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ABSTRACT

Bayesian optimization (BO) is a well-established framework for globally optimiz-
ing expensive-to-evaluate black-box functions with impressive efficiency. Although
numerous BO algorithms have been developed for the centralized machine learning
setting and some recent works have extended BO to the tree-structured federated
learning, no previous studies have investigated BO within a fully distributed multi-
agent system (MAS) in the field of distributed learning (DL). Addressing this gap,
we introduce and investigate a novel paradigm, Distributed Bayesian Optimization
(DBO), in which agents cooperatively optimize the same costly-to-evaluate black-
box objectives. An innovative generalized algorithm, Zero-Gradient-Sum-Based
Event-Driven Distributed Lower Confidence Bound (ZGS-ED-DLCB), is proposed
to overcome the significant challenges of DBO and DL: We (a) adopt a surrogate
model based on random Fourier features as an approximate alternative to a typical
Gaussian process to enable the exchange of local knowledge between neighboring
agents, and (b) employ the event-driven mechanism to enhance communication
efficiency in MASs. Moreover, we propose a novel generalized fully distributed
convergence theorem, which represents a substantial theoretical and practical break-
through wrt the ZGS-based DL. The performance of our proposed algorithm has
been rigorously evaluated through theoretical analysis and extensive experiments,
demonstrating substantial advantages over the state-of-the-art baselines.

1 INTRODUCTION

Bayesian Optimization (BO) has become a prominent tool for tackling problems that involve op-
timizing expensive-to-evaluate black-box functions, especially when resources are limited. In the
field of distributed learning (DL), agents (specifically, Internet of Things (IoT) edge devices) aim
to solve identical learning tasks through cooperative training with their one-hop neighbors, while
avoiding the exchange of local and private raw data. Cooperative training in DL typically focuses on
utilization of large datasets with low uncertainty and has made significant progress, as evidenced by
numerous publications Koloskova et al. (2019a;b); Chen & Ren (2016); Scardapane et al. (2015);
Aysal et al. (2008); Xiao et al. (2007); Lopes & Sayed (2008; 2007); Ai et al. (2016); Ren et al. (2018;
2020); Zhao & Chen (2021); Liu & Xie (2021). Specifically, the works Ai et al. (2016); Ren et al.
(2018; 2020) present a set of synchronous DL algorithms based on the zero gradient sum (ZGS)
method (Section 3.1), and the subsequent works Zhao & Chen (2021); Liu & Xie (2021); Chen & Ren
(2016) further develop ZGS-based event-driven DL algorithms. However, traditional DL does not
consider budget constraints for agents, while many practical optimization tasks that necessitate costly
evaluations of black-box functions are constrained by limited budgets. Moreover, the strengths of BO
can drive notable progress in distributed non-convex optimization and high-uncertainty distributed
convex optimization (see, e.g., a recent review Yang et al. (2019)). These situations naturally prompt
the integration of BO into DL, a novel paradigm, which we term Distributed Bayesian Optimization
(DBO) (Section 2.2).

DBO has promising applications for real-world multi-agent scenarios, including cooperative hyperpa-
rameter tuning of multi-agent learning models (e.g., SVM (Dai et al., 2021; 2020), decision tree-based
models (Li et al., 2020b;a) and DNN (McMahan et al., 2017)), collaborative chemical/material design
(Zhang et al., 2020; Griffiths & Hernández-Lobato, 2020) and joint patient selection for medical
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tests across multiple hospitals (Yu et al., 2015), etc. In hyperparameter optimization, confidentiality
extends to hyperparameters; revealing them could expose underlying optimization strategies or other
private information, potentially offering a competitive advantage. Nonetheless, privacy-preserving
cooperation often outperforms isolated optimization. Unfortunately, despite the potential benefits in
these applications, several challenges arise in DBO or impact the DL setting in general.

One challenge plagues DBO but not DL, due to the strict requirement to prevent local raw data
exchange between neighboring agents for privacy protection. While DL also requires rigorous
protection of an agent’s privacy, the knowledge exchanged between neighboring agents, such as
output weight parameters of local learning models, avoids the privacy risk associated with raw data
flows. In BO, Gaussian process (GP) is the most popular choice for surrogate modeling of an
objective function. However, a typical GP is nonparametric, leaving no parameter that can represent
local GP models and be transferred to neighboring agents without infringing on their privacy, apart
from the private raw data regarding local BO. Fortunately, random Fourier features (RFF) (Section
2.1) can be adopted as an approximation approach for a GP by establishing a linear model. The
weight parameters of the RFF-based surrogate model reflect information of the approximated GP, and
can be naturally exchanged between neighboring agents without private raw data flows. Moreover,
the RFF-based distributed lower confidence bound (DLCB) functions (Section 2.2) can be utilized to
derive promising predictions by trading-off exploitation and exploration under high uncertainty.

DBO is also essential to address the challenge of communication inefficiency and burden in DL.
Although only output weight parameters are communicated in DL, real-time synchronous communi-
cation between neighboring agents demands considerable communication bandwidth and processing
efficiency. However, bandwidth constraints limit the maximum communication frequency for each
agent within a certain time interval, with increased frequency causing proportional energy consump-
tion. To alleviate this, we incorporate an asynchronous event-driven mechanism (Section 3.2) into the
DBO paradigm. The event-driven mechanism effectively reduces excessive resource consumption
during simultaneous communication, thus enhancing training efficiency and accelerating algorithm
convergence rate in DBO/DL.

The recent works Sim et al. (2021); Dai et al. (2021; 2020) have extended BO to the tree-structured
federated learning, pioneering multi-agent BO with privacy protection. Specifically, the works Dai
et al. (2021; 2020) propose novel federated BO (FBO) algorithms and the work Sim et al. (2021)
presents a collaborative BO (CBO) algorithm that assumes the presence of a centralized mediator.
Despite practical implementations of FBO and CBO algorithms incorporating event-driven updates,
these updates lack corresponding theoretical analysis. In addition, the aforementioned traditional
DL works Koloskova et al. (2019a;b); Chen & Ren (2016); Scardapane et al. (2015); Aysal et al.
(2008); Xiao et al. (2007); Lopes & Sayed (2008; 2007); Ai et al. (2016); Ren et al. (2018; 2020);
Zhao & Chen (2021); Liu & Xie (2021) do not consider the expensive black-box optimization
problems utilizing limited data. Addressing these significant gaps, we aim to design a DBO algorithm
that solves costly-to-evaluate black-box optimization problems in a fully distributed multi-agent
system (MAS) is nontrivial and promising, given the lack of previous work investigating BO in fully
distributed MASs within the DL field.

Building upon the discussions above, we present a novel asynchronous DBO algorithm, ZGS-based
event-driven DLCB (ZGS-ED-DLCB), aimed at addressing the expensive-to-evaluate black-box
optimization problems in fully distributed MASs. We rigorously evaluate the performance of ZGS-
ED-DLCB through both theoretical analysis and extensive experiments. To the best of our knowledge,
the main contributions of our paper are summarized as follows:

• We propose a novel generalized distributed learning (DL) paradigm, termed Distributed Bayesian
Optimization (DBO), which represents a natural and significant extension to the field of DL.

• Our work presents the first attempt to tackle two significant challenges in DL: 1) solving expensive-
to-evaluate black-box optimization problems, and 2) tackling high-uncertainty DL problems, which
arise when dealing with limited data.

• It is the first time to provide: 1) theoretical treatment for the event-driven mechanism in privacy-
preserving multi-agent BO, and 2) the theoretical convergence analysis of multi-agent BO algo-
rithms with the event-driven mechanism.

• We propose a novel generalized theorem based on the Laplacian spectral radius of a fully distributed
MAS. This algorithm represents a substantial theoretical and practical breakthrough wrt the ZGS-
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based DL Zhao & Chen (2021); Chen & Ren (2016); Ai et al. (2016); Ren et al. (2018; 2020) and
guarantees the rigorous global consensus convergence of ZGS-ED-DLCB (Section 4.1).

