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ABSTRACT

Recent advances in reinforcement learning have shown that language models
can develop sophisticated reasoning through training on tasks with verifiable re-
wards, but these approaches depend on human-curated problem-answer pairs and
domain-specific reward engineering. We introduce SPIRAL, a self-play frame-
work where models learn by playing multi-turn, zero-sum games against con-
tinuously improving versions of themselves, generating an automatic curricu-
lum of stronger opponents, and eliminating the need for human supervision.
To enable this self-play training at scale, we implement a fully online, multi-
turn, multi-agent reinforcement learning system for LLMs and propose role-
conditioned advantage estimation (RAE) to stabilize multi-agent training. SPI-
RAL produces reasoning capabilities that transfer broadly, improving perfor-
mance by up to 10% across a suite of 8 reasoning benchmarks on 4 different
models spanning Qwen and Llama model families, outperforming supervised
fine-tuning on 25,000 expert game trajectories. Multi-game training (TicTacToe,
Kuhn Poker, Simple Negotiation) yields the strongest results, with improvements
observed across both base and instruction-tuned models. Analysis of chain-of-
thought traces reveals that games develop distinct cognitive patterns that transfer
to improve reasoning performance, with different games developing complemen-
tary strengths. Even models which have already been trained on reasoning tasks
using RLVR, like DeepSeek-R1-Distill-Qwen-7B, still benefit from our approach.
These results demonstrate that zero-sum games naturally develop transferable rea-
soning capabilities across diverse model architectures and training stages, high-
lighting a promising direction for autonomous reasoning development.
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Figure 1: SPIRAL achieves consistent improvements over base models across game performance
and reasoning benchmarks. It also surpasses SFT on expert game trajectories and RL baselines
trained against fixed opponents (Mistral and Gemini).
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1 INTRODUCTION

Recent breakthroughs in language model reasoning, including OpenAI o1 (OpenAI, 2024) and
DeepSeek-R1 (DeepSeek Team, 2024), reveal that reinforcement learning (RL) can unlock dramatic
improvements in Chain-of-Thought reasoning (Wei et al., 2022). Through outcome-based rewards,
RL enables models to develop generalizable reasoning strategies and consistently solve complex
problems where supervised fine-tuning shows limited progress.

However, current approaches face a fundamental scalability bottleneck: dependence on carefully
engineered reward functions, domain-specific datasets, and expert supervision (DeepSeek Team,
2024; Ouyang et al., 2022; Bai et al., 2022). Each new reasoning domain requires experts to craft
evaluation metrics, curate training problems, and validate reasoning traces. This manual process
becomes increasingly unsustainable as we pursue more general intelligence, limiting both scale and
diversity of reasoning challenges that models can learn from.

Self-play on games offers a solution by eliminating human supervision in training data creation (Sil-
ver et al., 2017; Tesauro, 1995). In game-based self-play, models learn by competing against copies
of themselves, where game outcomes provide automatic feedback and opponents improve equally,
maintaining a consistent challenge that drives continuous learning. Although many prominent suc-
cesses in past AI research relied on self-play—from TD-Gammon (Tesauro, 1995) to AlphaGo (Sil-
ver et al., 2016; 2017) to OpenAI Five (Berner et al., 2019)—so far, applying self-play on games
to enhance language model reasoning remains largely unexplored. Prior attempts have been limited
to simple word games with offline updates (Cheng et al., 2024), LoRA adaptations (Dettmers et al.,
2023; Park et al., 2025), or single-turn tasks (Zhao et al., 2025), falling short of leveraging multi-turn
competitive dynamics for extended strategic reasoning.

We introduce SPIRAL (Self-Play on zero-sum games Incentivizes Reasoning via multi-Agent
multi-turn reinforcement Learning), which applies self-play to two-player zero-sum language
games for developing reasoning capabilities. SPIRAL offers two key advantages: unlike traditional
RLVR approaches depending on human-curated problem-answer pairs, it generates unlimited train-
ing data through game dynamics alone; compared to fixed-opponent training (see Fig. 2), self-play
prevents overfitting to static strategies by continuously evolving challenge level. However, imple-
menting this for LLMs presents significant challenges. The computational demands of multi-turn,
multi-agent autoregressive generation require sophisticated distributed systems, while standard RL
algorithms suffer from high variance in multi-agent settings. We address these through a fully online,
multi-turn, multi-agent reinforcement learning system with distributed actor-learner architecture and
introduce role-conditioned advantage estimation (RAE), which stabilizes training by normalizing re-
wards relative to each player’s expected performance.

Key Findings. Training on zero-sum games produces reasoning capabilities that transfer broadly
across diverse model architectures. Multi-game SPIRAL training (TicTacToe, Kuhn Poker, Simple
Negotiation) achieves up to 10% improvement across 8 reasoning benchmarks, outperforming super-
vised fine-tuning on 25,000 expert trajectories. On Qwen3-4B-Base (Yang et al., 2025), multi-game
training reaches 44.5% average performance versus 34.0% baseline (+10.5% absolute gain), while
Qwen3-8B-Base (Yang et al., 2025) improves from 39.5% to 49.6% (+10.1%). The approach gener-
alizes across model families: base models (Qwen3-4B/8B-Base, Octothinker-8B-Base; Wang et al.
(2025a)) and instruction-tuned models (Llama-3.1-8B-Instruct; Dubey et al. (2024)) all show consis-
tent improvements, with Octothinker-8B-Base gaining 8.0% and Llama-3.1-8B-Instruct improving
2.0% despite already being instruction-tuned. Each game develops complementary cognitive skills:
TicTacToe for spatial reasoning, Kuhn Poker for probabilistic thinking, and Simple Negotiation for
strategic optimization, which combine synergistically in multi-game training. Using post-hoc analy-
sis, we find examples of three patterns learned from gameplay that transfer to improve math perfor-
mance: case-by-case analysis, expected value calculation, and pattern recognition. These patterns
develop effectively through self-play’s adaptive curriculum, as fixed-opponent training fails while
self-play continuously improves. Role-conditioned Advantage Estimation proves critical: without
RAE, models abandon reasoning after 200 steps, progressively generating empty thinking traces that
destroy generalization. Building on these findings, our work makes the following contributions:

1. A Fully Online, Multi-Turn, Multi-Agent RL Framework for LLMs: We develop a dis-
tributed actor-learner architecture enabling online self-play with full-parameter updates across
multiple two-player zero-sum language games. The multi-turn aspect trains models to reason
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𝐿(𝑀, 𝑁, 𝑀→)
=𝑂1 · strategy_diversity(𝑀, 𝑁)
+𝑂2 · win(𝑀→)
+ . . .

(15)

33

Figure 2: From human-designed rewards to self-discovered reasoning through SPIRAL. Left: Tra-
ditional RL requires human experts to design complex reward functions. Middle: Fixed opponent
training leads to exploitation of static strategies. Right: SPIRAL enables continuous reasoning
improvement through self-play, where both players develop increasingly sophisticated strategies
without human supervision.

through sequential decisions, directly preparing them for complex multi-step problem solving.
Unlike prior offline approaches, this provides continuous curriculum as the model adapts to an
ever-improving opponent. We release our implementation1 to facilitate further research.

2. Role-conditioned Advantage Estimation (RAE): We introduce a variance-reduced advantage
estimator specifically designed for multi-agent settings. By normalizing rewards relative to each
player’s expected performance, RAE prevents the degradation of the model’s reasoning capa-
bilities, a failure mode we term “thinking collapse”. Without it, models progressively abandon
reasoning traces after 200 steps, which is critical for generalization.

3. Empirical Discovery of Transfer: We demonstrate that self-play on zero-sum games improves
both out-of-distribution game performance and academic reasoning benchmarks by up to 10%
without domain-specific training data. Our analysis identifies reasoning patterns (systematic
decomposition, expected value calculation, case-by-case analysis) that transfer from games to
mathematics at measurable rates, with different games developing specialized skills that combine
synergistically in multi-game training.

