. Therefore, by Lemma 18,

Pr

{
nk−1
h (s) = n, ∀u ∈ [0, 2H]A :

∣∣mh(s, u)− m̂k−1
h (s, u)

∣∣ > 3

√
ALk

δ

2(nk−1
h (s) ∨ 1)

}
≤ δ

8SAHk2(k + 1)
.

Taking a union bound on all possible values of n ∈ [k], s and h, we get

Pr{Er(k)} ≥ 1− SAk · δ

8SAHk2(k + 1)
≥ 1− δ

8k(k + 1)
.

By summing over all k ≥ 1, the event ∩kE
r(k) holds with a probability of at least 1− δ/8. Finally,

taking the union bound with the other three events leads to the desired result of Pr(G1) ≥ 1−δ/2.
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B.5 Optimism of the Upper Confidence Value Functions

In this subsection, we prove that under the good event G1, the values V̄ k that MVP-RL produces are
optimistic.
Lemma 6 (Optimism). Under the first good event G1, for all k ∈ [K], h ∈ [H] and s ∈ S, it holds
that V ∗

h (s) ≤ V̄ k
h (s).

Proof. The proof follows by backward induction on H; see that the claim trivially holds for h = H+1,
where both values are defined to be zero.

Now assume by induction that for some k ∈ [K] and h ∈ [H], the desired inequalities hold at
timestep h+ 1 for all s ∈ S; we will show that this implies that they also hold at timestep h.

At this point, we also assume w.l.o.g. that V̄ k
h (s) < H , and in particular, the value is not truncated;

otherwise, by the boundedness of the rewards, V ∗
h (s) ≤ H = V̄ k

h (s). For similar reasons, we assume
w.l.o.g. that bpk,h(s, a) < H , so that it is also not truncated.

By the optimism of the value at step h+ 1 due to the induction hypothesis and the monotonicity of
the bonus (Lemma 23), under the good event, we have for all s ∈ S and a ∈ A that

P̂ k−1
h V̄ k

h+1(s, a) + bpk,h(s, a)

≥ P̂ k−1
h V̄ k

h+1(s, a) + max

20

3

√√√√VarP̂k−1
h (·|s,a)(V̄

k
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

,
400

9

HLk
δ

nk−1
h (s, a) ∨ 1


≥ P̂ k−1

h V ∗
h+1(s, a) + max

20

3

√√√√VarP̂k−1
h (·|s,a)(V

∗
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

,
400

9

HLk
δ

nk−1
h (s, a) ∨ 1

 (Lemma 23)

≥ P̂ k−1
h V ∗

h+1(s, a) +
10

3

√√√√VarP̂k−1
h (·|s,a)(V

∗
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
200

9

HLk
δ

nk−1
h (s, a) ∨ 1

≥ P̂ k−1
h V ∗

h+1(s, a) +
10

3

√
VarPh(·|s,a)(V

∗
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
8HLk

δ

nk−1
h (s, a) ∨ 1

(Under Epv2(k))

≥ PhV
∗
h+1(s, a). (Under Epv1(k))

Thus, under the good event and the induction hypothesis, we have that

V̄ k
h (s) = ER∼R̂h(s)

[
max
a∈A

{
R(a) + bpk,h(s, a) + P̂ k−1

h V̄ k
h+1(s, a)

}]
+ brk,h(s)

≥ ER∼R̂h(s)

[
max
a∈A

{
R(a) + PhV

∗
h+1(s, a)

}]
+ brk,h(s).

In particular, using Proposition 1, we get

V̄ k
h (s)− V ∗

h (s) ≥ ER∼R̂h(s)

[
max
a∈A

{
R(a) + PhV

∗
h+1(s, a)

}]
+ brk,h(s)

− ER∼Rh(s)

[
max
a∈A

{
R(a) + PhV

∗
h+1(s, a)

}]
≥ 0,

where the last inequality holds under the event Er(k) with u(a) = PhV
∗
h+1(s, a) ∈ [0, H]A.
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B.6 The Second Good Event – Martingale Concentration

In this subsection, we present four good events that will allow us to replace the expectation over the
randomizations inside each episode with their realization.

Define the following bonus-like term that will later appear in the proof due to value concentration:

bpv1k,h (s, a) = min

{√
2VarPh(·|s,a)(V

∗
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
4H2SLk

δ

nk−1
h (s, a) ∨ 1

, H

}
,

and let

Y k
1,h := V̄ k

h+1(s
k
h+1)− V πk

h+1(s
k
h+1),

Y k
2,h = VarPh(·|st,h,at,h)(V

πk

h+1),

Y k
3,h = bpk,h(s

k
h, a

k
h) + bpv1k,h (s

k
h, a

k
h).

The second good event is the intersection of the events G2 = Ediff1 ∩ Ediff2 ∩ EVar ∩ Ebp defined
as follows.

Ediff1 =

{
∀h ∈ [H],K ≥ 1 :

K∑
k=1

E[Y k
1,h|Fk,h−1] ≤

(
1 +

1

2H

) K∑
k=1

Y k
1,h + 18H2 ln

8HK(K + 1)

δ

}
,

Ediff2 =

{
∀h ∈ [H],K ≥ 1 :

K∑
k=1

E[Y k
1,h|FR

k,h−1] ≤
(
1 +

1

2H

) K∑
k=1

Y k
1,h + 18H2 ln

8HK(K + 1)

δ

}
,

EVar =

{
K ≥ 1 :

K∑
k=1

H∑
h=1

Y k
2,h ≤ 2

K∑
k=1

H∑
h=1

E[Y k
2,h|Fk−1] + 4H3 ln

8HK(K + 1)

δ

}
,

Ebp =

{
∀h ∈ [H],K ≥ 1 :

K∑
k=1

E[Y k
3,h|Fk,h−1] ≤ 2

K∑
k=1

Y k
3,h + 50H2 ln

8HK(K + 1)

δ

}
,

We define the good event G = G1 ∩G2.
Lemma 7. The good event G holds with a probability of at least 1− δ.

Proof. The proof follows similarly to Lemmas 15 and 21 of [14].

First, define the random process Wk = 1
{
V̄ k
h (s)− V πk

h (s) ∈ [0, H],∀h ∈ [H], s ∈ S
}

and define

Ỹ k
1,h = WkY

k
1,h, which is bounded in [0, H]. Also observe that Wk is Fk−1 measurable, since both

values and policies are calculated based on data up to the episode k− 1, and in particular, it is Fk,h−1

measurable and Ỹ k
1,h is Fk,h measurable. thus, by Lemma 25, for any k ∈ [K] and h ∈ [H], we have

w.p. at least 1− δ
8HK(K+1) that

K∑
k=1

E[Ỹ k
1,h|Fk,h−1] ≤

(
1 +

1

2H

) K∑
k=1

Ỹ k
1,h + 18H2 ln

8HK(K + 1)

δ
.

Since Wk is Fk,h−1 measurable, we can write the event as

K∑
k=1

WkE[Y k
1,h|Fk,h−1] ≤

(
1 +

1

2H

) K∑
k=1

WkY
k
1,h + 18H2 ln

8HK(K + 1)

δ
,

and taking the union bound over all h ∈ [H] and K ≥ 1, we get w.p. at least 1− δ
8 that the event

Ẽdiff1 =

{
∀h ∈ [H],K ≥ 1 :

K∑
k=1

WkE[Y k
1,h|Fk,h−1] ≤

(
1 +

1

2H

) K∑
k=1

WkY
k
1,h + 18H2 ln

8HK(K + 1)

δ

}
.

Importantly, by optimism (Lemma 6), under G1, it holds that Wk = 1 for all k ≥ 1, so we
immediately get that G1 ∩ Ẽdiff1 = G1 ∩ Ediff1.
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Following the exact same proof just with the filtration FR
k,h and defining the equivalent Ẽdiff2, we get

that this event also holds w.p. 1− δ
8 and is the desired event when G1 holds.

Next, we prove that the other two events also hold w.p. at least 1− δ
8 .

By the assumptions of our setting, we know that V πk

h (s) ∈ [0, H], and so

H∑
h=1

Y k
2,h =

H∑
h=1

VarPh(·|st,h,at,h)(V
πk

h+1) ∈ [0, H3].

In particular, applying Lemma 25 (w.r.t. the filtration Fk) with C = H3 and any fixed K, we get w.p.
1− δ

8HK(K+1) that

K∑
k=1

H∑
h=1

Y k
2,h ≤ 2

K∑
k=1

H∑
h=1

E[Y k
2,h|Fk−1] + 4H3 ln

8HK(K + 1)

δ
.

Taking the union bound on all possible values of K ≥ 1 proves that EVar holds w.p. at least 1− δ
8 .

Similarly, by definition, we have that Y k
3,h = bpk,h(s

k
h, a

k
h) + bpv1k,h (s

k
h, a

k
h) ∈ [0, 2H] and is Fk,h

measurable. Thus, for any fixed k ≥ 1 and h ∈ [H], using Lemma 25, we have w.p. 1− δ
8HK(K+1)

that
K∑

k=1

E[Y k
3,h|Fk,h−1] ≤

(
1 +

1

4H

) K∑
k=1

Y k
3,h + 50H2 ln

8HK(K + 1)

δ

≤ 2

K∑
k=1

Y k
3,h + 50H2 ln

8HK(K + 1)

δ
,

applying the union bound on all K ≥ 1, the event Ebp holds w.p. 1− δ
8 .

To summarize, we have that the event G1 holds w.p. 1− δ
2 (Lemma 5), and we proved that the events

Ẽdiff1, Ẽdiff2, EVar, Ebp hold each w.p. 1− δ
8 , so we also have that the event

G = G1 ∩G2

= G1 ∩ Ediff1 ∩ Ediff2 ∩ EVar ∩ Ebp

= G1 ∩ Ẽdiff1 ∩ Ẽdiff2 ∩ EVar ∩ Ebp

holds w.p. at least 1− δ.
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B.7 Regret Analysis

We finally analyze the regret of the algorithm
Theorem 1. When running MVP-RL, with probability at least 1− δ uniformly for all K ≥ 1, it holds
that RegR(K) ≤ O

(√
H3SAK ln SAHK

δ +H3S2A
(
ln SAHK

δ

)2)
.

Proof. Assume that the good events G holds, which by Lemma 7, happens with probability at
least 1 − δ. Then, by optimism (Lemma 6), for any k ∈ [K], h ∈ [H] and s ∈ S, it holds that
V ∗
h (s) ≤ V̄ k

h (s). Moreover, we can lower bound the value of the policy πk as follows (see Remark 1):

V πk

h (s) = ER∼Rh(s)

[
R(πk

h(s,R)) + PhV
πk

h+1(s, π
k
h(s,R))

]
= ER∼Rh(s)

[
R(πk

h(s,R)) + P̂ k−1
h V̄ k

h+1(s, π
k
h(s,R)) + bpk,h(s, π

k
h(s,R))

]
+ ER∼Rh(s)

[
PhV

πk

h+1(s, π
k
h(s,R))− P̂ k−1

h V̄ k
h+1(s, π

k
h(s,R))− bpk,h(s, π

k
h(s,R))

]
(1)
= ER∼Rh(s)

[
max
a∈A

{
R(a) + P̂ k−1

h V̄ k
h+1(s, a) + bpk,h(s, a)

}]
+ ER∼Rh(s)

[
PhV

πk

h+1(s, π
k
h(s,R))− P̂ k−1

h V̄ k
h+1(s, π

k
h(s,R))− bpk,h(s, π

k
h(s,R))

]
(2)

≥ ER∼R̂k−1
h (s)

[
max
a∈A

{
R(a) + P̂ k−1

h V̄ k
h+1(s, a) + bpk,h(s, a)

}]
− brk,h(s)

+ ER∼Rh(s)

[
PhV

πk

h+1(s, π
k
h(s,R))− P̂ k−1

h V̄ k
h+1(s, π

k
h(s,R))− bpk,h(s, π

k
h(s,R))

]
(3)

≥ V̄ k
h (s)− 2brk,h(s)

+ ER∼Rh(s)

[
PhV

πk

h+1(s, π
k
h(s,R))− P̂ k−1

h V̄ k
h+1(s, π

k
h(s,R))− bpk,h(s, π

k
h(s,R))

]
.

(6)

Relation (1) is by the definition of πk (see Algorithm 3), while (2) holds under the good event Er(k)

with u(a) = P̂ k−1
h V̄ k

h+1(s, a)+ bpk,h(s, a) ∈ [0, 2H] (due to the value and bonus truncation). Finally,
(3) is by the definition of V̄ k

h (s), where the inequality also accounts for its possible truncation.