2 PRELIMINARIES AND BACKGROUND

2.1 ALTERNATIVE TO A GAUSSIAN PORCESS (GP): RANDOM FOURIER FEATURES
(RFF)-BASED SURROGATES

BO is a popular framework for optimizing expensive-to-evaluate black-box functions through limited
observations. A Gaussian process (GP, see definition in App. B)has become a prominent surrogate
model in BO during the last thirty years (Cressie, 1990; Jiang et al., 2020). However, a GP is a non-
parametric model, resulting in no local information except private raw data can be exchanged between
neighboring agents and hence violating agents’ data privacy in DL. Thus, in this paper, according to
Bochner’s theorem (see App. O), RFFs are adopted as an approximate approach for a GP’s kernel
function by utilizing M -dimensional (M ∈ Z+) random features, i.e., k(x,x′) = φ(x)⊤φ(x′) (Dai
et al., 2021; 2020; Rahimi et al., 2007). The RFF approximation method has theoretical guarantees
on performance with high probability, i.e., supx,x′∈D|k(x,x′)− φ(x)⊤φ(x′)| ⩽ ε, ε ≜ O(M−1/2).
An RFF approximation on a GP can be regarded as a linear surrogate model, i.e., f(x) ≜ φ(x)⊤w.
The weight vector w contains the information about the original GP surrogate and can also be ex-
changed between neighboring agents in the DL setting. RFFs have been employed in the FL-based BO
frameworks (Dai et al., 2021; 2020). App. B illustrates the approximation ability of the RFF-based
surrogate.

2.2 DISTRIBUTED BAYESIAN OPTIMIZATION (DBO)

Distributed Lower Confidence Bound (DLCB). Inspired by the Upper Confidence Bound (UCB)
algorithm wrt the multi-arm bandit (MAB) problem, the GP-UCB algorithm (Bogunovic et al., 2016;
Kandasamy et al., 2015; Srinivas et al., 2012; 2009) predicts the potential optimal locations when
solving expensive maximization problems. GP-UCB is transformed into GP-LCB if the problem is
minimizing a black-box objective function. As aforementioned discussions, RFF-based distributed
LCB (DLCB) is employed as the local acquisition function to trade off between local exploitation
(i.e., latest RFF-based belief from mi,t−1(x)) and local exploration (i.e., uncertainty from σi,t−1(x))
at the tth iteration step and further bounding the corresponding global cumulative regret RT (defined
in (2)) in our work. The DLCB acquisition function is defined as:

xi,t = min
x∈D

mi,t−1(x)−
√
ϑi,t−1σi,t−1(x), (1)

where
√

ϑi,t = ci,1 log(ci,2t) is tunable, balancing exploration and exploitation at the iteration step t.
The regret bound is RT = Õ(max{

√
T , T ϵ1/6}) wrt the SE kernel (Bogunovic et al., 2016).

Notions of Regret in DBO. A common objective of BO algorithms is the minimization of global
cumulative regret, which can be extended and defined in the DL setting as:

RT ≜
∑N

i=1

∑T

t=1
[f(xi

t)− f(x∗)], (2)

in which f(xi
t)−f(x∗) is the local instantaneous regret of the tth iteration step,

∑T
t=1[f(x

i
t)−f(x∗)]

is the local cumulative regret over the first T iteration steps and
∑N

i=1[f(x
i
t)− f(x∗)] is the global

instantaneous regret of the tth iteration step. A DBO algorithm will achieve eventual convergence
to a global optimum (e.g., minimum in this paper) when it achieves no regret asymptotically, i.e.,
limT→∞ RT /T = 0. The global simple regret ST ≜

∑N
i=1 mint∈[T ][f(x

i
t)−f(x∗)] ⩽ RT /T takes

the local simple regret Si
T ≜ mint∈[T ][f(x

i
t)−f(x∗)] as sub-items. Thus, no regret is asymptotically

achieved if RT increases sub-linearly or ST gradually converges to 0 equivalently.

Problem Formulation. In this paper, we introduce a novel distributed expensive black-box opti-
mization problem over an N -agent system, whose characteristics are illustrated in App. D and where
insufficient private raw data samples are locally stored at each agent. The entire dataset in a fully dis-
tributed MAS of N agents is denoted as S=∪Ni=1Si of size M=

∑N
i=1 Ni. Si={(xl

i, y
l
i)}

Ni

l=1 of size
Ni is a private dataset and (xl

i, y
l
i) is an input-output pair wrt agent i. Xi = [x1

i , x
2
i , ..., x

Ni
i ]⊤ ∈ RNi
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and Yi = [y1i , y
2
i , ..., y

Ni
i ]⊤ ∈ RNi are private input and output vectors, respectively. yli is an

evaluated output of input xl
i from a common expensive black-box function f , which is given by:

yli = f(xl
i) + εli, (3)

in which εli ∈ R is noise, l ∈ [Ni]. (For brevity of denotation, [N ] is used to denote {1, ..., N},
N ∈ Z.) And f(xl

i) can be formed as a linear RFF combination:

f(xl
i) =

∑n

j=1
wijsj(x

l
i) = s(xl

i)
⊤Wi, (4)

where s(xl
i) = [s1(x

l
i), s2(x

l
i), ..., sn(x

l
i)]

⊤ ∈ Rn is an n-dimensional RFF vector and Wi =
[wi1, wi2, ..., win]

⊤ ∈ Rn is a local output weight vector. Further, the vector form of f(xl
i) is:

Fi = SiWi, (5)

in which Si = [s(x1
i ), s(x

2
i ), ..., s(x

Ni
i )]⊤ ∈ RNi×n and Fi = [f(x1

i ), f(x
2
i ), ..., f(x

Ni
i )]⊤ ∈ RNi .

(5) is the transformation basis for (6) and (7) in Problem Transformation. In contrast to the original
(5), the transformed (6) and (7) are the global objective functions in DL and DBO, respectively.

Problem Transformation. We aim to present a novel DBO algorithm to solve the distributed
expensive black-box problem. In DL, the machine learning problem is typically formulated as:

min
W

G(W) =
∑N

i=1
g(Wi) =

1

2

∑N

i=1
(∥Yi−SiWi∥2 +σ∥Wi∥2), (6)

where W = {W1,W2, ...,WN} is the set of local output weight vectors Wi, G(W) is the global
objective function and g(Wi)=

1
2 (∥Yi−SiWi∥2 +σ∥Wi∥2) is the local objective wrt agent i. σ > 0

is tunable and treated as a tradeoff between the 2-norms of local learning error and Wi. Obviously, the
minimization of (6) is a quadratic strongly convex optimization problem. According to Conclusion 1
(see App. K), there exists a unique W ∗ in theory making G(W) reach its global minimum.

In the setting of DBO, the problem (6) can be extended into the following time-varying form as:

min
Wt

G(Wt) =
∑N

i=1
g(W i

t ) =
1

2

∑N

i=1
(∥Y i

t − Si
tW

i
t ∥2 + σ∥W i

t ∥2). (7)

The typical (6) can be regarded as a one-iteration-step particular case of the extended (7). Thus, a
DBO problem can be regarded as an extended version of a DL problem. Similarly, there exists a
unique W ∗

t in theory making G(Wt) reach its global minimum wrt the tth iteration step.

Remark 1. At the tth iteration step of a DBO algorithm, the local objective function g(W i
t ) in (7) is

strongly convex and twice continuously differentiable.

