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ABSTRACT

When a graph is massive or when observability and privacy constraints prevent
access to the entire topology, ML models must be trained using only partial in-
formation related to the topology. Such models lack reusability when the same
graph is specified using a different partial set of measurements or on different sub-
graphs. We present an approach to make node representations comparable across
different graph views produced from the same underlying topology, and use it with
Graph Embedding Neural Networks (GENNs) on the OGBN-products benchmark
dataset to evaluate its effectiveness. The topology of the graph or a subgraph is
captured using the distance to a very small set of anchor nodes, resulting in a view
of the graph that depends on the anchors. The dimensionality of these measure-
ments is even further reduced using SVD, and the resulting topology coordinates
are used in a GENN scheme. Reusing this model to make predictions on different
views of the graph does not produce accurate results. By using a Procrustes trans-
form to align a very small set of reference nodes in views obtained from different
sets of anchors, we demonstrate that the models trained on one view can make
predictions on the graph based on a different view with about the same accuracy.
We also show that the proposed method is accurate when the different views are
obtained from different subgraphs with some overlap. The approach requires only
a few reference nodes, is compatible with any neural network classifier, and is par-
ticularly suitable for privacy-sensitive or federated settings where only projections
or a small set of reference nodes can be shared.

1 INTRODUCTION

Graph-based learning has become an essential tool for modeling complex relational data in domains
such as social networks, recommendation systems, and biological networks. A key challenge in
scalable and distributed settings is ensuring that node representations remain consistent and com-
parable across different graph views and partitions. This becomes particularly important when the
complete graph is inaccessible due to privacy constraints, access restrictions, communication and
measurement costs, or hardware limitations.

Unsupervised alignment across graphs to enable knowledge transfer when node identities do not
overlap is a recurring obstacle in multi-view data integration and cross-graph evaluation (Saxena &
Chandra, 2024). Real-world graphs are rarely visible in full to any single analyst because of privacy
rules, platforms, access control, time windows, or scale. This limitation means that different people
only see partial, view-specific slices (Chiang et al., 2019).

Federated learning demonstrates that privacy rules, regulations, and siloed infrastructure often hin-
der the centralization of raw data, leading clients to train locally and share model updates while
maintaining data decentralization. This setting introduces statistical and system heterogeneity, and
non-independent and identically distributed (non-IID) client data can hinder model transfer across
parties (McMahan et al., 2017). Classic methods such as FedAvg establish collaborative averaging
and communication savings, while FedProx stabilizes optimization under heterogeneity (Li et al.,
2020). For graphs, studies and benchmarks report that federated graph learning and federated graph
neural networks struggle when clients hold non-IID partitions or structurally different subgraphs
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(Xie et al., 2021). Motivated by this setting, we focus on a single underlying graph where the mea-
surements reveal only an anchor-based view of a common node set, i.e., the distance to a node from
a small set of anchor nodes. The goal is to reuse a model trained on one view for any other view by
performing an orthogonal alignment of embeddings at inference time, thereby preserving locality
and enabling cross-site utility.

In this work, we investigate whether node embeddings generated from different anchor-based views
of a graph can be made comparable or even interchangeable. If successful, such embeddings would
support modular training pipelines, allowing for training on one subgraph and one view and using the
same models to evaluate on other subgraphs with different views, or aggregating predictions from
multiple views without retraining. We present a method to align multiple views of a graph to achieve
this. We design a set of experiments based on the OGBN-Products dataset (Hu et al., 2020) to study
this question systematically. Starting with different anchor sets on the complete graph, we explore
the consistency of topology-aware node embeddings derived from distance matrices and PCA. We
then extend our investigation to settings with partial node coverage by generating subgraphs through
node removal. At each step, we evaluate whether embeddings from different views can be aligned
using Procrustes analysis (Schönemann, 1966; Even et al., 2024), and whether ML models trained on
one view generalize to others. Results presented below indicate that the proposed Procrustes-based
projection alignment achieves this without any significant loss of accuracy.

The rest of the paper is organized as follows: the related work in Section 2, introduction of graph co-
ordinates in Section 3, problem statement and our approach in Section 4, our two-phase experiments
and results in Section 5, and our conclusion in Section 6.

2 RELATED WORK

In recent years, the field of graph representation learning has gained significant attention, especially
in methods that aim to accurately map nodes within different graphs for various tasks, including
transfer learning across diverse datasets.

