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ABSTRACT

Learning from natural datasets poses significant challenges for traditional clas-
sification methods based on the cross-entropy objective due to imbalanced class
distributions. It is intuitive to assume that the examples from rare classes are harder
to learn so that the classifier is uncertain of the prediction, which establishes the
low-likelihood area. Based on this, existing approaches drive the classifier actively
to correctly predict those incorrect, rare examples. However, this assumption is
one-sided and could be misleading. We find in practice that the high-likelihood
area contains correct predictions for rare class examples and it plays a vital role
in learning imbalanced class distributions. In light of this finding, we propose the
Eureka Loss, which rewards the classifier when examples belong to rare classes in
the high-likelihood area are correctly predicted. Experiments on the large-scale
long-tailed iNaturalist 2018 classification dataset and the ImageNet-LT benchmark
both validate the proposed approach. We further analyze the influence of the Eureka
Loss in detail on diverse data distributions.

1 INTRODUCTION

Existing classification methods usually struggle in real-world applications, where the class distri-
butions are inherently imbalanced and long-tailed (Van Horn & Perona, 2017; Buda et al., 2018;
Liu et al., 2019; Gupta et al., 2019), in which a few head classes occupy a large probability mass
while most tail (or rare) classes only possess a few examples. The language generation task is a vivid
example of the long-tailed classification. In this case, word types are considered as the classes and
the model predicts probabilities over the vocabulary. Common words such as the, of, and and are the
head classes, while tailed classes are rare words like Gobbledygook, Scrumptious, and Agastopia.
Conventional classifiers based on deep neural networks require a large number of training examples
to generalize and have been found to under-perform on rare classes with a few training examples in
downstream applications (Van Horn & Perona, 2017; Buda et al., 2018; Cao et al., 2019).

It is proposed that the traditional cross-entropy objective is unsuitable for learning imbalanced
distributions since it treats each instance and each class equivalently (Lin et al., 2017; Tan et al.,
2020). In contrast, the instances from tail classes should be paid more attention, indicated by two main
approaches that have been recently investigated for class-imbalanced classification: the frequency-
based methods and the likelihood-based methods. The former (Cui et al., 2019; Cao et al., 2019)
directly adjust the weights of the instances in terms of their class frequencies, so that the instances
from the tail classes are learned with a higher priority no matter whether they are correctly predicted
or not. The latter (Lin et al., 2017; Zhu et al., 2018) instead penalize the inaccurate predictions more
heavily, assuming that the well-classified instances, i.e., the instances in the high-likelihood area,
factor inconsequentially in learning imbalanced distributions.

However, neither of these two approaches realistically depicts the likelihood landscape. In particular,
the high-likelihood area, where the classifier makes the correct predictions for both common class
examples and rare class ones, contributes significantly to generalization. However, this area is not
well-shaped, as illustrated in Figure 1. Specifically, the frequency-based methods imply an impaired
learning of common class examples that are the principle part of the natural data, while the likelihood-
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Figure 1: Conceptual illustration of approaches to learning unbalanced class distributions. For an
instance in the training data, the frequency-based methods either sharpen or soften the loss for all
likelihoods according to its class frequency, while the likelihood-based methods adjust the loss in
the low- or high-likelihood area, respectively. The high-likelihood area is relatively deprioritized
in both cases. The proposed Eureka Loss progressively rewards the systems with higher bonus for
higher-likelihood.

based methods ignore the correctly-predicted rare class examples that can provide crucial insights
into the underlying mechanism for predicting such examples.

In this paper, we first demonstrate that existing practice of neglecting predictions in the high-likelihood
area is harmful to learning imbalanced class distributions. Furthermore, we find that simply mixing the
cross-entropy loss and the Focal Loss (Lin et al., 2017) can induce substantially superior performance,
which validates our motivation. In turn, we propose to elevate the importance of high-likelihood
predictions even further and design a novel objective called Eureka Loss. It progressively rewards
the classifiers according to both the likelihood and the class frequency of an example such that the
system is encouraged to be more confident in the correct prediction of examples from rare classes.
Experimental results on the image classification and the language generation tasks demonstrate that
the Eureka Loss outperforms strong baselines in learning imbalanced class distributions.

Our contributions are twofold:

• We challenge the common belief that learning for examples in low-likelihood area is more
important for learning tail classes and reveal that the correctly-predicted rare class examples
make important contribution to learning long-tailed class distributions.

• We explore a new direction for learning imbalanced classification that focuses on rewarding
correct predictions for tail classes examples, rather than penalizing incorrect ones. The
proposed Eureka Loss rewards the classifier for its high-likelihood predictions progressively
to the rarity of their class and achieves substantial improvements on various problems with
long-tailed distributions.

2 RELATED WORK

Frequency-based Data and Loss Re-balancing Previous literature on learning with long-tailed
distribution mainly focusing on re-balancing the data distribution and re-weighting the loss function.

The former is based on a straightforward idea to manually create a pseudo-balanced data distribution
to ease the learning problem, including up-sampling for rare class examples (Chawla et al., 2002),
down-sampling for head class examples (Drummond & Holte, 2003) and a more concrete sampling
strategy based on class frequency (Shen et al., 2016).