3 ZERO-GRADIENT-SUM-BASED EVENT-DRIVEN DISTRIBUTED LCB
(ZGS-ED-DLCB)

3.1 ZERO GRADIENT SUM (ZGS)

ZGS strategy. ZGS Lu & Tang (2012) is a distributed optimization strategy forcing the gradient sum
of local objectives to be constant zero vector during sub-iterations of the tth iteration step, i.e.:∑N

i=1
∇g

(
W i

t (k)
)
= 0n. (8)

ZGS-based initialization. At the tth iteration step of a DBO algorithm, W i
t (0), the initialization of

W i
t (k), is forced to satisfy the ZGS strategy, i.e.:∑N

i=1
∇g

(
W i

t (0)
)
= 0n. (9)

Zero-gradient-difference-sum (ZGDS) strategy. We design ZGDS, a novel discrete variant of
the ZGS strategy demonstrating the ZGS property maintenance of g(W i

t ) in a DBO algorithm, as
follows: ∑N

i=1

[
∇g

(
W i

t (k + 1)
)
−∇g

(
W i

t (k)
)]

= 0n. (10)

Lemma 1. In the problem (7), a DBO algorithm satisfies the ZGS strategy iff it satisfies both the
ZGS-based initialization and the ZGDS strategy (See App. F for the proof).
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3.2 EVENT-DRIVEN MECHANISM

In the setting of DBO, the core of the asynchronous event-driven mechanism is the decentralized
trigger function, which is defined as:

Hi
t(k) = ∥eit(k)∥2 − αβt

k, k ∈ Z, (11)

where 0 < βt < 1, α > 0 and the error variables eit(k) = Ŵ i
t (k)−W i

t (k). Ŵ
i
t (0) = W i

t (0), and
thus, eit(0) = 0n. The event-driven mechanism avoids the Zeno behaviour Yu & Chen (2020); Chen
& Ren (2016); Lamperski & Ames (2012), i.e., occurring infinite executions in a finite time period,
which is detailedly illustrated in App. E.

In the iteration step t, agent i monitors its own learned knowledge W i
t (k) at the kth sub-iteration

step. And the current knowledge W i
t (k) is transferred to its neighboring agents as soon as the

trigger function Hi
t(k) > 0 is satisfied. The latest transferred knowledge of agent i is denoted as

Ŵ i
t (k) = W i

t (k
mi
t,i ), k ∈ [kmi

t,i , k
mi+1
t,i ), and its latest received knowledge from neighbors is given

as Ŵ j
t (k) = W j

t (k
mj

t,j ), j ∈ Ni, where kmi
t,i , k

mj

t,j ∈ [0,∞) respectively represent the trigger-times
for agents i and j with mi,mj = 0, 1, 2, . . .. The sequence of trigger-times for agent i is defined
iteratively as kmi+1

t,i = inf{k : k > kmi
t,i , H

i
t(k) > 0} with 0 ⩽ k0t,i ⩽ k1t,i ⩽ k2t,i ⩽ . . ., in which

k0t,i is the first trigger-time.

Remark 2. Different from Chen & Ren (2016), all the parameters are time-varying with the iteration
steps and hence more flexible in the DBO/DL setting.

3.3 ZGS-ED-DLCB ALGORITHM DESCRIPTION

In this paper, a novel resource-saving asynchronous DBO algorithm, i.e., ZGS-ED-DLCB, is proposed
for solving the expensive black-box problem by employing the event-driven mechanism in the DL
setting. In terms of the N cooperative agents at the tth iteration step, t ∈ [T ], the ZGS-ED-DLCB
algorithm is designed in the following two stages:

Stage 1: Achieve global consensus convergence

W i
t (k+1) = W i

t (k) + γt[S
i
t
⊤
Si
t+σInd]

−1
[∑

j∈Ni
aij

(
Ŵ j

t (k)− Ŵ i
t (k)

)]
,

Ŵ i
t (k) = Ŵ i

t (k
mi
t,i ), k

mi
t,i = k, if Hi

t(k) ⩾ 0, k ∈ [kmi
t,i , k

mi+1
t,i ) ⊆ [1,K],K ∈ N,

W i
t
∗
= W i

t (K + 1),

W i
t (0) = [Si

t
⊤
Si
t + σInd]

−1Si
t
⊤
Y i
t ,

Ŵ i
t (0) = W i

t (0) with k0t,i = 0,

(12)

in which γt > 0 is a gain parameter and W i
t , initialized as W i

t (0), is obtained from the tth iteration
step of ZGS-ED-DLCB. Moreover, (12) can be rewritten as the following matrix form:

Wt(k + 1) = Wt(k)− γt[S
⊤
t St+σINnd]

−1(L⊗In)
(
Wt(k)+et(k)

)
,

W opt
t = Wt(K + 1), k ∈ [1,K],K ∈ N,

Wt(0) = [S⊤
t St + σINnd]

−1S⊤
t Yt,

(13)

where St=diag{S1
t , S

2
t , ..., S

N
t }∈RN(Ni+t−1)×Nnd, Wt(k)=[W 1

t (k)
⊤,W 2

t (k)
⊤, ...,WN

t (k)⊤]⊤,

W opt
t =[W 1

t
∗⊤

,W 2
t
∗⊤

, ...,WN
t

∗⊤
]⊤ and et(k)=[e1t (k)

⊤, e2t (k)
⊤, ..., eNt (k)⊤]⊤∈RNnd×1.

Stage 2: Find potential observation locations using RFF-based DLCB

Based on the obtained W i
t
∗, each agent calculates the aforementioned mean mt(x

∗) and prediction
variance σ̂2(x∗) at the iteration step t. Using the calculated mt(x

∗) and σ̂2(x∗), the RFF-based
DLCB acquisition function is employed to calculate the next local observing locations, i.e., xi

t, from
the common local noisy expensive black-box functions. Then calculate the average global cumulative
regret Rt/t at the tth iteration step and proceed to the iteration step t+ 1.

To illustrate our ZGS-ED-DLCB algorithm more detailedly, App. C shows the algorithm pseudocode.
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4 THEORETICAL RESULTS

In the problem (7), the positive definite matrix Si
t
⊤
Si
t + σInd is the Hessian matrix of the local objec-

tive function g(Wi
t) wrt W i

t , whose inverse controls the relative change rate of distinct components
in the total cooperation from neighboring agents, i.e.,

∑
j∈Ni

aij
(
Ŵ j

t (k) − Ŵ i
t (k)

)
, and further

influences the local weight vector difference, i.e., W i
t (k + 1) −W i

t (k). The largest and smallest
eigenvalues of the Hessian matrix are Ξi

t =λmax(S
i
t
⊤
Si
t + σInd) and ξit = λmin(S

i
t
⊤
Si
t + σInd),

respectively. In the global perspective, Ξt=maxi∈V Ξi
t and ξt=mini∈V ξit .

The aforementioned eigenvalues of the Hessian matrix and the Laplacian matrix determine the
convergence condition of ZGS-ED-DLCB jointly. Two properties on the convergence of ZGS-ED-
DLCB are given as follows.

4.1 CONVERGENCE ANALYSIS OF ZGS-ED-DLCB

Main results concerning the rigorous convergence of our ZGS-ED-DLCB are given as follows.

Connectivity Status Assumptions. MAS network topologies in this work are assumed to be fixed,
undirected and connected. Each agent is assumed to derive the Laplacian matrix L (or adjacency
matrix A, see App. D) of the multi-agent system (MAS) before the iterations of ZGS-ED-DLCB.

Lemma 2. Consider the Stage 1 (12) with the event-driven mechaism (11) under the undirected
connected MAS network topology, if ξt

2λmax(L) < γt < min
{

Ξt

2λ2(L) ,
ξt(2ϵ+λmax(L))

2λmax(L)(ϵ+λmax(L))

}
and

ϵ > 0, the convergence of agents in each iteration step can be illustrated by the following inequality:∑N

i=1
∥W ∗

t −W i
t (k)∥2 ⩽

2

ξt

[
(Vt(0)− ρt)θt

k + ρtβt
k
]
, (14)

where ρt = Nαη2

βt−θt
, θt = 1 − 2λ2(L)γtη1

Ξt
, ξt = mini∈[N ] ξ

i
t = λmin(S

⊤
t St+σINnd) with ξit =

λmin(S
i
t
⊤
Si
t + σInd), Ξt=maxi∈[N ] Ξ

i
t with Ξi

t= λmax(S
i
t
⊤
Si
t + σInd), η1 = 1− γtλmax(L)3ϵ

ξ2t
−

γtλmax(L)
ξt

− λmax(L)
2ϵ , η2 =

γ2
t λmax(L)2

ξt
+

γ2
t

ϵ + γtϵ
2 and Vt(0) =

1
2

∑N
i=1

(
W i

t
∗−W i

t (0)
)⊤

(Si
t
⊤
Si
t+

σInd)
(
W i

t
∗−W i

t (0)
)
. □

App. G illustrates the proof of Lemma 2. From Lemma 2, we can derive that the ZGS-ED-DLCB
algorithm is established an asymptotic convergence to the global consensus, i.e., limk→∞ W i

t (k) =

W i
t
∗
= W ∗

t , after t iteration steps. Moreover, there are K sub-iteration steps in every iteration step.
Empirically, when K is no less than 500, W i

t of the ZGS-ED-DLCB and DCL algorithms converge
to their corresponding global consensus at the tth iteration step, respectively. In the tth iteration
step, Vt(0) is the initial value of the designed global Lyapunov function Vt(k), which is also defined
in App. G. We can derive that a necessary condition for convergence is 0 < γt <

Ξt

2λ2(L) , which
indicates that γt have to be restricted smaller than the ratio of Ξt and 2λ2(L). Furthermore, higher
connectivity of an MAS results in larger λ2(L)s and smaller ranges of γt.