To further bound this, we need to bound

P̂ k−1
h V̄ k

h+1(s, a)− PhV
πk

h+1(s, a) = Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) +

(
P̂ k−1
h − Ph

)
V̄ k
h+1(s, a)

= Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a)

+
(
P̂ k−1
h − Ph

)
V ∗
h+1(s, a) +

(
P̂ k−1
h − Ph

)(
V̄ k
h+1 − V ∗

h+1

)
(s, a).

The first error term can be bounded under the good event, while the second using Lemma 24. More
formally, under the good event Epv1(k), we have∣∣∣(P̂ k−1

h − Ph

)
V ∗
h+1(s, a)

∣∣∣ ≤√2VarPh(·|s,a)(V
∗
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
HLk

δ

nk−1
h (s, a) ∨ 1

,

and by Lemma 24 with α = 4H (using and P1 = Ph, P2 = P̂ k−1
h , under Ep(k)),∣∣∣(P̂ k−1

h − Ph

)(
V̄ k
h+1 − V ∗

h+1

)
(s, a)

∣∣∣ ≤ 1

4H
EPh(·|s,a)

[
V̄ k
h+1(s

′)− V ∗
h+1(s

′)
]
+

HSLk
δ (1 + 4H · 2/4)

nk−1
h (s, a) ∨ 1

≤ 1

4H
EPh(·|s,a)

[
V̄ k
h+1(s

′)− V πk

h+1(s
′)
]
+

3H2SLk
δ

nk−1
h (s, a) ∨ 1

=
1

4H
Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) +

3H2SLk
δ

nk−1
h (s, a) ∨ 1

,
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where the second inequality is since the value of πk cannot exceed the optimal value.

Since under the good event by Lemma 6, we have 0 ≤ V πk

h+1(s
′) ≤ V ∗

h+1(s
′) ≤ V̄ k

h+1(s
′) ≤ H , we

can trivially bound the error by H and bound

P̂ k−1
h V̄ k

h+1(s, a)− PhV
πk

h+1(s, a)

≤ min


(
1 +

1

4H

)
Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a)︸ ︷︷ ︸

≥0

+
3H2SLk

δ

nk−1
h (s, a) ∨ 1

+

√
2VarPh(·|s,a)(V

∗
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
HLk

δ

nk−1
h (s, a) ∨ 1

, H


≤
(
1 +

1

4H

)
Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) + min

{√
2VarPh(·|s,a)(V

∗
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
4H2SLk

δ

nk−1
h (s, a) ∨ 1

, H

}

≜

(
1 +

1

4H

)
Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) + bpv1k,h (s, a).

Substituting back to Equation (6) while writing the linear operation PhV (s, a) as an expectation and
letting the action be ah = πk

h(s,R), we get under G for all k ∈ [K], h ∈ [H] and s ∈ S that

V̄ k
h (s)− V πk

h (s)

≤ ER∼Rh(s)

[
P̂ k−1
h V̄ k

h+1(s, π
k
h(s,R))− PhV

πk

h+1(s, π
k
h(s,R)) + bpk,h(s, π

k
h(s,R))

]
+ 2brk,h(s)

≤ ER∼Rh(s)

[(
1 +

1

4H

)
E
[
V̄ k
h+1(sh+1)− V πk

h+1(sh+1)|sh = s, ah

]
(s, a) + bpv1k,h (s, ah) + bpk,h(s, ah)

]
+ 2brk,h(s)

= E
[(

1 +
1

4H

)(
V̄ k
h+1(sh+1)− V πk

h+1(sh+1)
)
+ bpk,h(sh, ah) + bpv1k,h (sh, ah)|sh = s, πk

]
+ 2brk,h(s).

Next, taking s = skh, the action ah = πk
h(s,R) becomes akh, and summing on all k, we can rewrite

K∑
k=1

V̄ k
h (skh)− V πk

h (skh)

≤
K∑

k=1

E
[(

1 +
1

4H

)(
V̄ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
+ bpk,h(s

k
h, a

k
h) + bpv1k,h (s

k
h, a

k
h)|Fk,h−1

]
+ 2

K∑
k=1

brk,h(s
k
h)

(1)

≤
(
1 +

1

2H

)(
1 +

1

4H

) K∑
k=1

(
V̄ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
+ 2

K∑
k=1

(
bpk,h(s

k
h, a

k
h) + bpv1k,h (s

k
h, a

k
h)
)
+ 2

K∑
k=1

brk,h(s
k
h) + 68H2 ln

8HK(K + 1)

δ

(2)

≤
(
1 +

1

2H

)(
1 +

1

4H

) K∑
k=1

(
V̄ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
+

1

4H

(
1 +

1

2H

) K∑
k=1

(
V̄ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)

+ 18

K∑
k=1

√√√√VarPh(·|skh,a
k
h)
(V πk

h+1)L
k
δ

nk−1
h (skh, a

k
h) ∨ 1

+

K∑
k=1

1620H2SLk
δ

nk−1
h (skh, a

k
h) ∨ 1

+ 68H2 ln
8HK(K + 1)

δ
+ 2

K∑
k=1

brk,h(s
k
h)

≤
(
1 +

1

2H

)2 K∑
k=1

(
V̄ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
+ 18

K∑
k=1

√
Lk
δVarPh(·|skh,a

k
h)
(V πk

h+1)√
nk−1
h (skh, a

k
h) ∨ 1

+

K∑
k=1

1700H2SLk
δ

nk−1
h (skh, a

k
h) ∨ 1

+ 6

K∑
k=1

√
ALk

δ

2nk−1
h (s) ∨ 1

where inequality (1) holds when both Ediff1 and Ebp occur and inequality (2) is by Lemma 8. In
the last inequality, we also substituted the definition of the reward bonus. Recursively applying this
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inequality up to h = H + 1 (where both values are zero), w.p. at least 1− δ, we get

RegR(K) ≤
K∑

k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)

≤
K∑

k=1

(
V̄ k
1 (sk1)− V πk

1 (sk1)
)

(Lemma 6)

≤ 18

(
1 +

1

2H

)2H K∑
k=1

√
Lk
δVarPh(·|skh,a

k
h)
(V πk

h+1)√
nk−1
h (skh, a

k
h) ∨ 1

+

(
1 +

1

2H

)2H K∑
k=1

1700H2SLk
δ

nk−1
h (skh, a

k
h) ∨ 1

+ 6

(
1 +

1

2H

)2H K∑
k=1

√
ALk

δ

2nk−1
h (s) ∨ 1

(∗)
≤ 100

√
H3SAKLK

δ + 50
√
2SAH2

(
LK
δ

)1.5
+ 5000H2SLK

δ · SAH(2 + ln(K)) + 12
√
ALK

δ

(
SH + 2

√
SH2K

)
= O

(√
H3SAKLK

δ +H3S2A(LK
δ )2

)
.

Relation (∗) is by Lemma 9 and Lemma 20.
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B.7.1 Lemmas for Bounding Bonus Terms

Lemma 8. Conditioned on the good event G, for any h ∈ [H], it holds that
K∑

k=1

(
bpk,h(s

k
h, a

k
h) + bpv1k,h (s

k
h, a

k
h)
)
≤ 1

8H

(
1 +

1

2H

) K∑
k=1

(
V̄ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)

+ 9

K∑
k=1

√√√√VarPh(·|skh,a
k
h)
(V πk

h+1)L
k
δ

nk−1
h (skh, a

k
h) ∨ 1

+

K∑
k=1

810H2SLk
δ

nk−1
h (skh, a

k
h) ∨ 1

.

Proof. We start by analyzing each of the terms separately. First, we apply Lemma 22 with α = 20
3 ·

32HLk
δ , noting that under the good event (by Lemma 6), 0 ≤ V πk

h+1(s) ≤ V ∗
h+1(s) ≤ V̄ k

h+1(s) ≤ H
and using the event Epv; doing so yields

bpk,h(s, a) ≤
20

3

√√√√VarP̂k−1
h (·|s,a)(V̄

k
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
400

9

HLk
δ

nk−1
h (s, a) ∨ 1

≤
20
√
Lk
δVarPh(·|s,a)(V

πk

h+1)

3
√
nk−1
h (s, a) ∨ 1

+
1

32H
Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) +

1

32H
P̂ k−1
h

(
V̄ k
h+1 − V πk

h+1

)
(s, a)

+
6400H2Lk

δ

9nk−1
h (s, a) ∨ 1

+
20

3

4HLk
δ

nk−1
h (s, a) ∨ 1

+
400

9

HLk
δ

nk−1
h (s, a) ∨ 1

Using Lemma 24 with α = 1, under the good event Ep(k) and for any s, a, we can further bound

P̂ k−1
h

(
V̄ k
h+1 − V πk

h+1

)
(s, a)

= Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) +

(
P̂ k−1
h − Ph

)(
V̄ k
h+1(s

′)− V πk

h+1

)
(s, a)

≤ Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) + Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) +

HSLk
δ (1 + 2 · 1/4)

nk−1
h (s, a) ∨ 1

(Lemma 24)

≤ 2Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) +

1.5HSLk
δ

nk−1
h (s, a) ∨ 1

Thus, we get the overall bound

bpk,h(s, a) ≤
20
√
Lk
δVarPh(·|s,a)(V

πk

h+1)

3
√
nk−1
h (s, a) ∨ 1

+
3

32H
Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) +

785H2SLk
δ

nk−1
h (s, a) ∨ 1

For the second bonus, we apply Lemma 21 w.r.t. V πk

h+1(s) ≤ V ∗
h+1(s) and α = 32

√
2Lk

δH and get

bpv1k,h (s, a) ≤

√
2VarPh(·|s,a)(V

∗
h+1)L

k
δ

nk−1
h (s, a) ∨ 1

+
4H2SLk

δ

nk−1
h (s, a) ∨ 1

≤

√
2VarPh(·|s,a)(V

πk

h+1)L
k
δ

nk−1
h (s, a) ∨ 1

+
1

32H
Ph

(
V ∗
h+1 − V πk

h+1

)
(s, a) +

16HLk
δ

nk−1
h (s, a)

+
4H2SLk

δ

nk−1
h (s, a) ∨ 1

≤

√
2VarPh(·|s,a)(V

πk

h+1)L
k
δ

nk−1
h (s, a) ∨ 1

+
1

32H
Ph

(
V̄ k
h+1 − V πk

h+1

)
(s, a) +

20H2SLk
δ

nk−1
h (s, a) ∨ 1

where we again used the optimism. Combining both and summing over all k, we get

K∑
k=1

(
bpk,h(s

k
h, a

k
h) + bpv1k,h (s

k
h, a

k
h)
)
≤ 9

K∑
k=1

√√√√VarPh(·|skh,a
k
h)
(V πk

h+1)L
k
δ

nk−1
h (skh, a

k
h) ∨ 1

+
1

8H

K∑
k=1

Ph

(
V̄ k
h+1 − V πk

h+1

)
(skh, a

k
h)

+

K∑
k=1

805H2SLk
δ

nk−1
h (skh, a

k
h) ∨ 1
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Finally, under the good event Ediff2, it holds that

K∑
k=1

Ph

(
V̄ k
h+1 − V πk

h+1

)
(skh, a

k
h) =

K∑
k=1

E
[
V̄ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)|FR

k,h−1

]
≤
(
1 +

1

2H

) K∑
k=1

(
V̄ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
+ 18H2 ln

8HK(K + 1)

δ
.

Substituting this relation back concludes the proof.

Lemma 9. Under the event EVar it holds that

K∑
k=1

H∑
h=1

√
VarPh(·|skh,a

k
h)
(V πk

h+1)√
nk−1
h (skh, a

k
h) ∨ 1

≤ 2
√

H3SAKLK
δ +

√
8SAH2LK

δ .

Proof. Following Lemma 24 of [14], by Cauchy-Schwartz inequality, it holds that

K∑
k=1

H∑
h=1

√
VarPh(·|skh,a

k
h)
(V πk

h+1)√
nk−1
h (skh, a

k
h) ∨ 1

≤

√√√√ K∑
k=1

H∑
h=1

VarPh(·|skh,a
k
h)
(V πk

h+1)

√√√√ K∑
k=1

H∑
h=1

1

nk−1
h (skh, a

k
h) ∨ 1

.

The second term can be bounded by Lemma 20, namely,

K∑
k=1

H∑
h=1

1

nk−1
h (skh, a

k
h) ∨ 1

≤ SAH(2 + ln(K)).