Graph researchers have also explored pre-training a model on one graph (or set of graphs) and
fine-tuning it on another graph. This paradigm treats the source graph as a pre-training domain to
learn general graph feature extractors, which are then adapted to a target graph’s node classification
task. GraphBridge (Ju et al., 2025) targets arbitrary cross-task and cross-domain transfer with two
stages: graph-level pre-training and a tuning stage that bridges mismatched input or output spaces.
Our approach focuses on a minimal alignment across views of the same underlying graph rather
than learning a transferable backbone across heterogeneous tasks or feature spaces. We compute
topology coordinates for each view and estimate a single orthogonal Procrustes map from a small
set of unlabeled reference nodes to place all views in a shared coordinate frame, after which a
classifier trained on one view can be applied to another without retraining or fine-tuning.

Moreover, the work by Peng et al. (2021) extends the application of Procrustes analysis in knowledge
graph embedding (KGE), where embeddings are aligned through closed-form OP methods. Their
contributions include a framework that preserves the rich semantics of graphs while facilitating the
transfer of learned representations across varying graph structures.

The work by Andreella et al. (2023) lays foundational concepts about utilizing Procrustes method-
ologies to assess matrix similarity, which can be extended to node embeddings in graph contexts.
By leveraging Procrustes distances, researchers can analyze the similarities between embeddings
obtained from disparate graphs and enhance performance through effective embedding alignment.

Transferring models trained on one graph to another is increasingly studied. Multi-view and cross-
graph methods show that node classification can generalize across related graphs with limited target
labels, allowing knowledge from a source graph to improve performance on a target graph. For
example, MV-HGNN (Zeng et al., 2024) builds two auxiliary views, a global feature similarity view
and a diffusion view, and fuses them with a transformer, sharing information across local, global,
and higher-order structures.

A framework for transferring structural information from source domain graphs to target domain
graphs by utilizing a pre-training phase is proposed in Wang et al. (2021). A graph neural network is
trained using self-supervised learning objectives, which allows it to learn meaningful representations
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that can reduce bias when transitioning to the target domain. Their results indicate enhanced per-
formance on recommendation tasks across different domains, providing a clear example of effective
model transfer between graphs.

A network tomography problem has been studied by Kakkavas et al. (2021) and Eriksson et al.
(2010), they study how to infer internal network properties from end-to-end measurements when
the underlying topology is only partially known. Our setting is similar here, as we depend on
end-to-end measurements taken by a subset of controllable nodes (anchors) to different nodes in
the network. Thus not all the paths in the network are visible. Instead of reconstructing the full
topology, we process these distances into anchor-based coordinates and focus on aligning and use
them for downstream prediction tasks.

Qin et al. (2023) proposes a coordinate system that utilizes topology coordinates (TCs) as node
embeddings. Our work utilizes their embeddings and explores their ability on multiple views of the
same graph.

The work by Xu et al. (2019) proposes a method to jointly learn node embeddings and an optimal
transport plan that minimizes a Gromov–Wasserstein (GW) discrepancy between the two graphs,
solved with a proximal point scheme; alignment and embeddings are coupled, yielding a shared
space without an explicit Procrustes step. Compared with our pipeline, GWL optimizes a full GW
objective while we estimate a single closed-form rotation on a small reference set and then reuse it
to align whole-graph embeddings.

Our work is complementary to recent methods that learn task-specific graph representations and per-
form cross-graph transfer. Ju et al. (2025) introduces a flexible framework GraphBridge for trans-
ferring a pre-trained GNN across heterogeneous tasks and domains by inserting a bridging network
that connects input and output layers. The work in Xu et al. (2019) proposes Gromov-Wasserstein
Learning (GWL), its scalable variants use optimal transport between metric spaces to jointly match
graphs and learn node embeddings. Choudhary & DeCost (2021) proposes a specialized GNN ar-
chitecture ALIGNN for atomistic systems based on message passing on both the bond graph and its
line graph. In contrast, our approach does not learn a new GNN architecture and does not aim to
align different graphs. Instead, our technique is aimed at using models trained on one view, in which
only distances and a small set of shared nodes are available, to be used with measurements from a
different view by aligning multiple local views of the same graph.

3 GRAPH COORDINATES

Consider a weighted graph G with N nodes in which djk is the weighted distance between any two
nodes j and k. djk is the lowest sum of weights of the edges between node j and node k. Note that
for unweighted graphs, dij = 1 for adjacent node pairs, and dij is the hop distance between i and j
for non-adjacent node pairs. Let D ∈ RN×N be the matrix containing the lowest weighted distance
for all two-node pairs, where N is the number of nodes in the graph. This distance matrix can be
written as D = [dij ].

