
Published as a conference paper at ICLR 2023

ENCODING RECURRENCE INTO TRANSFORMERS

Feiqing Huang1∗†, Kexin Lu1∗, Yuxi Cai1, Zhen Qin2, Yanwen Fang1
Guangjian Tian2, Guodong Li1‡
Department of Statistics and Actuarial Science, The University of Hong Kong1

Huawei Noah’s Ark Lab2
{amieehuang,neithen,caiyuxi,u3545683}@connect.hku.hk
gdli@hku.hk, {qin.zhen, tian.guangjian}@huawei.com

ABSTRACT

This paper novelly breaks down with ignorable loss an RNN layer into a sequence
of simple RNNs, each of which can be further rewritten into a lightweight positional
encoding matrix of a self-attention, named the Recurrence Encoding Matrix (REM).
Thus, recurrent dynamics introduced by the RNN layer can be encapsulated into
the positional encodings of a multihead self-attention, and this makes it possible
to seamlessly incorporate these recurrent dynamics into a Transformer, leading to
a new module, Self-Attention with Recurrence (RSA). The proposed module can
leverage the recurrent inductive bias of REMs to achieve a better sample efficiency
than its corresponding baseline Transformer, while the self-attention is used to
model the remaining non-recurrent signals. The relative proportions of these two
components are controlled by a data-driven gated mechanism, and the effectiveness
of RSA modules are demonstrated by four sequential learning tasks.

1 INTRODUCTION

Sequential data modeling is an important topic in machine learning, and the recurrent networks
such as LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Chung et al., 2014) have served as the
benchmarks in this area over a long period of time. The success mainly contributes to the variety
of recurrent dynamics introduced by these models, referred to as the recurrent inductive bias. More
specifically, the dependence between any two inputs can be described by a parametric form, which
heavily depends on their relative temporal locations. However, the recurrent models are well known
to suffer from two drawbacks. The first one is the gradient vanishing problem (Hochreiter et al.,
2001), i.e. the recurrent models have difficulty in depicting the possibly high correlation between
distant inputs. This problem cannot be solved fundamentally by the recurrent models themselves,
although it can be alleviated to some extent, say by introducing long memory patterns (Zhao et al.,
2020). Secondly, the sequential nature renders these models difficult to be trained in parallel (Vaswani
et al., 2017). In practice, many techniques were proposed to improve the computational efficiency of
recurrent models, while they all come with compromises (Luo et al., 2020; Lei et al., 2017).
In recent years, Transformers (Vaswani et al., 2017) have been revolutionizing the field of natural
language processing by achieving the state-of-the-art performance on a wide range of tasks, such
as language modeling (Kenton & Toutanova, 2019), machine translation (Dai et al., 2019) and text
summarization (Liu & Lapata, 2019), etc. They have also demonstrated great potential in other types
of sequence learning problems, for instance, time series forecasting (Zhou et al., 2021; Li et al.,
2019). The success of Transformers is due to the fact that the similarity between any two tokens is
well taken into account (Vaswani et al., 2017) , and hence they can model long range dependence
effortlessly. Moreover, contrary to the recurrent models, the self-attention mechanism in Transformers
is feed-forward in nature, and thus can be computed in parallel on the GPU infrastructure (Vaswani
et al., 2017). However, the flexibility also leads to sample inefficiency in training a Transformer, i.e.
much more samples will be needed to guarantee good generalization ability (d’Ascoli et al., 2021).
Moreover, the chronological orders are usually ignored by Transformers since they are time-invariant,
and some additional efforts, in the form of positional encoding, will be required to further aggregate
the temporal information (Shaw et al., 2018; Vaswani et al., 2017; Dai et al., 2019).

∗Equal contribution. † This work was done during the author’s internship at Huawei Noah’s Ark Lab.
‡Correspondence to gdli@hku.hk.

1

mailto:gdli@hku.hk

Published as a conference paper at ICLR 2023

Figure 1: (a) – (c) plot the two data features, namely the sample signal and the sample size as the
x and y axis, respectively. The model performance in each data region for the RNN, Transformer
and RSA are given, where deeper color implies a better performance. (d) In each attention head, the
proposed RSA attaches an REM to a normalized self-attention score via a gated mechanism, with
gate value σ(µ). The REM depicts a type of recurrence dependence structure between the tokens in
X , and is parameterized by one or two parameters, i.e. λ or (γ, θ), where λ = tanh(η), γ = σ(ν).

In short, both recurrent and Transformer models have the pros and cons in modeling sequential data.
On one hand, due to inductive bias, the recurrent models excel at capturing the recurrent patterns
even with relatively small sample sizes; see Figure 1(a). Meanwhile, sample size is the performance
bottleneck for the Transformer models and, when there are sufficient samples, they are supposed
to be able to depict any recurrent or non-recurrent patterns in the data; see Figure 1(b). On the
other hand, sequential data have recurrent patterns more or less, and Transformers may have an
improved performance if the recurrent model can be involved to handle these patterns, especially
when the sample size is relatively small. Specifically, if the recurrent and non-recurrent components
are separable, then one can apply a parsimonious recurrent model on the recurrent component and a
Transformer on the non-recurrent one. As a result, the sample efficiency can be improved comparing
to the Transformer-only baseline; see illustration in Figure 1(c).
There have been various attempts in the literature to combine the two models. Some earlier works
were to simply stack them together in a straightforward manner. Chen et al. (2018) mixed and
matched a Transformer’s encoder with an recurrent-based decoder. Hao et al. (2019) introduced an
additional recurrent encoder to a Transformer, while Wang et al. (2019) stacked a recurrent layer
prior to the multihead self-attention. These proposals inherit both the aforementioned shortcomings
of Transformer and recurrent models. In particular, for a very long input sequence, the sequential
operation in the recurrent layers become extremely expensive.
Recent efforts have been spent on integrating recurrence and self-attention systematically. Feedback
Transformer (Fan et al., 2021) introduces the memory vectors to aggregate information across layers,
and uses them to update the next token in a recursive manner. However, the computationally expensive
sequential operation limits its attractiveness. Another line of research applies the recurrent operation
only to aggregate the temporal information at a coarser scale, while the token-by-token dependence
is learned by self-attention instead. Transformer-XL (Dai et al., 2019) partitions the long inputs into
segments and introduces a segment-level recurrence. Meanwhile, Temporal Latent Bottleneck (TLB)
(Didolkar et al., 2022) and Block-Recurrent Transformer (BRT) (Hutchins et al., 2022) further divide
the segments into smaller chunks, and each chunk is summarized into a few state vectors. A recurrent
relation is then formed on the sequence of state vectors. These hierarchical designs are useful to
reduce the computational burden, while they overlook recurrent dynamics at a finer scale.
In an attempt to simplify the numerical calculation of RNNs, we found surprisingly that an RNN
layer with linear activation can be broken down into a series of simple RNNs with scalar hidden
coefficients. Each simple RNN induces a distinct recurrent pattern, and their combination forms
the recurrent dynamics of the RNN layer. Hence the calculation time can be greatly reduced by
training these simple RNNs in parallel. On top of that, it can be equivalently rewritten into the
positional encodings of a multihead self-attention (MHSA). This spontaneously inspires a solution,
the multihead Self-Attention with Recurrence (RSA), to combine self-attention with RNN into one
single operation while maintaining parallel computation. This solution enables our design to preserve
the merits from both Transformer and recurrent models, while their respective shortcomings are
avoided. More importantly, it can be used to replace the self-attention of existing networks, such as
Transformer XL, TLB and BRT, to further explore recurrent dynamics at the finer scale. Our paper
makes three main contributions below.

1. With ignorable approximation loss, we demonstrate that an RNN layer with linear activation
is equivalent to a multihead self-attention (MHSA); see Figure 2. Specifically, each attention

2

Published as a conference paper at ICLR 2023

head can be used to recover a type of recurrent dependence structure, and multiple heads
working in sync replicate the complex temporal dynamics of the RNN layer.

2. In the above MHSA, recurrent dynamics of the RNN layer are encapsulated entirely into
the positional encodings, which we name the Recurrence Encoding Matrices (REMs). This
makes it possible to add the REMs to any existing Transformer architecture that has the
self-attention mechanism, leading to the Self-Attention with Recurrence (RSA) module; see
Figure 1(d). A gated mechanism is used to control the proportion of REMs, and the gate
value may also be interpreted as the proportion of the recurrent signals in the data.

3. Our experiments on four sequential tasks demonstrate that the proposed RSA module can
effectively enhance the baseline Transformers’ forecasting power. Moreover, from the fitted
gate values, we have an interesting finding that time series data have stronger recurrent
signals than those of the regular languages, while the code or natural languages have much
weaker recurrent signals.

1.1 OTHER RELATED WORKS

Relative positional encoding The proposed REMs can provide complementary positional encoding
in the RSA module. Essentially, its recurrent pattern conveys relative location information. This
property is inherited from the distance-awareness of the RNN. Compared to the relative positional
encoding (RPE) in the existing literature, it is more parsimonious and interpretable. The fully
learnable RPE proposed by Shaw et al. (2018) requires O(T 2d) parameters, where T is the number
of tokens and d is the token dimension. Later, different variants are introduced by Huang et al. (2019)
and Dai et al. (2019), which reduce the number of parameters to O(Td) and O(d), respectively. In
contrast, our REMs have parametric forms of merely one or two parameters.
Time series forecasting Recent literature sees a surge in deep learning models designed specially for
time series forecasting tasks, which are not Transformer-based. For instance, DLinear (Zeng et al.,
2022) and Autoformer (Wu et al., 2021) decompose the series into trend and non-trend components.
Autoformer and SCINet (Liu et al., 2021) further exploit the temporal dependence structure of time
series via the autocorrelation function and multi-level convolution operations, respectively. FiLM
(Zhou et al., 2022a) and FEDformer (Zhou et al., 2022b) transform the series to the frequency
domain to capture meaningful signals while removing noises. This paper, however, differs from these
literature in both target and method. We aim to add the recurrent inductive bias to general-purpose
Transformers, and hence its performance rely heavily on the baseline Transformer that it modifies.

2 RELATIONSHIP BETWEEN RNN AND MULTIHEAD SELF-ATTENTION

This section demonstrates that, without loss of much generality, an RNN layer can be approximated
by a series of simple RNNs with scalar (hidden) coefficients, which can be further represented in the
form of a multihead self-attention.