Lemma 3. In theory, σ is the infimum (or the greatest lower bound) for ξt and ξit in Lemma 2.

App. I illustrates the proof of Lemma 3. Empirically, ξt usually equals to σ constantly (e.g., when
M = 200), λmax(L) is a constant number and Ξt

2λ2(L) is far larger than ξt(2ϵ+λmax(L))
2λmax(L)(ϵ+λmax(L)) if ϵ is

set appropriately. Thus, based on the practical experience, we can derive the following Theorem 1
wrt the convergence of ZGS-ED-DLCB. And Theorem 1 is the main theoretical result in our work.

Theorem 1. Consider the Stage 1 (12) with the event-driven mechanism (11) under the undirected
connected MAS network topology, if 1

2λmax(L) < γt <
3

4λmax(L) (ξt = σ = 1, ϵ = λmax(L)), then
the convergence of agents in each iteration step can be illustrated according to (15) as:∑N

i=1
∥W ∗

t −W i
t (k)∥2 ⩽ 2

[
(Vt(0)− ρt)θt

k + ρtβt
k
]
. (15)

The proof of Theorem 1 refers to that of Lemma 2 in App. G. In this paper, we set γt = 5
8λmax(L) .

From the perspective of theory and practical meaningfulness, the convergence of ZGS-ED-DLCB at
each iteration step only relies on λmax(L), i.e., the Laplacian spectral radius of the MAS. Moreover,
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the setting of γt is efficient to configure in agents and overcomes the drawback exist in the recent ZGS-
based DL algorithms Chen & Ren (2016); Ren et al. (2018; 2020) theoretically and practically that
all agents require the Si

t from the other agents to work. Such drawback means that the previous ZGS-
based DL algorithms are not classical fully distributed algorithms and limit the practical feasibility
and privacy protection of distinct agents.

Remark 3: ZGS maintenance. (a) ZGS-based initialization. At the iteration step t, W i
t (0) in

the ZGS-ED-DLCB algorithm is designed as [Si
t
⊤
Si
t + σInd]

−1Si
t
⊤
Y i
t , which is the initialization

of W i
t (k), satisfies the ZGS-based initialization scheme, i.e.,

∑N
i=1∇g

(
W i

t (0)
)
= 0n. Moreover,

[Si
t
⊤
Si
t + σInd]

−1Si
t
⊤
Y i
t is the minimizer of the local objective function g(W i

t ) (Yang et al., 2019).
(b) ZGDS maintenance. It is formulated as a recurrence relation derived from the Stage 1 that∑N

i=1

[
∇g

(
W i

t (k+1)
)
−∇g

(
W i

t (k)
)]
=
∑N

i=1∇g
(
W i

t (k+1)
)
−
∑N

i=1∇g
(
W i

t (k)
)
=

∑N
i=1(S

i
t
⊤
Si
t+

σInd)
(
W i

t (k+1)−W i
t (k)

)
=γt

∑N
i=1

∑
j∈Ni

aij
(
Ŵ j

t (k)−Ŵ i
t (k)

)
=0n. Due to (a), the ZGS strategy

can be constantly achieved for all k in the tth iteration step, i.e.,
∑N

i=1∇g
(
W i

t (k)
)
= 0n. Then

according to Lemma 2, the ZGS strategy can be constantly achieved for all k in the tth iteration step,
i.e.,

∑N
i=1∇g

(
W i

t (k)
)
=0n, on the basis of (a) and (b).

Remark 4: Fair Regret Based on Event-Driven Global Consensus. ZGS-ED-DLCB ensures
absolute fairness at each iteration by promoting global consensus. This is achieved as all agents
indirectly process the entire dataset via local W i

t (k) exchanges, yielding identical learning results,
i.e., W ∗

t , in each iteration step. Each data point is equally significant in predicting potential xi
t

using sequential W ∗
t iterations, ensuring equal rewards for all agents. Additionally, the event-driven

mechanism asynchronously fosters W i
t (k) updates while preserving the original W ∗

t .

5 EXPERIMENTS AND DISCUSSIONS

In this section, we experimentally verify the performance and robustness of ZGS-ED-DLCB and
comparing ZGS-ED-DLCB to the relevant baselines. In the comparisons, costly training of each
algorithm is implemented conducted within the same limited iteration count.

5.1 EXPERIMENTAL SETTINGS

Use Cases. We select use cases covering synthetic (Section 5.2) and real-world (Section 5.3)
experiments. Three 1D functions with many local minima in the synthetic experiments and two
popular datasets from the UCI machine learning repository Dua & Graff (2017); Sigillito et al.
(1989) in the real-world experiments are selected to investigate the resource-saving capability and
performance improvement of ZGS-ED-DLCB over the baselines.

Baselines. Several existing DL baselines such as DCL Ai et al. (2016); Ren et al. (2018; 2020),
ADMM-based Scardapane et al. (2015), ATC LMS and CTA LMS Cattivelli & Sayed (2009; 2008);
Lopes & Sayed (2007; 2008) are considered.

Performance Metrics. The global cumulative regret RT (defined in (2)) is employed as the perfor-
mance metric for comparisons wrt synthetic experiments in Sec. 5.2. We also use the performance
of misclassification rate (MCR) wrt real-world experiments in Sec. 5.3. To clearly illustrate the
resource-saving property of the event-driven mechanism in experiments of the both types, the metrics
of triggering frequency and triggering instants are adopted.

5.2 SYNTHETIC EXPERIMENTS OF OPTIMIZING BENCHMARK FUNCTIONS WITH MANY
LOCAL MINIMA

In the synthetic experiments, we consider 5 groups and each group owns 1 private agent. In the input
region [-10, 10], each agent is randomly assigned with 10 noise-free data pairs as initialization. The
computationally expensive cooperative training is limited in 5 iterations as budgets wrt the synthetic
experiments. Each experiment is repeated 5 independent trials and the corresponding results are
averaged over these trials.
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Metrics on Convergence wrt the MAS Topology. The experiments are used to verify the perfor-
mance of the ZGS-ED-DLCB algorithm over 5 agents on the 4 different MAS topologies, i.e., path,
ring, random and complete (or fully-connected). Tab. 1 lists the determinant of convergence λmax(L)
and the metrics influencing the convergence rate, i.e., d̄ and λ2(L).

Table 1: Topology information of MASs with N = 5.

Topology λ2(L) λmax(L) Average Degree d̄

path 0.3820 3.6180 1.6
ring 1.3820 3.6180 2 (constant)
random 1.3820 4.6180 2.4
complete 5 (or N ) 5 (or N ) 4 (or N−1)

Remark 5. In each iteration step of all the DL
algorithms, λ2(L) and d̄ influence the conver-
gence rate jointly. λ2(L) represents the alge-
braic connectivity of a distributed MAS net-
work topology, and d̄ reflects the geometrical
connectivity. For two different topologies, if the
value of one metric is equal, the higher value of
the other metric leads to faster global consensus
convergence at each iteration step.

5.3 REAL-WORLD EXPERIMENTS

Table 2: RT /T per trial for the benchmark problems
with many local minima wrt MAS topologies: (a) Path,
(b) Ring, (c) Random, (d) Complete.