Virtual coordinates (VCs) of a node consist of the vector of distances from a node to a set of M
anchor nodes. Without loss of generality, let nodes 1 to M be the set of anchors, i.e., node Ni and
Ai are synonymous for 1 ≤ i ≤ M . While there are anchor selection schemes in the literature,
we randomly select the anchors for simplicity. Thus the VC of Ni = [dA1Ni

, dA2Ni
...dAMNi ]. The

matrix D can be reorganized such that its initial M columns and M rows correspond to the selected
anchors while maintaining its diagonal elements as zeros. Taking the weighted distances between
the M anchors themselves and the weighted distances between the M anchors and the remaining
N −M non-anchor nodes, we form the partial distance matrix P, where j-th row vector represents
the shortest weighted distance from node j to all selected anchors, and is commonly known as the
VCs of node j.

It is well known that the distance matrix of a graph is low rank, whereas the adjacency matrix,
which is the basis of message passing in a GNN, is high rank (Jayasumana et al., 2019). Therefore,
a fraction of columns of D can capture the entire topology information (Mahindre et al., 2020).

Topology coordinates of a graph are obtained by the Singular Value Decomposition (SVD) of
P = UΣVT (Dhanapala & Jayasumana, 2010; 2014). The submatrix consisting of the first nc

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

columns of UΣ, i.e., the most significant nc principal components, is the topology coordinate
(TC) matrix for the graph (Dhanapala & Jayasumana, 2014). The TC of node Nd is given by
CT (Nd) = [UΣNd,1,UΣNd,2, ...,UΣNd,nc

], where UΣNd,j is the Nd-th row, j-th column ele-
ment in UΣ. The calculated TCs are used in different ways as described in the following Section 5.1
and Section 5.2.

When using a small number of anchors, the view is different from the complete graph, because we
are not utilizing all edges in the graph. With only 1000 nodes out of 2.45M nodes as anchors, few top
principal components already capture nearly all variance in the topology-aware coordinates: the first
10 TCs explain 99.4575% of the energy, leaving only 0.5425% unexplained. Expanding to 50 TCs
increases captured energy to 99.6017%, a modest gain of about 0.1442 percentage points, and 100
TCs reach 99.6520%, adding only about 0.0503% more. These percentages show clear diminishing
returns beyond a small basis. In practice, 10 to 100 TCs provide an efficient representation that
preserves almost all structure; more than 100 TCs will only offer a slight increase that may not
translate into measurable improvements in downstream accuracy relative to the added computational
cost.

4 PROBLEM STATEMENT AND APPROACH

We view the complete graph as a high-dimensional object and each anchor as a camera that senses
its distance to different nodes. Thus, the set of anchors produces a limited view of the graph. In
multi-view learning, different views share a common latent structure and can be fused or projected
into a shared subspace to improve generalization (Xu et al., 2013).

In our method, each anchor set is a projection of the same latent structure; we train on one projection
and, after alignment, generalize to others. An analogy from vision: multi-view CNNs for 3D shapes
render an object from several viewpoints and aggregate features across views, which strengthens
recognition; even a single view is informative when the shared structure is learned (Su et al., 2015).
This vision example supports our claim that different viewpoints expose compatible information
about the same object. In other words, different anchor sets expose compatible information about
the same graph.

In practice, different viewpoints are related by a rigid pose change, such as rotations or flips. In
our graph problem, embeddings from different anchor sets of the same graph are related by an
approximately orthogonal change of basis. We address this with orthogonal Procrustes: align the
embedding from anchor set B to that from A via a rotation. After this alignment, coordinates from
different anchor sets become nearly identical, reflecting the shared latent structure emphasized in
multi-view learning and the success of cross-view aggregation observed in multi-view CNNs.

Let G = (V,E) be a graph where we only have partial access because of scale. In particular, each
view sees the graph through distances to a chosen anchor set rather than by processing the distance
to all nodes at once. From different anchor sets Ai ⊆ V , we form the view V i

A. Then we construct
an embedding for all nodes V in view V i

A: ΦV i
A

: V → Rk. Where each row vector is a feature
vector derived from distances to anchors, concatenated with attribute vectors, and then reduced to k
dimensions. For the same node j in ΦV i

A
and ΦV l

A
, its embedding ΦV i

A
(j) and ΦV l

A
(j) may differ

by a rotation or reflection.