As for the latter, recent studies propose to assign different weights to different classes, and the weights
can be calculated according to the class distribution. For example, Khan et al. (2018) design a
cost-sensitive loss for major and minor class examples. An intuitive method is to down-weight the
loss of frequent classes, while up-weight the contribution of rare class examples. However, frequency
is not suitable to be directly treated as the the weight since there exists overlap among samples.
An advancing alternative loss CB (Cui et al., 2019) proposes to calculate the effective number to
substitute the frequency for loss re-weighting. However, since it assigns lower weight to head classes
in the maximum likelihood training (Cross Entropy objective), it seriously impairs the learning
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of head classes. Moreover, CB requires a delicate hyper-parameter tuning for every imbalanced
distribution, leading to a lot of manul efforts. From the perspective of max-margin, a recent study
LDAM (Cao et al., 2019) proposes to up-weight the loss of tail classes by a class-distribution based
margin. Compared to the above methods, we choose to decrease the loss of tail classes by rewarding
correct predictions rather than increasing the loss of tail classes through aggravated penalization.

Deferring the Frequency-based Class-balanced Training Recent studies find that deferring the
class-balanced training helps learn high-quality representations (Liu et al., 2019), and propose
deferred Class-balanced training (deferred CB) (Cao et al., 2019), which chooses to adopt Cross
Entropy objective at the beginning of training. Similarly, the Decoupling method (Kang et al.,
2020) shows that the re-balancing strategies impair the quality of learned feature representations
and demonstrate an improved performance learned with original data distribution, by training the
model with Cross Entropy in the first phase and adopting class-balanced training in the second
phase. This decoupling strategy can also be found in BBN (Zhou et al., 2019), which includes both
class imbalanced and balanced training, and the transition from the former to the latter is achieved
through a curriculum learning schedule. These methods achieve state-of-the-art performance in
long-tailed classification. To be comparable with these methods and to analyse whether Eureka Loss
is complementary to this technique, we propose deferred Eureka Loss, in which rewarding for rare
class prediction is introduced to encourage the model to learn rare patterns when learning is stalled.

Likelihood-based Loss Another dominant method for imbalanced classification is the likelihood-
based method Focal Loss (FL) (Lin et al., 2017), which proposes to down-weight the contribution of
examples in the high-likelihood area. However, we argue that it is harmful for learning tail classes
and choose an opposite direction by highlighting the high-likelihood area with a steeper loss.

Transferring Representations Techniques for transferring information from sufficient head classes
examples to under-represented rare classes examples belong to a parallel successful direction in this
field. They include MBJ (Liu et al., 2020), which utilizes external semantic feature memory and
FSA (Chu et al., 2020), which decomposes feature in to class-specific and class-generic components.
These latest transfer learning based studies are less related to our paper but they also obtain good
improvements in long-tailed classification, so we add them into comparison in the experiments.

3 ROLE OF THE HIGH-LIKELIHOOD AREA

The existing approaches to the long-tailed classification independently consider the class frequency
and the example likelihood. However, we show that this one-sided reflection is problematic when
dealing with the tail class examples that can be confidently classified. The tail class examples can
be easily classified by the classifier, and the head class examples can also be hard for the classifier
to recognize. The difficulty of classification depends on the inherent characteristic of the classes,
rather than the sample size of the class. For example, in species classification, the Portuguese man
o’war may be a rare class but can be easily classified due to its distinct features, compared to various
kinds of moths which are common classes yet are hard to distinguish. However, the frequency-based
methods continuously drive the classifier to fit the rare class examples, especially when they are
difficult to predict, which may lead to overfitting. On the other hand, the likelihood-based methods
relax the concentration in the high-likelihood area, which contains the tail class examples that are not
hard to predict and provide insights to generalization.

To verify our point of view, we analyze the problem by dissecting the influence of the high-likelihood
area with respect to the class frequency and demonstrate that properly encouraging the learning of
well-classified tail class examples induce substantial improvements, before which we first give a brief
introduction of classification with long-tailed class distributions.

3.1 PREPARATION: CLASSIFICATION WITH LONG-TAILED CLASS DISTRIBUTIONS

Let’s consider the multi-class classification problem with the long-tailed class distribution. Given
a class set C, n denotes the number of different classes in C and mi is the number of examples of
the class Ci. For simplicity, we sort the class set C according to cardinal mi for Ci such that C0 is
the class with the most examples and Cn−1 is the rarest class. Let p be a n-dim probability vector
predicted by a classifier model f(x;θ) based on the input x, where each element pi denotes the
probability of the class Ci and y is a n-dim one-hot label vector with y being the ground-truth class.
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The probability vector can be calculated as

p = σ(f(x;θ)), (1)

where σ is the normalizing function, e.g., softmax for multi-class classification. Typically, the
parameters are estimated using maximum likelihood estimation (MLE), which is equivalent to
using the Cross-Entropy Loss (CE) function, where the scalar y · log p can be regarded as the
(log)-likelihood:

L = −E(x,y)∈D log pmodel(y|x) = − 1

|D|
∑

(x,y)∈D
y · log p. (2)

For deep neural network–based classifiers, due to the non-linearity of the loss function, the problem
is typically solved by stochastic gradient descent, which requires the calculation of the gradient with
respect to the parameters using the chain-rule, the process of which is called back-propagation:

∂L
∂θ

=
∂L
∂p

∂p

∂θ
=
∂L
∂p

∂σ(f(x;θ))

∂θ
. (3)

We introduce the term likelihood gradient to denote ∂L/∂p, which modulates how the probability
mass should be shifted and is a characteristic of the loss function instead of the classifier. For learning
imbalanced class distributions, the common methods aim to shape the likelihood gradient so the rare
classes are learned with priority, i.e., embodying a sharper loss and a larger likelihood gradient.