2.1 BREAKING DOWN AN RNN LAYER

Consider an RNN layer with the input variables {xt ∈ Rdin , 1 ≤ t ≤ T}, and it has the form of
ht = g(Whht−1 + Wxxt + b), where g(·) is the activation function, ht ∈ Rd is the output or
hidden variable with h0 = 0, b ∈ Rd is the bias term, Wh ∈ Rd×d and Wx ∈ Rd×din are weights.
When the activation function is linear, i.e. g(x) = x, the RNN becomes

ht = Whht−1 +Wxxt, or equivalently ht =

t−1∑
j=0

W j
hWxxt−j , (1)

Figure 2: Illustration on how an RNN layer can be equivalently represented by a set of simple RNNs
and further by a multihead self-attention.

3

Published as a conference paper at ICLR 2023

where the bias term b is suppressed for simplicity. Although it has a feedforward form, the RNN
cannot be trained in parallel, and this is mainly caused by the power j of recurrent weights Wh,
where 1 ≤ j ≤ t− 1. This section makes an effort to block diagonalize Wh such that the RNN at (1)
can be broken down into a sequence of simple RNNs with scalar (hidden) coefficients.
Lemma 1 (Theorem 1 in Hartfiel (1995)). Real matrices with R distinct nonzero eigenvalues are
dense in the set of all d× d real matrices with rank at most R, where 0 < R ≤ d.

Suppose that the weight matrix Wh has rank R ≤ d. By Lemma 1, without loss of much generality,
we can assume that the nonzero eigenvalues of Wh are all distinct. Specifically, Wh has r real
nonzero eigenvalues λ1, . . . , λr, and s pairs of complex nonzero eigenvalues λr+1, . . . , λr+2s, where
(λr+2k−1, λr+2k) = (γke

iθk , γke
−iθk) for 1 ≤ k ≤ s, i is the imaginary unit, and R = r + 2s. As a

result, we have the real Jordan form, Wh = BJB−1, where B ∈ Rd×d is invertible and J ∈ Rd×d

is a block diagonal matrix. It holds that W j
h = BJ jB−1 for all j ≥ 1, and we can then break down

the recurrence induced by Wh into that of the p× p block matrices in J with p = 1 or 2.
Similar to (1), we define three types of RNNs with linear activation below,

hR
t (λ) =

t−1∑
j=1

λjWR
x xt−j , hC1

t (γ, θ) =

t−1∑
j=1

γj cos(jθ)WC1
x xt−j , (2)

and hC2
t (γ, θ) =

∑t−1
j=1 γ

j sin(jθ)WC2
x xt−j , where the first one corresponds to the real eigenvalues,

i.e. the 1× 1 block matrices in J , while the last two correspond to the complex eigenvalues, i.e. the
2× 2 block matrices in J . Note that each of the three RNNs has the recurrent weights of λ or (γ, θ),
and its form with a nonlinear activation function is given in the Appendix.
Proposition 1. Suppose that Wh has rank R = r + 2s ≤ d, and its eigenvalues are defined above.
Let h0,t = Wxxt, and then the RNN with linear activation at (1) can be equivalently rewritten into

ht =

r∑
k=1

hR
t (λk) +

s∑
k=1

hC1
t (γk, θk) +

s∑
k=1

hC2
t (γk, θk) + h0,t.

2.2 AN EQUIVALENT MHSA REPRESENTATION

Consider the RNN of {hR
t }, and let X = (x1, . . . ,xT)

′ ∈ RT×din be an input matrix consisting of T
tokens with dimension din, where the transpose of a matrix A is denoted by A′ throughout this paper.
We first give the value matrix V by projecting X with a linear transformation, i.e. V = XWV with
WV = WR′

x ∈ Rdin×d, and the relative positional encoding matrix is set to

PR
mask(λ) =

0 0 0 · · · 0

f1(λ) 0 0 · · · 0
f2(λ) f1(λ) 0 · · · 0

...
...

...
. . .

...
fT−1(λ) fT−2(λ) fT−3(λ) · · · 0

 , (3)

where ft(λ) = λt for 1 ≤ t ≤ T − 1. As a result, the first RNN at (2) can be represented into a
self-attention (SA) form,

(hR
1 , . . . ,h

R
T)

′ = SAR(X) = [softmax(QK ′) + PR
mask(λ)]V .

We call PR
mask the recurrence encoding matrix (REM) as it summarizes all the recurrence in {hR

t }.
For the RNN of {hCi

t }, i = 1 or 2, the REM is denoted by PCi
mask(γ, θ), which has the form of

(3) with ft(λ) being replaced by ft(γ, θ) = γt cos(tθ), i = 1 or ft(γ, θ) = γt sin(tθ), i = 2 for
1 ≤ t ≤ T − 1. And the value matrix has the form of V = XWV with WV = WCi′

x ∈ Rdin×d.
Thus, these two RNNs at (2) can also be represented into SA forms,

(hCi
1 , . . . ,hCi

T)′ = SACi(X) = [softmax(QK ′) + PCi
mask(γ, θ)]V with i = 1 or 2.

The remaining term in Proposition 1, h0,t depends on xt only, and there is no inter-dependence
involved. Mathematically, we can represent it into a SA with the identity relative positional encoding
matrix. Finally, all the query and key matrices Q and K are set to zero in the above reformulations.
Proposition 2. If the conditions of Proposition 1 hold, then the RNN with linear activation at (1)
can be represented into a multihead self-attention (MHSA) with r + 2s+ 1 heads, where the query
and key matrices are zero, and relative positional encoding matrices are {PR

mask(λk), 1 ≤ k ≤ r},
{PC1

mask(γk, θk),P
C2
mask(γk, θk), 1 ≤ k ≤ s} and an identity matrix, respectively.

4

Published as a conference paper at ICLR 2023

The three simple RNNs at (2) provide different temporal decay patterns: hR
t provides the regular

exponential decay induced by the real eigenvalues λk’s, and {hC1
t ,hC2

t } provide the cyclical damped
cosine or sine decay induced by the pair of complex eigenvalues (γkeiθk , γke−iθk)’s. These tem-
poral decay patterns are further summarized into the regular REM, PR

mask(λ), and cyclical REMs,
PC1

mask(γ, θ) and PC2
mask(γ, θ), respectively; see Figure 2 for the illustration. From Proposition 2, the

combination of these three types of patterns forms the recurrent dynamics of the RNN layer at (1).
For each head, the REM has one or two parameters, and WV can be regarded as one d× d learnable
matrix. This leads to a parameter complexity of O(Rd2), and it is slightly larger than that of the
RNN at (1) since R is usually much smaller than d (Prabhavalkar et al., 2016). Moreover, the MHSA
representation in Proposition 2 gives us a chance to make use of parallel matrix calculation on the
GPU hardware; see Appendix D.3 for an illustration of the computational efficiency of REMs.

3 ENCODING RECURRENCE INTO SELF-ATTENTION

While the query and key matrices are set to zero in the MHSA representation at Proposition 2, they
play a central role in a standard Transformer. This motivates us to propose the Self-Attention with
Recurrence (RSA) module to seamlessly combine the strengths of RNNs and Transformers:

RSA(X) = {[1− σ(µ)]softmax(QK ′) + σ(µ)P }V (4)
for each head, where P is a regular or cyclical REM, and σ(µ) ∈ [0, 1] is a gate with σ being the
sigmoid function and µ being the learnable gate-control parameter. Figure 1(d) provides a graphical
illustration of one RSA head.
Note that the REMs in Section 2 are all lower triangular matrices, which correspond to unidirectional
RNNs. In the meanwhile, for non-causal sequential learning tasks (Graves et al., 2005; Zhou et al.,
2016), bidirectional RNNs are usually applied, and accordingly we can define the unmasked versions
of REMs. Specifically, the regular REM is PR

unmask(λ) = PR
mask(λ) + [PR

mask(λ)]
′, and the cyclical

REMs are PCi
unmask(γ, θ) = PCi

mask(γ, θ) + [PCi
mask(γ, θ)]

′ with i = 1 and 2. In practice, these
REMs will be explosive when |λ| > 1 or |γ| > 1. To avoid this problem, we further bound these
two parameters by transformations in this paper, i.e. λ = tanh(η) and γ = sigmoid(ν), and these
notations then become PR

k (η), PC1
k (ν, θ) and PC2

k (ν, θ) with k ∈ {mask,unmask} accordingly.
Sequential data usually have some recurrent patterns, which can be captured by REMs. In the
meanwhile, the remaining non-recurrent patterns can be modeled by the baseline Transformer via
softmax(QK ′). The allocation of weights between REMs and self-attention is adjusted by the
learnable gate σ(µ). On one hand, comparing with the baseline Transformer, the inclusion of REMs
will lead to a significant improvement of sample efficiency in modeling the recurrent patterns, and
hence a higher accuracy in prediction can be expected from the proposed RSA. On the other hand,
comparing with the recurrent models, the non-recurrent patterns can be taken care of by the flexible
Transformers, and hence the representation power of the RSA module is as good as that of the
baseline Transformer.
In addition, the REM can act as a complementary positional encoding scheme to further provide
relative location information. For the multihead RSA, the gate-control parameter µ only varies across
layers, while the parameters controlling the matrix P vary across all heads and layers.
Initialization. The gate-control parameter µ is initialized in the interval [−3, 3] for all the layers.
For (λ, γ, θ) which determine the recurrent patterns, we initialize λ’s at different heads to spread
out between [−2,−1] ∪ [1, 2] and ν’s to spread out between [1, 2], and θ is initialized at π/4, to
encourage REMs to be non-zero and well-diversified.
Dilated REM variants. The dilated REMs can be further obtained by considering the block matrix
formed by the first T columns and first T rows of P ⊗ Id, where d is the dilating factor. In fact,
the dilated REMs can encapsulate the recurrence patterns of the dilated RNNs (Chang et al., 2017);
see Proposition 4 in the Appendix. They describe potentially periodic recurrence over a long-term
timespan, and can significantly enrich the temporal dynamics of our RSA.
Hyperparameters ki and d. In each multihead RSA layer with H heads, the number of the six types
of REMs, namely one regular, two cyclical, one dilated regular and two dilated cyclical REMs, are
denoted by k1 − k6, respectively. Since

∑6
i=1 ki = H , we can apply constrained hyperparameter

search to optimize over the choices of ki’s. For simplicity, we can set k2 = k3 and k5 = k6, which
indicates that the cyclical REMs come in pairs. The search for d, on the other hand, can be guided
by various data analytic tools. For instance, d can be observed from the autocorrelation plots as the

5

Published as a conference paper at ICLR 2023

Figure 3: The boxplot for gate values at different attention layers of RSA models.

seasonal period length for time series data (Cryer & Chan, 2008); while for the language-related data,
d can be heuristically deduced from the recurrence plots (Webber et al., 2016).
More discussions on REMs. Each type of REMs is basically a masked or unmasked linear aggrega-
tion of tokens, and we may alternatively consider a more general Toeplitz, or even a fully learnable,
matrix P at (4) such that all kinds of temporal decay patterns can be automatically captured. Although
more flexible than REMs, it will need O(T) or O(T 2) additional parameters, where T is the sequence
length, while each REM requires merely one or two parameters. Note that the proposed RSA at (4)
also includes a standard self-attention, which is flexible enough for the remaining nonlinearities that
failed to be captured by REMs, and hence it may not be necessary to consider a more general yet less
efficient structure for REMs. see Appendix B for both theoretical and empirical evidences.