We train a classifier fθ : Rk→Y on view V i
A using labeled nodes Vtrain ⊂ V :

θ⋆ ∈ argmin
θ

∑
j∈Vtrain

L
(
fθ
(
ΦV i

A
(j)

)
, yj

)
. (1)

Where θ⋆ is the optimal solution and yj is the label for node j ∈ Vtrain.

To transfer to view V l
A without retraining, we estimate an orthogonal alignment RV l

A→V i
A

using a
small reference subset Vref ⊆ V using Procrustes.

Thus, when predicting on V l
A, we have

ŷj = fθ⋆

(
ΦV l

A
(j)RV l

A→V i
A

)
, j ∈ V (2)

Where the model fθ⋆ does not need retraining to predict label ŷj for node j.
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Specifically in our method, we treat the embedding from an anchor set A as a matrix XA ∈ Rn×k,
whose rows xA(i) are the coordinates of node i and whose columns span a k-dimensional subspace
SA = span(XA) ⊂ Rn. Let XA = UARA be a QR factorization with U⊤

AUA = Ik, where UA is
an orthonormal basis of SA, and RA is view-specific scaling. Doing the same for another anchor
set B, we have XB = UBRB . In our setting, both procedures target the same k-dimensional signal
subspace S which is from the complete graph, so SA and SB are close. Thus, the principal angle
between them is small.

We apply Procrustes to topology coordinates, and it solves minR∈O(k) ∥XB − XAR∥F =
minR∈O(k) ∥UBΣB−UAΣAR∥F , where O(k) is an orthogonal group in k dimensions. Because ΣA

and ΣB are singular values, and singular values are quite similar for one graph even with different
anchor sets, we are actually solving minR∈O(k) ∥UB − UAR∥F . Thus, orthogonal Procrustes can
find such R.

In our method, the anchor sets {Ai} differ across views. Each anchor set Ai is randomly sampled
from V , and contains less than 0.05% of the nodes in the graph. There is no special structure
required for transfer. The alignment uses a small, randomly chosen Vref ⊆ V , which can be entirely
unlabeled. In our experiments, Vref also contains less than 0.5% of the total number of nodes in the
graph. Allowing overlap Vref ∩Ai is often beneficial: when some reference nodes are also anchors
in the first views (the view for training), the shared constraints can benefit the orthogonal transfer
and improve prediction accuracy. The classifier fθ⋆ trained on one view is reused for any other view
after applying the rotation on the coordinates of the new view, with no further optimization.

5 EXPERIMENTS AND RESULTS

We conduct experiments on views of the same underlying graph. We follow the official train-
ing/validation/test splits of the OGBN-Products dataset (Hu et al., 2020). The graph is an undirected,
unweighted Amazon co-purchase network, has 2,449,029 nodes and 61,859,140 edges. Nodes are
products, and edges indicate co-purchases. Each node has a 100-dimensional feature vector ob-
tained by extracting bag-of-words from product descriptions, followed by PCA. The task involves
predicting 47-class product categories using accuracy as the evaluation metric. For our views, we
keep the nodes and edges fixed and vary only the anchor set used to derive topology features. There
is no edge or label changed across views. This isolates the effect of anchor choice while remaining
faithful to the OGB split protocol.

We use a lightweight feed-forward network with hidden linear layers and some ReLU activation
functions. In our experiments, we have two hidden linear layers with size [128, 64].

We begin with phase 1 to study the simplest controlled setting where the complete graph is avail-
able, anchors are randomly chosen, and embeddings from different anchor views can be aligned with
Procrustes using a small set of randomly chosen reference nodes. This setting isolates the effect of
anchor choice, verifies that views are seeing a nearly common coordinate frame, and establishes
baseline transfer when training on one view and evaluating on another without retraining. Phase 2
then relaxes the full coverage assumption by moving to partial views such as subgraphs, which in-
troduces missing nodes and structural variation. The goal is to test whether the alignment procedure
and the model trained in partial view remain effective under practical constraints, thereby tracing a
clear path from feasibility to robustness.

5.1 PHASE 1: FULL GRAPH WITH DIFFERENT ANCHOR SETS

In the initial phase of our experiments on the OGBN-Products dataset, we worked exclusively on
the full graph without applying any subgraphing or partitioning. The objective was to evaluate the
effect of different anchor sets on the resulting node representations.

We randomly sampled different sets of anchor nodes from the full graph. For each anchor set, we
computed the distance matrix from all nodes in the graph to the selected anchors. These distance
matrices were then transformed into node embeddings (topology coordinates, TCs) using Principal
Component Analysis (PCA). Let TC ∈ RN×d denote the d-dimensional TC for N nodes. Coordi-
nates columns are ordered by decreasing explained variance.