2 RELATED WORK

Reinforcement Learning for LLM Reasoning. Reinforcement learning (RL) in LLMs has pro-
gressed from alignment tasks using RLHF (Jaques et al., 2019; Ouyang et al., 2022; Bai et al., 2022)
to directly improving reasoning capabilities. Recent models like OpenAI o1 (OpenAI, 2024) and
DeepSeek-R1 (DeepSeek Team, 2024) demonstrate that RL with verifiable rewards (RLVR) can
unlock chain-of-thought reasoning using rule-based rewards (Lightman et al., 2023; Uesato et al.,
2022). However, these approaches depend on human-curated problem sets and domain-specific
reward engineering. SPIRAL eliminates this dependency by using self-play games to generate un-
limited reasoning challenges without human supervision.

Self-Play and Multi-Agent RL for LLMs. Self-play in LLMs initially focused on alignment ob-
jectives (Chen et al., 2024; Yuan et al., 2024) before recent work applied it to enhance model ca-
pabilities. SPAG (Cheng et al., 2024) applies self-play to Adversarial Taboo using offline updates
on a single game; SPC (Chen et al., 2025) and Genius (Xu et al., 2025) require predefined human
task distributions; Absolute Zero (Zhao et al., 2025) generates single-turn coding tasks; Foundation
Model Self-Play (Dharna et al., 2025) uses foundation models to evolve code-based policies rather
than direct gameplay; Prover-Verifier Game (Kirchner et al., 2024) improve output legibility through
adversarial training. Implementing multi-agent RL (MARL) for full-scale LLMs presents significant
technical challenges (Wan et al., 2025; Liu et al., 2025a). Prior work circumvents these challenges by
using RNNs instead of transformers (Sarkar et al., 2025), restricting to simplified environments (Ja-
cob et al., 2022; Sukhbaatar et al., 2018), or applying supervised fine-tuning on trajectories from
proprietary models (Liao et al., 2024). In contrast, SPIRAL implements fully online, full-parameter
MARL through a distributed actor-learner architecture, enabling continuous adaptation to evolving
opponents across multiple games.

1https://anonymous.4open.science/r/spiral-iclr-submission.
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Figure 3: The SPIRAL Framework. SPIRAL employs an actor-learner architecture for scalable
self-play training. Parallel actors sample trajectories from a diverse set of games using vectorized
environments. A single policy πi plays both roles, generating zero-sum, sparse reward game tra-
jectories. The centralized learner processes these trajectories using Role-conditioned Advantage
Estimation (RAE) to compute separate advantages, A0(s, a) and A1(s, a), for each role. These are
then used for on-policy reinforcement learning updates.

LLMs in Gaming. Games serve as both evaluation benchmarks (Paglieri et al., 2024; Ruoss et al.,
2024; Zhang et al., 2024; Duan et al., 2024) and training domains (Feng et al., 2024; Verma et al.,
2025). LMRL-Gym (Abdulhai et al., 2023) and RAGEN (Wang et al., 2025b) both employ single-
agent multi-turn RL, with LMRL-Gym providing 8 benchmarking tasks and RAGEN focusing on
trajectory-level optimization. ViGaL (Xie et al., 2025b) shows that single-agent RL on visual-spatial
games transfers to mathematical reasoning without explicit math training. Logic-RL (Xie et al.,
2025a) trains on synthetic puzzle games; Divide-Fuse-Conquer (Zhang et al., 2025) applies offline
learning to grouped games; Boundless Socratic Learning (Schaul, 2024) uses language games for
continual learning; Code2Logic (Tong et al., 2025) synthesizes reasoning data from game code. SPI-
RAL uniquely combines three elements: (1) multi-agent self-play where both players share param-
eters, (2) fully online learning with continuous opponent evolution, and (3) demonstrated transfer
from zero-sum language games to academic reasoning benchmarks achieving up to 10.5% improve-
ment without exposure to benchmark-related problems during training.

3 THE SPIRAL FRAMEWORK

We present SPIRAL, a framework enabling language models to develop generalizable reasoning
through multi-turn competitive self-play on games, illustrated in Figure 3.

Formulation. SPIRAL implements self-play through turn-based zero-sum language games from
collection G = {G1, G2, ..., Gn}. Each game Gi is a two-player zero-sum Markov game (Littman,
1994) built on turn-level MDPs where states s ∈ S represent complete contexts (e.g., game con-
figurations), actions a ∈ A are complete multi-token responses, and transition function Ti deter-
mines state dynamics after full turn completion. The zero-sum property ensures r0(s, a(0), a(1)) +
r1(s, a

(0), a(1)) = 0 for all states and actions where a(p) denotes the action of player p ∈ {0, 1},
creating competitive dynamics. See Appendix C for detailed formulations.

Benefits of multi-turn, zero-sum games. Zero-sum dynamics create continuous improvement pres-
sure through rewards given only at game termination: ri(st, a

(0)
t , a

(1)
t ) = 0 for all non-terminal

states, with terminal rewards R0(τ) = ρi(sT ) and R1(τ) = −ρi(sT ) where ρi : S terminal
i →

{−1, 0, 1} determines the outcome and τ represents the complete trajectory. This forces robust strat-
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Algorithm 1 SPIRAL: Role-Balanced Multi-Turn Self-Play

Require: Policy πθ, Games G = {G1, ..., Gn}, decay rate α ∈ [0, 1]
1: Initialize baselines bGi,p = 0 for all Gi ∈ G, p ∈ {0, 1}
2: while not converged do
3: // Self-Play Trajectory Collection
4: B ← ∅
5: for k = 1 to K actors in parallel do
6: Sample game Gi ∼ G, initialize s0 ∼ Gi

7: for turn t = 0, 1, 2, ... until terminal do
8: p← t mod 2 ▷ Determine active player
9: y

(p)
t ∼ πθ(·|st, p,Gi) ▷ Generate reasoning + action

10: a
(p)
t ← extract_action(y(p)t )

11: a
(1−p)
t ← ∅ ▷ Inactive player

12: st+1 ← Ti(st, a
(0)
t , a

(1)
t )

13: end for
14: R0 ← ρi(sT ), R1 ← −R0

15: Add (τ,Gi) to batch B ▷ Store trajectory with its game
16: end for
17: // Role-Balanced Policy Optimization
18: for (τ,Gi) ∈ B do
19: for p ∈ {0, 1} do
20: bGi,p ← αbGi,p + (1− α)Rp(τ)
21: AGi,p(τ)← Rp(τ)− bGi,p

22: end for
23: end for
24: Update θ using policy gradient with advantages AGi,p (Eq. 3)
25: end while

egy development as models only receive feedback upon game completion. The multi-turn structure
mirrors sequential reasoning problems: players alternate turns with p = t mod 2 acting at time t
while the opponent waits, training models to maintain context, plan ahead, and adapt strategies.

Self-play. Rather than training separate policies πθ0 and πθ1 for each player, SPIRAL uses a single
shared policy πθ with parameters θ, setting θ0 = θ1 = θ. Role conditioning through system prompts
enables the model to learn distinct strategies for each position (see Appendix D.1). At each turn,
the active player generates a complete response y

(p)
t ∼ πθ(·|st, p,Gi) conditioned on current state

st, player role p, and game Gi. From this response, we extract the action a
(p)
t to update the game

state via st+1 = Ti(st, a
(0)
t , a

(1)
t ) where a

(1−p)
t = ∅ for the inactive player. This shared-parameter

approach ensures efficient use of GPU memory while also guaranteeing that as the model improves at
one role, it simultaneously faces a stronger opponent, creating an automatic curriculum. Algorithm 1
presents the complete training procedure.

RL objective. To optimize this shared policy, we apply Monte Carlo policy gradient methods. Using
REINFORCE (Williams, 1992), the gradient becomes:

∇θJ(θ) = EG∼GEτ∼πθ×πθ|G

[∑
t∈T0

∇θ log πθ(y
(0)
t |st, 0, G) ·R0(τ) +

∑
t∈T1

∇θ log πθ(y
(1)
t |st, 1, G) ·R1(τ)

]
,

(1)
where Tp = {t : t mod 2 = p} denotes turns where player p acted. This formulation uses Monte
Carlo returns which suffer from high variance, particularly problematic in self-play where the oppo-
nent’s strategy continuously evolves, making the environment non-stationary.