We further focus on bounding the first term. Under EVar, we have

K∑
k=1

H∑
h=1

VarPh(·|skh,a
k
h)
(V πk

h+1)

≤ 2

K∑
k=1

E

[
H∑

h=1

VarPh(·|skh,a
k
h)
(V πk

h+1)|Fk−1

]
+ 4H3 ln

8HK(K + 1)

δ
(Under EVar)

≤ 2

K∑
k=1

E

( H∑
h=1

Rh(s
k
h, a

k
h)− V πk

1 (sk1)

)2

|Fk−1

+ 4H3 ln
8HK(K + 1)

δ
(By Lemma 3)

≤ 2H2K + 4H3 ln
8HK(K + 1)

δ
,

where the last inequality is since both the values and cumulative rewards are bounded in [0, H].
Combining both, we get

K∑
k=1

H∑
h=1

√
VarPh(·|skh,a

k
h)
(V πk

h+1)√
nk−1
h (skh, a

k
h) ∨ 1

≤
√
2H2K + 4H3 ln

8HK(K + 1)

δ

√
SAH(2 + ln(K))

≤
√
2H2K + 4H3 ln

8HK(K + 1)

δ

√
2SAH ln

8HK(K + 1)

δ

≤ 2
√

H3SAKLK
δ +

√
8SAH2LK

δ .
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C Proofs for Transition Lookahead

C.1 Data Generation Process

As for the reward transition, we also assume that all data was generated before the game starts for
all state-action-timesteps, and it is given to the agent when the relevant (s, a, h) is visited. Thus, the
rewards and next-state from the first ith visits at a state (or a state-action pair) at a certain timestep
are i.i.d.

Throughout this appendix, we use the notation s′kh+1 =
{
s′kh+1(s

k
h, a)

}
a∈A to denote the next-state

observations at episode k and timestep h for all the actions, and use the equivalent filtrations to the
ones defined at Appendix B.1, namely

Fk,h = σ
({

s1t , a
1
t , s

′1
t+1, R

1
t

}
t∈[H]

, . . . ,
{
sk−1
t , ak−1

t , s′k−1
t+1 , Rk−1

t

}
t∈[H]

,
{
skt , a

k
t , s

′k
t+1, R

k
t

}
t∈[h]

)
,

Fk = σ
({

s1t , a
1
t , s

′1
t+1

}
t∈[H]

, . . . ,
{
skt , a

k
t , s

′k
t+1, R

k
t

}
t∈[H]

, sk+1
1

)
.

In particular, notice that since both s′kh+1 and akh are Fk,h measurable, then so does skh+1.

C.2 Extended MDP for Transition Lookahead

In this appendix, we present an equivalent extended MDP that embeds the lookahead into the state to
fall under the vanilla MDP model, similarly to Appendix B.2. We use this equivalence to apply various
existing results on MDPs without the need to reprove them. We follow the same conventions as
Appendix B.2 while denoting transition lookahead values by V T,π(s|M) (and again, the superscript
T will be omitted in subsequent subsections).

For any MDP M = (S,A, H, P,R), let MT be an MDP of horizon 2H and state space SA+1 that
separates the state transition and next-state generation as follows:

1. Assume w.l.o.g. that M starts at some initial state s1. The extended environment starts at a
state s1 × s′0, where s′0 ∈ SA is a vector of A copies of some arbitrary state s0 ∈ S.

2. For any h ∈ [H], at timestep 2h− 1, the environment MT transitions from state sh × s′0 to
sh × s′h+1, where s′h+1 ∼ Ph(s) is a vector containing the next state for all actions a ∈ A;
this transition happens regardless of the action that the agent played. At timestep 2h, given
an action ah, the environment transitions from sh × s′h+1 to s′h+1(a)× s′0.

3. The rewards at odd steps 2h−1 are zero, while the rewards at even steps 2h are Rh(sh, ah) ∼
Rh(sh, ah) of expectation rh(sh, ah).

As before, since the next state is embedded into the extended state space, any state-dependent policy in
MT is a one-step transition lookahead policy in the original MDP. Also, the policy at even timesteps
does not affect either the rewards or transitions, so it does not affect the value in any way. We again
couple the two environments to have the exact same randomness, so assuming that the policy at the
even steps in MT is the same as the policy in M, we trivially get the following relation between the
values

V π
2h(s, s

′|MT ) = E

[
H∑
t=h

Rt(st, at)|sh = s, s′h+1(s, ·) = s′, π

]
≜ V T,π

h (s, s′|M),

V π
2h−1(s, s

′
0|MT ) = E

[
H∑
t=h

Rt(st, at)|sh = s, π

]
= V T,π

h (s|M). (7)

While MT is finite, it is exponential in size, so applying any standard algorithm in this environment
would lead to exponentially-bad performance bounds. Nonetheless, as with the extended-reward
environment, we use this representation to prove useful results on one-step transition lookahead.
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Proposition 2. The optimal value of one-step transition lookahead agents satisfies

V T,∗
H+1(s) = 0, ∀s ∈ S,

V T,∗
h (s) = Es′∼Ph(s)

[
max
a∈A

{
rh(s, a) + V T,∗

h+1(s
′(s, a))

}]
, ∀s ∈ S, h ∈ [H].

Also, given next-state observations s′ = {s′(a)}a∈A at state s and step h, the optimal policy is

π∗
h(s, s

′) ∈ argmax
a∈A

{
rh(s, a) + V T,∗

h+1(s
′(a))

}
.

Proof. We prove the result in the extended MDP MT , in which (as with reward lookahead) the
optimal value can be calculated using the Bellman equations as follows [28]

V T
2H+1(s, s

′|MT ) = 0, ∀s ∈ S, s′ ∈ SA,

V ∗
2h(s, s

′|MT ) = max
a

{
rh(s, a) + V ∗

2h+1(s
′(a), s′0|MT )

}
, ∀h ∈ [H], s ∈ S, s′ ∈ SA,

V ∗
2h−1(s, s

′
0|MT ) = Es′∼Ph(s)

[
V ∗
2h(s, s

′|MT )
]
, ∀h ∈ [H], s ∈ S. (8)

By the equivalence between M and MT for all policies, this is also the optimal value in M.
Combining both recursion equations and substituting Equation (7) leads to the stated value calculation
for all h ∈ [H] and s ∈ S:

V T,∗
h (s|M) = V ∗

2h−1(s, s
′
0|MT )

= Es′∼Ph(s)

[
V ∗
2h(s, s

′
h+1|MT )

]
= Es′∼Ph(s)

[
max

a

{
rh(s, a) + V ∗

2h+1(s
′
h+1(a), s

′
0|MT )

}]
= Es′∼Ph(s)

[
max

a

{
rh(s, a) + V T,∗

h+1(s
′
h+1(a)|M)

}]
.

In addition, a given state s and next-state observations s′, the optimal policy at the even stages of the
extended MDP is

π∗
2h(s, s

′) ∈ argmax
a∈A

{
rh(s, a) + V ∗

2h+1(s
′(a))

}
,

alongside arbitrary actions at odd steps. Playing this policy in the original MDP will lead to the
optimal one-step transition lookahead policy, as it achieves the optimal value of the original MDP.
By the value relations between the two environments (V ∗

2h+1(s, s
′
0|MT ) = V T,∗

h+1(s|M)), this is
equivalent to the stated policy.

Remark 2. As in Remark 1, one could write the dynamic programming equations for any policy
π ∈ ΠT , and not just to the optimal one, namely

V π
2h(s, s

′|MT ) = rh(s, π(s, s
′)) + V ∗

2h+1(s
′(πh(s, s

′)), s′0|MT ), ∀h ∈ [H], s ∈ S, s′ ∈ SA,

V π
2h−1(s, s

′
0|MT ) = Es′∼Ph(s)

[
V π
2h(s, s

′|MT )
]
, ∀h ∈ [H], s ∈ S.

In particular, following the notation of Equation (7), we can write

V T,π
h (s, s′|M) = rh(s, πh(s, s

′)) + V T,π
h+1(s

′(πh(s, s
′))|M), and,

V T,π
h (s|M) = Es′∼Ph(s)

[
V T,π
h (s, s′|M)

]
= Es′∼Ph(s)

[
rh(s, πh(s, s

′)) + V T,π
h+1(s

′(πh(s, s
′))|M)

]
,

a notation that will be extensively used for transition lookahead.
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We also prove a variation of the law of total variance (LTV) for transition lookahead:

Lemma 10. For any one-step transition lookahead policy π ∈ ΠT , it holds that

E

[
H∑

h=1

Vars′∼Ph(sh)(V
T,π
h (sh, s

′))|π, s1

]
≤ E

( H∑
h=1

rh(sh, ah)− V T,π
1 (s1)

)2

|π, s1

.

Proof. We apply the law of total variance in the extended MDP; there, the expected rewards are either
0 (at odd steps) or rh(sh, ah) (at even steps), so the total expected rewards are

∑H
h=1 rh(sh, ah).

Hence, by Lemma 27,

E

( H∑
h=1

rh(sh, ah)− V π
1 (s1, s

′
0|MT )

)2

|π, s1



= E


H∑

h=1

Var(V π
2h(sh, s

′
h+1|MT )|(sh, s′0))︸ ︷︷ ︸

Odd steps

+

H∑
h=1

Var(V π
2h+1(sh+1, s

′
0|MT )|(sh, s′h+1))︸ ︷︷ ︸

Even steps

|π, s1


≥ E

[
H∑

h=1

Var(V π
2h(sh, sh+1|MT )|(sh, s′0))|π, s1

]

= E

[
H∑

h=1

Vars′∼Ph(sh)(V
π
2h(sh, s

′|MT ))|π, s1

]

= E

[
H∑

h=1

Vars′∼Ph(sh)(V
T,π
h (sh, s

′|M))|π, s1

]
.

Using again the identity V π
1 (s1, s

′
0|MT ) = V T,π

1 (s1|M) leads to the desired result.

Finally, prove a value-difference lemma also for transition lookahead

Lemma 11 (Value-Difference Lemma with Transition Lookahead). Let M1 = (S,A, H, P 1,R1)
and M2 = (S,A, H, P 2,R2) be two environments. For any deterministic one-step transition
lookahead policy π ∈ ΠT , any h ∈ [H] and s ∈ S, it holds that

V T,π
h (s|M1)− V T,π

h (s|M2)

= EM1

[
r1h(sh, πh(sh, s

′
h+1))− r2h(sh, πh(sh, s

′
h+1))|sh = s

]
+ EM1

[
V T,π
h+1(sh+1|M1)− V T,π

h+1(sh+1|M2)|sh = s
]

+ EM1

[
Es′∼P 1

h(sh)

[
V T,π
h (sh, s

′|M2)
]
− Es′∼P 2

h(sh)

[
V T,π
h (sh, s

′|M2)
]
|sh = s

]
.

where V T,π
h (s, s′|M) is the value at a state given the reward realization, defined in Equation (7) and

given in Remark 2.

Proof. We again work with the extended MDPs MT
1 ,MT

2 and use their Bellman equations, namely,

V π
2h(s, s

′|MT ) = rh(s, π(s, s
′)) + V ∗

2h+1(s
′(πh(s, s

′)), s′0|MT ), ∀h ∈ [H], s ∈ S, s′ ∈ SA,

V π
2h−1(s, s

′
0|MT ) = Es′∼Ph(s)

[
V π
2h(s, s

′|MT )
]
, ∀h ∈ [H], s ∈ S.
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Using the relation between the value of the original and extended MDP (eq. (7)) and the Bellman
equations of the extended MDP, for any h ∈ [H], we have

V T,π
h (s|M1)− V T,π

h (s|M2)

= V π
2h−1(s, s

′
0|MT

1 )− V π
2h−1(s, s

′
0|MT

2 )

= Es′∼P 1
h(s)

[
V π
2h(s, s

′|MT
1 )
]
− Es′∼P 2

h(s)

[
V π
2h(s, s

′|MT
2 )
]

= Es′∼P 1
h(s)

[
V π
2h(s, s

′|MT
1 )− V π

2h(s, s
′|MT

2 )
]
+ Es′∼P 1

h(s)

[
V π
2h(s, s

′|MT
2 )
]
− Es′∼P 2

h(s)

[
V π
2h(s, s

′|MT
2 )
]

= Es′∼P 1
h(s)

[
V π
2h(s, s

′|MT
1 )− V π

2h(s, s
′|MT

2 )
]
+ Es′∼P 1

h(s)

[
V T,π
h (s, s′|M2)

]
− Es′∼P 2

h(s)

[
V T,π
h (s, s′|M2)

]
= EM1

[
V π
2h(sh, s

′
h+1|MT

1 )− V π
2h(sh, s

′
h+1|MT

2 )|sh = s
]

+ Es′∼P 1
h(s)

[
V T,π
h (s, s′|M2)

]
− Es′∼P 2

h(s)

[
V T,π
h (s, s′|M2)

]
. (9)

Denoting ah = πh(sh, s
′
h+1) the action taken by the agent at environment M1, We have

V π
2h(sh, s

′
h+1|MT

1 )− V π
2h(sh, s

′
h+1|MT

2 )

=
(
r1h(sh, ah) + V π

2h+1(s
′
h+1(ah), s

′
0|MT

1 )
)
−
(
r2h(sh, ah) + V π

2h+1(s
′
h+1(ah), s

′
0|MT

2 )
)