5
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Figure 1: TC plots of anchor set 1 (baseline). Points are nodes, and colors indicate node labels. This
view defines the reference coordinate frame used for alignment and model training.

To inspect how geometry and label information unfold across dimensions, we adopt a visualization:
for each i ∈ {1, . . . , k−1} we plot the 2D projection (TCi,TCi+1), where TCj denotes the j-th
coordinate column of TC. As shown in Fig. 1, we visualized scatter plots of (TCi, TCi+1), for
i = 1, 3, 5 for anchor sets 1 (baseline). Each point is a node; color encodes its class label using a
single color map shared across subplots.

To quantify and correct the rotational discrepancy between embeddings, we employed Procrustes
analysis. We selected one anchor set as the baseline and used its corresponding TCs as the reference
representation.

For each new anchor set, we randomly sampled 1,000 nodes and extracted their TC embeddings. We
then applied Procrustes analysis to compute the optimal orthogonal transformation (rotation matrix)
that aligns the sampled embeddings from the current anchor set to the reference embeddings from
the baseline. This transformation was subsequently applied to the entire set of TCs from the current
anchor set to bring it into alignment with the baseline space.

Let X ∈ RN×d denote the matrix of TCs for a set of N nodes from a new anchor set, and let
Y ∈ RN×d denote the corresponding TCs of the same nodes derived from a fixed baseline anchor
set. The goal of Procrustes analysis (Kabsch, 1976) is to find an orthogonal matrix R ∈ Rd×d that
best aligns X to Y by minimizing the Frobenius norm:

R∗ = arg min
R∈Rd×d,R⊤R=I

|XR− Y |2F (3)

This optimization has a closed-form solution. First, compute the cross-covariance matrix C =
X⊤Y , then take SVD:

C = UΣV ⊤ (4)

The optimal rotation matrix is then given by:

R∗ = UV ⊤ (5)

Once R∗ is obtained, we apply it to all topology coordinates Xfull of the current anchor set:

Xaligned = XfullR
∗ (6)

This transformation brings the embeddings into the coordinate space of the baseline anchor set,
enabling direct comparison and cross-anchor evaluation.

We then plot the TCs (before applying Procrustes) of anchor set 2 in Fig. 2, compared to what colors
are distributed in Fig. 1, we notice that their shapes are similar, but their orientations are different. As
shown in Fig. 3, after applying Procrustes based on the TCs of a small set of reference nodes, even
with different anchor sets, the rotated TCs exhibit strong alignment, indicating the effectiveness
of the TC and Procrustes transformation. We also conduct an experiment on a third anchor set,
where we have similar results. A key observation from this phase was that the PCA embeddings
derived from different anchor sets were remarkably consistent, differing only up to an orthogonal
transformation (e.g., sign flips or rotations). This invariance suggests a latent structural alignment
between representations across different anchor sets, despite the randomness and lack of overlap
among the anchor nodes.
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Figure 2: TC plots of anchor set 2, before applying Procrustes to align to the coordinate frame of
anchor set 1. A similar global structure is visible, but the mismatch in orientation limits direct reuse
of a model trained in the baseline frame.

Figure 3: TC plots of anchor set 2, after applying Procrustes to align to the coordinate frame of
anchor set 1. The orientation now matches the baseline, enabling training on one and evaluating on
another without retraining.

We then conduct an experiment in which a model is trained on one anchor set, and then evaluate this
trained model (without retraining or fine-tuning) on other anchor sets. This test aimed to evaluate
the generalizability of the learned representations across anchor sets. As shown in Table 1, when
trained on anchor Set 1a (baseline), the accuracy on the validation set is 0.8980 and the accuracy
on the test set is 0.7714. The same trained model evaluated on anchor Set 2a provides accuracies
on validation and test sets of 0.8800 and 0.7599, respectively, which are almost the same as the
corresponding values for Set 1a. Similar results can be observed when it is evaluated on anchor Set
3a, where the accuracy on the validation set is 0.8812 and the accuracy on the test set is 0.7580.
In comparison, when the proposed Procrustes-based approach is not applied, the validation and test
accuracies for anchor Sets 2a and 3a are less than 0.2. These results indicate that a single Procrustes
rotation estimated from a small reference is sufficient to place distinct anchor views in a shared
coordinate frame, preserving most of the model’s predictive power across views.