Frequency-Based Methods Frequency-based methods alter the likelihood gradient according to
the class frequencies, which are irrelevant to how well individual examples are classified. A simple
form is using a n-dim weight vector w composed of the class weights based on their frequencies in
the dataset to determine the importance of examples from each class:

L = −wy · (y · log p). (4)

Note that whenw = 1, it is identical to the cross-entropy objective. The weight vector is typically
calculated as wi = m̄/mi, where m̄ is the average of mi. As we can see, the standard weight is taken
as the average of the class size, so that the classes with more examples are down-weighted and the
classes with fewer examples are up-weighted. For a natural long-tailed distribution, the average is
larger than the median, which suggests more classes are up-weighted. Advanced frequency-based
methods try to obtain a more meaningful measurement of the class size, e.g., the Class-Balanced
Loss (CB) proposed by Cui et al. (2019) utilizes an effective number 1−βmi/1−β for each class, where
β ∈ [0.9, 1) is a tunable class-balanced term.

Likelihood-Based Methods Different from the frequency-based methods, likelihood-based meth-
ods adjust the likelihood gradient based on the instance-level difficulty as predicted by the classifier
such that the examples in the low-likelihood area are more focused in training. For example, the
well-known Focal Loss (FL) with a balanced factor α proposed by Lin et al. (2017) takes the following
form:

L = −α(1− py)γf ·(y· log p), (5)
where γf > 0, which controls the convexness of the loss and higher γf indicates adjustment that are
more significant. Note that when α = 1 and γf = 0, it is identical to the cross-entropy objective.
Following previous works (Cao et al., 2019; Liu et al., 2019; Cui et al., 2019), the α is set to 1 in
multi-class classification, and Class-Balanced Focal Loss (FL+CB) can be viewed Focal Loss with
uneven alpha for each class in the multi-class setting. The key idea is to pay less attention to the
well-classified examples and pay more attention to the badly-classified examples, because it is natural
to assume the tail class examples are harder to learn and thus cannot be well-classified. However,
such methods neglect the correctly-predicted tail class examples, the practice of which we show is
not constructive to the learning of long-tailed class distributions.

3.2 UNDERSTANDING THE INFLUENCE OF THE HIGH-LIKELIHOOD AREA

To understand the influence of the high-likelihood area, we first prepare a variant of the Focal Loss,
the Halted Focal Loss (HFL), such that the high-likelihood area is not deprioritized. The Halted Focal
Loss reverts the Focal Loss to the Cross-Entropy Loss when the likelihood is high enough:

L =

{
−α(1− py)γf ·(y· log p), if py ≤ ϕ
−αy·[log p+ b], otherwise (6)
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Figure 2: Regaining focus on the high-likelihood
area for the rare classes benefits classification. Left:
Illustration of HFL which reverts FL to CE in the
high-likelihood area. Right: Applying HFL only to
the rare classes improves overall performance.

Method AP AP50 AP75

CE 32.8 52.3 34.7
FL 33.8 52.5 35.9
HFL 34.0 52.7 36.2
FL (Head) + HFL (Tail) 34.2 52.7 36.3

Table 1: Results of HFL on the COCO de-
tection dataset, AP denotes average precision.
As we can see, increasing the importance of
the high-likelihood area achieves better re-
sults, and the main improvements come from
the tail class examples.

where py is prediction probability of the correct label, b = α(1 − (1 − ϕ)γf ) logϕ to ensure
monotonicity and continuity, and ϕ is the boundary between the low- and the high-likelihood area,
which we set as 0.5, i.e., a likelihood higher than which definitely renders a correct prediction.
This mixed loss is plotted in left of the Figure 2, which has the same likelihood gradient as the
cross-entropy in the high-likelihood area and remains the same as the Focal Loss in the low-likelihood
area.

To decouple the effect of class frequency, we further explore to gradually transition from the Focal
Loss to the Halted Focal Loss according to the class frequency of an example, e.g., from adopting
the Halted Focal Loss only for the rarest class and the Focal Loss to other classes to adopting the
Focal Loss only for the most common class and the Halted Focal Loss for the rest. Concretely, we set
a proportion t ∈ [0, 1] of classes to receive this loss and the remaining 1− t proportion of classes
adopt the original Focal Loss. The classes are ranked by inverse frequencies, such that the first class
is the rarest class.

We conduct experiments on long-tailed CIFAR-10 using the aforementioned protocol to examine
the effect of the high-likelihood area. The construction of the dataset is provided in Appendix C.
We run each configuration 5 times with different random initialization and report the average test
performance. The results are shown in the right of Figure 2.

As we can see, compared to the original Focal Loss, the proposed adaptation achieves better per-
formance, indicating regaining focus in the high-likelihood area is beneficial. Nonetheless, the
phenomenon can be also attributed to a better learning of the common classes instead of the rare
classes. Our analysis based on the class frequency resolves this concern because the Halted Focal
Loss brings more improvements if only tailed classes are learned this way, e.g., applying to the top-4
rare classes achieve the best overall performance, which proves that there are rare class examples that
reside in the high-likelihood area and have non-negligible effect to generalization.

The importance of the high-likelihood area of the rare examples is further validated on the COCO
detection dataset, where the classifier should determine whether the object appears in the image or not.
The positive detection is the rare class since there are many false proposals. The experiment setting
is in Appendix C. AP50 and AP75 measure the precision under different levels of overlap between
predictions and ground-truth. As shown in Table 1, strengthening the high-likelihood area of the
Focal Loss, especially for the rare class examples, obtains a more accurate and confident prediction.

4 EUREKA LOSS

We have shown that the high-likelihood area matters for long-tailed classification and in particular,
the rare class examples in the area have pivotal contributions. Inspired by this finding, we propose
to further enhance the importance of the high-likelihood area so that the likelihood gradient in
the high-likelihood area can match or even surpass that in the low-likelihood area. Moreover, the
adjustment is inline with the frequency of the class so the rarer the class, the larger the likelihood
gradient. Extending the adjustment term b in Eq. (6), we propose the Eureka Loss (EL):

L = −y· log p− bonus·encouragement, (7)
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where −bonus·encouragement is intended to reward the well-classified rare examples. The bonus
term depends on the example likelihood and the encouragement term depends on the class frequency.
Different from the existing approaches that scale the Cross-Entropy Loss, punishing the incorrect
predictions selectively, the proposed Eureka Loss deals with long-tailed classification from another
perspective, rewarding the correct predictions progressively with their class frequencies.