= r1h(sh, ah)− r2h(sh, ah) + V T,π
h+1(s

′
h+1(ah)|M1)− V T,π

h+1(s
′
h+1(ah)|M2),

when taking the expectation w.r.t. M1, it holds that s′h+1(ah) = sh+1; substituting this back into
Equation (9), we get

V π
h (s|M1)− V π

h (s|M2)

= EM1

[
r1h(sh, ah)− r2h(sh, ah) + V T,π

h+1(s
′
h+1(ah)|M1)− V T,π

h+1(s
′
h+1(ah)|M2)|sh = s

]
+ Es′∼P 1

h(s)

[
V T,π
h (s, s′|M2)

]
− Es′∼P 2

h(s)

[
V T,π
h (s, s′|M2)

]
= EM1

[
r1h(sh, πh(sh, s

′
h+1))− r2h(sh, πh(sh, s

′
h+1))|sh = s

]
+ EM1

[
V T,π
h+1(sh+1|M1)− V T,π

h+1(sh+1|M2)|sh = s
]

+ EM1

[
Es′∼P 1

h(sh)

[
V T,π
h (sh, s

′|M2)
]
− Es′∼P 2

h(sh)

[
V T,π
h (sh, s

′|M2)
]
|sh = s

]
.
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C.3 Full Algorithm Description for Transition Lookahead

Algorithm 4 Monotonic Value Propagation with Transition Lookahead (MVP-TL)
1: Require: δ ∈ (0, 1), bonuses brk,h(s, a), b

p
k,h(s)

2: for k = 1, 2, ... do
3: Initialize V̄ k

H+1(s) = 0
4: for h = H,H − 1, .., 1 do
5: for s ∈ S do
6: if nk−1

h (s) = 0 then
7: V̄ k

h (s) = H
8: else
9: Calculate the truncated values

V̄ k
h (s) = min

 1

nk−1
h (s)

nk−1
h

(s)∑
t=1

max
a∈A

{
r̂k−1
h (s, a) + brk,h(s, a) + V̄ k

h+1(s
′kt

h(s)

h+1 (s, a))
}
+ bpk,h(s), H


10: end if
11: For any set of next-states s′ ∈ SA, define the policy πk

πk
h(s, s

′) ∈ argmax
a∈A

{
r̂k−1
h (s, a) + brk,h(s, a) + V̄ k

h+1(s
′(a))

}
12: end for
13: end for
14: for h = 1, 2, . . . H do
15: Observe skh and s′kh+1 =

{
s′kh+1(s

k
h, a)

}
a∈A

16: Play an action akh = πk
h(s

k
h, s

′k
h )

17: Collect the reward Rk
h ∼ Rh(s

k
h, a

k
h) and transition to the next state skh+1 = s′kh+1(s

k
h, a

k
h)

18: end for
19: Update the empirical estimators and counts for all visited state-actions
20: end for

As with reward lookahead, we again use a variant of the MVP algorithm [35], described in Algorithm 4.
For the bonuses, we use the notation

V̄ k
h (s, s′) = max

a∈A

{
r̂k−1
h (s, a) + brk,h(s, a) + V̄ k

h+1(s
′(a)

}
and define the following bonuses:

brk,h(s, a) = min

{√
Lk
δ

nk−1
h (s, a) ∨ 1

, 1

}
,

bpk,h(s) =
20

3

√√√√Vars′∼P̂k−1
h (s)(V̄

k
h (s, s′))Lk

δ

nk−1
h (s) ∨ 1

+
400

3

HLk
δ

nk−1
h (s) ∨ 1

,

where Lk
δ = ln 16S3A2Hk2(k+1)

δ and

Vars′∼P̂k−1
h (s)(V̄

k
h (s, s′)) = Es′∼P̂k−1

h (s)

[
V̄ k
h (s, s′)2

]
−
(
Es′∼P̂k−1

h (s)

[
V̄ k
h (s, s′)

])2
.

The notation kth(s) again represents the tth episode where the state s was visited at the hth timestep;
in particular, line 9 of the algorithm is the expectation w.r.t. the empirical reward distribution
P̂ k−1
h (s). Since the transition bonus is larger than H when nk−1

h (s) = 0, we can arbitrarily define
the expectation w.r.t. P̂ k−1

h (s) when nk−1
h (s) = 0 to be 0, and one could write the update in a more

concise way as

V̄ k
h (s) = min

{
Es′∼P̂k−1

h (s)

[
V̄ k
h (s, s′)

]
+ bpk,h(s), H

}
.
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C.4 Additional Notations and List Representation

In this subsection, we present additional notations for both values and transition distributions that
will be helpful in the analysis. In particular, we show that instead of looking at the distribution over
all combinations of next state s′ ∈ SA, we can look at a ranking of all the next-state-actions and
represent important quantities using the effective distribution on these ranks – this moves the problem
from being SA-dimensional to a dimension of SA.

We start by defining the values starting from state s ∈ S, playing a ∈ A and transitioning to s′ ∈ S,
denoted by

V π
h (s, s′, a) = rh(s, a) + V π

h+1(s
′),

V ∗
h (s, s

′, a) = rh(s, a) + V ∗
h+1(s

′),

V̄ k
h (s, s′, a) = r̂k−1

h (s, a) + brk,h(s, a) + V̄ k
h+1(s

′),

We similarly define (consistently with Remark 2)

V π
h (s, s′) = V π

h (s, s′(πh(s, s
′)), πh(s, s

′)),

V ∗
h (s, s

′) = max
a

V ∗
h (s, s

′(a), a), and ,

V̄ k
h (s, s′) = max

a
V̄ k
h (s, s′(a), a).

List representation. We now move to defining lists of next-state-actions and distributions with respect
to such lists. Let ℓ be a list that orders all next-state-action pairs from (s′ℓ(1), aℓ(1)) to (s′ℓ(SA), aℓ(SA))

and define the set of all possible lists to be L (with |L| = (SA)!). Also, define ℓu, the list induced
by a function u : S × A 7→ R such that u(s′ℓu(1), aℓu(1)) ≥ · · · ≥ u(s′ℓu(SA), aℓu(SA)), where ties
are broken in any fixed arbitrary way. From this point forward, for brevity and when clear from the
context, we omit the list from the indexing, e.g., write the list ℓ by (s′1, a1), . . . , (s

′
SA, aSA).

We now define the probability of list elements. Denote by Eℓ
i the event that the highest-ranked

realized element in the list is element i, namely

Eℓ
i =

{
s′ ∈ SA : s′(ai) = s′i and ∀j < i, s′(aj) ̸= s′j

}
. (10)

Then, for a probability measure P on SA, define µ(i|ℓ, P ) = P (s′ ∈ Eℓ
i ). Notably, when the list is

induced by u and element i is the realized highest-ranked elements, we can write maxa u(s
′(a), a) =

u(s′i, ai), so we have that (e.g. by Lemma 17 with f(s′) = maxa u(s
′(a), a))

Es′∼Ph(s)

[
max

a
{u(s′(a), a)}

]
= Ei∼µ(·|ℓ,Ph(s))[u(s

′
i, ai)]

We also denote by µ̂k
h(i|s; ℓ) = 1

nk
h(s)∨1

∑K
t=1 1

{
sth = s, s′th+1 ∈ Eℓ

i

}
, the empirical probability for

a list location i to be the highest-realized ranking according to a list ℓ at state s and step h, based on
samples up to episode k; We have by Lemma 17 that µ̂k

h(i|s; ℓ) = P̂ k
h (E

ℓ
i |s) and

Es′∼P̂k−1
h (s)

[
max

a
{u(s′(a), a)}

]
= Ei∼µ̂k−1

h (·|s;ℓu)[u(s
′
i, ai)].

Similarly, we will require the distribution probability w.r.t. two lists – the probability that the top
element w.r.t. list ℓ is i and the top element w.r.t. list ℓ′ is j; we denote the real and empirical
probability distributions by µ(i, j|ℓ, ℓ′, P ) and µ̂k

h(i, j|s; ℓ, ℓ′), respectively. This allows, for example,
using Lemma 17 to write for any u, v : S ×A 7→ R,

Es′∼Ph(s)

[
max

a
{u(s′(a), a)} −max

a
{v(s′(a), a)}

]
= Ei,j∼µ(·|ℓu,ℓv,Ph(s))

[
u(s′ℓu(i), aℓu(i))− v(s′ℓv(j), aℓv(j))

]
,

Es′∼P̂k−1
h (s)

[
max

a
{u(s′(a), a)} −max

a
{v(s′(a), a)}

]
= Ei,j∼µ̂k

h(·|s;ℓu,ℓv)

[
u(s′ℓu(i), aℓu(i))− v(s′ℓv(j), aℓv(j))

]
. (11)
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Finally, we say that a policy πh(s, s
′) is induced by lists ℓh(s) if it chooses an action a such that

its next-state s′(a) is ranked higher in ℓ than all other realized next-state-action pairs. In particular,
the policy πk and the optimal policy π∗ (defined in Proposition 2) are such policies w.r.t. the lists
ℓ̄kh(s) and ℓ∗h(s) – induced by V̄ k

h (s, s′, a) and V ∗
h (s, s

′, a), respectively. As such, for any probability
measure Ph(s), function u : S × S ×A 7→ R and a policy π induced by a list ℓ, it holds that

Es′∼Ph(s)[u(s, s
′(π(a)), π(a))] = Ei∼µ(·|ℓh(s),Ph(s))[u(s, s

′
i, ai)]. (12)

C.4.1 Planning with Transition Lookahead

We have already seen the optimal policy is induced by a list ℓ∗h(s), and in particular, we can write the
dynamic programming equations of Proposition 2 as

V ∗
h (s) = Es′∼Ph(s)

[
max
a∈A

{
rh(s, a) + V T,∗

h (s′(a))
}]

= Ei∼µ(·|ℓ∗h(s),Ph(s))

[
rh(s, ai) + V ∗

h+1(s
′(ai))

]
.

Therefore, one way to perform the planning is to build a list ℓ∗h(s) of (s′, a) s.t. the values

V ∗
h (s, s

′, a) = rh(s, a) + V ∗
h+1(s

′)

are sorted in a non-increasing order and calculate the probability of any pair in the list to be the
highest-realized pair:

µ(i|ℓ, Ph(s)) = Ph(E
ℓ
i ) = Pr

(
s′h+1(ai) = s′i and ∀j < i, s′h+1(aj) ̸= s′j |sh = s

)
.

In general, calculating this distribution is intractable, and one must resort to approximating it by
sampling (as done in Algorithm 4. Nonetheless, if next states are generated independently between
actions, this distribution could be efficiently calculated as follows:

µ(i|ℓ, Ph(s)) = Pr
(
s′h+1(ai) = s′i and ∀j < i, s′h+1(aj) ̸= s′j |sh = s

)
(1)
= Pr

{
s′(ai) = s′i and ∀j < i s.t. aj ̸= ai, s

′(aj) ̸= s′j |sh = s
}

(2)
= Pr{s′(ai) = s′i|sh = s}

∏
a̸=ai

Pr
{
∀j < i s.t. aj = a, s′(a) ̸= s′j |sh = s

}
(3)
= Ph(s

′
i|s, ai)

∏
a̸=ai

1−
i−1∑
j=1

1{aj = a}Ph(s
′
j |s, a)

.

Relation (1) holds since if s′(ai) = s′i, it cannot get any previous value of the same action in the list,
so these events can be removed. Relation (2) is by the independence and (3) directly calculates the
probabilities.
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C.5 The First Good Event – Concentration

Next, we define the events that ensure the concentration of all empirical measures. For rewards, an
event handles the convergence of the empirical rewards to their mean. For the transitions, we want
the Bellman operator, applied on the optimal value with the empirical model, to concentrate well,
and we require the variance of values w.r.t. the empirical and real model to be close. Finally, the
empirical measure µ̂k

h(i, j|s; ℓ, ℓ∗h(s)) must concentrate well around its mean for any list ℓ – this will
allow the change-of-measure argument described in the proof sketch.