Algorithm
RT /T per trial

Levy Ackley Griewank

ZGS-ED-DLCB 0.111 2.474 0.168
DCL 0.233 4.319 0.674

ATC-LMS 23.021 39.779 0.862

CTA-LMS 15.215 42.185 1.480

path

ZGS-ED-DLCB 0.498 4.497 0.173
DCL 0.605 6.800 0.759

ATC-LMS 21.263 38.986 0.839

CTA-LMS 10.404 41.433 1.035

ring

ZGS-ED-DLCB 0.182 4.780 0.357
DCL 0.253 7.188 0.739

ATC-LMS 23.020 38.903 1.781

CTA-LMS 13.840 42.803 1.530

random

ZGS-ED-DLCB 0.101 4.114 0.626
DCL 0.197 8.066 0.881

ATC-LMS 20.567 38.700 1.870

CTA-LMS 18.027 39.684 0.975

ADMM-based 36.902 79.261 6.780

com
plete

In real-world experiments, we study the perfor-
mance advantages of ZGS-ED-DLCB over the
baselines only in fully-connected MAS topolo-
gies because that the ADMM-based algorithm
can only be implemented in complete topologies
and the corresponding results are sufficiently
representative due to the synthetic experimental
results (see Tab. 2). Consider the data volume
separated at agents and practical tight budgets,
the cooperative training is limited in only a bud-
get of 3 iteration steps. All the algorithms in
each experiment are repeated 5 independent tri-
als and the corresponding results are the aver-
ages of these trials.

Classification of Iris Plants. The dataset con-
sisting of data samples from three classes of iris
plants with four input attributes are separated
at 10 agents. Each agent aims to cooperatively
tune the hyperparameter C (ranging in [0.01, 1]
and controlling the regularization strength) of
a logistic regression (LR) for globally predict-
ing the types of iris plants accurately by the 3
sequential observations.

Classification of Radar Returns from the
Ionosphere. The dataset includes radar data col-
lected in Goose Bay. 5 agents are involved and
each agent are randolearningy assigned 70/71
radar data samples containing 34-dimensional
continuous features and a binary label representing whether the radar returns are “good” or “bad”.
“Good” returns show evidence of some structure type in the ionosphere, while “Bad” ones do not.
Each agent attempts to tune 2 hyperparameters (i.e., regularization parameter in [0.01, 2] and RBF
kernel parameter in [0.01, 5]) of a classical SVM classifier cooperatively to train a globally precise
radar return classifier through the 3 successive evaluations.

5.4 EXPERIMENTAL RESULTS

The synthetic comparison results are summarized in Tab. 2–3. Tab. 3 illustrates the comparison
results of the average global cumulative regret RT /T and average triggering frequency per trial
between ZGS-ED-DLCB and the baselines. Our ZGS-ED-DLCB totally outperforms the baselines
in all MAS topologies of the experiments significantly wrt the metric RT /T . Tab. 3 shows that
ZGS-ED-DLCB benefits from the employed event-drvien mechanism and consumes substantially
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less triggering frequency (approximately 200 vs 1000 for path and random, approximate 320 vs 1000
for ring and approximate 350 vs for complete) to achieve the global consensus of searching locations
for the costly-to-evaluate black-box objective functions wrt the average triggering frequency metric.

Table 3: Average triggering frequency comparisons be-
tween ZGS-ED-DLCB and the baselines per trial wrt
the benchmark problems.

Topology Algorithm
Avg triggering frequency per

trial

Levy Ackley Griewank

path
ZGS-ED-DLCB 206.28 200.44 204.4

Baselines 1000 1000 1000

ring
ZGS-ED-DLCB 322.56 325.64 322.64

Baselines 1000 1000 1000

random
ZGS-ED-DLCB 218.24 220.44 228.48

Baselines 1000 1000 1000

complete
ZGS-ED-DLCB 355.20 356.04 354.84

Baselines 1000 1000 1000

Tab. 4–5 summarize the real-world compari-
son results. Tab. 4 shows that ZGS-ED-DLCB
markedly reduces the average MCRs per trial
in contrast to the tested baselines. It means that
more appropriate hyperparameters of local SVM
classifiers have been derived cooperatively to
guarantee considerably fewer MCRs. Similar
to the synthetic experiments, Tab. 5 also illus-
trates that ZGS-ED-DLCB achieves drastically
lower consumption of triggering frequency dur-
ing the iterations in contrast to the baselines wrt
the complete MAS topology.

It can be found that ZGS-ED-DLCB saves more
than 60% of the communication resource and the
corresponding computation resource for each
agent and meanwhile guarantees efficient global
consensus convergence and better learning per-
formance in contrast to the test baselines wrt the synthetic and real-world experiments.

Due to space constraints, some experimental details and supplementary experiments are elaborated in
App. P. Main supplementary experiments are briefly summarized as follows. In order to offer a more
comprehensive elucidation of the asynchrony, sparsity, and efficiency in inter-agent communication
under the event-driven mechanism of ZGS-ED-DLCB wrt the experiments, line charts illustrating
the triggering frequency throughout iterations for all trials are presented. To further show the details,
triggering instants at a randomly selected iteration step per trial are depicted based on the line charts.

Table 4: Average MCRs per trial for the real-
world problems with wrt the complete topology
of an MAS.

Algorithm
Average MCRs per trial

Ionosphere Iris

ZGS-ED-DLCB 2.11% 8.80%

DCL 11.45% 34.67%

ATC-LMS 11.45% 28.80%

CTA-LMS 11.45% 16%

ADMM-based 35.91% 28.40%

com
plete

Table 5: Average triggering frequency compar-
isons between ZGS-ED-DLCB and the base-
lines per trial wrt the real-world problems.

Topology Algorithm
Avg triggering

frequency per trial

Ionosphere Iris

complete
ZGS-ED-DLCB 355.20 142.76

Baselines 1000 1000

6 CONCLUSION

In this paper, we introduce the first DBO algorithm called ZGS-ED-DLCB to tackle the challenges
of optimizing expensive black-box functions in fully distributed MASs. Our proposed algorithm
leverages a surrogate model based on RFF, which serves as an approximate alternative to the traditional
GP, enabling efficient exchange of local knowledge between neighboring agents. Moreover, we
introduce the event-driven mechanism to enhance communication efficiency in MASs and establish
a refined fully distributed convergence theorem based on the Laplacian spectral radius of an MAS,
guaranteeing the rigorous global consensus convergence of ZGS-ED-DLCB. Extensive theoretical
analysis and thorough experimental evaluations demonstrate the superior performance and significant
advantages of our proposed algorithm compared to state-of-the-art algorithms. While our algorithm
achieves promising results on the unconstrained optimization problems, further exploration is required
for constrained distributed expensive black-box optimization problems.
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A NOTATIONS

Throughout this paper, R, Z+ and N, respectively, represent the real number set, the positive integer
set and the natural number set; Rn represents the set of n-dimensional column vectors with real
elements; Rn×n represents the set of n× n matrices with all real elements; In represents the n× n
identity matrix; 0n is an n-dimensional vector with all zeros; 1n is an n-dimensional vector with all
ones; A⊤ is the transpose of matrix A; ⊗ represents the Kronecker product operation; ∥ · ∥ represents
the Euclidean norm of a vector/matrix; ρ(·), λmin(·) and λmax(·) respectively represent the spectral
radius, the minimum eigenvalue and the maximum eigenvalue of a matrix; E(f) represents the
expected value of a function f ; ∇f and ∇2f represent the gradient and the Hessian matrix of f ,
respectively.