Role-conditioned advantage estimation. Self-play on zero-sum games implies using the same
model to optimize for opposing objectives, since R1(τ) = −R0(τ). This can lead to unstable
training dynamics which impedes learning. To reduce the high variance inherent in multi-agent
REINFORCE, we introduce Role-conditioned Advantage Estimation (RAE). In two-player games,
even with a shared policy, different roles may have different expected returns due to game asym-
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Table 1: Reasoning benchmark performance. The “-Kuhn” suffix denotes fine-tuning solely on a
single game (Kuhn Poker), while the “-Multi” suffix indicates fine-tuning on all three games. SPI-
RAL improves reasoning without any domain-specific training data. ∗Few-shot evaluation following
Qwen3 technical report.

Model Math500 AIME24 AIME25 Olympiad AMC-23 Minerva GPQA-D MMLU-Pro Average

Qwen3-4B-Base 73.4 9.6 6.2 33.3 42.4 29.4 30.6∗ 47.2∗ 34.0
+ SFT-Kuhn 74.0 11.0 10.4 36.7 48.6 36.8 33.0 48.8 37.4
+ SFT-Multi 74.2 13.7 11.7 37.6 51.1 40.1 37.8 51.3 39.7
+ SPIRAL-Kuhn (Ours) 76.4 18.2 15.6 38.4 61.2 42.4 37.0 57.7 43.4
+ SPIRAL-Multi (Ours) 78.2+4.8 19.7+10.1 13.3+7.1 41.8+8.5 61.6+19.2 42.6+13.2 40.1+9.5 58.5+11.3 44.5+10.5

Qwen3-8B-Base 77.0 12.1 11.2 33.5 50.6 38.2 38.0∗ 55.7∗ 39.5
+ SFT-Multi 82.8 19.9 15.6 45.9 63.5 40.8 41.6 58.8 46.1
+ SPIRAL-Multi (Ours) 86.6+9.6 26.2+14.1 16.8+5.6 49.6+16.1 65.2+14.6 46.3+8.1 44.6+6.6 61.1+5.4 49.6+10.1

Octothinker-8B-Base 65.6 1.7 0.5 26.6 33.5 25.7 22.1 30.8 25.8
+ SFT-Multi 66.0 3.3 3.8 23.9 31.0 23.8 24.9 39.1 27.0
+ SPIRAL-Multi (Ours) 68.6+3.0 5.3+3.6 4.8+4.3 33.7+7.1 43.2+9.7 32.0+6.3 33.8+11.7 49.3+18.5 33.8+8.0

Llama-3.1-8B-Instruct 46.4 4.6 0.7 13.8 23.3 22.8 30.2 49.1 23.9
+ SFT-Multi 51.8 4.6 0.7 19.1 23.3 21.7 30.0 48.9 25.0
+ SPIRAL-Multi (Ours) 49.8+3.4 4.9+0.3 1.8+1.1 17.3+3.5 26.0+2.7 24.6+1.8 32.2+2.0 50.4+1.3 25.9+2.0

DeepSeek-Distill-Qwen-7B 90.8 53.0 39.5 56.9 89.3 48.2 48.6 57.1 60.4
+ SFT-Multi 91.8 49.3 36.6 52.4 88.2 48.2 44.5 55.6 58.3
+ SPIRAL-Multi (Ours) 93.0+2.2 54.1+1.1 40.8+1.3 57.9+1.0 89.3+0.0 51.1+2.9 49.6+1.0 58.9+1.8 61.8+1.4

metries (e.g., first-move advantage in TicTacToe, information asymmetry in Kuhn Poker). RAE
maintains separate baselines bG,p for each game G ∈ G and role p ∈ {0, 1}, estimating expected
return E[Rp(τ)] for that role in that game. We update these baselines using exponential moving
average with decay rate α ∈ [0, 1]:

bG,p ← αbG,p + (1− α)Rp(τ), AG,p(τ) = Rp(τ)− bG,p (2)

This provides better variance reduction than a global baseline by accounting for role-specific asym-
metries. The variance-reduced policy gradient becomes:

∇θJSPIRAL(θ) = EG∼GEτ∼πθ×πθ|G

 ∑
p∈{0,1}

∑
t∈Tp

AG,p(τ) · ∇θ log πθ(y
(p)
t |st, p,G)

 (3)

By centering returns around role-specific expectations, RAE ensures gradient updates reflect genuine
learning signal rather than inherent positional advantages. We do not normalize by response length
to avoid length bias (Liu et al., 2025b). The complete procedure is in Algorithm 1.

Implementation. To implement SPIRAL, we develop a truly online multi-agent, multi-turn RL
system for finetuning LLMs. Our training framework builds on Oat (Liu et al., 2024), which provides
interfaces of a distributed actor-learner architecture (Espeholt et al., 2018). We instantiate actors
to execute the self-play loop, using vLLM (Kwon et al., 2023) for efficient model inference and
TextArena (Guertler et al., 2025) to simulate the language games. The resulting multi-turn, multi-
game self-play experiences are used to update the LLM via policy gradient methods (Sutton & Barto,
2018), incorporating our proposed Role-conditioned Advantage Estimation in the collocated learner.

4 EXPERIMENTAL RESULTS

We evaluate SPIRAL across diverse model architectures and game environments to understand
how self-play develops transferable reasoning capabilities. We train on three games from
TextArena (Guertler et al., 2025): TicTacToe (spatial reasoning), Kuhn Poker (probabilistic reason-
ing), and Simple Negotiation (strategic optimization). Models include Qwen3-4B/8B-Base (Yang
et al., 2025), Llama-3.1-8B-Instruct (Dubey et al., 2024), and Octothinker-8B-Base (Wang et al.,
2025a). Training spans 400 steps with 128 samples per step on 8 H100 GPUs, using Adam opti-
mizer with learning rate 1× 10−6 and temperature 1.0. We evaluate on eight reasoning benchmarks
(MATH500, OlympiadBench, Minerva Math, AIME24/25, AMC23, GPQA-Diamond, MMLU-Pro)
and seven out-of-distribution games. Complete implementation details are in Appendix D.
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Figure 4: Evolution of reasoning patterns during SPIRAL training and their transfer to math-
ematical reasoning. We track three core reasoning patterns (Pattern Recognition, Expected Value
Calculation, and Case-by-Case Analysis) across 290 game trajectories and 46,792 math solutions.
Left: Patterns increase via training on games, with Expected Value Calculation reaching 78% by
late training. Middle: These patterns transfer to mathematical reasoning with varying effectiveness:
Case-by-Case Analysis maintains high transfer (72% to 71%), Pattern Recognition shows amplifi-
cation (35% to 45%), while Expected Value Calculation transfers more selectively (78% to 28%).
Right: Math benchmark scores improve from 31.2 to 39.6 as these reasoning patterns develop,
demonstrating that game-learned strategies enhance mathematical problem-solving capabilities.
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Figure 5: Performance comparison of self-play training and fixed-opponent baselines. All evalu-
ations are averaged over multiple games/benchmarks (see App. D.3). Mistral Opponent refers to
against Mistral-Small-3; Gemini Opponent refers to against Gemini-2.0-Flash-Lite.

Self-play on games transfers to improve reasoning. The central results of this paper are shown
in Table 1, which demonstrates that multi-game SPIRAL training achieves up to 10.5% improve-
ment on reasoning benchmarks without domain-specific data. with Qwen3-4B-Base improving from
34.0% to 44.5% average performance (+10.5%). We also compare with supervised fine-tuning
(SFT) on 25,000 expert game trajectories, generated by Qwen3-32B models, which improves per-
formance on several benchmarks including AIME24 and AIME25, revealing that games themselves
contain skills relevant to reasoning. However, SPIRAL consistently outperforms SFT across all 8
benchmarks, demonstrating that self-play discovers more effective reasoning strategies than imitat-
ing expert demonstrations.

4.1 UNDERSTANDING WHY SPIRAL WORKS

Emergent reasoning patterns learned on games transfer to math questions. To understand
how games can improve reasoning performance, we analyzed chain-of-thought patterns using GPT-
4.1 (OpenAI, 2025) to classify 290 game trajectories and 46,792 math solutions. Table 2 illustrates
three core patterns that emerge during gameplay and transfer to mathematics. Figure 4 tracks their
evolution. In the late training stage, the transfer from games to math is clear: Case-by-Case Analysis
transfers near-perfectly (72% to 71%), Pattern Recognition amplifies (35% to 45%), while Expected
Value Calculation transfers selectively (78% to 28%). The success of this transfer may stem from
two factors. This transfer likely works because evolving opponents prevent memorization while
games teach pure reasoning strategies without requiring mathematical knowledge.
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Table 2: Representative reasoning patterns and their manifestations in games and mathematics. We
use an LLM-as-a-judge framework to evaluate the frequency of these patterns over training.