Formally, define the following good events:

Er(k) =

{
∀s, a, h : |rh(s, a)− r̂k−1

h (s, a)| ≤

√
Lk

δ

nk−1
h (s, a) ∨ 1

}
Eℓ(k) =

{
∀s, h, ∀ℓ ∈ L, ∀i, j ∈ [SA] :

∣∣∣µ̂k−1
h (i, j|s; ℓ, ℓ∗h(s))− µ(i, j|ℓ, ℓ∗h(s);Ph(s))

∣∣∣
≤

√
4SALk

δµ(i, j|s; ℓ, ℓ∗h(s);Ph(s))

nk−1
h (s) ∨ 1

+
2SALk

δ

nk−1
h (s) ∨ 1

}

Epv1(k) =

{
∀s, h :

∣∣∣Es′∼Ph(s)

[
V ∗
h (s, s′)

]
− E

s′∼P̂k−1
h

(s)

[
V ∗
h (s, s′)

]∣∣∣ ≤ √
2Vars′∼Ph(s)(V ∗

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
HLk

δ

nk−1
h (s) ∨ 1

}

Epv2(k) =

{
∀s, h :

∣∣∣∣√Vars′∼Ph(s)(V ∗
h (s, s′))−

√
Var

s′∼P̂k−1
h

(s)
(V ∗

h (s, s′))

∣∣∣∣ ≤ 4H

√
Lk

δ

nk−1
h (s) ∨ 1

}
where we again use Lk

δ = ln 16S3A2Hk2(k+1)
δ . We define the first good event as

G1 =
⋂
k≥1

Er(k)
⋂
k≥1

Eℓ(k)
⋂
k≥1

Epv1(k)
⋂
k≥1

Epv2(k),

for which the following holds:
Lemma 12 (The First Good Event). It holds that Pr(G1) ≥ 1− δ/2.

Proof. We prove that each of the events holds w.p. at least 1− δ/8. The result then directly follows
by the union bound. We also remark that due to the domain of the variables and their estimators (e.g.,
[0, 1] for the rewards), all bounds trivially hold when the counts equal zero, so w.l.o.g., we only prove
the results for cases in which states/state-actions were already previously visited.

Event ∩k≥1E
r(k). Fix k ≥ 1, s, a, h and visits n ≥ 1. Given all of these, the reward observations

are i.i.d. random variables supported by [0, 1]. Denoting the empirical mean based on these n samples
by r̂h(s, a, n), by Hoeffding’s inequality, it holds w.p. 1− δ

8SAHk2(k+1) that

|rh(s, a)− r̂h(s, a, n)| ≤

√
ln 16SAHk2(k+1)

δ

2n
≤
√

Lk
δ

n
.

Taking the union bound over all n ∈ [k] at timestep k, we get that w.p. 1− δ
8SAHk(k+1)

|rh(s, a)− r̂k−1
h (s, a)| ≤

√
Lk
δ

nk−1
h (s, a) ∨ 1

,

and another union bound over all possible values of s, a, h and k ≥ 1 implies that ∩k≥1E
r(k) holds

w.p. at least 1− δ/8.

The event ∩k≥1E
ℓ(k). For any fixed k ≥ 1, s, h, a list ℓ ∈ L and number of visits n ∈ [k], we utilize

Lemma 16 (event Ep) w.r.t. the distribution µ(i, j|ℓ, ℓ∗h(s), P ) (whose support is of size M = (SA)2).
When applying the lemma, notice that given the number of visits n ≥ 1, the empirical distribution
µ̂k−1
h (i, j|s; ℓ, ℓ∗h(s)) is the average of n = nk−1

h (s) i.i.d samples, so that for all i, j ∈ [SA],∣∣∣µ̂k−1
h (i, j|s; ℓ, ℓ∗h(s))− µ(i, j|ℓ, ℓ∗h(s);Ph(s))

∣∣∣ ≤
√

2µ(i, j|ℓ, ℓ∗h(s);Ph(s)) ln
2(SA)2

δ′

n
+

2 ln 2(SA)2

δ′

3n

≤

√
4µ(i, j|ℓ, ℓ∗h(s);Ph(s)) ln

2SA
δ′

n
+

2 ln 2SA
δ′

n
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w.p. 1 − δ′. Choosing δ′ = δ
8|L|SHk2(k+1) (such that ln 2SA

δ′ ≤ SA ln 16S3A2Hk2(k+1)
δ since

|L| ≤ (SA)SA), while taking the union bound on all n ∈ [k], all s, h and all lists ℓ ∈ L implies that
∩k≥1E

ℓ(k) holds w.p. at least 1− δ
8 .

Events ∩k≥1E
pv1(k) and ∩k≥1E

pv2(k). We repeat the arguments stated in Lemma 5. For any fixed
k ≥ 1, s, h and number of visits n ∈ [k] , we utilize Lemma 16 w.r.t. the next-state distribution for all
actions Ph(s), the value V ∗

h (s, s
′) ∈ [0, H] and probability δ′ = δ

8SHk2(k+1) ; we yet again remind
that given the number of visits, samples are i.i.d.

As before, the events ∩k≥1E
pv1(k) and ∩k≥1E

pv2(k) hold w.p. at least 1 − δ
8 through the union

bound first on n ∈ [k] (to get the empirical quantities) and then on s, h and k ≥ 1. This proves that
each of the events in G1 holds w.p. at least 1− δ

8 , so G1 holds w.p. at least 1− δ
2 .
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C.6 Optimism of the Upper Confidence Value Functions

We now prove that under the event G1, the values that MVP-TL outputs are optimistic.
Lemma 13 (Optimism). Under the first good event G1, for all k ∈ [K], h ∈ [H], a ∈ A and
s, s′ ∈ S , it holds that V ∗

h (s, s
′, a) ≤ V̄ k

h (s, s′, a). Moreover, for all s′ ∈ SA, V ∗
h (s, s

′) ≤ V̄ k
h (s, s′)

and also V ∗
h (s) ≤ V̄ k

h (s).

Proof. The proof of all claims follows by backward induction on H; the base case naturally holds for
h = H + 1, where all values are defined to be zero.

Assume by induction that for some k ∈ [K] and h ∈ [H], the inequality V ∗
h+1(s) ≤ V̄ k

h+1(s) holds
for all s ∈ S; we will show that this implies that all stated inequalities also hold at timestep h. At
this point, we also assume w.l.o.g. that V̄ k

h (s) < H (namely, not truncated), since otherwise, by the
boundedness of the rewards, V ∗

h (s) ≤ H = V̄ k
h (s). In particular, under the good event Er(k), for all

s and a , it holds that r̂k−1
h (s, a) + brk,h(s, a) ≥ rh(s, a), so for all s, a and s′, we have

V̄ k
h (s, s′, a) = r̂k−1

h (s, a) + brk,h(s, a) + V̄ k
h+1(s

′) ≥ rh(s, a) + V ∗
h+1(s

′) = V ∗
h (s, s

′, a).

where the inequality also uses the induction hypothesis. This proves the first part of the lemma.
Moreover, it implies that

V̄ k
h (s, s′) = max

a∈A

{
V̄ k
h (s, s′(a), a)

}
≥ max

a∈A
{V ∗

h (s, s
′(a), a)} = V ∗

h (s, s
′), (13)

and proves the second part of the statement.

To prove the last claim of the lemma, we use the monotonicity of the bonus, relying on Lemma 23.
This lemma can be used when applied to the empirical distribution of all possible next-states P̂ k−1

h (s);
indeed, the non-truncated optimistic value can be written as

V̄ k
h (s) = Es′∼P̂k−1

h (s)

[
max
a∈A

{
r̂k−1
h (s, a) + brk,h(s, a) + V̄ k

h+1(s
′(a))

}]
+ bpk,h(s)

≥ Es′∼P̂k−1
h (s)

[
V̄ k
h (s, s′)

]
+max

20

3

√√√√Vars′∼P̂k−1
h (s)(V̄

k
h (s, s′))Lk

δ

nk−1
h (s) ∨ 1

,
400

9

3HLk
δ

nk−1
h (s) ∨ 1

,

which is exactly the required form in Lemma 23, w.r.t. the distribution P̂ k−1
h (s) and the values

V̄ k
h (s, s′) (while noticing that due to the truncation of the values and bonuses, V̄ k

h (s, s′) ∈ [0, 3H]).
Thus, the lemma guarantees monotonicity in the value, so by Equation (13),

V̄ k
h (s) ≥ E

s′∼P̂k−1
h

(s)

[
V ∗
h (s, s′)

]
+max

20

3

√√√√Var
s′∼P̂k−1

h
(s)

(V ∗
h (s, s′))Lk

δ

nk−1
h (s) ∨ 1

,
400

9

3HLk
δ

nk−1
h (s) ∨ 1


≥ E

s′∼P̂k−1
h

(s)

[
V ∗
h (s, s′)

]
+

10

3

√√√√Var
s′∼P̂k−1

h
(s)

(V ∗
h (s, s′))Lk

δ

nk−1
h (s) ∨ 1

+
200

3

HLk
δ

nk−1
h (s) ∨ 1

≥ E
s′∼P̂k−1

h
(s)

[
V ∗
h (s, s′)

]
+

10

3

√
Vars′∼Ph(s)(V ∗

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
50HLk

δ

nk−1
h (s) ∨ 1

(Under Epv2(k))

≥ Es′∼Ph(s)

[
V ∗
h (s, s′)

]
(Under Epv1(k))

= V ∗
h (s).
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C.7 The Second Good Event – Martingale Concentration

In this subsection, we present three good events that allow replacing the expectation over the
randomizations inside each episode by their realization. Let

Y k
1,h := V̄ k

h+1(s
k
h+1)− V πk

h+1(s
k
h+1)

Y k
2,h = Vars′∼Ph(skh)

(V πk

h (skh, s
′))

Y k
3,h = brk,h(s

k
h, a

k
h).

The second good event is the intersection of the events G2 = Ediff ∩ EVar ∩Ebr defined as follows.

Ediff =

{
∀h ∈ [H],K ≥ 1 :

K∑
k=1

E[Y k
1,h|Fk,h−1] ≤

(
1 +

1

2H

) K∑
k=1

Y k
1,h + 18H2 ln

6HK(K + 1)

δ

}
,

EVar =

{
K ≥ 1 :

K∑
k=1

H∑
h=1

Y k
2,h ≤ 2

K∑
k=1

H∑
h=1

E[Y k
2,h|Fk−1] + 4H3 ln

6HK(K + 1)

δ

}
,

Ebr =

{
∀h ∈ [H],K ≥ 1 :

K∑
k=1

E[Y k
3,h|Fk,h−1] ≤ 2

K∑
k=1

Y k
3,h + 18 ln

6HK(K + 1)

δ

}
,

We define the good event G = G1 ∩G2.
Lemma 14. The good event G holds with a probability of at least 1− δ.

Proof. The analysis of the first event follows Ediff exactly as the one of Ediff1 in Lemma 7: define
Wk = 1

{
V̄ k
h (s)− V πk

h (s) ∈ [0, H],∀h ∈ [H], s ∈ S
}

(which happens a.s. under G1 due to the

optimism in Lemma 13 and truncation) and Ỹ k
1,h = WkY

k
1,h, which is bounded in [0, H] and Fk,h-

measurable. The corresponding event w.r.t. this modified variables Ẽdiff then holds w.p. 1− δ
6 by

Lemma 25, and as in Lemma 7, we can use the fact that G1 ∩ Ẽdiff = G1 ∩ Ediff to conclude this
part of the proof.

Moving to the second event, since V πk

h (s, s′) ∈ [0, H], then
∑H

h=1 Y
k
2,h ∈ [0, H3]. Therefore, by

Lemma 25 (w.r.t. the filtration Fk) with C = H3 and any fixed K, we get w.p. 1− δ
6HK(K+1) that

K∑
k=1

H∑
h=1

Y k
2,h ≤ 2

K∑
k=1

H∑
h=1

E[Y k
2,h|Fk−1] + 4H3 ln

6HK(K + 1)

δ
.

Taking the union bound on all possible values of K ≥ 1 proves that EVar holds w.p. at least 1− δ
6 .

Finally, by definition, we have that Y k
3,h = brk,h(s

k
h, a

k
h) ∈ [0, 1] and is Fk,h-measurable. Thus, for

any fixed k ≥ 1 and h ∈ [H], using Lemma 25, we have w.p. 1− δ
6HK(K+1) that

K∑
k=1

E[Y k
3,h|Fk,h−1] ≤

(
1 +

1

2

) K∑
k=1

Y k
3,h + 18 ln

6HK(K + 1)

δ
≤ 2

K∑
k=1

Y k
3,h + 18 ln

6HK(K + 1)

δ
,

so that due to the union bound, Ebr holds w.p. 1− δ
6 .

To conclude, G1 holds w.p. 1− δ
2 (Lemma 5) and the events Ẽdiff , EVar, Ebr each hold w.p. 1− δ

6 . As
before, when accounting to the fact that Ẽdiff and Ediff are identical under G1, the event G = G1∩G2

holds w.p. at least 1− δ.
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C.8 Regret Analysis

Theorem 2. When running MVP-TL, with probability at least 1− δ uniformly for all K ≥ 1, it holds
that RegT (K) ≤ O

(√
H2SK

(√
H +

√
A
)
ln SAHK

δ +H3S4A3
(
ln SAHK

δ

)2)
.

Proof. Assume that the event G holds, which by Lemma 14, happens with probability at least
1 − δ. In particular, throughout the proof, we use optimism (Lemma 13), which implies that
0 ≤ V πk

h (s, s′) ≤ V ∗
h (s, s

′) ≤ V̄ k
h (s, s′) ≤ 3H (the upper bound is also by the truncation), as well

as 0 ≤ V πk

h (s) ≤ V ∗
h (s) ≤ V̄ k

h (s) ≤ H .