Bonus indicates how well the system executes the task and is designed to be a function of the
probability of the ground-truth class to reward the model when it makes correct prediction. In
particular, in light of the findings discussed in Section 3.2, we propose to increase the likelihood
gradient in the high-likelihood area and adopt the form of

bonus = y · log(1− p), (8)

which ensures that the monotonicity of the likelihood gradient is consistent with that of the Cross-
Entropy Loss, meaning that the classifier obtains more bonus when making highly-confident correct
predictions. The design is against most existing studies in that the high-likelihood area is given more
focus than the low-likelihood area.

Encouragement implies the system realizes unusual achievements that should be encouraged.
Since the unusual achievements in long-tailed classification should be correctly predicting rare class
examples, we propose to reward the system based on the frequency of the example’s class:

encouragement = wy =
m̄

my
, (9)

where my denotes the measurement of the frequency of the class y. The form is flexible and similar
to the frequency-based methods, and thus can be further extended based on the related studies. In our
experiments, we use the effective number from Cui et al. (2019) as the measurement.

Compared to the existing frequency-based and likelihood-based objective, our Eureka Loss takes the
bonus term to calibrate the attention to different likelihood landscapes and the encouragement term to
inform the model with the class difficulty, composing a more targeted yet comprehensive loss for
learning imbalanced distributions.

5 EXPERIMENTS

We validate the proposed Eureka Loss on diverse long-tailed classification problems and analyze the
characteristics of the Eureka Loss with insights into the learned models.

5.1 TASKS, DATASETS, AND TRAINING SETTINGS

Tasks and Datasets We conduct experiments on two image classification tasks and a dialogue
generation task. iNaturalist 2018 is a real-world dataset which embodies a highly imbalanced
class distribution of 8,142 classes. Apart from the test performance, we also report the validation
performance grouped by the class frequency and categorize the examples into three groups: many
(classes with more than 100 examples), medium (classes with 20 to 100 examples), and few (classes
with fewer than 20 examples). ImageNet-LT (Liu et al., 2019) is an artificially constructed long-tailed
classification dataset based on ILSVRC 2012 of 1000 classes. ConvAI2 is a natural conversation
dataset for evaluating dialogue system, where each word type can be treated as a class, i.e., 18,848
words (classes) in total, and have extremely imbalanced training and test datasets.

Evaluation Metric For the image classification tasks, we use the accuracy on ’All’ data and subset
of classes with ’Many’, ’Medium’ and ’Few’ examples , i.e., the precision of the top-1 prediction.
Since the test set of those tasks are balanced in classes, we further propose to estimate the accuracy
on the imbalanced class distribution that reflects natural performance in real-world scenarios. The
natural accuracy is the linear interpolation of the accuracy on the balanced test set using the class
frequencies from the training set. For the natural language generation task, we adopt the micro
and macro F-scores from Zhang et al. (2018) between the generated and the reference sentences to
check how well the systems participate in the conversation. We further adopt the 4-gram diversity
to examine the rare phrases, since a well-known problem for dialogue tasks is that the model tends
to generate common, dull and repetitive responses and thus cannot capture the diversity of natural
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Method All Many Medium Few All (Natural)

CE 64.3 74.1 65.9 59.8 71.7
CB 58.3 61.8 58.6 56.9 59.8
FL 62.9 72.9 64.1 58.8 70.7
FL + CB 59.6 45.5 61.8 60.5 46.7
Eureka Loss 68.5 70.8 69.3 66.7 70.6

CB† 68.1 71.0 68.3 67.1 70.4
FL + CB† 66.9 64.4 67.4 67.0 64.9
LDAM+CB† (Cao et al., 2019) 63.3 65.2 63.0 63.1 64.1
BBN (Zhou et al., 2019)∗† 69.6 - - - -
Decoupling-LWS (Kang et al., 2020)∗† 69.5 71.0 68.8 69.5 -
Eureka Loss† 69.9 73.3 69.3 69.6 73.0

FSA (Chu et al., 2020)∗§ 65.9 - - - -
MBJ (Liu et al., 2020)∗§ 68.6 68.0 69.8 68.5 -

Eureka Loss + CB† 70.3 69.0 70.1 70.9 69.4

Table 2: Results on iNaturalist 2018. ∗ denotes results from the corresponding paper and † denotes
deferred learning, where the base loss is applied at the beginning of training and the improved method
is adopted later. § denotes that it focuses on transferring representations and the method is less related
to our work. Best results are shown in bold. The proposed Eureka Loss achieves the best results in
learning both common and rare classes.

language distributions. Since the test set of natural language generation task is naturally imbalanced,
we do not need to estimate the natural performance.

For the detailed introduction to tasks, datasets, and training settings, please refer to the appendix.

5.2 RESULTS

iNaturalist 2018 The results are reported in Table 2. We tune the hyper-parameters for our imple-
mented baselines and report the averaged performance among 3 runs at the best setting.

We compare Eureka Loss with frequency-based method Class-balanced Loss (CB), likelihood-based
method Focal Loss (FL) and their combination FL+CB. As we can see from the first group in the table,
neither FL nor CB achieves improvements over Cross Entropy (CE), but Eureka Loss outperforms
CE by a large margin in terms of overall accuracy and accuracy for classes with few examples.