Pattern Game Context (Kuhn Poker) Math Transfer

Case-by-Case
Analysis

<think>
Case 1 - Fold: You lose 1 chip. You have 2 chips
now.
Case 2 - Call: You have 0% chance of winning, so
you will have 1 chip if you lose.
Since losing 1 chip (fold) is better than losing 2
chips (call and lose), the best action is to fold.
</think>

<think> To solve m2+2·3n = m(2n+1−1):
Case n = 0: m2 + 2 = m, no real solutions
Case n = 1: m2 + 6 = 3m, no real solutions
Case n = 2: m2 + 18 = 7m, no real solutions
Case n = 3: m2 + 54 = 15m gives m = 6, 9
(valid)
Case n = 4: m2 + 162 = 31m, no integer
solutions
Case n = 5: m2 + 486 = 63m gives m =
9, 54 (valid) </think>

Expected Value
Calculation

<think> With card J against opponent’s bet:
EV(call) = P(win) × 2 - P(lose) × 2
= 0 × 2 - 1 × 2 = -2
EV(fold) = -1 (lose ante)
Since EV(fold) > EV(call), fold is optimal.
</think>

<think> For average of A+BC +DEF over
permutations:
E[A] =

∑
ai
6 = −2

6 = − 1
3

E[BC] = (E[B])(E[C]) = (− 1
3 )

2 = 1
9

E[DEF] = (E[D])(E[E])(E[F ]) = (− 1
3 )

3 =

− 1
27

Total = − 1
3 + 1

9 − 1
27 = − 7

27 </think>

Pattern Recogni-
tion

<think> Previous rounds: Player 0 had K both
times and won. Pattern identified: Player 0 likely
has strong cards or bluffs consistently. Given I
have J (weak), betting might exploit their aggres-
sive calling pattern. </think>

<think> Sum of three consecutive integers (n−
1) + n + (n + 1) = 3n.
Pattern recognized: sum is always divisible by 3.
For perfect cube: 3n = k3, so k must be divisible
by 3.
Smallest: k = 3 ⇒ 3n = 27 </think>

Table 3: Win rates at different training stages of Gemini
Opponent and Self-Play vs its opponent.

Training Stage Gemini Opponent Win Rate
vs Gemini-2.0-Flash-Lite

Self-Play Win Rate
vs Self (t-16)

Step 16 0.0% 52.3%
Step 128 37.5% 51.7%
Step 384 62.5% 50.9%

Adaptive curriculum beats static op-
ponents. Self-play creates an automatic
curriculum that adapts to model capabili-
ties. Figure 5 compares self-play against
fixed opponents (Random, Mistral-Small-
3, Gemini-2.0-Flash-Lite2). Random op-
ponents cause collapse: while offering no
strategic challenge, the model must gen-
erate valid actions every turn to receive re-
wards, but the probability of completing valid trajectories decreases exponentially with game length.
Fixed model opponents enable initial learning but plateau once exploitable strategies are found. That
fixed opponents like Gemini yield smaller gains reveals the effects are not merely from learning
game mechanics or spurious rewards (Shao et al., 2025). Once an exploitation strategy is found,
learning stops. In contrast, self-play’s evolving opponents facilitate increasingly complex reason-
ing strategies. Table 3 confirms this: self-play maintains 50-52% win rates while fixed-opponent
training rises from 0% to 62.5%, indicating exploitation rather than continued learning.

Different games develop complementary skills. Each game cultivates distinct cognitive abilities
that transfer to related domains. Table 4 tests how well agents trained on a specific game (‘special-
ists’) transfer to novel out-of-distribution (OOD) games. We find specialists transfer effectively to
similar out-of-distribution games: TicTacToe specialists achieve 56.0% on Snake (spatial), Poker
specialists dominate Pig Dice at 91.7% (probabilistic), Negotiation specialists win 55.8% on Truth
and Deception (strategic). Multi-game training combines these skills synergistically, as shown in Ta-
ble 5, which shows win-rate against Gemini-2.0-Flash3. Multi-game agents achieve 59.5% average
performance, outperforming all single-game specialists (best: 52.9%).

Role-conditioned Advantage Estimation proves essential for stable training. Figure 6 shows that
without RAE, models suffer catastrophic thinking collapse within 100 policy iterations—reasoning
trace lengths plummet from ∼2,000 to near-zero characters, with models generating degenerate
outputs like <think></think><answer>bet</answer>. General reasoning performance
correspondingly drops from 44% to 40%. In contrast, REINFORCE with RAE maintains stable
response lengths around 1,300-1,500 characters and improves performance from 40% to 47%. RAE

2Accessed via https://openrouter.ai/google/gemini-2.0-flash-lite-001.
3Accessed via https://openrouter.ai/google/gemini-2.0-flash-001.

8

https://openrouter.ai/google/gemini-2.0-flash-lite-001
https://openrouter.ai/google/gemini-2.0-flash-001


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Game specialists excel at both their training games and unseen games requiring similar
cognitive skills. Each cell shows the win rate in head-to-head competition between specialists (e.g.,
57.5% means TicTacToe specialist wins 57.5% of games against the other two specialists on Tic-
TacToe). Bold indicates best performance in each column.

Training Games OOD Games (Similar Skills)
Model TicTacToe Kuhn Poker Simple Negotiation Snake Pig Dice Truth and Deception

(Spatial) (Probabilistic) (Strategic)

TicTacToe Specialist 57.5% 45.1% 30.4% 56.0% 56.7% 48.7%
Poker Specialist 45.5% 64.2% 37.7% 42.5% 91.7% 45.4%
Negotiation Specialist 40.5% 40.2% 62.7% 41.0% 1.1% 55.8%

Table 5: Multi-game training achieves competitive performance across all training games while
excelling at novel composite challenges. All win rates shown are against Gemini-2.0-Flash as a
fixed opponent. The multi-game model outperforms all specialists on average, demonstrating that
diverse game training develops more flexible reasoning.

Training Games OOD Games
Model TicTacToe KuhnPoker Simple Negotiation Snake Pig Dice Truth and Deception Average
Base Model 17.5% 21.5% 15.6% 7.8% 0.2% 49.6% 18.7%

Single-Game Specialists
TicTacToe Specialist 56.6% 24.4% 30.5% 28.1% 97.6% 79.9% 52.9%
Kuhn Poker Specialist 31.0% 48.5% 28.7% 27.7% 98.8% 81.6% 52.7%
Simple Negotiation Specialist 27.7% 16.8% 39.1% 26.4% 98.6% 82.8% 48.6%

Multi-Game Model 54.3% 53.9% 33.2% 31.6% 99.8% 84.0% 59.5%

achieves this stability by centering returns around role-specific baselines, preventing gradient vari-
ance from driving policies toward degenerate solutions.

5 CONCLUSION

Figure 6: Training dynamics comparing REINFORCE with RAE
(orange) versus vanilla REINFORCE (gray). RAE maintains sta-
ble performance across all metrics while vanilla REINFORCE
suffers catastrophic thinking collapse. Left: Response length re-
veals thinking collapse where models stop generating reasoning
traces; Right: Performance on general reasoning benchmarks.

We introduced SPIRAL, en-
abling language models to
develop reasoning capabilities
through competitive self-play
without human-curated data.
Our technical contributions
include a fully online multi-turn
MARL system for LLMs and
Role-conditioned Advantage
Estimation (RAE), which
prevents thinking collapse in
zero-sum games. Empirically,
multi-game SPIRAL training
improves reasoning benchmarks
by up to 10.5% across diverse
model architectures, surpass-
ing supervised fine-tuning on
25,000 expert game trajectories.
Different games develop distinct transferable skills (spatial, probabilistic, strategic) that combine
synergistically. Analysis reveals that competitive gameplay forces discovery of reasoning patterns
(case-by-case analysis, expected value calculation, pattern recognition) that transfer to academic
domains.