We first focus on lower-bounding the value of the policy πk: by Remark 2, we have

V πk

h (s) = Es′∼Ph(s)

[
rh(s, π

k
h(s, s

′)) + V πk

h+1(s
′(πk

h(s, s
′)))
]

= Es′∼Ph(s)

[
r̂k−1
h (s, πk

h(s, s)) + V̄ k
h+1(s

′(πk
h(s, s

′))) + brk,h(s, π
k
h(s, s

′))
]

+ Es′∼Ph(s)

[
rh(s, π

k
h(s, s

′))− r̂k−1
h (s, πk

h(s, s
′))− brk,h(s, π

k
h(s, s

′))
]

+ Es′∼Ph(s)

[
V πk

h+1(s
′(πk

h(s, s
′)))− V̄ k

h+1(s
′(πk

h(s, s
′)))
]

(1)
= Es′∼Ph(s)

[
max
a∈A

{
r̂k−1
h (s, a) + V̄ k

h+1(s
′(a)) + brk,h(s, a)

}]
+ Es′∼Ph(s)

[
rh(s, π

k
h(s, s

′))− r̂k−1
h (s, πk

h(s, s))− brk,h(s, π
k
h(s, s

′))
]

+ Es′∼Ph(s)

[
V πk

h+1(s
′(πk

h(s, s
′)))− V̄ k

h+1(s
′(πk

h(s, s
′)))
]

(2)

≥ Es′∼Ph(s)

[
V̄ k
h (s, s′)

]
− 2Es′∼Ph(s)

[
brk,h(s, π

k
h(s, s

′))
]

− Es′∼Ph(s)

[
V̄ k
h+1(s

′(πk
h(s, s

′)))− V πk

h+1(s
′(πk

h(s, s
′)))
]

where (1) is by the definition of πk and (2) uses the reward concentration event. Thus, we can write

V̄ k
h (s)− V πk

h (s) ≤ Es′∼P̂k−1
h (s)

[
V̄ k
h (s, s′)

]
− Es′∼Ph(s)

[
V̄ k
h (s, s′)

]
+ 2Es′∼Ph(s)

[
brk,h(s, π

k
h(s, s

′))
]

+ Es′∼Ph(s)

[
V̄ k
h+1(s

′(πk
h(s, s

′)))− V πk

h+1(s
′(πk

h(s, s
′)))
]
+ bpk,h(s)

= Es′∼P̂k−1
h (s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]
− Es′∼Ph(s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]
+ bpk,h(s)︸ ︷︷ ︸

(i)

+ Es′∼Ph(s)[V
∗
h (s, s

′)]− Es′∼P̂k−1
h (s)[V

∗
h (s, s

′)]︸ ︷︷ ︸
(ii)

+2Es′∼Ph(s)

[
brk,h(s, π

k
h(s, s

′))
]

+ Es′∼Ph(s)

[
V̄ k
h+1(s

′(πk
h(s, s

′)))− V πk

h+1(s
′(πk

h(s, s
′)))
]

(14)

Bounding term (ii): using the concentration event Epv1(k), we have

(ii) ≤

√
2Vars′∼Ph(s)(V

∗
h (s, s

′))Lk
δ

nk−1
h (s) ∨ 1

+
HLk

δ

nk−1
h (s) ∨ 1

(1)

≤

√
2Vars′∼Ph(s)(V

πk

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
1

8H
Es′∼Ph(s)

[
V πk

h (s, s′)− V πk

h (s, s′)
]
+

4H2Lk
δ

nk−1
h (s) ∨ 1

+
HLk

δ

nk−1
h (s) ∨ 1

(2)

≤

√
2Vars′∼Ph(s)(V

πk

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
1

8H
Es′∼Ph(s)

[
V̄ k
h (s, s′)− V πk

h (s, s′)
]
+

5H2Lk
δ

nk−1
h (s) ∨ 1

.

(15)

Relation (1) uses Lemma 21 with the values 0 ≤ V πk

h (s, s′) ≤ V ∗
h (s, s

′) ≤ H with α = 8H ·
√
2Lk

δ

and (2) is by optimism.
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Bounding term (i): We first focus on the transition bonus; to bound it, we apply Lemma 22 w.r.t.
P̂ k−1
h (s′|s), Ph(s

′|s), the values 0 ≤ V πk

h (s, s′) ≤ V ∗
h (s, s

′) ≤ V̄ k
h (s, s′) ≤ 3H (by optimism),

under the event Epv2(k) and with α = 8H · 20
3

√
Lk
δ :

bpk,h(s) =
20

3

√√√√Vars′∼P̂k−1
h (s)(V̄

k
h (s, s′))Lk

δ

nk−1
h (s) ∨ 1

+
400

3

HLk
δ

nk−1
h (s) ∨ 1

≤ 1

8H
Es′∼P̂k−1

h (s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]
+

1

8H
Es′∼Ph(s)[V

∗
h (s, s

′)− V πk

h (s, s′)]

+
20

3

√
Vars′∼Ph(s)(V

πk

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
1600H2

3nk−1
h (s) ∨ 1

+
20

3

4HLk
δ

nk−1
h (s) ∨ 1

+
400

3

HLk
δ

nk−1
h (s) ∨ 1

≤ 1

8H

(
Es′∼P̂k−1

h (s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]
− Es′∼Ph(s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
])

+
1

8H
Es′∼Ph(s)

[
V̄ k
h (s, s′)− V πk

h (s, s′)
]
+

20

3

√
Vars′∼Ph(s)(V

πk

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
700H2

nk−1
h (s) ∨ 1

.

Substituting back to term (i), we now have

(i) ≤
(
1 +

1

8H

)(
Es′∼P̂k−1

h (s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]
− Es′∼Ph(s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
])

+
1

8H
Es′∼Ph(s)

[
V̄ k
h (s, s′)− V πk

h (s, s′)
]
+

20

3

√
Vars′∼Ph(s)(V

πk

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
700H2Lk

δ

nk−1
h (s) ∨ 1

.

The next step in the proof involves bounding the first term of (i). At this point, we remind that both
values can be written as V̄ k

h (s, s′) = maxa V̄
k
h (s, s′(a), a) and V ∗

h (s, s
′) = maxa V

∗
h (s, s

′(a), a),
inducing the lists ℓ̄ = ℓ̄kh(s) and ℓ∗ = ℓ∗h(s), respectively; thus the expectations can be written as (see
Appendix C.4 for further details on the list representation, and in particular, Equation (11)):

Es′∼P̂k−1
h (s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]
− Es′∼Ph(s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]

(1)
= Ei,j∼µ̂k

h(·|s;ℓ̄,ℓ∗)

[
V̄ k
h (s, s′ℓ̄(i), aℓ̄(i))− V ∗

h (s, s
′
ℓ∗(j), aℓ∗(j))

]
− Ei,j∼µ(·|ℓ̄,ℓ∗,Ph(s))

[
V̄ k
h (s, s′ℓ̄(i), aℓ̄(i))− V ∗

h (s, s
′
ℓ∗(j), aℓ∗(j))

]
(2)

≤ 1

8H
Ei,j∼µ(·|ℓ̄,ℓ∗,Ph(s))

[
V̄ k
h (s, s′ℓ̄(i), aℓ̄(i))− V ∗

h (s, s
′
ℓ∗(j), aℓ∗(j))

]
+

3H(SA)2Lk
δ (2SA+ 8H · 4SA/4)
nk−1
h (s) ∨ 1

(1)

≤ 1

8H
Es′∼Ph(s)

[
V̄ k
h (s, s′)− V ∗

h (s, s
′)
]
+

30H2(SA)3Lk
δ

nk−1
h (s) ∨ 1

≤ 1

8H
Es′∼Ph(s)

[
V̄ k
h (s, s′)− V πk

h (s, s′)
]
+

30H2(SA)3Lk
δ

nk−1
h (s) ∨ 1

Relations (1) formulate the expectation using the list representations and backward, as done in
Equation (11). For inequality (2) we rely on Lemma 24 with α = 8H under the event Eℓ(k) and
the optimism, which ensures that the value difference is bounded in [0, 3H]. We also remark that
the support of the distributions is of size (SA)2; were we to use the same result on the distributions
P̂ k−1
h (s) and Ph(s), the support would be of size SA, which would lead to an exponential additive

factor. And so, we finally have a bound of

(i) ≤ 3

8H
Es′∼Ph(s)

[
V̄ k
h (s, s′)− V πk

h (s, s′)
]
+

20

3

√
Vars′∼Ph(s)(V

πk

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
735H2(SA)3Lk

δ

nk−1
h (s) ∨ 1

.

(16)
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Combining both terms. Substituting this and Equation (15) into Equation (14), we have

V̄ k
h (s)− V πk

h (s) ≤ 1

2H
Es′∼Ph(s)

[
V̄ k
h (s, s′)− V πk

h (s, s′)
]
+ 9

√
Vars′∼Ph(s)(V

πk

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
750H2(SA)3Lk

δ

nk−1
h (s) ∨ 1

+ 2Es′∼Ph(s)

[
brk,h(s, π

k
h(s, s

′))
]
+ Es′∼Ph(s)

[
V̄ k
h+1(s

′(πk
h(s, s

′)))− V πk

h+1(s
′(πk

h(s, s
′)))
]
.

and further bounding (using the concentration event Er(k)

V̄ k
h (s, s′))− V πk

h (s, s′) = r̂k−1
h (s, πk

h(s, s
′)) + brk,h(s, π

k
h(s, s

′)) + V̄ k
h+1(s

′(πk
h(s, s

′)))

− rk−1
h (s, πk

h(s, s
′))− V πk

h+1(s
′(πk

h(s, s
′)))

≤ V̄ k
h+1(s

′(πk
h(s, s

′)))− V πk

h+1(s
′(πk

h(s, s
′))) + 2brk,h(s, π

k
h(s, s

′)),

we finally get the decomposition

V̄ k
h (s)− V πk

h (s) ≤
(
1 +

1

2H

)
Es′∼Ph(s)

[
V̄ k
h+1(s

′(πk
h(s, s

′)))− V πk

h+1(s
′(πk

h(s, s
′)))
]

+ 9

√
Vars′∼Ph(s)(V

πk

h (s, s′))Lk
δ

nk−1
h (s) ∨ 1

+
750H2(SA)3Lk

δ

nk−1
h (s) ∨ 1

+ 3Es′∼Ph(s)

[
brk,h(s, π

k
h(s, s

′))
]
.

At this point, we choose to take s = skh and sum over all k ∈ [K]; specifically, for s′ = s′kh+1, the
action becomes πk

h(s, s
′) = akh and s′(πk

h(s, s
′)) = skh+1. Formally, we can write the bound as

K∑
k=1

V̄ k
h (skh)− V πk

h (skh) ≤
(
1 +

1

2H

) K∑
k=1

E
[
V̄ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)|Fk,h−1

]

+ 3

K∑
k=1

E
[
brk,h(s

k
h, a

k
h)|Fk,h−1

]
+ 9

K∑
k=1

√√√√Vars′∼Ph(skh)
(V πk

h (skh, s
′))Lk

δ

nk−1
h (skh) ∨ 1

+

K∑
k=1

750H2(SA)3Lk
δ

nk−1
h (skh) ∨ 1

.

and, in particular, under the events Ediff and Ebr, it holds that

K∑
k=1

V̄ k
h (skh)− V πk

h (skh) ≤
(
1 +

1

2H

)2 K∑
k=1

(
V̄ k
h+1(s

k
h+1))− V πk

h+1(s
k
h+1)

)
+ 36H2 ln

6HK(K + 1)

δ

+ 3

K∑
k=1

brk,h(s
k
h, a

k
h) + 54 ln

6HK(K + 1)

δ

+ 9

K∑
k=1

√√√√Vars′∼Ph(skh)
(V πk

h (skh, s
′))Lk

δ

nk−1
h (skh) ∨ 1

+

K∑
k=1

750H2(SA)3Lk
δ

nk−1
h (skh) ∨ 1

.
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To conclude the proof, we recursively apply this formula from h = 1 to h = H +1 (where the values
are zero) and use the optimism. This yields

RegT (K) =

K∑
k=1

V ∗
1 (s

k
h)− V πk

1 (skh)

≤
K∑

k=1

V̄ k
1 (skh)− V πk

1 (skh) (Optimism)

(1)

≤ 9

(
1 +

1

2H

)2H K∑
k=1

H∑
h=1

√
Vars′∼Ph(skh)

(V πk

h (skh, s
′))Lk

δ√
nk−1
h (skh) ∨ 1

+ 3

(
1 +

1

2H

)2H K∑
k=1

H∑
h=1

√
Lk
δ

nk−1
h (skh, a

k
h) ∨ 1

+

(
1 +

1

2H

)2H K∑
k=1

H∑
h=1

750H2(SA)3Lk
δ

nk−1
h (skh) ∨ 1

+ 90H3

(
1 +

1

2H

)2H

ln
6HK(K + 1)

δ

(2)

≤ 50
√
H3SKLK

δ + 50
√
2SH2

(
LK
δ

)1.5
+ 9
√
LK
δ

(
SAH + 2

√
SAH2K

)
+ 2050H3S4A3LK

δ (2 + ln(K)) + 250H3LK
δ

= O
(√

H2SK
(√

H +
√
A
)
LK
δ +H3S4A3

(
LK
δ

)2)
.