In contrary to the first group, considering only the accuracy on the balanced test set, the two-stage
version of frequency class-balanced training which adopts the class-balanced training only in the
latter training phase includes deferred CB(denotes CB† in the table), LDAM + deferred CB, BBN and
Decoupling-LWS enjoy clear advantage over CE. In order to check whether Eureka Loss is additive
with the deferred method and the class-balanced training, we take deferred Eureka Loss and Eureka
Loss + CB† into comparison.

The deferred Eureka Loss is motivated by an intuition that when training enters the bottleneck stage,
Eureka Loss is introduced to reward rare classes to encourage the model to learn less common
patterns, which may be helpful for learning. Compared with the original method, the deferred
encouragement brings improvement on both balanced and imbalanced test distribution (+1.4 and +2.4
regarding All and All(Natural), respectively). Moreover, the class-balanced training still impairs the
learning for common classes even under the deferred setting, which may cast into unfavorable natural
performance in real applications, e.g., the accuracy on the ’Many’ subset for CB† and Decoupling-
LWS is under-performs CE by 3.1, the results is that applying CB† reduces the Natural accuracy
by 1.3. But deferred Eureka Loss largely outperforms CE and these methods on both balanced and
imbalanced test distributions. The reason may be that we do not impair the CE learning and the
additional rewarding for rare classes is less harmful. Since Eureka Loss only introduces an additive
term, it is flexible and can be combined with CB, the adoption results in best All accuracy of 70.3.
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Method All All (Natural)

CE 44.6 63.7
FL 43.6 62.4
CB 43.9 58.8
FL+CB 31.1 25.0

Eureka Loss 48.4 63.8

Method (Deferred) All All (Natural)

OLTR (Liu et al., 2019)∗ 46.5 -
CB† 49.2 60.5
Decoupling-LWS (Kang et al., 2020)∗ 49.9 59.8

Eureka Loss + CB† 50.4 62.2

Table 3: Results on ImageNet-LT. ∗ and † are defined similarly to Table 2. Eureka Loss demonstrates
consistent improvements against existing methods.

Name F-Score (Macro) F-Score (Micro) Diversity (4-gram)

Cross Entropy 1.17 16.9 36.5
Focal Loss (γ = 1) 1.17 16.8 36.6
Focal Loss (γ = 2) 1.13 16.7 37.3

Eureka Loss 1.32 17.2 40.4

Table 4: F-scores and 4-gram diversity on ConvAI2. The proposed Eureka Loss achieves better
performance than baseline methods and generates responses that are more diverse.

In all, adopting the Eureka Loss achieves a balanced performance on both common and rare classes.
Besides, we also outperform the latest representation transferring based methods including MBJ and
FSA.

ImageNet-LT Table 3 demonstrates the results on ImageNet-LT of various methods. For this
artificial dataset, we first compare with the representative frequency-based method CB and likelihood-
based method Focal Loss (FL). As we can see, the proposed method obtains a significant improvement
in the balanced test set and also maintains the lead position in the virtual natural test set. For
comparison with methods that defer the class-balanced training including deferred CB and Decouping-
LWS, the Eureka Loss of corresponding modification also enjoys a comfortable margin and arguably
excels in balancing the performance on both of the common and the rare classes.

ConvAI2 Table 4 shows that the proposal helps the prediction of rare words (+10% macro F-score)
and thus improves the diversity of language generation (+10% 4-gram diversity). Since this dataset is
extremely imbalanced, e.g., the imbalance ratio is over 200,000, the frequency-based methods require
extensive tuning to work, which we thus omit from the comparison as we are not able to reproduce
favorable results. Compared with the likelihood-based method Focal Loss, which is marginally better
that the original cross-entropy loss, the Eureka Loss still obtains substantial improvements.

5.3 ANALYSIS

Method ID-100 ID-50 ID-10

CE+RS†♣ 41.61 46.48 58.11
CE+CB†♣ 41.51 45.29 58.12
LDAM+CB†♠ 42.04 46.62 58.71
BBN†♣ 42.56 47.02 59.12

EL + CB† 43.19 48.48 59.31

Table 5: Results on long-tailed CIFAR-
100 of different imbalance degrees (ID).
† denotes deferred learning; ♣ and ♠ de-
notes results taken from Zhou et al. (2019)
and Cao et al. (2019), respectively.

Effect on Distributions of Different Imbalance De-
grees To analyze the effect on imbalanced distribu-
tions of different degrees, we construct several artificial
datasets based on CIFAR-100 and control the size of the
rarest class. The imbalance degree stands for the ratio
of the class size of the most common class to that of the
rarest class. Hence, the larger the degree, the more im-
balanced the dataset. For example, if imbalance degree
is 100 for CIFAR-100, the most common class has 500
examples and the rarest class has 5 examples. As shown
in Table 5, the Eureka Loss is consistently better than
existing methods, especially for datasets that are more
imbalanced. For results on CIFAR-10, please refer to the
appendix.

Varying Strength of Bonus To illustrate the impor-
tance of the high-likelihood area in imbalanced classification within Eureka Loss, we compare a
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Figure 3: Varying strength of bonus on long-tailed
CIFAR-10. Higher power γb indicates higher strength.

Method All Many Medium Few

EL (β=0.99) 45.8 67.2 38.4 11.3
EL (β=0.999) 47.8 66.1 42.0 16.4
EL (β=0.9999) 50.0 67.1 44.7 19.8

Table 6: Varying strength of encourage-
ment on the dev set of ImageNet-LT.
Higher β means higher strength.

exponential form bonus called Power Bonus (PB) to the original bonus, which takes the power form
of the probability vector of by a factor γb:

PB(p) = −y · pγb , (10)

where γb is a positive value to ensure the monotonicity and can be tuned for different tasks. Besides,
CE achieves a 71.4% accuracy and the likelihood bonus with deferred encouragement gets a 76.1%
accuracy. Figure 3 demonstrates that bigger likelihood gradient in the high-likelihood area brings
more improvements, e.g., power-bonus with power of 4 is better than bonuses of small power.