B GAUSSIAN PROCESS (GP) AND APPROXIMATION ABILITY OF RFF-BASED
SURROGATE MODEL (DAI ET AL., 2020)

B.1 GAUSSIAN PROCESS (GP)

A GP is denoted as GP(m(x), k(x,x′)) and specified by its mean function m(x) = E[f(x)] and
covariance/kernel function k(x,x′) = cov[f(x), f(x′)], for all x,x′ ∈ D ⊂ Rd. Assumptions
are wlog made that mt(x) = 0 and k(x,x′) ⩽ 1, respectively. We mainly considers the popular
squared exponential (SE) covariance function. In terms of a set of st historical observations Dst =
{(x1, f(x1)), ..., (xst , f(xst))}, the prediction mean mst(x) and prediction variance σ2

st(x) are
respectively given as:

mst(x) ≜ kst(x)
⊤
[Kst + Γ2I]−1yst , (16)

σ2
st(x,x

′)≜k(x,x′)−kst(x)⊤[Kst+Γ2I]−1kst(x
′), (17)

where Γ > 0 is a regularization factor, kst(x)=[k(x,xt′)]
⊤
t′∈[st]

, Kst=[k(xt′ ,xt′′)]t′,t′′∈[st]
and

yst = [y (x1) , . . . , y (xst)]
⊤, where st is the available training dataset size at the iteration step t.

B.2 APPROXIMATION ABILITY OF RFF-BASED SURROGATE MODEL

RFF-based surrogate model can be treated as a Bayesian linear model, whose approximation ability
is detailedly illustrated in Appendices A and B of the previous work Dai et al. (2020). Refer to Dai
et al. (2020) for more details.

C PSEUDOCODE OF ZGS-ED-DLCB

D ALGEBRAIC GRAPH THEORY

In our paper, a fully distributed multi-agent system (MAS) is modeled by an undirected connected
graph G ≜ {V, E ,A} composed of an N -agent set V = {1, 2, · · ·, N}; an edge set E ⊆ V × V
denoting the communication routing; and a weighted adjacency matrix corresponding to E , i.e.,
A = [aij ] ∈ RN×N with aij ⩾ 0 and aij = aji. For simplicity, we use i as shorthand for agent
i. An edge eij = (i, j) in G is denoted as an unordered agent pair; eij ∈ E iff local knowledge
exchanges exist between the agent neighbors i and j, and aij > 0, eij ∈ E ⇔ eji ∈ E . In this
paper, a neighbor means a one-hop neighbor. aii = 0 means there is no self loop of each agent
since it is not self-communicated. In terms of the graph G and its complete graph Ḡ, the Laplacian
matrix is defined as L = [lij ] ∈ RN×N and L̄, where lii =

∑N
j=1 aij and lij = −aij if i ̸= j.

The neighbor set of i is defined as Ni = {j ∈ V | eij ∈ E}. Moreover, L is positive semidefinite
since L = K × K⊤, where K is the incidence matrix of an arbitrary orientation wrt L (Godsil &
Royle, 2001). Hence, λ1(L), λ2(L), · · · , λN (L), the N eigenvalues of L, are totally nonnegative.
Further assume that λmin(L) = λ1(L) ⩽ λ2(L) ⩽ · · · ⩽ λN (L) = λmax(L). Meanwhile,
L × 1N =0n⇒λ1(L) = 0. The number of zero eigenvalues wrt L equals the number of connected
components wrt the graph G. As G is connected, λ2(L) is the smallest of all nonzero eigenvalues,
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Algorithm 1 ZGS-ED-DLCB

Input: N agents with their insufficient local initial training set Di
1 = {(xl

i, y
l
i)}

Ni

l=1, i ∈ [N ].
Xi

1=[x1
i , x

2
i , ..., x

Ni
i ]⊤, Y i

1 = [y1i , y
2
i , ..., y

Ni
i ]⊤ and iteration number T ∈ Z+.

for t = 1 to T do
Stage 1 ———————————————————————————————————–
for each agent i in synchronous parallel do

Si
t ←− [

√
2/M cos(s⊤Xi

t + b)]

W i
t (0)←− [Si

t
⊤
Si
t + σInd]

−1Si
t
⊤
Y i
t

Ŵ i
t (0)←−W i

t (0)
êit(0)←− 0
k0t,i ←− 0

end for
for k = 0 to K do

for each agent i in synchronous parallel do
Ŵ i

t (k)←− Ŵ i
t (k

mi
t,i )

eit(k)←− Ŵ i
t (k)−W i

t (k)
if Hi

t(k) ⩾ 0 do then
kmi
t,i ←− k (asynchronous parallel)

end if
W i

t (k+1)←−W i
t (k) + γt[S

i
t
⊤
Si
t+σInd]

−1
[ ∑
j∈Ni

aij
(
Ŵ j

t (k)− Ŵ i
t (k)

)]
end for

end for
Stage 2 ———————————————————————————————————–
for each agent i in synchronous parallel do

Calculate mt(Xi) and σ̂2(Xi)
Calculate local RFF-based LCB functions to derive the next local evaluation points xi

t from
local RFF-based surrogate models
Query xi

t to derive yi
t from identical local black-box objective function f and then update

Di
t+1 with (Xi

t+1, Y
i
t+1) for the iteration step t+ 1

end for
Calculate Rt/t (synthetic experiment verification)

end for
Output: W ∗

ZGS-ED-DLCB=W
i
T
∗, W i

t
∗ and Rt/t, t∈[T ].

i.e., 0=λ1(L)<λ2(L) ⩽ · · · ⩽ λN (L). Further the multiplicity of eigenvalue N of L̄ is N − 1, i.e.,
λ2(L̄) = λ3(L̄) = · · · = λN (L̄) = N Fiedler (1973).

E ZENO BEHAVIOUR IN THE DL SETTING

Definition: In the DL setting of our work, Zeno behavior occurs if triggering instants of agent i, i.e.,
{kmi

t,i }∞mi=0, satisfy that

lim
mi→∞

kmi
t,i =

∞∑
mi=0

(kmi
t,i − kmi−1

t,i ) ⩽ τt,i <∞

with a finite Zeno instant τt,i ⩽ 0 and k0t,i = 0.

This definition reveals the aforementioned phenomenon of Zeno behaviour that infinite number
of executions occur in a finite time period. Our ZGS-ED-DLCB algorithm naturally avoids the
Zeno behaviour of agents due to the resource-saving sampling scheme based on the designed local
triggering functions Hi

t(k) (11).
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F PROOF OF LEMMA 1

a. Necessity. When k = 0, the ZGS strategy (8) turns into the ZGS-based initialization (9). Due to
the ZGS strategy (8), we can derive that:

N∑
i=1

∇g
(
W i

t (1)
)
−

N∑
i=1

∇g
(
W i

t (0)
)
=

N∑
i=1

[∇g
(
W i

t (1)
)
−∇g

(
W i

t (0)
)
] = 0n,

N∑
i=1

∇g
(
W i

t (2)
)
−

N∑
i=1

∇g
(
W i

t (1)
)
=

N∑
i=1

[∇g
(
W i

t (2)
)
−∇g

(
W i

t (1)
)
] = 0n,

...
N∑
i=1

∇g
(
W i

t (k)
)
−

N∑
i=1

∇g
(
W i

t (k − 1)
)
=

N∑
i=1

[∇g
(
W i

t (k)
)
−∇g

(
W i

t (k − 1)
)
] = 0n, (18)

Thus, the ZGDS strategy (10) is constantly guaranteed over the sub-iterations in an iteration step.■

b. Sufficiency. On the basis of the ZGDS strategy (10), we can derive that:

N∑
i=1

[∇g
(
W i

t (k)
)
−∇g

(
W i

t (k − 1)
)
] =

N∑
i=1

∇g
(
W i

t (k)
)
−

N∑
i=1

∇g
(
W i

t (k − 1)
)
= 0n,

...
N∑
i=1

[∇g
(
W i

t (2)
)
−∇g

(
W i

t (1)
)
] =

N∑
i=1

∇g
(
W i

t (2)
)
−

N∑
i=1

∇g
(
W i

t (1)
)
= 0n,

N∑
i=1

[∇g
(
W i

t (1)
)
−∇g

(
W i

t (0)
)
] =

N∑
i=1

∇g
(
W i

t (1)
)
−

N∑
i=1

∇g
(
W i

t (0)
)
= 0n. (19)

From the recursive relationships in the formulas of (19), we can derive that:

N∑
i=1

∇g
(
W i

t (k)
)
−

N∑
i=1

∇g
(
W i

t (0)
)

=

N∑
i=1

∇g
(
W i

t (k)
)
−

N∑
i=1

∇g
(
W i

t (k − 1)
)
+ · · ·+

N∑
i=1

∇g
(
W i

t (2)
)
−

N∑
i=1

∇g
(
W i

t (1)
)

+

N∑
i=1

∇g
(
W i

t (1)
)
−

N∑
i=1

∇g
(
W i

t (0)
)

=0n. (20)

Based on (19) and the ZGS-based initialization (9), the ZGS strategy (8) is constantly guaranteed
over the sub-iterations in an iteration step. ■

G PROOF OF LEMMA 2

Consider the Stage 1 in each iteration step of the ZGS-ED-DLCB algorithm (12), the corresponding
global Lyapunov function candidate is given as:

Vt(k) =
1

2

N∑
i=1

(
W ∗

t −W i
t (k)

)⊤
(Si

t

⊤
Si
t + σInd)×

(
W ∗

t −W i
t (k)

)
. (21)
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From (21), the following inequalities can be further obtained:

Vt(k) ⩾
N∑
i=1

ξit
2
∥W ∗

t −W i
t (k)∥2 ⩾

ξt
2

N∑
i=1

∥W ∗
t −W i

t (k)∥2, (22)

Vt(k) ⩽
Ξt

2λ2(L)
Wt(k)

⊤(L ⊗ In)Wt(k). (23)

The proof of (23) is illustrated in App. D. And the difference of Vt(k) is given by
△Vt(k + 1) = Vt(k + 1)− Vt(k)

= −1

2

N∑
i=1

(
W i

t (k)
⊤(Si

t

⊤
Si
t + σInd)W

i
t (k)−W i

t (k + 1)⊤(Si
t

⊤
Si
t + σInd)W

i
t (k + 1)

)
. (24)

Remark 2. Consider the Stage 1 in the DL setting, we can derive that
∑N

i=1(S
i
t
⊤
Si
t+σInd)

(
W i

t (k+

1)−W i
t (k)

)
= γt

∑N
i=1

∑
j∈Ni

aij
(
Ŵ j

t (k)− Ŵ i
t (k)

)
= 0n.

In order to simplify in ease, the intermediate terms are constructed in the derivation process. Therefore,
we can obtain:

△Vt(k + 1)=− 1

2

N∑
i=1

(
W i

t (k)
⊤(Si

t

⊤
Si
t + σInd)W

i
t (k)−W i

t (k + 1)⊤(Si
t

⊤
Si
t + σInd)W

i
t (k + 1)

)
− 2

N∑
i=1

(
W i

t (k + 1)−W i
t (k)

)⊤
(Si

t

⊤
Si
t + σInd)W

i
t (k + 1)

+ 2

N∑
i=1

(
W i

t (k + 1)−W i
t (k)

)⊤
(Si

t

⊤
Si
t + σInd)W

i
t (k + 1)

=− 1

2

N∑
i=1

(
W i

t (k + 1)−W i
t (k)

)⊤
(Si

t

⊤
Si
t + σInd)

(
W i

t (k + 1)−W i
t (k)

)
+

N∑
i=1

(
W i

t (k + 1)−W i
t (k)

)⊤
(Si

t

⊤
Si
t + σInd)W

i
t (k + 1)

⩽
N∑
i=1

(
W i

t (k + 1)−W i
t (k)

)⊤
(Si

t

⊤
Si
t + σInd)W

i
t (k + 1)

=
(
Wt(k + 1)−Wt(k)

)⊤
(St

⊤St + σINnd)Wt(k + 1). (25)
Combining (25) with (13), we can derive:

△Vt(k + 1) = Vt(k + 1)− Vt(k)

⩽− γt(Wt(k) + et(k))
⊤(L ⊗ Ind)Wt(k + 1)

=− γtWt(k)
⊤(L ⊗ Ind)[−γt(St

⊤St + σINnd)
−1(L ⊗ Ind)(Wt(k) + et(k)) +Wt(k)]

− γtet(k)
⊤(L ⊗ Ind)[−γt(St

⊤St + σINnd)
−1(L ⊗ Ind)× (Wt(k) + et(k)) +Wt(k)]

=− γtWt(k)
⊤(L ⊗ Ind)Wt(k) + γ2

tWt(k)
⊤(L ⊗ Ind)(St

⊤St+σINnd)
−1(L ⊗ Ind)Wt(k)

+ 2γ2
tWt(k)

⊤(L ⊗ Ind)(St
⊤St + σINnd)

−1(L ⊗ Ind)et(k)− γtet(k)
⊤(L ⊗ Ind)Wt(k)

+ γ2
t et(k)

⊤(L ⊗ Ind)(St
⊤St+σINnd)

−1(L ⊗ Ind)et(k). (26)
Then we can derive the following two matrix inequalities from the Young’s inequality Mitrinovic &
Vasic (1970) (see App. J) and properties of symmetric positive definite and semidefinite matrices that

Wt(k)
⊤(L ⊗ Ind)(St

⊤St + σINnd)
−1 (L ⊗ Ind) et(k)

= et(k)
⊤(L ⊗ Ind)(St

⊤St + σINnd)
−1 (L ⊗ Ind)Wt(k)

⩽
λmax(L)

ξt
et(k)

⊤(L ⊗ In)Wt(k), (27)
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and

et(k)
⊤(L ⊗ In)Wt(k) ⩽

λmax(L)
2ϵ

Wt(k)
⊤(L ⊗ In)Wt(k) +

ϵ

2
et(k)

⊤et(k), (28)

where λmax(L) = λmax(L), ξt = λmin(S
⊤
t St + σINnd) and ϵ > 0. By substituting the inequalities

(27) and (28) into the inequality (26) together with the condition γt > ξt/2λmax(L), we have:

∆Vt(k + 1) ⩽− γtη1Wt(k)
⊤(L ⊗ Ind)

⊤Wt(k) + η2et(k)
⊤et(k), (29)

in which η1 = 1 − γtλmax(L)
ξt

− 2γtλmax(L)2−ξtλmax(L)
2ξtϵ

> 1
2 and η2 = γt

2ξt
[2γtλmax(L)2 +

(2γtλmax(L)− ξt)ϵ].

On the basis of the trigger function (11) and the conditions ξt
2λmax(L) <

γt<min{ Ξt

2λ2(L) ,
ξt(2ϵ+λmax(L))

2λmax(L)(ϵ+λmax(L))} and ϵ > 0, we derive that η1 ∈ ( 12 , 1) and

et(k)
⊤et(k) ⩽ Nαβt

k. Then, from (23), we can derive:

∆Vt(k + 1) ⩽ −2λ2(L)γtη1
Ξt

Vt(k) +Nη2αβt
k. (30)

Further, we obtain:
Vt(k + 1) ⩽ θtVt(k) +Nη2αβt

k, (31)

where θt = 1− 2λ2(L)γtη1

Ξt
.

Based on the aforementioned results, if the conditions ξt
2λmax(L) <

γt<min{ Ξt

2λ2(L) ,
ξt(2ϵ+λmax(L))

2λmax(L)(ϵ+λmax(L))} and ϵ > 0 are satisfied, we can derive that

θt ∈
(
1− η1,

1−λ2(L)ξtη1

λmax(L)Ξt

)
⊂ (0, 1) and

Vt(k) ⩽θtVt(k − 1) +Nη2αβt
k−1

⩽θt
2Vt(k − 2) + θtNη2αβt

k−2 +Nη2αβt
k−1

...