SPIRAL demonstrates that simple games can unlock complex reasoning without domain-specific
data. Future work could expand to cooperative games, incorporate partial observability, and design
games targeting specific reasoning weaknesses. Understanding game-skill mappings could enable
principled environment design for autonomous reasoning development.
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REPRODUCIBILITY STATEMENT

We provided the experiment code in an anonymous link. We have also provided the training settings
in the experiment section (§4) and Appendix D. The experiments are run with an 8 H100 GPU
cluster, and all calls for proprietary LLMs are via the official API or OpenRouter4.
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This appendix provides comprehensive details supporting our main findings. App. A documents the
use of large language models in our analysis. App. B discusses limitations of our approach including
reliance on designed game environments, computational requirements, evaluation constraints, and
potential reward hacking risks. App. C provides the detailed formulations of turn-level MDPs and
two-player zero-sum Markov games referenced in the main paper, showing how SFT and RLVR
adapt to these frameworks. App. D presents complete implementation details including game en-
vironment observations, hyperparameter configurations, and evaluation settings for all benchmarks.
App. E provides extended benchmark results across multiple base models, an extended analysis of
our RAE ablation study with additional training dynamics, and a detailed case study showing the
evolution of case-by-case analysis in mathematical problem-solving. App. F describes our system-
atic bottom-up approach for discovering and quantifying reasoning pattern transfer, including our
GPT-4.1-assisted analysis framework. Finally, App. G specifies all game environments, detailing
both training games (TicTacToe, Kuhn Poker, Simple Negotiation) and out-of-distribution evalua-
tion games (Snake, Pig Dice, Truth and Deception).

A LARGE LANGUAGE MODEL USAGE

We used large language models (LLMs) only for language refinement tasks, including grammar
checking, phrasing adjustments, and enhancing readability. We also used Deep Research (OpenAI,
2025) to assist with related work search. Besides these, all scientific ideas, experiments, analyses,
and results are the sole contributions of the authors.

B LIMITATIONS

Our study, while promising, has several limitations that offer avenues for future research.

Reliance on Designed Game Environments A core limitation is the dependency on engineered
game environments. Although SPIRAL eliminates the need for human-curated problem datasets, it
shifts the dependency to well-designed games. The games used in our experiments, such as the Tic-
tactoe and Khun Poker, are relatively simple and feature dense rewards. It is an open question how
well this approach scales to more complex, open-ended environments with sparse rewards, such
as Minecraft or realistic robotics simulations. The design of the game environment itself may im-
plicitly encode biases or heuristics that influence the agent’s learned reasoning strategies, potentially
limiting their generality.

Computational Cost and Scalability The computational requirements for training are substan-
tial. Each experimental run demanded 8 H100 GPUs for approximately 25 hours, which may
be prohibitive for many research groups. Furthermore, we observed that performance gains began
to plateau after extended training periods. This suggests that simply scaling up the training dura-
tion with the current framework may yield diminishing returns, and more efficient algorithms or
architectural improvements are necessary for further progress.

Evaluation and Transferability Our evaluation, while comprehensive, has two key constraints:

• Focus on Academic Benchmarks: We primarily assessed reasoning on established aca-
demic benchmarks like MATH and GPQA. These benchmarks are excellent for measuring
formal and scientific reasoning but do not capture the full spectrum of self-play.

• Zero-Shot Evaluation: The strict zero-shot evaluation setting tests for direct transfer but
may not fully reveal the model’s potential. Fine-tuning on a small set of target domain ex-
amples could potentially unlock significantly better performance, a possibility not explored
in this work.

Potential for Reward Hacking Like many reinforcement learning systems, SPIRAL is suscepti-
ble to reward hacking. An agent might discover policies that maximize the in-game score without
learning the intended underlying reasoning skill. For instance, it could exploit a bug in the game
physics or find a repetitive, degenerate strategy that succeeds for a narrow set of problems. While
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we did not observe significant instances of this, it remains a risk, especially in more complex envi-
ronments where robust reward shaping is challenging.

C PRELIMINARIES

This section provides the mathematical foundations and formal definitions underlying the SPIRAL
framework, including turn-level MDPs, two-player zero-sum Markov games, and how existing train-
ing paradigms adapt to these formulations.

C.1 TURN-LEVEL MARKOV DECISION PROCESSES (MDPS).

Language model training traditionally formulates generation as a token-level MDP (Bellman, 1957;
Rafailov et al., 2024) where each action is a single token from vocabulary V . For multi-turn rea-
soning and game-playing, we instead adopt a turn-level MDP formulation M = (S,A, T, r, γ).
Here, states S represent complete contexts (e.g., game configurations, problem states, or conversa-
tion histories), actions A are complete responses (containing many tokens), the transition function
T : S × A → ∆(S) determines state dynamics, r : S × A → R provides immediate rewards,
and γ ∈ [0, 1] is the discount factor. The return is defined as the discounted sum of rewards:
R(τ) =

∑T
t=0 γ

trt.

The key distinction: in token-level MDPs, each decision outputs one token; in turn-level MDPs,
each decision produces a complete multi-token response before transitioning. At each turn t, the
language model observes state st and generates:

yt = ⟨think⟩ct⟨/think⟩⟨answer⟩at⟨/answer⟩, (4)

where ct externalizes reasoning and at ∈ A is the executable action. (See App. C for how existing
SFT and RLVR paradigms adapt to turn-level MDPs.)

C.2 TWO-PLAYER ZERO-SUM MARKOV GAMES.

We extend the single-agent MDP to competitive settings with a two-player zero-sum Markov
game (Littman, 1994) G = (S,A0,A1, T, r, γ), where A0 and A1 are the action spaces for player 0
and player 1 respectively. The zero-sum property requires:

r0(s, a
(0), a(1)) + r1(s, a

(0), a(1)) = 0 ∀s, a(0), a(1), (5)

where a(0) ∈ A0 and a(1) ∈ A1 denote actions taken by each player. Given trajectory τ =

{(st, a(0)t , a
(1)
t )}Tt=0, the returns satisfy R1(τ) = −R0(τ).

C.3 SUPERVISED FINE-TUNING (SFT) IN TURN-LEVEL MDPS

In the turn-level setting, SFT requires a dataset DSFT = {(si, c∗i , a∗i )}Ni=1 of states with expert
reasoning traces c∗i and actions a∗i . The model learns to imitate complete turn-level responses:

LSFT(θ) = −E(s,c∗,a∗)∼DSFT [log πθ(c
∗, a∗|s)] . (6)

Note that in single-turn settings where each state s appears only once, SFT reduces to standard
behavior cloning. The key limitation remains: SFT requires expensive human annotation of both
reasoning traces and final answers.

C.4 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR) IN TURN-LEVEL
MDPS

RLVR (DeepSeek Team, 2024) eliminates the need for reasoning supervision, requiring only state-
answer pairs DRLVR = {(si, a∗i )}Ni=1. In the turn-level formulation:

JRLVR(θ) = Es∼DRLVR,y∼πθ(·|s) [r(s, a)] , (7)

where r(s, a) = I[a = a∗] indicates answer correctness and y contains both reasoning and action.
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In single-turn settings without subsequent interactions, RLVR reduces to a contextual bandit prob-
lem (Langford & Zhang, 2007). Recent works on mathematical (Shao et al., 2024; DeepSeek Team,
2024) and code reasoning (Zhu et al., 2024; Xin et al., 2024) show that even this simplified bandit-
style RLVR can unlock sophisticated reasoning. However, these approaches still require human-
curated problem sets DRLVR, which SPIRAL eliminates through self-play.

D EXPERIMENTAL SETUP DETAILS

This section provides complete implementation details for reproducing our experiments. We begin
with visual examples of game environments, followed by our hyperparameter configurations.

D.1 GAME ENVIRONMENT OBSERVATIONS

The language models receive structured text observations from each game environment. Fig. 7
shows example observations from our three training games: TicTacToe, Kuhn Poker, and Simple
Negotiation. These observations serve as the input prompts st at each turn, providing complete
game state information in natural language format.

TicTacToe Kuhn Poker Simple Negotiation

You are Player 0 in TicTacToe. Your stones appear as 'O' 
and your opponent's stones appear as 'X'.
On your turn, you choose one empty cell by its numbered 
index and place your stone there.
For example, '[4]' places your stone in the center cell of the 
board.
Your objective is to form a continuous line of three of your 
stones in any row, column, or diagonal.