Relation (1) is the recursive application of the difference alongside substitution of the reward bonuses,
while relation (2) is by Lemma 15 and Lemma 20.
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C.8.1 Lemmas for Bounding Bonus Terms

Lemma 15. Under the event EVar it holds that

K∑
k=1

H∑
h=1

√
Vars′∼Ph(skh)

(V πk

h (skh, s
′))√

nk−1
h (skh) ∨ 1

≤ 2
√

H3SKLK
δ +

√
8SH2LK

δ .

Proof. Similar to Lemma 9, we again rely on the lookahead version of the law of total variation to
prove this bound. First, by Cauchy-Schwartz inequality, it holds that

K∑
k=1

H∑
h=1

√
Vars′∼Ph(skh)

(V πk

h (skh, s
′))√

nk−1
h (skh) ∨ 1

≤

√√√√ K∑
k=1

H∑
h=1

Vars′∼Ph(skh)
(V πk

h (skh, s
′))

√√√√ K∑
k=1

H∑
h=1

1

nk−1
h (skh) ∨ 1

.

We use Lemma 20 to bound the second term by

K∑
k=1

H∑
h=1

1

nk−1
h (skh) ∨ 1

≤ SH(2 + ln(K))

and focus on bounding the first term. Under EVar, we have

K∑
k=1

H∑
h=1

Vars′∼Ph(skh)
(V πk

h (skh, s
′))

≤ 2

K∑
k=1

E

[
H∑

h=1

Vars′∼Ph(skh)
(V πk

h (skh, s
′))|Fk−1

]
+ 4H3 ln

6HK(K + 1)

δ
(Under EVar)

= 2

K∑
k=1

E

( H∑
h=1

rh(s
k
h, a

k
h)− V πk

1 (sk1)

)2

|Fk−1

+ 4H3 ln
6HK(K + 1)

δ
(By Lemma 10)

≤ 2H2K + 4H3 ln
6HK(K + 1)

δ
,

where the last inequality is since both the values and cumulative rewards are bounded in [0, H].
Combining both, we get

K∑
k=1

H∑
h=1

√
Vars′∼Ph(skh)

(V πk

h (skh, s
′))√

nk−1
h (skh) ∨ 1

≤
√
2H2K + 4H3 ln

6HK(K + 1)

δ

√
SH(2 + ln(K))

≤
√

2H2K + 4H3 ln
6HK(K + 1)

δ

√
2SH ln

6HK(K + 1)

δ

≤ 2
√
H3SKLK

δ +
√
8SH2LK

δ .
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D Auxiliary Lemmas

In this appendix, we prove various auxiliary lemma that will be used throughout our proofs.

D.1 Concentration results

We first present and reprove a set of well-known concentration results.

Lemma 16. Let P be a distribution over a discrete set X of size |X | = M and let X,X1, . . . , Xn be
independent samples from this distribution. Also, let U : X 7→ [0, C] for some C > 0 and define the
empirical distribution P̂n(x) =

1
n

∑n
i=1 1{xi = x}. Then, for any δ ∈ (0, 1), each of the following

events hold w.p. at least 1− δ:

Ep =

∀x ∈ X , |P (x)− P̂n(x)| ≤

√
2P (x) ln 2M

δ

n
+

2 ln 2M
δ

3n


Epv1 =


∣∣∣∣∣∑
x∈X

(
P̂n(x)− P (x)

)
U(x)

∣∣∣∣∣ ≤
√

2VarP (U(X)) ln 2
δ

n
+

2C ln 2
δ

3n


Epv2 =

∣∣∣√VarP̂n
(U(X))−

√
VarP (U(X))

∣∣∣ ≤ 4C

√
ln 2

δ

n ∨ 1

,

where VarP (U(X)) =
∑

x∈X P (x)U(x)2 −
(∑

x∈X P (x)U(x)
)2

.

Proof. All the results require standard probability arguments and are stated for completeness.

For the first event Ep, notice that each of the components P̂n(x) is the empirical mean of independent
Bernoulli random variables Xi(x) of mean P (x). Therefore, by Bernstein’s inequality, recalling that
the variance of the variable Ber(p) is p(1− p), we get w.p. at least 1− δ

M that

|P (x)− P̂n(x)| ≤

√
2P (x)(1− P (x)) ln 2M

δ

n
+

2 ln 2M
δ

3n
≤

√
2P (x) ln 2M

δ

n
+

2 ln 2M
δ

3n
.

Taking the union bound over all x ∈ X implies that Ep holds w.p. at least 1− δ.

For the second event Epv1, we apply Bernstein’s inequality on the variables Yi = U(Xi). The
empirical mean is given by Ŷn = 1

n

∑
i U(Xi) =

∑
x∈X P̂n(x)U(x) and its average is E[Y ] =∑

x∈X P (x)U(x). Similarly, the variance of the random variables is Var(Y ) = VarP (U(X)). Thus,
by Bernstein’s inequality, w.p. at least 1− δ,

∣∣∣Ŷn − E[Y ]
∣∣∣ ≤

√
2Var(Y ) ln 2

δ

n
+

2C ln 2
δ

3n
.

Stating the bounds in terms of Xi leads to the second event.

For the last event, we follow the analysis of [14, Lemma 19], which in turn, relies on [24, Theorem
10]. Define Vn = 1

2n(n−1)

∑n
i,j=1(U(Xi)− U(Xj))

2. This is a well-known unbiased variance
estimator, namely, E[Vn] = VarP (U(X)), and by [24, Theorem 10], for any δ > 0 it holds w.p. at
least 1− δ that

∣∣∣√Vn −
√

VarP (U(X))
∣∣∣ ≤ C

√
2 ln 2

δ

n− 1
,

where we scaled the bound by C to account for the values being in [0, C].
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Next, we relate Vn to the empirical variance. By elementary algebra, we have

Vn =
1

2n(n− 1)

n∑
i,j=1

(U(Xi)− U(Xj))
2

=
1

n

n∑
i=1

U(Xi)
2 − 1

n(n− 1)

∑
i̸=j

U(Xi)U(Xj)

=
1

n

n∑
i=1

U(Xi)
2 − n

(n− 1)

(
1

n

∑
i

U(Xi)

)2

+
1

n(n− 1)

n∑
i=1

U(Xi)
2

=
∑
x∈X

P̂n(x)U(x)2 −

(∑
x∈X

P̂n(x)U(x)

)2

+
1

n(n− 1)

n∑
i=1

U(Xi)
2 − 1

n2(n− 1)

(
n∑

i=1

U(Xi)

)2

.

The first two terms are exactly the variance w.r.t. the empirical distribution; therefore, using the
inequality

∣∣∣√a−
√
b
∣∣∣ ≤√|a− b| for positive numbers, we have

∣∣∣√Vn −
√
VarP̂n

(U(X))
∣∣∣ ≤

√√√√√
∣∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

U(Xi)2 −
1

n2(n− 1)

(
n∑

i=1

U(Xi)

)2
∣∣∣∣∣∣ ≤

√
C2

n− 1
.

Combining both inequalities and recalling the trivial bound of C on the difference, we get that w.p. at
least 1− δ,∣∣∣√VarP̂n

(U(X))−
√
VarP (U(X))

∣∣∣ ≤ min

C

√
2 ln 2

δ

n− 1
+

√
C2

n− 1
, C

 ≤ 4C

√
ln 2

δ

n ∨ 1
.

Next, we present a short lemma that allows moving between different spaces of probabilities.
Lemma 17. Let X be a finite set and let X1, . . . , Xn ∈ X . Also, let E1, . . . , Em ⊆ X be a partition
of the set X , namely, for all i ̸= j, Ei ∩ Ej = ∅ and ∪m

i=1Ei = X . Finally, let f : X 7→ R such that
for all i ∈ [m] and x ∈ Ei, it holds that f(x) = f(i), and define

P̂n(x) =
1

n

n∑
ℓ=1

1{Xℓ = x}, and, Q̂n(i) =
1

n

n∑
ℓ=1

1{Xℓ ∈ Ei}.

Then, the following hold:

1. Q̂n(i) = P̂n(Ei) ≜
∑

x∈Ei
P̂n(x) and, in particular, Ei∼Q̂n

[f(i)] = Ex∼P̂n
[f(x)].

2. If P is a distribution over X and X1, . . . , Xn ∈ X are i.i.d. samples from P , then
E[Q̂n(i)] = P (Ei) ≜ Q(i). It also holds that Ex∼P [f(x)] = Ei∼Q[f(i)].

Proof. For the first part, we have by definition that

Q̂n(i) =
1

n

n∑
ℓ=1

1{Xℓ ∈ Ei} =
∑
x∈X

1

n

n∑
ℓ=1

1{Xℓ = x}1{x ∈ Ei} =
∑
x∈X

P̂n(x)1{x ∈ Ei}

=
∑
x∈Ei

P̂n(x) = P̂n(Ei).

In particular, it holds that

Ei∼Q̂n
[f(i)] =

m∑
i=1

Q̂n(i)f(i) =

m∑
i=1

∑
x∈Ei

P̂n(x)f(i)
(1)
=

m∑
i=1

∑
x∈Ei

P̂n(x)f(x)
(2)
=
∑
x∈X

P̂n(x)f(x)

= Ex∼P̂n
[f(x)],
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where (1) is since f is constant inside Ei and (2) is since {Ei}mi=1 partition X .

For the second part of the statement, notice that since the samples are i.i.d., it holds that E
[
P̂n(x)

]
=

P (x), and therefore,

E[Q̂n(i)] = E

[∑
x∈Ei

P̂n(x)

]
=
∑
x∈Ei

P (x) = P (Ei) = Q(i).

Finally, as in the first part of the statement, it holds that

Ei∼Q[f(i)] =

m∑
i=1

Q(i)f(i) =

m∑
i=1

∑
x∈Ei

P (x)f(i) =

m∑
i=1

∑
x∈Ei

P (x)f(x) =
∑
x∈X

P (x)f(x)

= Ex∼P [f(x)].

Finally, we present two specialized concentration results that are needed for reward and transition
lookahead, respectively.
Lemma 18. Let X,X1, . . . Xn ∈ Rd be i.i.d. random vectors over [0, 1] and let C ≥ 1 be some
constant. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

∀u ∈ [0, C]d,

∣∣∣∣∣E
[
max
i∈[d]

{X(i) + u(i)}
]
− 1

n

n∑
ℓ=1

max
i∈[d]

{Xℓ(i) + u(i)}

∣∣∣∣∣ ≤ 3

√
d ln 9Cn

δ

2n
.

Proof. Denote m(u) = E
[
maxi∈[d]{X(i) + u(i)}

]
and m̂(u) = 1

n

∑n
ℓ=1 maxi∈[d]{Xℓ(i) + u(i)}

and fix any u ∈ [0, C]d. Since the variables are bounded in [0, 1], their maximum is bounded almost
surely in [maxi u(i),maxi u(i) + 1], namely, an interval of unit length. Therefore, by Hoeffding’s
inequality, for any δ′ ∈ (0, 1), w.p. 1− δ′

|m(u)− m̂(u)| ≤

√
ln 2

δ′

2n
.

Now, for some ϵ ∈ (0, C], let uϵ be the closest vector to u on a grid {0, ϵ, 2ϵ, . . . , C}d. Then, it
clearly holds that

|m(u)− m̂(u)| ≤ |m(uϵ)− m̂(uϵ)|+ 2ϵ.

Taking the union bound over all
(⌈

C
ϵ

⌉
+ 1
)d

possible choices for uϵ and fixing δ′ = δ

(⌈C
ϵ ⌉+1)

d , we

get w.p. 1− δ for all u that

|m(u)− m̂(u)| ≤

√√√√ ln
2(⌈C

ϵ ⌉+1)
d

δ

2n
+ 2ϵ ≤

√
d ln 6C

ϵδ

2n
+ 2ϵ.