Varying Strength of Encouragement The strength of encouragement is determined by both of
the class frequency and the hyper-parameter β as we use the effective number of the class. As β
controls the variance of the the effective number, e.g., when β = 0, the variance is 0, meaning all of
the classes receive equal encouragement, we control the strength of the encouragement towards tail
classes by altering β. The results on the validation set of ImageNet-LT are shown in Table 6. As we
can see, higher β (more encouragement for tail classes), is connected to higher overall accuracy and
better tail class performance, which again validates our motivation for encouraging correct rare class
predictions.

0
5000

10000 All

0
500

1000 Many

0
2500
5000 Medium

0.0 0.2 0.4 0.6 0.8 1.0
0

2500
5000 Few

Likelihood

Figure 4: The visualization of test likeli-
hood distribution for models trained with
the Eureka Loss. The model classifies
the rare class examples more decisively,
compared to the existing methods.

Effect on Example-Likelihood The Eureka Loss re-
wards the high-likelihood predictions especially for tail
classes. It is interesting to see how the training dynamic
is changed due to this preference. In order to understand
the effect, we visualize the example likelihood grouped
by target class frequencies after training in Figure 4 and
Figure 5 (due to space limit, the complete comparison
is provided in the Appendix A), which are from the val-
idation set from iNaturalist 2018. As we can see, with
the Eureka Loss, the examples in the high-likelihood area
are driven to the extreme. For example, considering the
medium and the low frequency group, the “hard” ex-
amples that may be inherently difficult to classify stand
invariant, while for the examples that can be classified
correctly, the system now treats them with more confi-
dence. This dynamics translate into better accuracy in
unseen examples in the test set, hinting the importance
of rare class examples in the high-likelihood area for the
generalization of learning imbalanced class distributions.

6 CONCLUSIONS

In this paper, we examine the effect of the high-likelihood area on learning imbalanced class distribu-
tions. We find that the existing practice of relatively diminishing the contribution of the examples
in the high-likelihood area is actually harmful to the learning. We further show that the rare class
examples in the high-likelihood area have pivotal contribution to model performance and should be
focused on instead of being neglected. Motivated by this, we propose the Eureka Loss, which addi-
tionally rewards the well-classified rare class examples. The results of the Eureka Loss in the image
classification and natural language generation problems demonstrate the potential of reconsidering
the role of the high-likelihood area. In-depth analysis also verifies the effectiveness of the investigated
loss form and reveals the learning dynamics of different approaches to long-tailed classification.
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A VISUALIZATION OF EXAMPLE LIKELIHOOD

The complete comparison between the likelihood distribution for Eureka Loss, Cross-Entropy Loss,
Focal Loss, Class-balanced Loss are shown in Figure 5. We see from the figure that the model
trained with Eureka Loss gives high-confidence predictions for gold labels. Compared with the
Cross-Entropy Loss, the Focal Loss diminish the contribution of high-likelihood examples, and the
resulted model is unsure in the prediction of unseen examples. In particular, for the examples in
the Few group, it almost produces no confident correct predictions. The Class-Balanced Loss, on
the other hand, improves the confidence for the tail class examples but degrade the performance
for the head class examples, which may imply potential issues regrading to natural performance in
real-world applications. Besides, it is worth noting that the Decoupling-LWS obtains a likelihood
distribution similar to the Class-Balanced Loss.

B FURTHER RESULTS AND ANALYSIS

B.1 RESULTS ON INATURALIST 2018 WITH TRAINING FOR 90 EPOCHS

It is found by existing work (Kang et al., 2020) that training much longer for the iNaturalist 2018
dataset can produce better scores and reflect the performance of the models more authentically.
However, most previous studies conduct training for a shorter time. To keep consistent with previous
research in this field, we also train the models using Eureka Loss for 90 epochs and the results are
shown in Table 7. In this setting, eureka loss achieves better accuracy than the two-stage decoupling
methods (Decoupling-LWS and BBN), the advantage is more profound under the Natural accuracy,
for example, compared to the Decoupling-LWS, the deferred Eureka Loss gains 3.8 Natural accuracy.
Compared to the one-state methods including Class-Balanced Loss (CB), Focal Loss (FL), Class-
Balanced Focal Loss (FL+CB), LDAM, the model trained with the Eureka Loss is much more
accurate on the test distribution.

B.2 RESULTS ON LONG-TAILED CIFAR-10

In the main text, we have reported the results of the Eureka Loss varying the class imbalance on the
CIFAR-100 dataset. Here we also perform comprehensive experiments on long-tailed CIFAR-10
and report top-1 precision on the balanced test set. The results are shown in the Table 8. When
combined with Class-Balanced Loss, Eureka Loss brings higher improvement in terms of accuracy
than Cross-Entropy Loss and LDAM.

B.3 HYPER-PARAMETER OF THE FOCAL LOSS

In the paper, we report results for the Focal Loss with best hyper-parameters. For COCO detection,
the hyper-parameter of α = 0.25, γ = 2 is the best setting reported in Table 1.b of the origin paper
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Figure 5: Example likelihood on the validation set of iNaturalist18 categorized by class frequencies
into few, medium, many, and all.