⩽θt
kVt(0) +Nη2α(θt

k−1βt
0 + θt

k−2βt
1 + . . .+ θt

1βt
k−2 + θt

0βt
k−1)

=θt
kVt(0) +Nη2α

θt
k − βt

k

θt − βt

=(Vt(0)− ρt)θt
k + ρtβt

k, (32)

in which ρt =
Nη2α
βt−θt

. According to the inequality (22), the inequality (15) in Lemma 2 can be derived.
Therefore, the proof is completed. ■

H PROOF OF THE INEQUALITY (23)

It can be derived from Conclusion 2 (see App. K) that:
N∑
i=1

∥W i
t (k)−

1

N

N∑
j=1

W j
t (k)∥2 =

1

N
[W 1

t (k)
⊤,W 2

t (k)
⊤, · · · ,WN

t (k)⊤](L̄ ⊗ In)

× [W 1
t (k)

⊤,W 2
t (k)

⊤, · · · ,WN
t (k)⊤]⊤

=
1

N
Wt(k)

⊤(L̄ ⊗ In)Wt(k)

⩽
1

λ2(L)
Wt(k)

⊤(L ⊗ In)Wt(k). (33)

Combine (28) with Lemma 4 (see App. L), we obtain:

Vt(k) ⩽
Ξt

2λ2(L)
Wt(k)

⊤(L ⊗ In)Wt(k). (34)

■
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I PROOF OF LEMMA 3

Let x be an eigenvector of S⊤
t St corresponding to an eigenvalue λ, and we have that (S⊤

t St)x = λx.
Then (S⊤

t St + σINnd)x = (S⊤
t St)x + (σINnd)x = λx + σINndx = λx + σx = (λ + σ)x.

Thus, λ + σ is an eigenvalue of S⊤
t St + σINnd. As S⊤

t St is an Nnd ×Nnd nonnegative matrix,
its Nnd eigenvalues are nonnegative, i.e., λ ⩾ 0. Therefore, σ is the infimum (or the greatest
lower bound) of the eigenvalues of S⊤

t St + σINnd. As ξt=mini∈V ξit=λmin(S
⊤
t St+σINnd) and

ξit=λmin(S
i
t
⊤
Si
t + σInd) in Lemma 2, σ is also the infimum of ξt and ξit . ■

J YOUNG’S INEQUALITY MITRINOVIC & VASIC (1970)

If real numbers a, b ⩾ 0 and if real numbers p, q ⩾ 1 and satisfy 1
p + 1

q = 1, then

ab ⩽
ap

p
+

bq

q
. (35)

K USEFUL CONCLUSIONS

Conculsion 1: Equivalent statements and implications for strong convexity of functions Lu &
Tang (2012); Chen & Ren (2016); Zhou (2018).

a. Equivalent statements:
(1) f : Rn → R is strongly convex with a parameter µ;
(2) f(y) ⩾ f(x) +∇f(x)⊤(y − x) + µ

2 ∥y − x∥2 for ∀x, y ∈ Rn;

(3)
(
∇f(y)−∇f(x)

)⊤
(y − x) ⩾ µ∥y − x∥2 for ∀x, y ∈ Rn. □

b. Equivalent implications:
(1) f is strongly convex with a parameter µ and continuously differentiable;
(2) f(y) ⩾ f(x) +∇f(x)⊤(y − x) + µ

2 ∥y − x∥2 for ∀x, y ∈ Rn, and has a minimum x∗;

(3)
(
∇f(y)−∇f(x)

)⊤
(y − x) ⩾ µ∥y − x∥2 for ∀x, y ∈ Rn, and has a minimum x∗. □

Conclusion 2 Lu & Tang (2012). For any graph G ∈ G with N vertices and its complete
graph Ḡ, L has N − 1 positive eigenvalues and there exists a W ∈ RN×N , which includes N
orthonormal eigenvalues of L in its columns. Then W⊤L̄W and W⊤LW are diagonal matrices
similar to L and L̄, and the eigenvalue 0 is located in the same position, respectively. Therefore,
λ2(L)W⊤L̄W ⩽NW⊤LW . “⩽” denotes the relationship between diagonal elements at the same
locations. □

L LEMMAS

Lemma 4. For the undirected connected MAS topology, when
∑N

i=1∇g
(
W i

t (k)
)
= 0n and

Vt(k) =
∑N

i=1

[
g(W ∗

t )− g
(
W i

t (k)
)
−∇g

(
W i

t (k)
)⊤(

W ∗
t −Wi(k)

)]
, the following inequality can

be derived:

Vt(k) ⩽
N∑
i=1

Ξi
t

2
∥W i

t (k)−
1

N

N∑
j=1

W j
t (k)∥2 ⩽

Ξt

2

N∑
i=1

∥W i
t (k)−

1

N

N∑
j=1

W j
t (k)∥2. (36)

□

M REGRET BOUND FOR ZGS-ED-DLCB

Regret bound of the ZGS-ED-DLCB algorithm originates from to the theory of Regret Bound in
Section 4.2 of Bogunovic et al. (2016). In terms of the squared exponential (SE) kernel, the regret
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bound of the ZGS-ED-DLCB algorithm is RT = Õ(max{
√
T , T ϵ1/6}) when employing the local

LCB acquisition functions and RFF-based surrogate model according to Corollary 4.1 of Bogunovic
et al. (2016).

N CONSENSUS VS. AVERAGE CONSENSUS

In the area of distributed learning and distributed optimziation, many works are devoted to the
problems of consensusYu & Chen (2020); Nedić et al. (2018); Ren et al. (2018); Chen & Ren (2016);
Lu et al. (2011); Nedic et al. (2010); Olfati-Saber et al. (2007) and average consensus Koloskova
et al. (2019a;b); Scardapane et al. (2015); Aysal et al. (2008); Xiao et al. (2007); Xiao & Boyd
(2004) between agents, respectively. There exists essential difference between consensus and average
consensus.

In terms of W i
t (k) in this work, consensus in each iteration step means that limk→∞ W i

t (k) = W i
t
∗

(practically, k = K ∈ Z+), but average consensus in each iteration step means that limk→∞ W i
t (k) =

1
N

∑N
i=1 W

i
t (0). Thus, average consensus derives the average of local optimum (or local initial

values), but not the global optimum, i.e., consensus in theory.

Typically, average consensus-based algorithms have some applications in practice due to their fast
convergence rate (e.g., exponential convergence). Whereas consensus-based algorithms with much
more convergence accuracy involves more theoretical designs and analysis on convergence robustness
and convergence rate.

O BOCHNER’S THEOREM RASMUSSEN ET AL. (2006)

In terms of a weakly stationary mean square continuous complex-valued random process on RD, a
complex-valued function k(τ ), τ ∈ RD, is the covariance function of the random process iff k(τ )
can be expressed as:

k(τ ) =

∫
RD

e2πis·τdµ(s) (37)

in which µ(s) is a positive finite measure.

P EXPERIMENTS

P.1 EXPERIMENTAL DETAILS

Experimental Environment. All the experiments are implemented by the Pycharm Software on
Windows OS with 16GB RAM and the results can be reproduced by our code and data that involved
in the material. More details are shown in the code.

Modeling. ZGS-ED-DLCB is an online learning algorithm in theory with a complete set of time-
varying parameters except aij (see (12)). As the baseline algorithms are offline learning with high
certainty, we extend the offline baselines to the corresponding online learning (i.e, online hyperpa-
rameter tuning) algorithms for comparing with ZGS-ED-DLCB. Thus, the learning performance of
baselines are enhanced than their original versions in theory. For further comparing in justice, the
baselines also adopt the RFF-based surrogate model because the RFF-based model can also deal with
traditional learning with high certainty. In terms of the synthetic experiments, the observation outputs
of the benchmark functions are assumed to be noise-free.

P.2 SUPPLEMENTARY EXPERIMENTS

Detailed experiments illustrating the average triggering frequency through the iterations for all trials
and the triggering instants at randomly selected iteration steps in each trial are depicted in Fig. 1-3.
Thus, the communication efficiency of the event-driven mechanism is further verified.
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Figure 1: Average triggering frequency for the 5 trials & Exhibition of triggering instants at the
randomly selected iteration steps wrt the Levy function in the complete topology.
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Figure 2: Average triggering frequency for the 5 trials & Exhibition of triggering instants at the
randomly selected iteration steps wrt the Ackley function in the complete topology.
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Figure 3: Average triggering frequency for the 5 trials & Exhibition of triggering instants at the
randomly selected iteration steps wrt the Griewank function in the complete topology.
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