4 EXPERIMENTS

This section contains four sequential modeling tasks and, for each task, we modify some popular
Transformer baselines by adding the REMs to their attention weights via a gated mechanism as in
(4). The modified models are named with the prefix “RSA-”. The trained gate σ(µ) controls the
percentage of weights allocated to the REMs, and it hence provides a rough measure for recurrent
signals in the data. From Figure 3, we may argue that time series have the strongest recurrent signals,
followed by the regular language (Yu, 1997) and finally the code or natural languages. The gate values
also vary across different layers of Transformer models, indicating that the proportion of recurrent
signals may change as the data propagate through layers. Moreover, the data-driven gated mechanism
can help maintain the optimal allocation between REM and self-attention to achieve better sample
efficiency and improved performance. All experiments are conducted on Nvidia V100 32GB GPUs.

4.1 TIME SERIES FORECASTING

Time series data possess unique attributes, such as strong recurrent signals, that can improve forecast-
ing accuracy. Although Transformers are not currently the state-of-the-art model for this task, it is
interesting to explore how the proposed RSA module could enhance their performance.
Our experiments are performed on two public benchmark datasets: the ETT1 dataset is comprised
of seven features related to the electric power long-term deployment, where {ETTh1, ETTh2} are
recorded by the hour and ETTm1 is recorded by 15-minute intervals; and the Weather2 dataset contains
twelve climate indicators collected every 1 hour over a 4-year period. For the baseline models, we
adopt Informer (Zhou et al., 2021), LogSparse Transformer (Li et al., 2019) and Transformer-XL
(Dai et al., 2019). In particular, to accommodate the cases where the attention map is non-square, we
extend the recurrent patterns and adjust the shape of our REMs; see details in Appendix D.2. All
hyperparameters in baseline models are set to the optimal setting in Zhou et al. (2021), and we also
follow their train/val/test division and training schemes to conduct our experiments.
Table 1 summarizes the mean squared error (MSE) and mean absolute error (MAE) for the three
baselines against their RSA counterparts, averaged across 5 repetitions. Overall, the revised models
show significant improvement in performance over their baselines. Moreover, it is interesting to see
that the REMs can act as effective substitutions for positional encoding. For Transformer-XL in
particular, although we remove their learnable relative positional encoding, superior performance
is attained by RSA-XL while the total number of parameters is reduced. Since more than 70%
of weights are allocated to the REMs in Figure 3, it numerically verifies that the recurrent signals
dominate the non-recurrent ones for time series data.

1Accessible at https://github.com/zhouhaoyi/ETDataset.
2Accessible at https://www.ncei.noaa.gov/data/local-climatological-data/.

6

https://github.com/zhouhaoyi/ETDataset
https://www.ncei.noaa.gov/data/local-climatological-data/

Published as a conference paper at ICLR 2023

Table 1: Multivariate long sequence time-series forecasting results reported on different prediction
window sizes. We compare the MSE and MAE of RSA models with their baselines under all settings,
and highlight the better results in bold letters. Note that XL requires a sequential ordering for training,
and the same scheme are adopted for all models to make the results comparable.

Methods Informer RSA-Informer LogSparse RSA-LogSparse XL RSA-XL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.762 0.632 0.414 0.450 1.124 0.826 0.858 0.668 0.514 0.518 0.466 0.493
48 1.006 0.763 0.467 0.493 1.161 0.841 0.818 0.659 0.571 0.556 0.528 0.535

168 1.141 0.823 0.753 0.659 1.104 0.818 1.042 0.781 0.898 0.734 0.813 0.694
336 1.416 0.987 0.895 0.755 1.178 0.851 0.972 0.774 0.963 0.758 0.942 0.756

E
T

T
h2

24 2.558 1.253 1.264 0.879 2.894 1.375 1.076 0.844 0.763 0.699 0.705 0.660
48 2.487 1.268 1.878 1.067 3.009 1.363 1.362 0.975 1.293 0.917 1.171 0.877

168 2.869 1.324 2.830 1.301 2.876 1.307 2.165 1.235 2.780 1.288 2.671 1.290
336 2.055 1.113 2.113 1.124 3.005 1.350 2.909 1.365 2.447 1.231 2.461 1.238

E
T

T
m

1 24 0.536 0.511 0.534 0.507 1.105 0.837 0.619 0.553 0.561 0.537 0.591 0.549
48 0.781 0.633 0.644 0.612 1.150 0.852 0.541 0.519 0.562 0.543 0.556 0.536
96 0.823 0.697 0.732 0.665 1.227 0.897 0.526 0.520 0.714 0.640 0.707 0.645

288 1.371 0.945 0.835 0.710 1.167 0.862 0.955 0.766 0.969 0.795 0.967 0.795

W
ea

th
er 24 0.316 0.371 0.328 0.380 0.560 0.553 0.394 0.441 0.364 0.411 0.367 0.414

48 0.606 0.566 0.432 0.464 0.582 0.567 0.432 0.466 0.473 0.490 0.466 0.484
168 1.009 0.771 0.862 0.702 0.929 0.754 0.602 0.580 0.684 0.616 0.592 0.572
336 1.096 0.801 0.846 0.697 0.874 0.734 0.638 0.602 0.895 0.713 0.816 0.679

Table 2: Prediction accuracy of the vanilla Transformer, the Transformer with learnable relative
positional encoding (“Transformer⋆”) on the six languages, together with the RSA-Transformer under
different hyperparameter settings. All Transformers are 5-headed, and the hyperparameter settings
for RSA-Transformer, Cases I-IV, are denoted by the tuple (k1, k2, k3, k4, k5, k6).

Methods Transformer Transformer⋆ RSA-Transformer
I: (5,0,0,0,0,0) II: (3,0,0,2,0,0) III: (3,1,1,0,0,0) IV: (3,0,0,0,1,1)

Bin 0 Bin 1 Bin 0 Bin 1 Bin 0 Bin 1 Bin 0 Bin 1 Bin 0 Bin 1 Bin 0 Bin 1
D2 0.2 0.2 0.87 0.94 1 1 1 1 1 1 1 1
D4 1 0.08 0.99 0.9 1 1 1 1 1 1 1 1

Parity 0.29 0 0.13 0 0.99 0.67 0.97 0.53 0.91 0.62 0.9 0.52
Tomita 3 (T3) 0.89 0.11 0.98 0.48 1 0.97 1 0.97 1 0.98 1 0.98
Tomita 5 (T5) 0.07 0 0.01 0 0.63 0.16 0.82 0.17 0.49 0 0.72 0.35
Tomita 6 (T6) 0 0 0 0 0.78 0.35 0.89 0.38 0.95 0.46 0.64 0.39

4.2 REGULAR LANGUAGE LEARNING

Regular languages are intimately related to the linear recurrence sequences, such as Fibonacci numbers
(Kotek & Makowsky, 2010). Some works report that Transformers have difficulty in generalizing the
rules of regular languages (Bhattamishra et al., 2020; Tran et al., 2018; Hahn, 2020). Experiments
are conducted to show that the proposed RSA module can leverage the recurrent inductive bias of the
REMs to improve Transformer’s sample efficiency, and subsequently its generalization ability.
For the experiments, we deliberately choose six types of regular languages on which the Transformer
model has been shown to perform poorly, namely Parity, Tomita 3, 5 & 6 (Tomita, 1982), D2 and
D4 (Bhattamishra et al., 2020). We use the decoder-only vanilla Transformer model as the baseline,
and modify its self-attention layers into our RSA forms under four hyperparameter settings (detailed
in Table 2). As a comparison, another benchmark model (denoted by Transformer⋆) is obtained by
replacing the absolute sinusoidal positional encoding with the learnable relative positional encoding
(Dai et al., 2019). To evaluate their generalization ability, the test set is further separated into two
bins, where bin 1 contains longer test samples than bin 0. Following Bhattamishra et al. (2020), we
recast the prediction task into a classification one, where the prediction is deemed a success only
when the output values at all positions are correct, and a failure otherwise.
From Table 2, it can be seen that the vanilla Transformer model fails to grasp the recurring rules of
these languages. With assistance of the learned relative positional encoding, they can learn better
on D2, D4 and Tomita 3, but not the others. However, the RSA-Transformer not only achieves near
100% accuracy on D2, D4 and Tomita 3, but also gains a significant boost in performance on the
other three languages. In particular, Figure 3 shows that approximately 60% of weights are allocated
to the REMs, implying strong recurrent signals in the datasets. We further provide some visualization
of the REMs under Cases I – IV and their interpretaions in Appendix E.2.

7

Published as a conference paper at ICLR 2023

Table 3: (a) The defect accuracy is reported for the CodeT5-small baseline and the RSA-CodeT5-
small. In addition, we report the percentage of the parameters added by the RSA model against its
baseline. (b) The number of Bit-per-character (BPC) is reported for Enwik8 and Text8 (lower is
better), and the perplexity (PPL) is reported for WikiText-103 (lower is better).