For TC-based embeddings of the same underlying graph, reference-set Procrustes is a practical,
supervision-free step to achieve cross-anchor comparability and reuse trained models.

We also experiment with different numbers of anchors overlapping with anchors from the baseline
anchor set. The results are shown in Table 2. This test aimed to evaluate the robustness of the anchor
selection across anchor sets. As shown in Table 2, when training on anchor Set 1c (baseline) which
has 1000 anchors, the accuracy on the validation set is 0.8977 and the accuracy on the test set is
0.7686; when evaluating on anchor Set 2c with 0% nodes from anchor Set 1c used as anchors, the
accuracy on the validation set is 0.8815 and the accuracy on the test set is 0.7521; when evaluating on
anchor Set 3c with 50% nodes from anchor Set 1c used as anchors, the accuracy on the validation set
is 0.8873 and the accuracy on the test set is 0.7609. The experiments with 100 anchors show similar
results. Increasing the percentage of baseline anchors used gives slightly better performance, though
the gains are modest. Thus, we can randomly choose anchors when evaluating a trained model on
the same graph.

We also explore having some reference nodes overlapping with the anchor in the baseline anchor
set. As shown in Table 3, training on the baseline view and evaluating on other anchor views after
Procrustes alignment is feasible. For the 1000 anchor setting, aligning from Sets 2e, 3e, 4e to Set 1e
yields a small drop from the baseline (validation 0.8977 and test 0.7719) to about 0.876–0.879 on
validation and 0.756–0.760 on test, and using overlapping reference anchors provides only modest
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Table 1: Train-on-one, evaluate-on-another across anchor sets. The model is trained on anchor
set 1 and then evaluated (with no retraining) on other anchor views after Procrustes alignment to the
baseline frame.

Anchor Set #Anchor Valid Acc Test Acc

Anchor Set 1a (baseline, train set) 1000 0.8980 0.7714
Anchor Set 2a (TCs NOT aligned to 1a) 1000 0.1237 0.1017
Anchor Set 2a (TCs aligned to 1a) 1000 0.8800 0.7599
Anchor Set 3a (TCs NOT aligned to 1a) 1000 0.1179 0.0900
Anchor Set 3a (TCs aligned to 1a) 1000 0.8812 0.7580
Anchor Set 1b (baseline, train set) 100 0.8702 0.7207
Anchor Set 2b (TCs aligned to 1b) 100 0.8537 0.7125
Anchor Set 3b (TCs aligned to 1b) 100 0.8489 0.7111

Table 2: Train-on-one, evaluate-on-another across anchor sets. The model is trained on anchor
set 1 and then evaluated (with no retraining) on other anchor views after Procrustes alignment to the
baseline frame, with #Oanc anchors overlapping with anchors in set 1.

Anchor Set #Anchor #Oanc Valid Acc Test Acc

1c (baseline, train set) 1000 0.8977 0.7686
2c (TCs aligned to 1c) 1000 0 0.8815 0.7521
3c (TCs aligned to 1c) 1000 500 0.8873 0.7609
1d (baseline, train set) 100 0.8702 0.7207
2d (TCs aligned to 1d) 100 0 0.8256 0.6813
3d (TCs aligned to 1d) 100 50 0.8412 0.6928

gains as #Oref increases from 0 to 1000. In contrast, with only 100 anchors, transfer from Set 1f is
noticeably harder: aligned views 2f, 3f, 4f remain well below the baseline 1f on both validation and
test, though adding overlapping anchors to the reference set improves validation accuracy somewhat.
Overall, alignment supports cross-view transfer; the benefit of overlapping reference anchors is
positive but small, and the performance gap is primarily driven by the anchor budget rather than the
exact size of the overlapping reference set.

5.2 PHASE 2: SUBGRAPH GENERATION BY NODE REMOVAL

In phase 2, we move from the complete graph in phase 1 to subgraphs obtained by removing nodes
to mirror the conditions that arise in practice, where coverage of the view is incomplete due to
scale, privacy, or distributed storage. Node removal introduces missing vertices and paths, which
changes the graph structure and distance-based embeddings, therefore providing a direct stress test
for the alignment procedure validated in phase 1. By working with subgraphs formed from random
node removal, we model unstructured missingness while keeping the setup simple. With randomly
chosen anchors and a small random set of reference nodes for Procrustes alignment, we test whether
embeddings from distinct partial views can be placed in a common coordinate frame and whether a
model learned under one pattern of missing nodes generalizes to another pattern.