(Lin et al., 2017). For the other multi-class classification tasks, we tune hyper-parameters of the Focal
Loss on it. The accuracy for the Focal Loss with different hyper-parameter γ are listed in the Table1.
we set γ = 1 for Focal Loss since it is consistently optimal in long-tailed image classification. For
ConvAI2, γ = 0.5 under-performs Cross Entropy, and neither γ = 1 nor γ = 2 outperforms each
other, so we report the Focal Loss of γ = 1 and the Focal Loss of γ = 2 in the Table 4.

B.4 COMPLEMENTARY EXPERIMENT TO THE MOTIVATION EXPERIMENT

In Section 3, we propose Halted Focal Loss(HFL) and compare it to Focal Loss(FL) to illustrate
the potential of the high-likelihood area. However, its loss is no steeper than Cross Entropy (CE).
Moreover, Focal Loss does not beat CE in the setting of multi-class classification. In order to bridge
the gap between the possibly weak motivation experiment of Halted Focal Loss and the proposed
method Eureka Loss. We propose simplified Eureka Loss:

L =

{
−y· log p, if py ≤ ϕ
−y· log p+ y·[log(1− p)− b], otherwise (11)

1Following (Cui et al., 2019), we omit the hyper-parameter α, since the Focal Loss with uneven ’alpha’ for
each class in the setting of multi-class classification can be viewed as Class-balanced Focal Loss (FL+CB) and
FL+CB is compared individually.
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Method All Many Medium Few All (Natural)

CE 61.8 72.2 63.4 57.2 69.8
FL 60.2 70.4 61.5 56.0 68.3
CB 52.4 51.9 53.0 51.8 51.2
RS 56.7 59.0 56.9 55.9 56.5
FL+CB (Cui et al., 2019)∗ 61.1 - - - -
CE+CB† (Cao et al., 2019)∗ 63.7 - - - -
LDAM (Cao et al., 2019)∗ 64.6 - - - -
LDAM+CB† (Cao et al., 2019)∗ 68.0 - - - -
LDAM+CB† (Zhou et al., 2019)∗ 64.6 - - -
BBN (Zhou et al., 2019)∗ 66.3 - - - -
Decoupling-LWS (Kang et al., 2020)∗ 65.9 65.0 66.3 65.5 65.7

Eureka Loss 66.4 67.5 66.5 65.9 67.9
Eureka Loss† 67.1 69.4 67.3 66.1 69.5

Table 7: Results on iNaturalist 2018 after training the model for 90 epochs. ∗ denotes results from
the corresponding paper and † denotes that we use the base loss at the beginning of training and then
adopt the method later. The proposed Eureka Loss achieves good results in learning both common
and rare classes.

Method ID-100 ID-50 ID-10

CE+RS†♣ 75.61 79.81 87.38
CE+CB†♣ 76.34 79.97 87.56
LDAM+CB†♠ 77.03 81.03 88.16
BBN†♣ 79.82 82.18 88.32

EL + CB† 77.95 82.00 88.35

Table 8: Results on long-tailed CIFAR-10 data with different imbalance degrees. ID is short for
imbalance degree. † is defined similarly; ♣ denotes Zhou et al. (2019); ♠ denotes Cao et al. (2019).

where ϕ is set to 0.5, and b is log(1 − ϕ). In the simplified Eureka Loss, the encouragement is
removed, and to keep the low-likelihood area unchanged, the new bonus term starts rewarding the
model from p = ϕ. As is shown in Table 10, HFL(t=0.5) is also better than HFL and FL in terms
accuracy of tail classes on the large scale long-tailed classification dataset iNaturalist 2018, This
result once again shows that high-likelihood area matters and near-correct predictions of rare classes
play a major role. But HFL is the combination of Focal Loss(in the low likelihood area) and Cross
Entropy(in the high-likelihood area) and the performance is constrained. Unlike HFL, the loss
of Simplified Eureka Loss is built on CE and the loss is much steeper than Cross Entropy in the
high-likelihood area, it outperforms Cross Entropy(CE) and HFL in terms of all metrics, especially
on the subset of tail classes. Eureka Loss reported in Table 2 is a continuous version of simplified
Eureka Loss with an additional encouragement for rare classes, similar to HFL(t=0.5), this setting
which rewards more for rare classes achieves the best overall performance.

B.5 EUREKA LOSS MITIGATES OVER-FITTING ON TAIL CLASSES

As shown in Figure 6, compared to Cross-Entropy Loss, Eureka Loss reduce the gap between the
training accuracy and test accuracy from 33.0 to 28.6 on tail classes. Moreover, even though Class-
balanced Loss achieves the highest training accuracy, its test accuracy is unexpectedly low. The
difference of performance between the seen examples and the unseen examples indicates the degree
of over-fitting. The results are from the “Few” subset of the iNaturalist 2018 of training 90 epochs.
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γ CIFAR10 Imagenet-LT iNaturalist20182

0.5 21.2/10.8 8.3/7.1 9.2/3.2
1 70.8/0.6 43.8/0.3 60.2/0.3
2 70.3/0.6 43.6/7.9 59.5/0.2

Table 9: Mean/(standard deviation) test accuracy of the Focal Loss with different hyper-parameter γ
in long-tailed image classification.

method CIFAR10 iNaturalList2018
Mean/Stdev All Many Medium Few All(natural)

CE 71.4/0.5 64.3 74.1 65.9 59.8 71.7

FL 71.3/0.6 62.9 72.9 64.1 58.8 70.7

HFL 71.4/0.3 63.6 73.1 64.6 59.7 70.7

HFL(t=0.5) 71.8/0.5 64.2 73.3 64.3 61.6 70.8

Simplified EL 71.8/0.9(+0.4) 66.3(+2.0) 75.1 (+1.0) 67.4(+1.6) 62.6(+2.8) 72.6(+1.1)

Table 10: Comparison between the Halted Focal Loss and the Simplified Eureka Loss on long-tailed
Cifar-10 (imbalance ratio is 100) and iNaturalist 2018, the mean standard deviation (Stdev) for results
on iNaturalList2018 is about 0.4.