Models Defect Accuracy (%)

CodeT5-small 64.60
RSA-CodeT5-small 65.96

Params Added (%) 5× 10−4

(a) Code defect detection

Models XL RSA-XL BRT RSA-BRT

Enwik8 1.074 1.068 1.076 1.068
Text8 1.163 1.163 1.165 1.163

WikiText-103 23.83 23.73 23.76 23.64

Averaged Params Added (%) 1.01× 10−4 8.68× 10−5

(b) Natural language modeling

4.3 CODE AND NATURAL LANGUAGE MODELING

Different from regular languages, the recurrence relationship in programming or natural languages is
weaker and harder to interpret. Nevertheless, they have a wide range of applications on which the
Transformers are serving as the baseline models. Our experiments show that the baseline models can
improve the performance with inclusion of a small percentage of REMs.
We first conduct a defect detection task based on the C language dataset provided by Zhou et al.
(2019), which is a binary classification task to evaluate whether a code is vulnerable to external
attacks. The pretrained CodeT5 (Wang et al., 2021)3 is adapted to this downstream task. Specifically,
we use CodeT5-small as our baseline model with 12 layers and 8 heads, and directly add the REMs
on top of the self-attention with fully learnable RPE via a gated mechanism. The gate-control
parameter µ is initialized at −3 and we fine-tune both the baseline and our RSA models for 20
epochs with early stopping. It can be observed from the boxplot in Figure 3 that the gate values at
different layers remain close to the initialization, with only 5% of weights allocated to the REMs.
Although the recurrent signals in the code language is apparently much weaker than those in time
series or regular language, our RSA-CodeT5-small is still able to achieve a significant improvement
against the CodeT5-small baseline as shown in Table 3(a). The RSA-CodeT5-small model has only
about 320 additional parameters over the baseline with 66 million parameters, which is equal to
5× 10−4%. More surprisingly, it surpasses the current SOTA result of 65.78%, which is achieved by
the CodeT5-base model with a total number of 220 million parameters (Wang et al., 2021). Due to
limited resources, we have not yet fine-tuned RSA-CodeT5-base model.
The natural language modeling task is conducted on three standard NLP datasets, namely the word-
level WikiText-103 (Merity et al., 2017), Enwik8 (LLC., 2009) and Text8 (LLC., 2009). We use two
baseline models: Transformer-XL and Block Recurrent Trasnformer (BRT), and their corresponding
RSA models are formed by directly adding the REMs on top of some of the self-attention heads via a
gated mechanism. For Wikitext-103, all transformers are 16-layer with 12 heads. In the meantime,
for both Enwik8 and Text8 there are 14 layers and 8 heads. The details of model structures can be
referred to Appendix E.3. We follow the training schemes of Transformer-XL, and the results are
reported in Table 3(b). Overall, it can be seen that RSA models can achieve better performance than
their corresponding baselines. The gated values for RSA-XL on the three datasets are presented
in Figure 3, and we can see that REMs contribute more substantially for Text8 and Enwik8 than
WikiText-103, which may imply stronger recurrent signals for these two datasets.

4.4 ABLATION STUDIES

This section conducts three experiments to analyze how RSA scales with respect to sample size, data
size and sequence length, and its performance is compared against the baseline models.
Model scaling The first ablation studies the performance of RSA-XL on Text8 dataset when the
number of parameters increases. Baseline models include Transformer-XL, and two other benchmarks
suggested by a reviewer, which replace the parsimonious matrix function P in RSA (see equation (4))
with (1) a Toeplitz matrix, or (2) a fully learnable matrix. They are incorporated into Transformer-XL
baseline and are hence referred to as TL-XL and FL-XL, respectively. To have comparable parameter
counts, the number of layers in FL-XL varies from 8 to 14, whereas that in others varies from 10 to
16. We adopt the original training schemes of Transformer-XL. From the results presented in Figure
4 (left), it can be observed that RSA-XL is the most parameter efficient across all model scales. See
Appendix E.4 for similar results comparing BRT and RSA-BRT on model scaling performance.

3Pretrained weights available from https://github.com/salesforce/CodeT5.

8

https://github.com/salesforce/CodeT5

Published as a conference paper at ICLR 2023

Figure 4: The left panel presents the BPC on Text8 for XL, RSA-XL, TL-XL and FL-XL at different
model sizes. The middle panel compares the sample efficiency of RSA-XL on with that of the
baseline XL by training them on restricted portions of the Enwik8 training set. Meanwhile, the
gate-values at different attention layers of RSA-XL are presented in the boxplot.

Figure 5: Accuracy for BRT vs RSA-BRT and TLB vs RSA-TLB on the copy task is plotted on the
first and second panels respectively, where “S" means a small training sample size of 6400, and “L"
means a large training sample size of 12800. When sequence length = 512, the cross entropy loss of
the four models for the first 9000 gradient steps are plotted in the third and fourth panels.

Data scaling The second ablation study compares the sample efficiency of RSA-XL against
Transformer-XL. Specifically, we use different proportions of training data from Enwik8 to train
the models, and maintain the same evaluation and test sets. Results are presented in middle panel
of Figure 4, and we further visualize the gate values σ(ν) allocated to REMs at every layer in the
right panel. It shows that, as available training samples shrink, learnable gate will automatically
increase the weights of the parsimonious REMs, and this subsequently helps RSA-XL to maintain a
consistently higher sample efficiency than the baseline XL model.
Sequence length scaling In this ablation study, we adopt a synthetic copy task akin to the one in
Nguyen et al. (2021) or Katharopoulos et al. (2020). It requires the model to copy a sequence of
symbols with different maximum lengths. For every sample, a sequence of ten symbols is randomly
generated and repeated multiple times, with a reserved symbol separating each replication. Four
models are used: BRT, TLB, RSA-BRT and RSA-TLB, and we adopt a small training sample size of
6400 as well as a larger one of 12800. The implementation is detailed in the appendix. Figure 5 first
depicts the accuracy with respect to the sequence length and then shows the cross entropy loss with
respect to the number of gradient steps. It can be observed that RSA-BRT and RSA-TLB converge
faster than their baselines, respectively, and achieve perfect accuracy across all sequence lengths.

5 CONCLUSION AND DISCUSSION

By formulating RNN into an MHSA form, we novelly propose an RSA module to incorporate
the recurrent dynamics of an RNN into a Transformer. Specifically, the lightweight REMs are
combined with the self-attention weights via a gated mechanism, maintaining a parallel and efficient
computation on the GPU infrastructure. Experiments on four sequential learning tasks show that the
proposed RSA module can boost the sample efficiency of the baseline Transformer, supported by
significantly improved performance. In addition, with the fitted gate values to measure the recurrent
signal strength in the data, it can be observed that the code or natural languages have much smaller
proportion of recurrent patterns, which further explain the superiority of Transformer models in these
two data domains, while the inclusion of REMs still can boost the baseline performance.
This paper can be extended along three directions below. Firstly, while six typical examples of
REMs are introduced, we may also consider other types of REM designs, such as the non-distinct
eigenvalues of the RNN weight matrix Wh, and long-memory filters operated on top of the RNNs
(Zhao et al., 2020). Secondly, the proposed RSA module can be further applied to other types of
sequential learning tasks such as video learning (Bulat et al., 2021) and skeleton-based human motion
detection (Shu et al., 2021). Finally, it is of interest to incorporate the REMs into models other than
Transformers, or even to apply it directly as a standalone recurrent unit.

9

Published as a conference paper at ICLR 2023

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility and completeness of this paper, we include the Appendix with five
main sections. Appendix A discusses the relationship between RSA and some important related
works. Appendix B provides a theoretical and empirical study on the performance gap between linear
and nonlinear RNNs. Appendix C contains the complete proofs for all propositions presented in
this paper. An efficient method to compute the REMs is detailed in Appendix D, together with an
extension to non-square REMs and an empirical study on the time efficiency of the proposed method.
The experiments in the paper are reproducible with additional implementation details provided in
Appendix E. We also include the hyperparameter settings for all results contained in Tables 1 and 3.

ACKNOWLEDGMENTS

We would like to thank the three anonymous reviewers for spending time and efforts and bringing in
constructive questions and suggestions, which help us greatly to improve the quality of the paper. We
would like to also thank the Program Chairs and Area Chairs for handling this paper and providing
the valuable and conprehensive comments.

REFERENCES

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. In EMNLP, pp. 7096–7116, 2020.

Adrian Bulat, Juan Manuel Perez Rua, Swathikiran Sudhakaran, Brais Martinez, and Georgios
Tzimiropoulos. Space-time mixing attention for video transformer. Advances in Neural Information
Processing Systems, 34:19594–19607, 2021.

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael
Witbrock, Mark Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
76–86, 2017.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Zhifeng Chen, Yonghui Wu, and Macduff Hughes. The best of both worlds: Combining
recent advances in neural machine translation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 76–86, Melbourne,
Australia, 2018. Association for Computational Linguistics.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning,
December 2014, 2014.

Jonathan D Cryer and Kung-Sik Chan. Time series analysis: with applications in R, volume 2.
Springer, 2008.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Aniket Rajiv Didolkar, Kshitij Gupta, Anirudh Goyal, Alex Lamb, Nan Rosemary Ke, and Yoshua
Bengio. Temporal latent bottleneck: Synthesis of fast and slow processing mechanisms in sequence
learning. In Advances in Neural Information Processing Systems, 2022.

Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent Sagun.
Convit: Improving vision transformers with soft convolutional inductive biases. In International
Conference on Machine Learning, pp. 2286–2296. PMLR, 2021.

Angela Fan, Thibaut Lavril, Edouard Grave, Armand Joulin, and Sainbayar Sukhbaatar. Addressing
some limitations of transformers with feedback memory. arXiv preprint arXiv:2002.09402, 2021.

Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional lstm networks for improved
phoneme classification and recognition. In International conference on artificial neural networks,
pp. 799–804. Springer, 2005.

10

Published as a conference paper at ICLR 2023

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Jie Hao, Xing Wang, Baosong Yang, Longyue Wang, Jinfeng Zhang, and Zhaopeng Tu. Modeling
recurrence for transformer. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 1198–1207, Minneapolis, Minnesota, 2019. Association for Computational
Linguistics.

Darald J Hartfiel. Dense sets of diagonalizable matrices. Proceedings of the American Mathematical
Society, 123:1669–1672, 1995.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, and Corso Elvezia. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies. A Field Guide to
Dynamical Recurrent Networks, pp. 237–243, 2001.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, New York,
2nd edition, 2012.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJe4ShAcF7.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-recurrent
transformers. In Advances in Neural Information Processing Systems, 2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning, pp. 5156–5165. PMLR, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Tomer Kotek and Johann A Makowsky. Definability of combinatorial functions and their linear
recurrence relations. In Fields of Logic and Computation, pp. 444–462. Springer, 2010.

Tao Lei, Yu Zhang, Sida I Wang, Hui Dai, and Yoav Artzi. Simple recurrent units for highly
parallelizable recurrence. arXiv preprint arXiv:1709.02755, 2017.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in Neural Information Processing Systems, 32, 2019.