Current Board:

0 | 1 | 2
---+---+---
3 | 4 | 5

---+---+---
6 | 7 | 8

Available Moves: [0], [1], [2], [3], [4], [5], [6], [7], [8]

[GAME] You are Player 1 in a 5 round game of Kuhn Poker.
Game Rules:
- Kuhn Poker uses a 3-card deck with J, Q, K (J lowest, K 
highest)
- Each player antes 1 chip and receives 1 card each round
- Game continues for 5 rounds
- The player with the most chips after all rounds wins

Action Rules:
- '[check]': Pass without betting (only if no bet is on the table)
- '[bet]': Add 1 chip to the pot (only if no bet is on the table)
- '[call]': Match an opponent's bet by adding 1 chip to the pot
- '[fold]': Surrender your hand and let your opponent win the 
pot

[GAME] Starting round 1 out of 5 rounds.
Your card is: K
Your available actions are: [check], [bet]

You are Player 0 in the Negotiation Game.
You have some resources, and your task is to trade such 
that the total value of your resources increases.
The resources and associated values you currently have are:

+ [Wheat]    Qty: 12   Value: 6
+ [Wood]     Qty: 18   Value: 8
+ [Sheep]    Qty: 8    Value: 17
+ [Brick]    Qty: 10   Value: 23
+ [Ore]      Qty: 7    Value: 35

At each turn, you can talk to your opponent or make a 
trade offer.
Use the following special tokens for actions:

- [Offer]: To make a trade offer.
Format: [Offer: Offered Resources -> Requested 

Resources]
Example: [Offer: 3 Sheep, 2 Ore -> 5 Brick, 2 Sheep]

- [Accept]: To accept an incoming offer.
- [Deny]: To deny an incoming offer (default).

You can include additional text before and/or after these 
tokens.
The game lasts for 10 turns in total.

Figure 7: Example observations of three training game environments.

For games with partial observability such as Kuhn Poker and Simple Negotiation, we maintain
Markovian state representations by concatenating historical actions into the current state st. This
ensures the model has sufficient information for decision-making despite hidden information.

Similarly, Fig. 8 presents observations from five evaluation environments used to test out-of-
distribution generalization. These games were never seen during training, allowing us to assess
whether learned skills transfer to novel game mechanics.

D.2 HYPERPARAMETER CONFIGURATION

Table 6 presents the complete hyperparameter settings used across all experiments. These configura-
tions were selected through preliminary experiments to balance training stability and computational
efficiency. Please see our open-source codebase for a complete and reproducible experiment exam-
ple.

These hyperparameters remain fixed across all game environments and model scales to ensure fair
comparison. The distributed training infrastructure utilizes 8 H100 GPUs, with parallel actors gen-
erating game trajectories while a centralized learner performs synchronous policy updates. For SFT,
we use Qwen3-32B (Yang et al., 2025) models to self-play on the targeted games, generating 25k
winning trajectories and crafting them as the SFT dataset.

D.3 EVALUATION SETTINGS

To investigate whether the reasoning abilities developed through gameplay could transfer to non-
game contexts, we evaluate our models on a suite of established benchmarks. All evaluations on
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Snake Pig Dice Truth And Deception

[GAME] 2-Player Snake on a 5×5 grid.
You control snake 0. Valid moves: 
'[up]'/'[down]'/'[left]'/'[right]' (or w/s/a/d).
Objective: survive longest or be the longest and get the 
highest score (turn limit 40 turns).
[GAME] Current Board:
+-----------+
| . . . . . |
| . 0 . A . |
| . . . . . |
| . . . 1 . |
| . . . . A |
+-----------+

[GAME] You are Player 0 playing a game of Pig Dice.
Rules:
- On your turn, you can either '[roll]' or '[hold]'
- Roll a 2-6: Add to your turn total
- Roll a 1: Lose turn total and end turn
- Hold: Add turn total to your score and end turn
- First to 100 points wins

When it's your turn, you'll see the current scores and turn 
total.
Respond with '[roll]' to roll the die or '[hold]' to bank your 
points.
[GAME] You current turn total is 0. 
This is the first roll of your turn.
Available actions: '[roll]' or '[hold]'

[GAME] You are Player 0, and you are the Deceiver in the 
'Truth and Deception' game.
You know which of the following two facts is correct:
Fact 1: The blue-ringed octopus is harmless to humans. 
(wrong)
Fact 2: The blue-ringed octopus is one of the most 
venomous marine animals. (correct)
Your goal is to convince the other player to choose the 
incorrect fact.
You will have a conversation for 6 turns.
After that, the other player will make their guess.
On your turn, simply type your message.

Liars Dice Connect Four

[GAME] You are Player 0 in an 2-player Liar's Dice game.
Rules:
- On your turn, you may either:
  1) Make a new bid with a higher quantity or higher face 
(or both) than the current bid; i.e. '[Bid: 3, 4]',
  2) Call the last bid by typing '[Call]'.

If you call:
  - If the actual count of that face value among all dice is less 
than the bid, the last bidder loses one die.
  - Otherwise, the caller loses one die.
A player who reaches 0 dice is eliminated. The last 
remaining player wins.
[GAME] 
New round - Remaining dice:     Player 0: 5;    Player 1: 5
Your current Dice arre: 1, 6, 5, 1, 1

[GAME] You are Player 0 in Connect Four.
Your disc symbol: X.
The game board has 6 rows and 7 columns.
Players take turns dropping their disc into one of the columns 
(0 to 6).
The first to connect (their own) four discs vertically, 
horizontally, or diagonally wins.
On your turn, enter the column number in squared brackets 
to make your move.
For example: '[col 4]' or '[col 1]'.
[GAME] Board state:
0 1 2 3 4 5 6
-------------
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

Figure 8: Example observations of five evaluation game environments.

Parameter Value

ACTOR

Maximum response length 8192 tokens
Sampling temperature 1.0
(top P, top k) (1.0, -1)

LEARNER

Optimizer AdamW
Adam parameters (β1, β2) (0.9, 0.95)
Weight decay 0.0
Gradient norm clipping 1.0
Batch size 128
Discount factor 1.0
EMA decay rate 0.95
Learning rate scheduler Constant
Learning rate 1× 10−6

Inner proximal update epoch 2
KL loss coefficient 0.0
KL penalty coefficient 0.0
Policy clipping parameter 0.2

Table 6: Hyperparameter configurations used in all experiments.

these benchmarks are conducted in a zero-shot setting5 to determine if game-induced reasoning
could be successfully transferred to general problem-solving. We use a sampling temperature of 0.6
and top-p of 0.95 for all evaluations.

Math Benchmarks. For mathematical reasoning, we use MATH500 (Hendrycks et al.,
2021), OlympiadBench (He et al., 2024), Minerva Math (Lewkowycz et al., 2022), AIME24,
AIME25 (MAA, a), and AMC23 (MAA, b) datasets, which cover a wide range of topics includ-

5Except for the base model, for which we provide few-shot examples that follow the Qwen3 Report settings.
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ing algebra, geometry, and competitive mathematics. Following the settings in Zhou et al. (2025),
we report AVG@32 for AIME24, AIME25 and AMC23; and PASS@1 for other math benchmarks.

General Reasoning Benchmarks. For general reasoning, we utilize GPQA-Diamond (Rein et al.,
2024), which consists of graduate-level science questions, and MMLU-Pro (Wang et al., 2024), a
benchmark for multidisciplinary knowledge.

E ADDITIONAL RESULTS AND ANALYSIS

E.1 DETAILED EVOLUTION OF CASE-BY-CASE ANALYSIS

To understand how reasoning patterns develop during training, we tracked the evolution of case-by-
case analysis across checkpoints. Table 7 shows a concrete example from Minerva Math Problem
135, illustrating how models progressively develop structured reasoning.