C DETAILS OF EXPERIMENTAL SETTINGS

C.1 DATASETS

There are six datasets used in this paper in total and an overview of the dataset statistics are de-
montrated in Table 11 and Figure 7. For image classification tasks, the iNaturalist 2018 dataset is
the most imbalanced and has the most classes, which is most satisfactory for evaluating long-tailed
classifications. For the language generation task, ConvAI2 has an imbalance ratio of 277K, which,
however, should be taken cautiously, since most of the tail classes are not covered in evaluation. The
common practice to evaluate the learning on the imbalanced language distributions is to investigate
the diversity of the generated text. The 4-grams can be regarded as high-ordered classes and a 4-gram
of four common words can also be a “rare class”.

C.2 TRAINING SETTINGS

CIFAR-10 and CIFAR-100 For experiments on long-tailed CIFAR-10 and CIFAR-100, the back-
bone network is ResNet-32 (He et al., 2016). The model is optimized with SGD with a momentum of
0.9. The learning rate is set to 0.1 and the model is trained for 200 epochs with 128 examples per
mini-batch. To stabilize the training, we adopt the warm-up strategy used by Goyal et al. (2017) in
the first 5 epochs. Following Cao et al. (2019), we decay the learning rate by 0.01 at the 160th epoch
and again at the 180th epoch. For the results in Figure 2 and Figure 3, we conduct experiments on
long-tailed CIFAR-10 with an imbalance ratio of 10.

ImageNet-LT For experiments on ImageNet-LT ILSVRC 2012, the base network is ResNext-
50 (He et al., 2016). The batch size is set to 512 to accelerate training. The initial learning rate is 0.2
and we utilize a cosine learning rate scheduler.

iNaturalist 2018 Same as the experiments on ImageNet-LT, we also follow the default setting in
Kang et al. (2020) for experiments on iNaturalist. To be specific, we adopt ResNet-50 model, use
SGD with to train the model for 200 epochs with batch size 512 and a cosine learning rate schedule
which gradually decays from 0.2 to 0.0. Results on the valid set are also reported on subset of many
(> 100 samples), medium (20− 100 samples), and few (< 20 samples), respectively.

ConvAI2 For the conversation generation task, we utilize a two-layer LSTM (Hochreiter & Schmid-
huber, 1997) encoder-encoder architecture as our base network. The hidden size of both encoder
and decoder is set to 1024. We optimize the model with SGD optimizer with momentum 0.9, the
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Figure 6: Illustration of the over-fitting phenomenon on tail classes, the number on the top of each
bar is the difference between the training accuracy and the test accuracy.

Dataset # Classes Imbalance Ratio

COCO Detection 2 ∼1000
Long-tailed CIFAR-10 10 10-100
Long-tailed CIFAR-100 100 10-100
ImageNet-LT 1000 256
iNaturalist 2018 8142 500

Table 11: Data statistics of long-tailed image classifica-
tion tasks. Imbalance Ratio denotes the ratio of the size
of the most common class to that of the rarest class.
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Figure 7: Word frequency distribution of
ConvAI2 dataset. For natural language
generation tasks, each word type can be
regarded as a class and most words appear
scarcely in the data. If measured the same
with long-tailed image classification tasks,
the imbalance ratio is 277K.

batch size is 64 and the learning rate is set to 3. The embedding size is 256 and word vectors are
initialized with GloVe (Pennington et al., 2014). We select our final model until the performance on
the validation is no longer improving after 5 epochs.

COCO Dectection For experiments on COCO detection, we adopt the configuration of “RetinaNet-
R-50-FPN-1x” from the GitHub repository Detectron2 as our default setting. In this setting, the
one-stage detector of RetinaNet with the backbone ResNet50 is trained for 90k updates and the batch
size is 8 images per batch.

For the image classification tasks, the default β is set to 0.9999 for all datasets. For the deferred
version, we defer the adoption of Eureka Loss after training for 160 epochs and 180epochs on
CIFAR100 and iNaturalist 2018 respectively. As for the dialog generation task ConvAI2, β is set to
0.999 and we start the encouragement after regularly training the model for 5 epochs.

We tune the β ∈ {0.9, 0.99, 0.999, 0.9999} and γ ∈ {0.5, 1, 2} for the Class-Balanced Loss (CB)
and the Focal Loss (FL) respectively in multi-class classification, and report the best results of these
baselines. Following previous work (Cui et al., 2019), α is set to 1.0 for the Focal Loss(FL), and the
Class-Balanced Focal Loss (FL+CB) in multi-class classification tasks can be viewed as the origin
Focal Loss with class-level weight α in binary classification tasks.

The training costs are summarized in Table 12.
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Data Infrastructure Mem/GPU Time Epochs Samples Model

Long-tailed CIFAR-10 RTX 2080Ti * 1 1.4G 0.3h 200 12.4K ResNet32
Long-tailed CIFAR-100 RTX 2080Ti * 1 1.4G 0.3h 200 10.8K ResNet32
ImageNet-LT TITAN RTX * 4 17G 8h 90 116K ResNext50
iNaturalist 2018 RTX TITAN * 4 15G 48h 200 438K ResNet50
ConvAI2 RTX 2080Ti * 1 9G 4h 16 131K 2-L LSTM
COCO Detection RTX 2080Ti * 4 9G 8h 90K updates 118K ResNet50

Table 12: Training costs of each task. Samples are dialogues in ConvAI2 and images in image
classification tasks
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