Minhao Liu, Ailing Zeng, Zhijian Xu, Qiuxia Lai, and Qiang Xu. Time series is a special sequence:
Forecasting with sample convolution and interaction. arXiv preprint arXiv:2106.09305, 2021.

Yang Liu and Mirella Lapata. Hierarchical transformers for multi-document summarization. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
5070–5081, Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1500.

MultiMedia LLC. Large text compression benchmark, 2009.

Yi Luo, Zhuo Chen, and Takuya Yoshioka. Dual-path RNN: efficient long sequence modeling
for time-domain single-channel speech separation. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 46–50. IEEE, 2020.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=Byj72udxe.

11

https://openreview.net/forum?id=rJe4ShAcF7
https://openreview.net/forum?id=rJe4ShAcF7
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

Published as a conference paper at ICLR 2023

Tan Nguyen, Vai Suliafu, Stanley Osher, Long Chen, and Bao Wang. Fmmformer: Efficient
and flexible transformer via decomposed near-field and far-field attention. Advances in neural
information processing systems, 34:29449–29463, 2021.

Rohit Prabhavalkar, Ouais Alsharif, Antoine Bruguier, and Lan McGraw. On the compression of
recurrent neural networks with an application to lvcsr acoustic modeling for embedded speech
recognition. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5970–5974, 2016. doi: 10.1109/ICASSP.2016.7472823.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–
1191, 2020. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2019.07.001. URL https:
//www.sciencedirect.com/science/article/pii/S0169207019301888.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 464–468.
Association for Computational Linguistics, 2018.

Xiangbo Shu, Liyan Zhang, Guo-Jun Qi, Wei Liu, and Jinhui Tang. Spatiotemporal co-attention
recurrent neural networks for human-skeleton motion prediction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(6):3300–3315, 2021.

M. Tomita. Dynamic construction of finite automata from examples using hill-climbing. In Proceed-
ings of the Fourth Annual Conference of the Cognitive Science Society, pp. 105–108, Ann Arbor,
Michigan, 1982.

Ke Tran, Arianna Bisazza, and Christof Monz. The importance of being recurrent for modeling
hierarchical structure. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 4731–4736, Brussels, Belgium, 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1503.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, 2021.

Zhiwei Wang, Yao Ma, Zitao Liu, and Jiliang Tang. R-transformer: Recurrent neural network
enhanced transformer. arXiv preprint arXiv:1907.05572, 2019.

Charles L Webber, Cornel Ioana, and Norbert Marwan. Recurrence plots and their quantifications:
expanding horizons. Springer Proceedings in Physics. doi: https://doi. org/10.1007/978-3-319-
29922-8, 2016.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419–22430, 2021.

Sheng Yu. Regular languages. In Handbook of formal languages, pp. 41–110. Springer, 1997.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

Jingyu Zhao, Feiqing Huang, Jia Lv, Yanjie Duan, Zhen Qin, Guodong Li, and Guangjian Tian. Do
RNN and LSTM have long memory? In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 11365–11375.
PMLR, 13–18 Jul 2020.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of AAAI, 2021.

12

https://www.sciencedirect.com/science/article/pii/S0169207019301888
https://www.sciencedirect.com/science/article/pii/S0169207019301888

Published as a conference paper at ICLR 2023

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo Xu. Text classification
improved by integrating bidirectional lstm with two-dimensional max pooling. arXiv preprint
arXiv:1611.06639, 2016.

Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Rong Jin, et al. Film: Frequency improved
legendre memory model for long-term time series forecasting. arXiv preprint arXiv:2205.08897,
2022a.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning (ICML 2022), 2022b.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulner-
ability identification by learning comprehensive program semantics via graph neural networks.
Advances in neural information processing systems, 32, 2019.

13

Published as a conference paper at ICLR 2023

APPENDIX

This Appendix contains five sections. The first section provides an illustrative plot for multiscale
recurrence in various Transformer models. The theoretical and empirical gaps between the linear
and nonlinear RNNs are studied in the second section. The third section presents Proposition 3, and
then gives the detailed proofs for Propositions 1 – 3. An efficient method to compute the REMs
is detailed in Section 4, and we further extend it to non-square REMs and conduct an empirical
study on the training time per batch for the RSA models against their baselines. Section 5 provides
additional implementation details for the experiments, additional ablation studies and visualization of
the learned patterns.

A MULTISCALE RECURRENCE

For sequential learning tasks, the recurrence relationship can be well observed at different levels of
temporal granularity. This feature has inspired new designs to add recurrence to Transformers from
varying scales; see illustration in Figure 6. Transformer-XL (XL) (Dai et al., 2019) partitions a long
input sequence into segments, and places them into consecutive batches. A segment-level recurrence
is then introduced by using a cached hidden state to pass historical information iteratively to the
next segment. Temporal Latent Bottleneck (TLB) (Didolkar et al., 2022) further divides the segment
within one batch into smaller chunks, and then adopts the state vectors to aggregate both high-level
information across layers and temporal information across chunks. The chunk-level recurrence
helps create a slow information stream in the sequence to learn a more condensed representation.
Block-Recurrent Transformer (BRT) (Hutchins et al., 2022) also establishes recurrence across chunks
(or blocks), while their recurrent states are layer-specific and updated with an LSTM-style gated
design. As a comparison, the proposed RSA follows the RNN to account for the recurrence between
individual inputs. In other words, it models the token-level recurrence, which is at the most fine-
grained scale. Subsequently, it can be easily incorporated into the aforementioned coarser-grained
designs, and may potentially bring benefits to their performance. For illustration, we use XL and
BRT as our baseline models in Section 4.3.

Figure 6: An illustration for multiscale recurrence. From top to bottom, Transformer-XL has the
most coarse-grained segment-level recurrence, while both the Temporal Latent Bottleneck and the
Block-Recurrent Transformers share the finer-grained chunk-level (or block-level) recurrence. The
proposed RSA has the most fined-grained token-level recurrence.

B THEORETICAL AND EMPIRICAL GAPS BETWEEN LINEAR AND NONLINEAR
RNNS

B.1 THEORETICAL GAP

This subsection theoretically evaluates prediction errors when a linear RNN model is used to train the
data generated by a nonlinear RNN. For simplicity, we consider 1D case only, and many-to-many
RNNs are assumed.
Specifically, the nonlinear RNN model used to generate the data has the recursive form of

gt = σh(ut) with ut = w∗
hgt−1 + w∗

xxt + b∗, (5)

14

Published as a conference paper at ICLR 2023

and σh(·) is the activation function satisfying
|σh(0)| < 1, σ′

h(0) = 1 and |σ′′
h(x)| ≤ 1 for any x ∈ R. (6)

Note that many commonly used activation functions, including Tanh and Sigmoid, satisfy the above
condition. We further consider an additive error εt, i.e. yt = gt + εt, where εt has mean zero and a
finite variance denoted by γ.
For the generated data {yt}, we train a linear RNN model,

ht(θ) = whht−1(θ) + wxxt + b,

where the parameters θ = (wh, wx, b). Then the mean squared prediction error can be defined as

epred := min
θ

E(yt − ht(θ))
2,

and its theoretical bound is provided in the following proposition.
Proposition 3. Suppose that E(u2

t) ≤ α and E(u2
tu

2
s) ≤ β for all t, s ∈ Z. If |w∗

h| < 1 and the
condition at (6) holds, then

epred ≤ (1− |w∗
h|)−1(1 + α+ β/4)︸ ︷︷ ︸

misspecification error

+ γ︸︷︷︸
irreducible system error

,

where the first part is due to the misspecification of using the linear activation to approximate σh(·).

Proof of Proposition 3. Let θ∗ = (w∗
h, w

∗
x, b

∗), and denote ht = ht(θ
∗) for all t ∈ Z, i.e.

ht = w∗
hht−1 + w∗

xxt + b∗. (7)
By the definition of epred, it holds that

epred ≤ E(yt − ht)
2 = E(gt − ht)

2 + γ, (8)
where the equality comes from E(εt) = 0 and var(εt) = γ. By applying second-order Taylor
expansion at zero and from (5) and (6), we have

gt = σh(0) + ut +Rt(0), where |Rt(0)| =
∣∣∣∣12σ′′

h(ũ)u
2
t

∣∣∣∣ ≤ u2
t

2
,

and ũ lies between ut and zero. This, together with (7), leads to gt − ht = σh(0) + w∗
h(gt−1 −

ht−1) +Rt(0).
Let δt = gt − ht, and it then holds that

δt = σh(0) + w∗
hδt−1 +Rt(0) =

∞∑
j=0

(w∗
h)

jσh(0) +

∞∑
j=0

(w∗
h)

jRt−j(0),

where the second equality is obtained by applying the first equality recursively. As a result, by the
condition that |σh(0)| < 1, E(u2

t) ≤ α and E(u2
tu

2
s) ≤ β for all t, s ∈ Z, we can show that

E(δ2t) ≤ ξ2 + 2ξE

 ∞∑
j=0

|w∗
h|j |Rt−j(0)|

+ E

 ∞∑
j=0

|w∗
h|j |Rt−j(0)|

2

≤ ξ2
(
1 + α+

β

4

)
,

where ξ =
∑∞

j=0 |w∗
h|j . If |w∗

h| < 1, we have ξ = (1−|w∗
h|)−1. This, together with (8), accomplishes

the proof.