Table 7: Evolution of Case-by-Case Analysis in Minerva Problem 135

Stage Problem: Round cosmic ages to nearest power of 10

Early(Ckpt 16) Approach: Lumped reasoning without explicit case separation
<output> The age when helium formed is approximately 10 minutes... The age when
hydrogen formed is 377,000 years... The current age is 13.8 Gyr. Rounding to nearest
power of 10, we get: 14 Gyr </output>
Case Structure: No explicit cases - all subproblems handled in continuous text
Result: Subproblem 2: 14 Gyr × (should be 10)

Mid(Ckpt 128) Approach: Explicit enumeration of cases with structured analysis
<output>
Case 1 - Subproblem 0:
1. Understanding the Context: BBN at ∼20 minutes
2. Nearest Power of 10: 101 = 10
3. Final Answer: 1 minute
Case 2 - Subproblem 1:
1. Understanding the Context: Recombination at ∼377,000 years
2. Nearest Power of 10: 105 = 100, 000

3. Final Answer: 400000 years
Case 3 - Subproblem 2:
1. Understanding the Context: Current age ∼13.8 Gyr
2. Nearest Power of 10: Identifies 1010 correctly
3. Final Answer: 13.8 Gyr </output>
Case Structure: Clear case separation with consistent 3-step process
Result: Still incorrect final rounding ×

Late(Ckpt 400) Approach: Systematic case-by-case with correct execution
<think>
Case 1 - Subproblem 0:
1. Understand Context: He formation in early universe
2. Estimate Time: ∼20 minutes after Big Bang
3. Round to Power of 10: 20 minutes
Case 2 - Subproblem 1:
1. Understand Context: H atom formation (recombination)
2. Estimate Time: ∼380,000 years
3. Round to Power of 10: 400000 years
Case 3 - Subproblem 2:
1. Understand Context: Current universe age
2. Convert Units: 13.8 billion years = 13.8 Gyr
3. Round to Power of 10: 13.8 → 101 = 10 Gyr </think>
Case Structure: Complete systematic enumeration with correct logic
Result: All cases solved correctly ✓

This progression demonstrates how competitive self-play forces models to develop increasingly
structured approaches. Early attempts show unorganized reasoning, while later checkpoints ex-
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hibit clear case separation and systematic analysis, a pattern that emerges from game playing and
transfers to mathematical problem solving.

E.2 EXTENDED ANALYSIS OF RAE ABLATION STUDY

Our ablation study of Role-conditioned Advantage Estimation reveals additional insights beyond
those presented in Section 4 Figure 9 shows three additional metrics that further demonstrate RAE’s
critical role in stable self-play training.

Figure 9: Extended training dynamics comparing REINFORCE with RAE versus vanilla REIN-
FORCE (continued from Figure 6). Left: Game win rates showing RAE achieves faster initial
learning compared to vanilla REINFORCE. Middle: Math reasoning performance crashes from
35% to 12% without RAE. Right: Policy gradient norms exhibit instability then collapse to near-
zero without RAE, while RAE maintains stable gradients around 0.1.

Game Performance. The left panel shows that REINFORCE with RAE learns significantly faster,
rapidly reaching 35% win rate while vanilla REINFORCE exhibits slower initial learning. RAE’s
superior learning efficiency demonstrates the benefits of role-conditioned advantage estimation for
accelerating policy improvement.

Math Reasoning Collapse. The middle panel reveals the most dramatic failure: math reasoning
performance without RAE crashes from 35% to 12% at around step 150 (a 66% relative decrease).
This collapse occurs precisely when models stop generating reasoning traces, confirming that think-
ing collapse directly causes reasoning failure.

Gradient Stability. The right panel shows policy gradient norms, revealing the underlying optimiza-
tion dynamics. Without RAE, gradients exhibit high variance with erratic spikes before collapsing
to near-zero after step 200, indicating convergence to a degenerate policy. RAE maintains stable
gradient norms around 0.1 throughout training, enabling continuous improvement.

These additional results reinforce our main finding: self-play alone is insufficient for stable reason-
ing development. Proper variance reduction through role-specific baselines is essential to prevent
models from converging to degenerate policies that abandon reasoning in favor of minimal outputs.

E.3 COMPREHENSIVE BENCHMARK RESULTS

Table 8 presents extended results showing SPIRAL’s performance across different training configu-
rations and base models.

These results reveal several important insights. First, single-game SPIRAL training (40.0-41.4%
average) outperforms supervised fine-tuning on 25,000 expert examples (38.4% average), validating
that self-play can discover more effective reasoning strategies than imitating expert demonstrations.
Second, multi-game training (42.3-42.7% average) consistently outperforms single-game variants,
suggesting that diverse cognitive challenges create more robust reasoning capabilities. Third, SPI-
RAL improves even strong models like DeepSeek-Distill-Qwen-7B (from 59.7% to 61.7%), demon-
strating that competitive game self-play training can enhance models that already excel at reasoning
tasks.
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Table 8: SPIRAL training improves reasoning benchmarks for different base models.

Model MATH500 AIME’24 AIME’25 OlympiadBench AMC-23 Minerva Math GPQA-D MMLU-Pro Average
Qwen3-4B-Base Family

Qwen3-4B-Base 73.4 9.6 6.2 33.3 42.4 29.4 30.6 47.2 34.0
+ SFT (Kuhn) 74.0 11.0 10.4 36.7 48.6 36.8 33.0 48.8 37.4
+ SFT (Multi) 74.2 13.7 11.7 37.6 51.1 40.1 37.8 51.3 39.7
+ Mistral Opponent (KuhnPoker) 64.0 4.3 2.1 29.8 31.6 26.1 35.6 43.6 29.6
+ Gemini Opponent (KuhnPoker) 69.2 5.2 4.7 33.8 29.8 33.8 35.3 55.5 33.4
+ SPIRAL (TicTacToe) 75.6 10.0 13.3 38.5 55.0 42.6 37.6 57.7 41.3
+ SPIRAL (KuhnPoker) 76.4 18.2 15.6 38.4 61.2 42.4 37.0 57.7 43.4
+ SPIRAL (Negotiation) 75.6 11.7 10.2 38.1 51.7 39.3 36.7 57.0 40.0
+ SPIRAL (TicTacToe+KuhnPoker) 76.2 11.4 10.7 40.7 57.2 41.5 35.7 57.2 41.3
+ SPIRAL (Multi-Game) 78.2 19.7 13.3 41.8 61.6 42.6 40.1 58.5 44.5

Qwen3-8B-Base Family

Qwen3-8B-Base 77.0 12.1 11.2 33.5 50.6 38.2 38.0 55.7 39.5
+ SFT (Multi) 82.8 19.9 15.6 45.9 63.5 40.8 41.6 58.8 46.1
+ SPIRAL (Multi-Game) 86.6 26.2 16.8 49.6 65.2 46.3 44.6 61.1 49.6

Octothinker-8B-Base Family

Octothinker-8B-Base 65.6 1.7 0.5 26.6 33.5 25.7 22.1 30.8 25.8
+ SFT (Multi) 66.0 3.3 3.8 23.9 31.0 23.8 24.9 39.1 27.0
+ SPIRAL (Multi-Game) 68.6 5.3 4.8 33.7 43.2 32.0 33.8 49.3 33.8

Llama-3.1-8B-Instruct Family

Llama-3.1-8B-Instruct 46.4 4.6 0.7 13.8 23.3 22.8 30.2 49.1 23.9
+ SFT (Multi) 51.8 4.6 0.7 19.1 23.3 21.7 30.0 48.9 25.0
+ SPIRAL (Multi-Game) 49.8 4.9 1.8 17.3 26.0 24.6 32.2 50.4 25.9

DeepSeek-Distill-Qwen-7B Family

DeepSeek-Distill-Qwen-7B 90.8 53.0 39.5 56.9 89.3 48.2 48.6 57.1 60.4
+ SFT (Multi) 91.8 49.3 36.6 52.4 88.2 48.2 44.5 55.6 58.3
+ SPIRAL (Multi-Game) 93.0 54.1 40.8 57.9 89.3 51.1 49.6 58.9 61.8

F CASE STUDY METHODOLOGY

This section details our systematic approach to discovering and analyzing reasoning pattern transfer
from games to mathematics. Rather than searching for predetermined patterns, we employed a
bottom-up discovery process to identify what reasoning strategies naturally emerge and transfer
between domains.

F.1 DATA COLLECTION FRAMEWORK

Our analysis examined reasoning traces from two sources across three training checkpoints:

Game Trajectories: We collected 290 complete Kuhn Poker games, focusing on winning trajec-
tories to identify successful reasoning strategies. Each trajectory includes the complete thought
process from initial card observation through final decision.

Mathematical Solutions: We analyzed 46,792 solution attempts across MATH500, AIME,
OlympiadBench, and Minerva Math benchmarks. Solutions were categorized by success (score=1)
or failure (score=0) to understand which reasoning approaches prove effective.