Now, fixing ϵ =

√
d ln 6C

δ

2n and noting that 1
ϵ ≤

√
2n for C ≥ 1, we get

|m(u)− m̂(u)| ≤

√
d ln 6C

√
2n

δ

2n
+ 2

√
d ln 6C

δ

2n
≤

√
d ln 9Cn

δ

2n
+ 2

√
d ln 6C

δ

2n
≤ 3

√
d ln 9Cn

δ

2n
.
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Lemma 19. Let X,X1, . . . Xn ∈ Rd be i.i.d. random vectors with components supported over the
discrete set [m] and let C ≥ 1 be some constant. Then, uniformly over all u ∈ [0, C]dm w.p. 1− δ:∣∣∣∣∣E[max

i
{u(X(i), i)}

]
− 1

n

n∑
ℓ=1

max
i

{u(Xℓ(i), i)}

∣∣∣∣∣
≤

√
2md ln 6n

δ Var(maxi{u(X(i), i)})
n

++
8Cmd

(
ln 6n

δ

)1.5
n

.

Proof. We follow a similar path to Lemma 18 and use a covering argument. Denoting w(u) =
E[maxi{u(X(i), i)}] and ŵ(u) = 1

n

∑n
ℓ=1 maxi{u(Xℓ(i), i)}, by Bernstein’s inequality, for any

δ′ ∈ (0, 1) and fixed u ∈ [0, C]dm, it holds w.p. 1− δ′ that

|w(u)− ŵ(u)| ≤

√
2Var(maxi{u(X(i), i)}) ln 2

δ

n
+

2C ln 2
δ

3n
. (17)

Now, for some ϵ ∈ (0, C], let uϵ be the closest matrix to u on a grid {0, ϵ, 2ϵ, . . . , C}md and denote
Z(u) = maxi{u(X(i), i)} with samples Zi(u). By the smoothness of the max function, it holds that

|Z(u)− Z(uϵ)| ≤ ϵ.

In particular, we also have that∣∣E[Z(u)2]− E[Z(uϵ)
2]
∣∣ ≤ ϵ2 + 2Cϵ, and

∣∣E[Z(u)]2 − E[Z(uϵ)]
2
∣∣ ≤ ϵ2 + 2Cϵ,

so we have∣∣∣Var(max
i

{u(X(i), i)}
)
−Var

(
max

i
{uϵ(X(i), i)}

)∣∣∣ = |Var(Z(u))−Var(Z(uϵ))| ≤ 2ϵ2 + 4Cϵ.

Similarly, it holds that
|w(u)− ŵ(u)| ≤ |w(uϵ)− ŵ(uϵ)|+ 2ϵ.

Taking the union bound over all
(⌈

C
ϵ

⌉
+ 1
)md

possible choices for uϵ and fixing δ′ = δ

(⌈C
ϵ ⌉+1)

dm ,

we get w.p. 1− δ for all u that

|w(u)− ŵ(u)| ≤

√√√√2Var(maxi{uϵ(X(i), i)}) ln 2(⌈C
ϵ ⌉+1)

md

δ

n
+

2C ln
2(⌈C

ϵ ⌉+1)
md

δ

3n
+ 2ϵ

≤

√
2mdVar(maxi{uϵ(X(i), i)}) ln 6C

ϵδ

n
+

2Cmd ln 6C
ϵδ

3
+ 2ϵ

≤

√
2md ln 6C

ϵδ (Var(maxi{u(X(i), i)}) + 2ϵ2 + 4Cϵ)

n
+

2Cmd ln 6C
ϵδ

3n
+ 2ϵ

≤

√
2md ln 6C

ϵδ Var(maxi{u(X(i), i)})
n

+

√
8mdCϵ ln 6C

ϵδ

n
+

√
4mdϵ2 ln 6C

ϵδ

n

+
2Cmd ln 6C

ϵδ

3n
+ 2ϵ.

Now, fixing ϵ =
C ln 6n

δ

n and noticing that 6C
ϵδ ≤ 6n

δ , we get

|w(u)− ŵ(u)| ≤

√
2md ln 6n

δ Var(maxi{u(X(i), i)})
n

+

√
8mdC ln 6n

δ

n
+

√
4mdC

(
ln 6n

δ

)1.5
n1.5

+
2Cmd ln 6n

δ

3n
+

2C ln 6C
δ

n

≤

√
2md ln 6n

δ Var(maxi{u(X(i), i)})
n

+
8Cmd

(
ln 6n

δ

)1.5
n

.
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D.2 Count-Related Lemmas

Lemma 20. The following bounds hold:
K∑

k=1

H∑
h=1

1√
nk−1
h (skh, a

k
h) ∨ 1

≤ SAH + 2
√
SAH2K,

K∑
k=1

H∑
h=1

1

nk−1
h (skh, a

k
h) ∨ 1

≤ SAH(2 + ln(K)),

K∑
k=1

H∑
h=1

1√
nk−1
h (skh) ∨ 1

≤ SH + 2
√
SH2K,

K∑
k=1

H∑
h=1

1

nk−1
h (skh) ∨ 1

≤ SH(2 + ln(K)).

Proof. Recall that every time a state (or state-action) is visited, its visitation-count is increased by 1,
up to nK−1

h (s, a) at the last episode. therefore, we can write
K∑

k=1

H∑
h=1

1√
nk−1
h (skh, a

k
h) ∨ 1

=

H∑
h=1

∑
s∈S

∑
a∈A

K∑
k=1

1
{
skh = s, akh = a

}√
nk−1
h (s, a) ∨ 1

=
H∑

h=1

∑
s∈S

∑
a∈A

nK−1
h (s,a)∑

i=0

1√
i ∨ 1

≤
H∑

h=1

∑
s∈S

∑
a∈A

(
1 + 2

√
nK−1
h (s, a)

)

≤ SAH + 2

√√√√SAH

H∑
h=1

∑
s∈S

∑
a∈A

nK−1
h (s, a) (Jensen’s inequality)

≤ SAH + 2
√
SAH2K.

where we bounded the total number of visits by the number of steps HK. Similarly, we also have
K∑

k=1

H∑
h=1

1

nk−1
h (skh, a

k
h) ∨ 1

=

H∑
h=1

∑
s∈S

∑
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nK−1
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i=0

1

i ∨ 1

≤
H∑

h=1

∑
s∈S

∑
a∈A

(
2 + ln

(
nK−1
h (s, a) ∨ 1

))
≤ SAH(2 + ln(K)).

We can likewise prove the inequalities for the state counts as follows:
K∑

k=1

H∑
h=1

1√
nk−1
h (skh) ∨ 1

=

H∑
h=1

∑
s∈S

K∑
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1
{
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}√
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h (s)∑
i=0

1√
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≤
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(
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√
nK−1
h (s)

)

≤ SH + 2

√√√√SH

H∑
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∑
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nK−1
h (s) (Jensen’s inequality)

≤ SH + 2
√
SH2K,

and
K∑

k=1

H∑
h=1

1

nk−1
h (skh) ∨ 1

=

H∑
h=1

∑
s∈S

nK−1
h (s)∑
i=0

1

i ∨ 1
≤

H∑
h=1

∑
s∈S

(
2 + ln

(
nK−1
h (s) ∨ 1

))
≤ SH(2 + ln(K)).
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D.3 Analysis of Variance terms

Lemma 21. Let P be a distribution over a finite set X and let X ∼ P . Also, let V1, V2 : X 7→ [0, C]
for some C > 0 such that V1(x) ≤ V2(x) for all x ∈ X . Then, for any α, n > 0, it holds that√

VarP (V2(X))√
n

≤
√
VarP (V1(X))√

n
+

1

α
E[V2(X)− V1(X)] +

Cα

4n

Proof. By Lemma 26, we have√
VarP (V2(X))−

√
VarP (V1(X)) ≤

√
VarP (V2(X)− V1(X))

≤
√
EP [(V2(X)− V1(X))2]

≤
√
CEP [V2(X)− V1(X)]

where the last inequality is by the boundedness and since V1(x) ≤ V2(x). Thus, we can bound√
VarP (V2(X))−

√
VarP (V1(X))√

n
≤
√
CEP [V2(X)− V1(X)]√

n

=
√
EP [V2(X)− V1(X)] ·

√
C

n

≤ 1

α
EP [V2(X)− V1(X)] +

Cα

4n
,

where last inequality is due to Young’s inequality (ab ≤ 1
αa

2 + α
4 b

2 for all α > 0).

Lemma 22. Let P, P ′ be distributions over a finite set X and let X ∼ P . Also, let V1, V2, V3 : X 7→
[0, C] for some C > 0 such that V1(x) ≤ V2(x) ≤ V3(x) for all x ∈ X . Finally, assume that∣∣∣√VarP (V2(X))−

√
VarP ′(V2(X))

∣∣∣ ≤ β

for some β > 0. Then, for any α, n > 0, it holds that√
VarP ′(V3(X))√

n
≤
√
VarP (V1(X))√

n
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1

α
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1

α
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2n
+
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n

≤
√
VarP (V1(X))√

n
+

1

α
EP ′ [V3(X)− V1(X)] +

1

α
EP [V3(X)− V1(X)] +

Cα

2n
+

β√
n
.

Proof. We decompose the l.h.s. as follows√
VarP ′(V3(X))√

n
=

√
VarP ′(V3(X))−

√
VarP ′(V2(X))√

n
+

√
VarP ′(V2(X))−

√
VarP (V2(X))√

n

+

√
VarP (V2(X))−

√
VarP (V1(X))√

n
+

√
VarP (V1(X))√

n

We bound the first and third terms using Lemma 21 and bound the second term with the assumption
and get√

VarP ′(V3(X))√
n

≤ 1

α
EP ′ [V3(X)− V2(X)] +

Cα

4n
+

β√
n

+
1

α
EP [V2(X)− V1(X)] +

Cα

4n
+

√
VarP (V1(X))√

n

=

√
VarP (V1(X))√

n
+

1

α
EP ′ [V3(X)− V2(X)] +

1

α
EP [V2(X)− V1(X)] +

Cα

2n
+

β√
n

≤
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VarP (V1(X))√

n
+

1
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1
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Cα

2n
+

β√
n
,

where the last inequality uses the fact that V1(x) ≤ V2(x) ≤ V3(x) for all x ∈ X . The last two
bounds are the desired results.
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E Existing Results

Lemma 23 (Monotonic Bonuses,[36], Appendix C.1). For any p ∈ ∆S , v ∈ RS
+ s.t. ∥v∥∞ ≤ H ,

δ′ ∈ (0, 1) and positive integer n, define the function

f(p, v, n) = pT v +max

20

3

√
Varp(v) ln

1
δ′

n
,
400

9

H ln 1
δ′

n

.

Then, the function f(p, v, n) is non-decreasing in each entry of v.

Lemma 24 (Efroni et al. 14, Lemma 28). Let Y ∈ RS be a vector such that 0 ≤ Y (s) ≤ H for all
s ∈ S. Let P1 and P2 be two transition models and n ∈ RSA

+ . If∀s, a, s′ ∈ S ×A× S, h ∈ [H] : |P2,h(s
′|s, a)− P1,h(s

′|s, a)| ≤

√
C1Lk

δP1,h(s′|s, a)
n(s, a) ∨ 1

+
C2L

k
δ

n(s, a) ∨ 1

,

for some C1, C2 > 0, then, for any α > 0,

|(P1,h − P2,h)Y (s, a)| ≤ 1

α
Es′∼P1,h(·|s,a)[Y (s′)] +

HSLk
δ (C2 + αC1/4)

n(s, a) ∨ 1
,

Lemma 25 (Efroni et al. 14, Lemma 27). Let {Yt}t≥1 be a real-valued sequence of random variables
adapted to a filtration {Ft}t≥0. Assume that for all t ≥ 1 it holds that 0 ≤ Yt ≤ C a.s., and let
T ∈ N. Then each of the following inequalities holds with probability greater than 1− δ.

T∑
t=1

E[Yt|Ft−1] ≤
(
1 +

1

2C

) T∑
t=1

Yt + 2(2C + 1)2 ln
1

δ
,

T∑
t=1

Yt ≤ 2

T∑
t=1

E[Yt|Ft−1] + 4C ln
1

δ
.

Lemma 26 (Standard Deviation Differences, e.g., Zanette and Brunskill 33, lines 48-51). Let P ∈ ∆d

be some distribution over [d] and let V1, V2 ∈ Rd. Then, it holds that√
VarP (V1)−

√
VarP (V2) ≤

√
VarP (V1 − V2).

Lemma 27 (Law of Total Variance, e.g., Zanette and Brunskill 33, Lemma 15). For any no-lookahead
policy π, it holds that

E

[
H∑

h=1

Var(V π
h+1(sh+1)|sh)|π, s1

]
= E

( H∑
h=1

rh(sh, ah)− V π
1 (s1)

)2

|π, s1

,
where Var(V π

h+1(sh+1)|sh) is the variance of the value at step sh+1 given state sh and under the
policy π, due to the policy randomization and next-state transition probabilities.
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