B.2 EMPIRICAL GAP
This subsection conducts a synthetic experiment to evaluate the performance of linear RNNs when
there is nonlinearity in the data.
We first generate the data by using a two-layer nonlinear RNN model with the form of

z
(i)
t = αg

(i)
t + (1− α)h

(i)
t and

{
h
(i)
t = W

(i)
h z

(i)
t−1 +W

(i)
z z

(i−1)
t + b(i)

g
(i)
t = σh(W

(i)
h z

(i)
t−1 +W

(i)
z z

(i−1)
t + b(i))

, (9)

with i = 1 and 2, where z
(0)
t = xt, z

(i)
t ∈ R2 for 1 ≤ i ≤ 3, σh(·) is a nonlinear activation function,

and 0 ≤ α ≤ 1 is the weight of nonlinearity. An additive error is further assumed, i.e. yt = z
(2)
t +εt,

15

Published as a conference paper at ICLR 2023

Figure 7: The MSPE ratios for the linear RNN and RSA as the nonlinearity proportion α changes
from 0 to 1. From the left, middle to right panels, we set σh(·) in (9) to Tanh, Sigmoid or ReLU
activation, respectively.

where {xt} and {εt} are independent and follow the standard multivariate normal distribution. Three
nonlinear functions are considered for σh(·), Tanh, Sigmoid and ReLU. As α increases from 0 to 1,
the data generating process gradually changes from a strictly linear RNN to a nonlinear one, i.e. α
essentially controls the proportion of nonlinearity involved.
The sequence {yt, 1 ≤ t ≤ T} is fitted separately by a linear RNN, a nonlinear RNN with the
corresponding activation, and a linear RNN combined with a self-attention, i.e. the proposed RSA.
Specifically, we generate a sequence of length 10000 and then divide it into 100 segments, each of
length 100. In each segment, we train with the first 99 observations and calculate the prediction error
for the last observation. The Adam optimizer is adopted for training, and the training procedure
will be terminated when the training loss drops by less than 10−5. The mean squared prediction
error (MSPE) averaged over 100 segments are denoted by eLpred, e

NL
pred and eRSA

pred for the three models,
respectively. Using nonlinear RNNs as the benchmark, the MSPE ratio for the linear RNN or the
RSA is defined as

MSPE ratio for model i =
eipred

eNL
pred

, where i ∈ {L,RSA}.

Figure 7 presents the MSPE ratios for three types of activation functions. It can be seen that, when
α = 1, nonlinear RNNs perform the best, while linear RNN suffers from misspecification error.
Alternatively, when α = 0, the opposite can be observed. Moreover, as α increases, i.e. there are
more nonlinearity, it is expected that linear RNNs become less favorable, while the proposed RSA
can remedy the problem to some extent. Especially when α > 0.6, the RSA consistently achieves
better prediction performance than the pure linear RNN.

C PROPOSITION 3 AND PROOFS FOR ALL PROPOSITIONS

C.1 PROPOSITION 3 FOR DILATED RNNS

For some positive integer d, let P̄R
mask be the block matrix formed by the first T columns and the first

T rows of PR
mask ⊗ Id. And P̄Ci

mask can be defined similarly for i = 1 or 2. Consider a dilated RNN
(Chang et al., 2017) with the dilating factor d. It has the form ht = g(Whht−d +Wxxt + b) where
g(·) is the activation function, ht ∈ Rd is the output or hidden variable with h0 = 0, b ∈ Rdin is the
bias term, Wh ∈ Rd×d and Wx ∈ Rd×din are weights. When the activation function is linear, i.e.
g(x) = x, the RNN becomes

ht = Whht−d +Wxxt, or ht =

t−1∑
j=0

W j
hWxxt−j·d, (10)

where the bias term b is suppressed for simplicity. We have the following proposition.
Proposition 4. If the conditions of Proposition 1 hold for Wh in (10), then the RNN with linear
activation at (10) can be represented into a multihead self-attention (MHSA) with r + 2s + 1
heads, where the query and key matrices are zero, and relative positional encoding matrices are
{P̄R

mask(λk), 1 ≤ k ≤ r}, {P̄C1
mask(γk, θk), P̄

C2
mask(γk, θk), 1 ≤ k ≤ s} and an identity matrix,

respectively.

Proof. The proof follows directly from Propositions 1 and 2.

16

Published as a conference paper at ICLR 2023

C.2 PROOF FOR PROPOSITION 1

Let Wh be a d × d real matrix with distinct eigenvalues, and from Chapter 3 of Horn & Johnson
(2012), we have the Jordan decomposition, Wh = BJB−1, where B ∈ Rd×d is invertible, and
J ∈ Rd×d has a real Jordan form, J = diag{λ1, . . . , λr,C1, . . . ,Cs,0} with

Ck = γk ·
(

cos(θk) sin(θk)
− sin(θk) cos(θk)

)
∈ R2×2, 1 ≤ k ≤ s.

Then,

W j
h = BJ jB−1 =

r∑
k=1

λj
kG

R
k +

s∑
k=1

γj
k

{
cos(jθk)G

C1
k + sin(jθk)G

C2
k

}
for all j ≥ 1,

where GR
k ’s, GC1

k ’s and GC2
k ’s are d × d real matrices determined jointly by B and B−1. Let

h0,t = Wxxt and then,

ht =

t−1∑
j=0

W j
hWxxt−j

=

t−1∑
j=1

r∑
k=1

λj
kG

R
kWxxt−j +

t−1∑
j=1

s∑
k=1

γj
k

{
cos(jθk)G

C1
k + sin(jθk)G

C2
k

}
Wxxt−j +Wxxt

=

r∑
k=1

hR
t (λk) +

s∑
k=1

hC1
t (γk, θk) +

s∑
k=1

hC2
t (γk, θk) + h0,t,

where

hR
t =

t−1∑
j=1

λjGRWxxt−j or equivalently, hR
t = g(λhR

t−1 +GRWxxt−1), (11)

g(·) being the identity function and hC1
t =

∑t−1
j=1 γ

j cos(jθ)GC1Wxxt−j , hC2
t =∑t−1

j=1 γ
j sin(jθ)GC2Wxxt−j which can be obtained via the recursive relationships,{

hC1
t = g(γ cos θhC1

t−1 + (γ cos θGWxxt−1 − γ sin θhC2
t−1)),

hC2
t = g(γ cos θhC2

t−1 + γ sin θ(hC1
t−1 +GWxxt−1)),

(12)

with G being GC1 or GC2, respectively. For a more general form, we can further assume that the
activation function g(·) is nonlinear for the simple RNNs at (11) and (12).

C.3 PROOF FOR PROPOSITION 2

Using the SA form, we can represent the three types of the RNNs by

(hR
1 (λk), · · · ,hR

1 (λk)) = SAR
k (X) and

(hCi
1 (γk, θk), · · · ,hCi

1 (γk, θk)) = SACi
k (X) for i = 1 or 2.

Therefore, the first term in Proposition 1 can be represented as

MHSA(X) = concat[SAR
1 (X), . . . ,SAR

r (X)]Wo =

(
r∑

k=1

hR
1 (λk), . . . ,

r∑
k=1

hR
T (λk)

)′

, (13)

where Wo = (Id, . . . , Id)
′ ∈ Rrd×d with Id being d-dimensional identity matrix. Similarly the

MHSA for second and third term in Proposition 1 is given by

MHSA(X) = concat[SACi
1 (X), . . . ,SACi

s (X)]Wo =

(
s∑

k=1

hCi
1 (γk, θk), . . . ,

s∑
k=1

hCi
T (γk, θk)

)′

(14)

where Wo = (Id, . . . , Id)
′ ∈ Rsd×d.

And we define the additional head as SA0(X) = (h0,1, . . . ,h0,T)
′ = [softmax(QK ′) + I]V with

WQ = WK = 0 and WV = W ′
x. Combine with (13) and (14), we have

17

Published as a conference paper at ICLR 2023

MHSA(X) = concat[{SAR
k (X)}1≤k≤r, {SAC1

k (X),SAC2
k (X)}1≤k≤s,SA0(X)]Wo (15)

where Wo = (Id, . . . , Id)
′ ∈ R(r+2s+1)d×d.

D COMPUTATION OF THE REMS

D.1 EFFICIENT COMPUTATION OF THE REMS

For any matrix A, let cos(A) and sin(A) refer to applying the cosine and sine functions to each
element of A. To compute the REMs, we first construct the exponent matrix L that has a Toeplitz
form:

L =

0 1 2 · · · T − 1
1 0 1 · · · T − 2
2 1 0 · · · T − 3
...

...
...

. . .
...

T − 1 T − 2 T − 3 · · · 0

Denote the square matrix whose elements are all equal to λ as λ. Similarly, we define γ and θ
for γ and θ, respectively. Extending the conventional power notation, we let λL = pow(λ,L) and
γL = pow(γ,L) , i.e., (λL)i,j = λ

Li,j

i,j and (γL)i,j = γ
Li,j

i,j . Then we can calculate the REMs by

P =

{
DR − IT for regular REM,

DCi − IT for cyclical REMs with 1 ≤ i ≤ 2,

where DR = λL, DC1 = γL ⊙ cos(θ ⊙ L), DC2 = γL ⊙ sin(θ ⊙ L) and ⊙ is the Hadamard
product. Such design allows us to circumvent redundant computations and achieve parallelization
as much as possible. To avoid extremely large or small values, we mask the entries that have power
larger than a preset number K. In practice, we set K = 200.
Moreover, we can easily extend the above calculation to dilated REMs by substituting L with Ld,
where (Ld)i,j = I{Li,j mod d=0}Li,j/d and d is the dilating factor. The remaining operations are
unchanged.

D.2 FLEXIBLE ADAPTATION TO DIFFERENT ATTENTION SHAPES

In some cases, the query and key have different time spans with an overlapping period; examples
including the cross-attention and all attention in the Transformer-XL. We show in this section that our
REMs can be adapted for such cases. Typically, the historical information will be mostly stored in the
query matrix, and the new information will be included in the key and the value matrices. Assume
that the query matrix contains the tokens from time 1 to time T , and the key matrix contains that
from time T −K to time T + L, where K > 0 is the overlapping period length and L > 0 is the
length of new information. Then the REM is of size (L+K + 1)× T and takes the form of

1 2 ··· T−K−1 T−K ··· T−1 T

T−K fT−K−1(β) fT−K−2(β) · · · f1(β) 0 · · · fK−1(β) fK(β)
T−K+1 fT−K−2(β) fT−K−3(β) · · · f2(β) f1(β) · · · fK−2(β) fK−1(β)

...
...

...
. . .

...
...

. . .
...

...
T−1 fT−2(β) fT−3(β) · · · fK(β) fK−1(β) · · · 0 f1(β)
T fT−1(β) fT−2(β) · · · fK+1(β) fK(β) · · · f1(β) 0

T+1 fT (β) fT−1(β) · · · fK+2(β) fK+1(β) · · · f2(β) f1(β)
...

...
...

. . .
...

...
. . .

...
...

T+L fT+L−1(β) fT+L−2(β) · · · fK+L+1(β) fK+L(β) · · · fL+1(β) fL(β)

,

which maintains the recurrent patterns while considering the shift in the relative time locations,
where β = λ for regular REM or (γ, θ) for cyclical REMs. And we can extend to the dilated REMs
similarly.

D.3 THE COMPUTATIONAL EFFICIENCY OF THE REMS FOR VARIOUS TRANSFORMER
BASELINES

We first conduct an empirical study on the Weather dataset to evaluate the computational time of the
REMs for RSA-Informer, RSA-LogSparse and RSA-XL. Specifically, we record the training time per

18

Published as a conference paper at ICLR 2023

Figure 8: The training time ber batch for each RSA model, which can be decomposed into the
additional computation time due to the REMs (green bar) and the others (blue bar).