Temporal Analysis: Checkpoints at steps 0 (initial), 128 (intermediate), and 400 (final) capture the
evolution of reasoning complexity throughout training.

F.2 BOTTOM-UP PATTERN DISCOVERY PROCESS

Rather than searching for predefined patterns, we employed GPT-4.1 to discover patterns that natu-
rally emerge in the data. This bottom-up approach ensures we capture the actual reasoning strategies
used rather than imposing our expectations.
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Pattern Discovery Prompt

Analyze these {domain} reasoning traces using a BOTTOM-UP approach.
Don’t look for predefined patterns. Instead, discover what
reasoning patterns actually exist.
REASONING TRACES ({len(sample)} samples from {len(traces)} total):
{json.dumps([t[’reasoning’] for t in sample[:40]], indent=2)}
Your task:

1. Read through ALL the reasoning traces carefully

2. Identify RECURRING patterns or structures that appear
multiple times

3. Group similar reasoning approaches together

4. Name each discovered pattern based on what it actually does

5. Count how many traces use each pattern

6. Provide example quotes for each pattern

Format your response as:
PATTERN 1: [Descriptive Name]
- Description: [What this pattern does]
- Count: X/{len(sample)} traces
- Example quotes: [2-3 actual quotes showing this pattern]
Be specific and grounded in the actual data. If you see a pattern
only once, don’t include it.

This discovery process revealed three dominant patterns that emerged independently in both do-
mains:

1. Case-by-Case Analysis: Systematic enumeration of scenarios

2. Expected Value Calculation: Probabilistic decision-making

3. Pattern Recognition: Identifying regularities and structures

F.3 CROSS-DOMAIN TRANSFER QUANTIFICATION

After discovering patterns in each domain, we compared them to identify which strategies transfer
between games and mathematics:

Pattern Comparison Prompt

Compare the reasoning patterns discovered in games vs mathematics:
GAME PATTERNS:
{game_patterns}
MATH PATTERNS:
{math_patterns}
Analyze:

1. Which patterns appear in BOTH domains? (These show transfer)

2. Which patterns are unique to each domain?

3. Calculate transfer rates for shared patterns

4. Identify the most successfully transferred reasoning
strategies

5. Explain WHY certain patterns transfer well

Focus on concrete evidence of transfer, not speculation.

The transfer analysis revealed:

Case-by-Case Analysis shows near-perfect transfer (72% in games to 71% in math) because sys-
tematic enumeration represents domain-agnostic structured thinking. Whether analyzing opponent
possibilities in Poker or solution branches in mathematics, the core cognitive skill remains identical.
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Expected Value Calculation exhibits limited transfer (78% in games to 28% in math) because
explicit probabilistic decision-making appears primarily in probability and optimization problems.
Most mathematical domains lack the decision-theoretic structure that makes this pattern universally
applicable in games.

Pattern Recognition demonstrates amplification during transfer (35% in games to 45% in math).
Mathematics inherently requires pattern identification, so game training enhances an already-
essential mathematical skill, producing stronger pattern recognition than games alone develop.

F.4 PATTERN EVOLUTION ANALYSIS

To understand how reasoning develops during training, we tracked pattern emergence across check-
points:

Evolution Analysis Prompt

Analyze how reasoning patterns evolve across training checkpoints:
{json.dumps(evolution_analysis, indent=2)}
For each checkpoint:

1. Describe the complexity of reasoning

2. Identify new patterns that emerge

3. Track how patterns become more sophisticated

4. Show concrete examples of improvement

Focus on the actual evolution you can see in the data.

F.5 CONCRETE TRANSFER EXAMPLE IDENTIFICATION

To validate transfer claims, we identified parallel reasoning structures across domains:

Transfer Example Prompt

Find the clearest examples of reasoning transfer from games to
mathematics:
{json.dumps(examples, indent=2)}
For each complexity level (short/medium/long):

1. Identify parallel reasoning structures

2. Quote specific passages that show transfer

3. Explain what cognitive skill is being transferred

4. Rate the clarity of transfer (1-10)

Focus on examples where the same reasoning approach clearly appears
in both domains.

F.6 PATTERN CLASSIFICATION AT SCALE

After discovering patterns through bottom-up analysis, we classified all traces to measure transfer
rates:
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Pattern Classification Prompt

Analyze these {domain} reasoning traces and find examples of each
pattern.
PATTERNS TO FIND:

1. Case-by-Case Analysis: Systematic enumeration of different
scenarios/cases

2. Expected Value Calculation: Explicit probability
calculations, computing expected outcomes

3. Pattern Recognition: Identifying recurring structures,
noticing trends

REASONING TRACES:
{json.dumps(batch, indent=2)}
For EACH pattern, identify ALL examples that clearly demonstrate
it.
Return in this EXACT format:
CASE_BY_CASE_INDICES: [list of indices]
EXPECTED_VALUE_INDICES: [list of indices]
PATTERN_RECOGNITION_INDICES: [list of indices]
Be strict - only include clear examples of each pattern.

F.7 VALIDATION METHODOLOGY

To ensure robust findings, we implemented multiple validation steps:

Sampling Strategy: We analyzed 50 random trajectory samples per checkpoint to avoid selection
bias while maintaining computational feasibility.

Success Stratification: Separate analysis of successful and failed attempts revealed which reasoning
strategies genuinely contribute to problem-solving rather than merely appearing frequently.

Manual Verification: Spot-checking GPT-4.1’s pattern classifications against raw traces confirmed
the accuracy of automated analysis.

Scale Validation: After discovering patterns through focused analysis, we classified all 46,792
mathematical traces to verify that observed transfer rates hold at scale.

This methodology ensures our findings reflect genuine cognitive transfer rather than superficial pat-
tern matching, providing quantitative evidence that competitive gameplay develops reasoning skills
applicable far beyond the training domain.

G GAME ENVIRONMENT SPECIFICATIONS

This section provides detailed specifications for all game environments used in our experiments,
including both training and evaluation games.

G.1 TRAINING GAME ENVIRONMENTS

TicTacToe tests spatial pattern recognition through perfect information gameplay. Players alternate
placing marks on a 3×3 grid, aiming to create lines of three. The deterministic nature isolates pure
strategic reasoning from uncertainty management. Success requires recognizing winning patterns,
blocking opponent threats, and creating fork positions that guarantee victory. We hypothesize these
skills transfer to geometric reasoning and spatial visualization tasks.

Kuhn Poker introduces probabilistic reasoning through minimal hidden information. With only
three cards (Jack, Queen, King), one per player plus one undealt, the game distills poker to essential
elements of bluffing and value betting. Players can check, bet, call, or fold, with outcomes deter-
mined by card strength. Success requires calculating expected values, modeling opponent behavior,
and making decisions under uncertainty. These capabilities should transfer to probability problems
and strategic decision-making.
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Simple Negotiation is a game that develops multi-constraint optimization skills through resource
trading. Two players exchange Wheat, Wood, Sheep, Brick, and Gold tokens. Since the utility of
these resources varies for each player, there is a natural incentive to trade. Each player aims to max-
imize their portfolio’s value by making proposals and counteroffers. Success requires understanding
an opponent’s preferences, planning multi-step trades, and communicating strategically. We expect
these skills to improve performance on optimization problems and multi-constraint reasoning tasks.

G.2 OUT-OF-DISTRIBUTION EVALUATION GAMES

Our evaluation suite tests whether learned skills generalize to novel mechanics:

Snake extends spatial reasoning to dynamic environments. Players control snakes navigating grids
to collect apples while avoiding collisions with walls, themselves, or opponents. This tests whether
static pattern recognition from TicTacToe transfers to trajectory planning and dynamic obstacle
avoidance.

Pig Dice isolates risk-reward decision making. Players repeatedly roll dice to accumulate points
but lose all turn points when rolling 1. This tests whether probabilistic reasoning from Kuhn Poker
extends to sequential risk assessment and expected value calculation in different contexts.

Truth and Deception focuses on asymmetric information and persuasion. One player knows the
true fact among options and misleads through conversation while the other must identify truth
through questioning. This evaluates whether negotiation skills transfer to pure communication strat-
egy.

These diverse evaluation games probe different aspects of transfer learning, revealing which cogni-
tive skills generalize beyond their training context and confirming that SPIRAL develops fundamen-
tal reasoning capabilities rather than game-specific tactics.
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