In this phase, we generated subgraphs by randomly removing a subset of nodes from the full OGBN-
Products graph. The goal was to simulate scenarios where different parts of the graph are indepen-
dently accessible, such as in federated or distributed learning settings. Each subgraph retained most
of the original structure but had different coverage due to the random node removals.

To get efficiency, we randomly sample a set of nodes (based on a percentage). In our experiments,
we randomly remove 30% nodes. After removing these nodes, we extract the remaining largest
component and use it as a subgraph.

For each subgraph, we recompute distance matrices based on independently sampled anchor sets and
apply PCA to obtain TCs. We then randomly remove 30% nodes from the original OGBN-Products
graph to create Subgraph 2. To allow comparison and alignment between these embeddings, we
again used Procrustes analysis to align the coordinates of nodes shared between subgraphs. We
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Table 3: Train-on-one, evaluate-on-another across anchor sets. The model is trained on anchor
set 1 and then evaluated (without retraining) on other anchor views after Procrustes alignment to the
baseline frame, with #Anchor nodes as reference nodes, where #Oref reference nodes overlapping
with anchors in set 1

Anchor Set #Anchor #Oref Valid Acc Test Acc

1e (baseline, train set) 1000 0.8977 0.7719
2e (TCs aligned to 1e) 1000 0 0.8764 0.7560
3e (TCs aligned to 1e) 1000 500 0.8785 0.7580
4e (TCs aligned to 1e) 1000 1000 0.8786 0.7598
1f (baseline, train set) 100 0.8702 0.7207
2f (TCs aligned to 1f) 100 0 0.7319 0.6077
3f (TCs aligned to 1f) 100 50 0.7460 0.6164
4f (TCs aligned to 1f) 100 100 0.7523 0.6121

Table 4: Train-on-one, evaluate-on-another across subgraphs. The model is trained on subgraph 1
and then evaluated (without retraining) on other subgraphs after Procrustes alignment to the baseline
frame

Subgraph #Anchor Valid Acc Test Acc

Subgraph 1a (baseline, train set) 1000 0.8551 0.7106
Subgraph 2a (TCs aligned to 1a) 1000 0.8387 0.6983
Subgraph 3a (TCs aligned to 1a) 1000 0.8383 0.6975
Subgraph 1b (baseline, train set) 100 0.8362 0.6893
Subgraph 2b (TCs aligned to 1b) 100 0.8152 0.6901
Subgraph 3b (TCs aligned to 1b) 100 0.8147 0.6888

randomly sampled TCs of 10,000 nodes as Procrustes references. When applying Procrustes, we
use part of these nodes (if they exist in the new subgraph) as references to derive the rotation matrix.

We also visualize scatter plots of (TCi, TCi+1), for i = 1, 3, 5 for Subgraph 1 (baseline), Sub-
graph 2, and Subgraph 3 as what we do in Phase 1. We have a similar observation from the scatter
plots as in Phase 1, where, after applying Procrustes, their shapes are slightly different, but their
orientations are similar.

This setup allowed us to investigate further whether the learned representations are transferable not
only across anchor sets but also across distinct graph views with partial node overlap.

In our experiments, we randomly remove 30% of the nodes to generate subgraphs, and list the ex-
periment results in Table 4. When training on Subgraph 1a (baseline), the accuracy on the validation
and test sets is 0.8551 and 0.7106. When evaluating the trained model on other subgraphs, the valid
and test accuracy are 0.8387 and 0.6983 (Subgraph 2a), and 0.8383 and 0.6975 (Subgraph 3a). The
results of this phase laid the foundation for more structured partitioning and multi-subgraph training
strategies in future work.

These results suggest that using Procrustes as a lightweight, supervision-free commensuration step
for train-on-one, evaluate-on-another across subgraphs. These also motivate more structured parti-
tioning (e.g., community splits) and multi-subgraph training in future work.

6 CONCLUSION

We addressed a practical reuse problem in graph machine learning: train a node classifier once on a
graph view measured with a small number of anchors (using less than 0.05% of nodes as anchors,
justification in A.1), such that the same model can be used to make predictions based on other anchor
sets and even on other partial views, without retraining. The generalizability of this method is further
discussed in A.2. Specifically, we developed a supervision-free route to making node representations
comparable across different views of the same graph. We focused on views induced either by distinct
anchor sets or by randomly induced subgraphs with partial node overlap. Our key mechanism is an
orthogonal Procrustes alignment estimated on a small set of reference nodes; once the rotation is
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computed, it is applied to the entire view, producing a shared coordinate frame in which models
trained on a baseline view can be used to make predictions on other views and other subgraphs
without retraining. The before-and-after Procrustes plots show that, after alignment, both global
shape and label color gradients are stable across views, suggesting that the embeddings occupy a
common coordinate frame suitable for cross-view transfer.