Figure 9: Comparison of the training time of ber batch between RSA-Informer and Informer (left
panel), RSA-Logsparse Transformer and Logsparse Transformer (middle panel), RSA-Transformer-
XL and Transformer-XL (right panel). The experiment is performed on Weather dataset.

batch for the RSA models, while simultaneously we exclude the REMs from the models and record
the training time again. The difference between the two gives the additional computation time due to
the REMs, as shown by the green bar in Figure 8. It can be seen that the calculations involving the
REMs account for less than 20% of the total training time in general.
In the next experiment, we further compare the computational time between the RSA models and their
respective baseline models. Note that the original Informer and LogSparse Transformer use absolute
positional encoding (APE), while Transformer-XL adopts a learned relative positional encoding
(RPE). These positional encoding schemes are excluded from the RSA models. The training time per
batch for all the models are reported in Figure 9. We can observe a small increase in computational
time for RSA-Informer and RSA-LogSparse against their baselines, while that for RSA-XL remains
nearly unchanged. This implies that the REMs requires a bit more computation effort than the APEs,
and the same computation effort as the RPE introduced by Transformer-XL.

E ADDITIONAL EXPERIMENTS AND RESULTS

E.1 TIME SERIES FORECASTING

We apply the same time series datasets as in the Informer paper (Zhou et al., 2021), and the details
are given below for completeness. The first dataset is the Electricity Transformer Temperature (ETT).
It contains the records for seven electric power indicators over a two-year period from two separated
counties in China. Zhou et al. (2021) created three separate datasets ETTh1 and ETTh2 for hourly
level, and ETTm1 for the fifteen-minute level. The train/val/test is 12/4/4 months. The second dataset
consists of climatological data over a four-year period from 2010 to 2013 for various locations in
US. The train/val/test is 28/10/10 months. To ensure the quality of our baselines models, we make
reference to the following two github repositories, namely Informer20204 and transformer-xl5. Since
Transformer-XL requires a sequential order for training, testing and validation sets, we generate the
training samples by sliding window starting from different points of the original time series following
the practice in Salinas et al. (2020).
In this task, we let the REMs substitute the original positional encoding scheme in the RSA models.
Moreover, since the distilling operation in the original Informer design is likely to distort the relative

4The link to the repository is https://github.com/zhouhaoyi/Informer2020 under Apache-2.0 license.
5The link to the repository is https://github.com/kimiyoung/transformer-xl under Apache-2.0 license.

19

https://github.com/zhouhaoyi/Informer2020
https://github.com/kimiyoung/transformer-xl

Published as a conference paper at ICLR 2023

Table 4: Multivariate long sequence time-series forecasting results on ETT and Weather datasets. The
standard deviation of the 5 repetitions is included in brackets below the mean value. The results are
reported on different prediction window sizes. We compare the MSE and MAE of RSA models with
their baselines under all settings (a total of 32 comparisons), and report the number of times each
model surpasses its comparing model in the last row.

Methods Informer RPSA-Informer LogSparse RPSA-LogSparse XL RPSA-XL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.762 0.632 0.414 0.450 1.124 0.826 0.858 0.668 0.514 0.518 0.466 0.493
(0.144) (0.076) (0.014) (0.012) (0.012) (0.014) (0.052) (0.034) (0.031) (0.018) (0.003) (0.002)

48 1.006 0.763 0.467 0.493 1.161 0.841 0.818 0.659 0.571 0.556 0.528 0.535
(0.024) (0.020) (0.018) (0.017) (0.094) (0.059) (0.021) (0.010) (0.010) (0.009) (0.009) (0.008)

168 1.141 0.823 0.753 0.659 1.104 0.818 1.042 0.781 0.898 0.734 0.813 0.694
(0.022) (0.023) (0.036) (0.018) (0.010) (0.016) (0.021) (0.007) (0.010) (0.006) (0.011) (0.008)

336 1.416 0.987 0.895 0.755 1.178 0.851 0.972 0.774 0.963 0.758 0.942 0.756
(0.071) (0.034) (0.040) (0.016) (0.055) (0.036) (0.013) (0.008) (0.033) (0.012) (0.012) (0.008)

E
T

T
h2

24 2.558 1.253 1.264 0.879 2.894 1.375 1.076 0.844 0.763 0.699 0.705 0.660
(1.177) (0.275) (0.479) (0.135) (0.131) (0.029) (0.034) (0.017) (0.042) (0.021) (0.050) (0.018)

48 2.487 1.268 1.878 1.067 3.009 1.363 1.362 0.975 1.293 0.917 1.171 0.877
(0.088) (0.018) (0.455) (0.128) (0.074) (0.012) (0.089) (0.043) (0.061) (0.031) (0.082) (0.030)

168 2.869 1.324 2.830 1.301 2.876 1.307 2.165 1.235 2.780 1.288 2.671 1.290
(0.124) (0.019) (0.188) (0.039) (0.068) (0.012) (0.131) (0.030) (0.157) (0.045) (0.133) (0.026)

336 2.055 1.113 2.113 1.124 3.005 1.350 2.909 1.365 2.447 1.231 2.461 1.238
(0.058) (0.017) (0.120) (0.039) (0.073) (0.045) (0.094) (0.047) (0.080) (0.020) (0.083) (0.028)

E
T

T
m

1

24 0.536 0.511 0.534 0.507 1.105 0.837 0.619 0.553 0.561 0.537 0.591 0.549
(0.023) (0.014) (0.023) (0.011) (0.053) (0.034) (0.063) (0.031) (0.021) (0.011) (0.012) (0.011)

48 0.781 0.633 0.644 0.612 1.150 0.852 0.541 0.519 0.562 0.543 0.556 0.536
(0.265) (0.135) (0.079) (0.049) (0.015) (0.016) (0.010) (0.005) (0.009) (0.005) (0.020) (0.012)

96 0.823 0.697 0.732 0.665 1.227 0.897 0.526 0.520 0.714 0.640 0.707 0.645
(0.095) (0.052) (0.079) (0.051) (0.057) (0.035) (0.090) (0.057) (0.075) (0.049) (0.045) (0.029)

288 1.371 0.945 0.835 0.710 1.167 0.862 0.955 0.766 0.969 0.795 0.967 0.795
(0.246) (0.059) (0.058) (0.036) (0.026) (0.019) (0.149) (0.072) (0.093) (0.051) (0.007) (0.003)

W
ea

th
er

24 0.316 0.371 0.328 0.380 0.560 0.553 0.394 0.441 0.364 0.411 0.367 0.414
(0.003) (0.002) (0.001) (0.001) (0.069) (0.046) (0.015) (0.012) (0.001) (0.001) (0.000) (0.000)

48 0.606 0.566 0.432 0.464 0.582 0.567 0.432 0.466 0.473 0.490 0.466 0.484
(0.194) (0.100) (0.004) (0.002) (0.029) (0.021) (0.012) (0.009) (0.002) (0.002) (0.001) (0.001)

168 1.009 0.771 0.862 0.702 0.929 0.754 0.602 0.580 0.684 0.616 0.592 0.572
(0.006) (0.003) (0.189) (0.088) (0.200) (0.101) (0.027) (0.017) (0.176) (0.085) (0.017) (0.012)

336 1.096 0.801 0.846 0.697 0.874 0.734 0.638 0.602 0.895 0.713 0.816 0.679
(0.236) (0.069) (0.187) (0.084) (0.132) (0.071) (0.025) (0.014) (0.155) (0.071) (0.167) (0.079)

count 4 28 1 31 8 24

positions, we exclude it from both our Informer baseline and the RSA-Informer. The hyperparameters
in RSA are fine tuned via grid search.

Table 5 reports the fine-tuned hyperparameter settings considered in Table 1 of the main paper. To
provide additional information about the standard deviation, we provide a more detailed version of
Table 1 of the main paper, given in Table 4.

Ablation on the hyperparameters To shed light on the importance of different recurrent dynamics,
we provide an ablation study with RSA-Informer on ETTh1. The model has a total of 8 heads, and
we set k2 = k3 to some positive integer s and k5 = k6 to some positive integer s̄. In particular,
when s̄ = 0, we also take k4 = 0 and hence there are not any dilated REMs, leading to k1 = 8− 2s.
Otherwise, we take k4 = 4− 2s̄ and k1 = 4− 2s. It can be observed from Table 6 that the inclusion
of dilation and the cyclical patterns can significantly improve the forecasting performance. The
concurrence of dilated and non-dilated RSA heads allows the model to capture both the short- and
long-term recurrent dynamics.

Gate-control parameter learning To study how much proportion of the RSA output is accounted
for by the REMs, Figure 10 plots the change in its relative importance i.e. σ(µ) during training for
all the attention layers, starting from different initializations. As the learning rate drops rapidly, all
curves are flattened towards the end. The relative positional attention is the most effective for the
cross-attention layer, and the least effective for the self-attention layer in the decoder, whose recurrent
patterns may be disrupted by zero paddings. We observe a decrease in MSE as the initialization
increases from −1 to 1, which provides an empirical support for initializing at µ = 1.

20

Published as a conference paper at ICLR 2023

Table 5: The fine-tuned hyperparameter settings used for the RSA models in Table 1. The tuple
(k1, k2, k3, k4, k5, k6) refer to the number of the six types of REMs. The values of different dilating
factors are listed, where those for regular heads are followed by those for the cyclical heads. d = “−”
means no dilated REMs are considered.

Methods RSA-Informer RSA-LogSparse RSA-XL

Setting (k1, k2, k3, k4, k5, k6) d (k1, k2, k3, k4, k5, k6) d (k1, k2, k3, k4, k5, k6) d

E
T

T
h1

24 (0,2,2,0,2,2) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24]
48 (0,2,2,2,1,1) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24]

168 (0,2,2,2,1,1) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24] (0,2,2,0,2,2) [48,24,48,24]
336 (4,0,0,4,0,0) [24,24,24,24] (0,2,2,0,2,2) [48,24,48,24] (1,2,2,1,1,1) [48,24,24]

E
T

T
h2

24 (4,2,2,0,0,0) - (4,0,0,4,0,0) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24]
48 (0,2,2,0,2,2) [24,24,24,24] (8,0,0,0,0,0) - (0,2,2,0,2,2) [48,24,48,24]

168 (4,2,2,0,0,0) - (4,0,0,4,0,0) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24]
336 (0,2,2,0,2,2) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24]

E
T

T
m

1 24 (0,0,0,0,4,4) [2,3,6,24,2,3,6,24] (4,0,0,4,0,0) [96,96,96,96] (0,1,1,0,3,3) [48,24,24,48,24,24]
48 (0,2,2,0,2,2) [96,96,96,96] (4,0,0,4,0,0) [96,96,96,96] (0,1,1,2,2,2) [48,24,48,96,48,96]
96 (0,2,2,0,2,2) [96,96,96,96] (4,0,0,4,0,0) [96,96,96,96] (0,1,1,2,2,2) [48,24,48,96,48,96]

288 (0,2,2,0,2,2) [96,96,96,96] (4,0,0,4,0,0) [96,96,96,96] (0,1,1,2,2,2) [48,24,48,96,48,96]

W
ea

th
er 24 (0,0,0,0,4,4) [3,5,7,24,3,5,7,24] (4,0,0,4,0,0) [24,24,24,24] (0,2,2,0,2,2) [24,24,24,24]

48 (0,2,2,0,2,2) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24] (0,2,2,0,2,2) [48,24,48,24]
168 (0,2,2,0,2,2) [24,24,24,24] (4,0,0,4,0,0) [24,24,24,24] (1,2,2,1,1,1) [48,24,24]
336 (0,2,2,0,2,2) [24,24,24,24] (8,0,0,0,0,0) - (0,2,2,0,2,2) [48,24,48,24]

Table 6: Ablation study on the hyperparameters for the 8-headed RSA-Informer on ETTh1 dataset. s̄
and s correspond to the number of dilated and non-dilated cyclical REMs. And s̄ =“-” refers to the
case where no dilated REMs are considered. Otherwise, 4 out of 8 dilated REMs are considered. The
MSEs are averaged over 5 repetitions.

s 0 1 2

s̄

- 0.997 0.962 0.878
0 0.455 0.472 0.430
1 0.475 0.505 0.414
2 0.521 0.511 0.422

pred window = 24

s 0 1 2

s̄

- 1.071 1.072 1.066
0 0.586 0.561 0.572
1 0.558 0.548 0.584
2 0.473 0.467 0.469

pred window = 48

s 0 1 2

s̄

- 1.254 1.183 1.089
0 0.800 0.795 0.994
1 0.772 0.806 1.005
2 0.777 0.753 0.879

pred window = 168

s 0 1 2

s̄

- 1.507 1.382 1.239
0 0.895 1.048 0.946
1 1.076 1.150 0.895
2 1.192 1.198 1.060

pred window = 336

E.2 REGULAR LANGUAGE LEARNING

The six types of regular language datasets are obtained from the github repository Transformer-
Formal-Language.6 We briefly describe the rules of these languages:

• The Parity language contains the numbers {0, 1} with an even number of 1’s. For example,
the string 0110 belongs to the language but 0111 does not.

• The Dn language is defined on the alphabets {a,b}. The D1 language can be written using
the regular expression (ab)⋆, where “⋆” represents the Kleene star operation. Then for
n ≥ 1, Dn can be expressed by the recursive relationship Dn = (aDn−1b)

⋆. We choose D2

and D4, where D2 = (a(ab)⋆b) and D4 = (a(a(a(ab)⋆b)⋆b)⋆b)⋆.
• The Tomita languages also use the numbers {0, 1} and include seven different grammars. In

our experiment, we choose Tomita 3, 5 and 6. In Tomita 3, consecutive 1’s must be of an
odd number and consecutive 0’s must be of an even number. In Tomita 5, the total numbers
of 1’s and 0’s must both be even. Finally, Tomita 6 requires the difference between the total
number of 1’s and 0’s to be a multiple of 3.

In this experiment, we adopt a simple setting with 3 layers and 5 heads for all models. The embedding
size is set to 20. During training, the Adam optimizer is initialized at 0.005 with a 0.5× decay every
5 epochs. And all models are run for 25 epochs without early stopping. Both the training set and
bin 0 contain samples with length in the range of [2, 50] for Parity and Tomita, and [2, 100] for Dn,
while bin 1 contains longer test samples with length in the range of [51, 100] for Parity and Tomita,
and [101, 200] for Dn. The models are trained on 10K samples and tested on 2K samples per bin
for Parity and Tomita, and trained on 5K samples with 1K test samples per bin for Dn. Following
Bhattamishra et al. (2020), we train the models as below: starting from the first position of an input
sequence, the model outputs a string of possible characters for the next position, and this continues

6The link to the repository is https://github.com/satwik77/Transformer-Formal-Languages under MIT license.

21

https://github.com/satwik77/Transformer-Formal-Languages

Published as a conference paper at ICLR 2023

Figure 10: (a) – (c) report the change in σ(µ) at each attention layer during training, where µ is
initialized at −1, 0, and 1, respectively. An 8-headed RSA-Informer is applied to the ETTh1 dataset
with settings reported in Table 5. The prediction window size equals to 24.

Figure 11: We visualize four recurrent patterns provided by the RSA heads on different languages
(top), and their corresponding output, averaged over embedding dimension (bottom). The correspond-
ing input sequence is given on x-axis.

until the sequence is exhausted. The prediction task is recast into a classfication task, where the
prediction is deemed a success if and only if the output values at each position are correct, and a
failure otherwise.
From Table 2, we can see that the Transformer-only models may require much more training samples
to learn these patterns. Moreover, when the training samples are shorter than the test samples, they
will have difficulty in extending the learned patterns to longer sequences, even with absolute or
learned relative positional encoding. Meanwhile, REMs can easily extend its learned patterns to any
sequence length, which may account for the better generalization ability of RSA-Transformers. To
help interpret the results in Table 2, we provide some visualizations of the learned recurrent patterns
on different languages in Figure 11. Learning Parity requires the model to count the number of 1’s,
and then decide whether it is an even number. Its recurrent pattern at (a) mainly consists of alternating
{−1, 1} that leads to regular oscillations when encountering an even or odd number of 1’s. Tomita
5 has an additional requirement that the number of 0 is also even, and hence its learning can be
assisted by dilated patterns; see (b) for illustration. Although Tomita 6 is more complicated, the
regular cyclical patterns at (c) seems sufficient for it to learn well. This gives us a glimpse of how the
RSA-Transformer manages to learn the regular languages.

E.3 CODE AND NATURAL LANGUAGE MODELING

For RSA-CodeT5-small, our code is based on the original CodeT5, which can be referred to in the
repository https://github.com/salesforce/CodeT5.
For the RSA-XL models adopted for the natural language modeling, only some of the heads are
replaced with the RSA heads, while the remaining ones are still the original XL heads.
In the RSA-BRT and baseline BRT models, the recurrent layer is put at the third layer counted from
the top, i.e., the recurrent layer is at layer 12 for 14-layer models and at layer 14 for 16-layer models.
The nonrecurrent layers are of the same structure as RSA-XL and XL respectively.
In Table 7, we report the detailed hyperparameters settings for the RSA and their baseline models
used in Table 3, where “n_RSA_heads" refers to the number of heads that are changed to the RSA
heads.

22

https://github.com/salesforce/CodeT5

Published as a conference paper at ICLR 2023

Table 7: The hyperparameter settings for the RSA and their baseline models used in Table 3.

Dataset Model n_layer n_heads n_RSA_heads (k1, k2, k3, k4, k5, k6) d µ_init #Params

Devign CodeT5-small 12 8 - - - - 60492288
RSA-CodeT5-small 12 8 8 (0,0,0,8,0,0) 64 -3 60492396

Text8

XL 14 8 - - - - 47789595
RSA-XL 14 8 4 (0,0,0,0,2,2) 6,6,12,12 1 47789665

BRT 14 8 - - - - 55464987
RSA-BRT 14 8 4 (0,0,0,0,2,2) 5,5,10,10 -1 55465052

Enwik8

XL 14 8 - - - - 47880396
RSA-XL 14 8 4 (0,0,0,0,2,2) 3,6,9,12 1 47880466

BRT 14 8 - - - - 55555788
RSA-BR 14 8 4 (0,0,0,0,2,2) 3,6,9,12 0 55555853

WikiText-103

XL 16 12 - - - - 153797302
RSA-XL 16 12 6 (0,0,0,2,2,2) 12,24,12,24,12,24 -1 153797414

BRT 16 12 - - - - 159627039
RSA-BR 16 12 6 (0,0,0,2,2,2) 12,24,12,24,12,24 -2 159627144

Figure 12: Bit-per-character for BRT and RSA-BRT with respect to the model size (i.e. number of
parameters in millions) on Enwik8.

E.4 ABLATION STUDY

This subsection contains one additional ablation experiment to compare the parameter efficiency of
Block Recurrent Transformer (BRT) against its RSA variant i.e. RSA-BRT, and implementation
details of the sequence length ablation study.
We conduct an additional experiment to compare the scaling performance of RSA-BRT and BRT
with respect to the number of parameters on Enwik8 dataset. Specifically, the number of layers in
both models varies in [8, 10, 12, 14], and the training schemes for NLP task in Section 4 is adopted.
From the results presented in Figure 12, it can be observed that RSA-BRT consistently achieves
better performance than its baseline.
Next, we provide implementation details for sequence length scaling experiement. For all four models
(i.e. BRT, TLB, RSA-BRT, RSA-TLB), a 4 layer transformer with 8 attention heads are trained using
a batch size of 16 and the Adam optimizer with a learning rate of 0.0001 which is reduced by half
every 5 epochs for BRT and RSA-BRT.

23

	Introduction
	Other related works

	Relationship between RNN and multihead self-attention
	Breaking down an RNN layer
	An equivalent MHSA representation

	Encoding recurrence into self-attention
	Experiments
	Time series forecasting
	Regular language learning
	Code and natural language modeling
	Ablation studies

	Conclusion and discussion
	Reproducibility statement
	Multiscale recurrence
	Theoretical and empirical gaps between linear and nonlinear RNNs
	Theoretical gap
	Empirical gap

	Proposition 3 and proofs for all Propositions
	Proposition 3 for dilated RNNs
	Proof for Proposition 1
	Proof for Proposition 2

	Computation of the REMs
	Efficient computation of the REMs
	Flexible adaptation to different attention shapes
	The computational efficiency of the REMs for various Transformer baselines

	Additional experiments and results
	Time series forecasting
	Regular language learning
	Code and natural language modeling
	Ablation study