The proposed method exploits the fact that the distance to an extremely small set of random nodes
can capture the graph topology accurately, and in fact, beyond a certain point, additional anchors
mainly increase computation cost with only very tiny performance improvement. As a consequence,
different independent sets of anchor nodes are capable of capturing the entire topology relationships
with high accuracy. By using Procrustes analysis, the proposed approach allows the alignment of
these views of the graphs, thereby allowing a ML model based on one view to be used on measure-
ments based on other views. Using TCs without alignment yields validation and test accuracy below
0.2, whereas, after Procrustes alignment, the validation and test accuracies are comparable to the
corresponding values of the original baseline view on which the model was trained, which were in
the range of 0.7 to 0.9 (Table 1). Our work shows that a single closed-form rotation estimated from
a few reference nodes is often sufficient to capture the orientation of views, enabling the reuse of
trained models.

The Procrustes solution is determined solely by shared nodes across views. If the reference set is
too small or highly localized, the estimated rotation can overfit a local region and not correctly align
distant areas. Distributing the reference nodes randomly or increasing the reference set size ensure
that reference nodes span the main connected components improves alignment stability.

Our ongoing work involves training on one graph and evaluating the trained model on other graphs
without any overlapping nodes. Possible extensions of this work may include transfer learning
among different networks corresponding to the same type of data, and also using a common ref-
erence frame for multiple entities to train a shared model without disclosing ones own frame of
reference.
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A APPENDIX

A.1 JUSTIFICATION OF USING LOW DIMENSION PRINCIPAL COMPONENTS

This section provides further empirical justification for the claim that low-dimensional principal
components derived from local graph views are sufficient to capture the global topological structure.

For each dataset and each view, we construct the distance-based matrix used in our topology coordi-
nates, and plot the singular values σi as a function of the index in Fig. 4. In all plots, we highlight two
indices, the smallest index i such that σi/σ0 ≤ 0.1 and the smallest index j such that σj/σ0 ≤ 0.01.

We repeat this analysis across different anchor set sizes (100 anchors and 1000 anchors), different
graphs (OGBN-Products, Cora, CiteSeer datasets).

Across all datasets and views, we observe in the singular value curves that the spectrum decays
quickly, with σi/σ0 dropping below 10% and 1% at relatively small indices. This indicates that
most of the energy of the distance-based embedding is concentrated in a low-dimensional subspace,
and that the leading principal components capture the dominant large-scale topology.

We also observe that, although the number of anchors increases by a factor of ten, the indexes of 10%
and 1% remain stable across anchor sizes 100 and 1000. Consequently, low-dimensional principal
components derived from local graph views are sufficient to capture the bulk of the topological
signal, even when the number of anchors is increased by an order of magnitude.
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Figure 4: Singular value spectrum of the distance matrix on CiteSeer/Cora/OGBN-Arxiv/OGBN-
Products datasets with 100/1000 anchors. The curves show the normalized singular values σi/σ0

as a function of log scale of index. The cross marks the first index where σi falls below 1% of the
largest singular value σ0, and the circle marks the first index where σi falls below 10% of σ0.

A.2 GENERALIZABLITY

Our method depends primarily on topological, rather than node and edge properties of the graph.
Our experiment results demonstrate that the alignment requires the following to ensure its general-
izability:(1) the shortest path distances that approximate a latent similarity notion, (2) even a very
small set of random anchor nodes (less than 0.5% of nodes) are sufficiently distributed across the
graph so that their distance vectors form a well-conditioned coordinate system, and similarly, (3) a
small set of random reference nodes sufficient to align the different views.

These conditions are not specific to OGBN-Products graph, they hold in other citation networks,
social graphs, and knowledge graphs where path distances correlate with semantic similarity. More
generally, our alignment scheme is not restricted to distance-based topology coordinates, it can be
applied to any graph that has a valid node embedding or coordinate system.

A.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the process of writing this paper, we used Grammarly, a writing assistant powered by large lan-
guage models, to enhance the clarity and coherence of my writing.

Grammarly is used to analyze text for grammatical errors and spelling mistakes. The suggestions
given by Grammarly are used to fix errors.

Grammarly is also used for stylistic improvements; the review suggestions given by Grammarly are
used to improve the description.
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