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Abstract
Recent advances in text-to-image models have inspired001

many works that seek to train models with synthetic images,002
capitalizing on the ability of modern generators to control003
the data we synthesize and thus train on. However, syn-004
thetic images ultimately originate from the upstream data005
pool used to train the generative model we sample from—006
does the intermediate generator add any gain over simply007
training on relevant parts of the upstream data directly?008
In this paper, we study this question in the setting of task009
adaptation by comparing training with task-targeted syn-010
thetic data generated from Stable Diffusion—a generative011
model trained on the LAION-2B dataset—against training012
with targeted real images sourced directly from LAION-2B.013
We show that while targeted synthetic data can aid model014
adaptation, it largely lags behind targeted real data. Over-015
all, assuming we have access to the upstream data pool of016
the generator, we should be cautious in our use of generated017
synthetic data. Studying synthetic data in settings where the018
upstream data is not accessible—for instance, due to copy-019
right or privacy concerns—or searching for benefits from020
synthetic data even when it is present are opportunities for021
future work.022

1. Introduction023

Modern machine learning systems fundamentally depend024
on the quantity, quality, and distribution of their training025
data, all of which strongly impact downstream performance.026
Motivated by this observation, the field is actively devel-027
oping algorithms to automatically curate high-quality data028
at scale. In particular, sourcing synthetic data from con-029
ditional generative models is becoming increasingly com-030
monplace, as generative models enable algorithmic con-031
trol over what data to sample and train on. For exam-032
ple, in the neighboring field of natural language processing033
(NLP), advances in language models have enabled control-034
lable generation of large-scale synthetic instruction-tuning035
datasets [12, 32].036

Likewise, in computer vision, modern text-to-image037
models increasingly allow for controlled image generation,038
inspiring researchers to search for similar possibilities. The039
high-dimensional and continuous nature of images often re-040
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Figure 1. Given an upstream dataset of general real image-text
pairs, we wish to derive a targeted dataset to train a learner on
some target task. We can either retrieve relevant real data di-
rectly from the general dataset (top path), or we can first train
a generative model and then synthesize targeted synthetic data
(bottom path). Our work compares these two approaches.

sults in lower-quality synthetic visual data relative to syn- 041
thetic discrete text in NLP; nonetheless, recent attempts us- 042
ing synthetic visual data shows promise [2, 22, 29]. For in- 043
stance, SynCLR [28] cleverly prompts Stable Diffusion for 044
synthetic images tailored to pre-specified downstream im- 045
age classification tasks; a CLIP model trained on the result- 046
ing targeted synthetic dataset can outperform CLIP trained 047
on a significantly larger untargeted dataset of real images. 048
The underlying factors driving these gains, however, war- 049
rant closer examination. In particular, prior work has often 050
compared task-targeted synthetic data to general real data, 051
thereby entangling the effects of training on synthetic ver- 052
sus real data with the effects of targeted versus general data 053
collection. However, critically, we observe that these vari- 054
ables are not intrinsically conflated: any synthetic data we 055
generate from a model is ultimately derived from the up- 056
stream dataset used to train the generator. Thus, instead of 057
sampling targeted synthetic data, we can alternatively re- 058
trieve targeted real data directly from that upstream dataset 059
(Figure 1). In doing so, we exactly isolate the contribution 060
of the generative model. Under this framework, we ask: 061
what gains (if any) does the intermediate step of train- 062
ing a generator and sampling synthetic data for training 063
provide? What gains are due to targeted data collection? 064
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In this paper, we operationalize these questions in the065
task adaptation setting, where high-quality targeted data is066
critical. We empirically compare training with targeted syn-067
thetic images generated from Stable Diffusion—a text-to-068
image model trained on the LAION-2B dataset—against069
training with targeted real images carefully sourced from070
LAION-2B itself. Through experiments across several data071
scales on three datasets where training on targeted syn-072
thetic data has shown promise [28], we find that while tar-073
geted synthetic data can be useful for model adaptation,074
targeted synthetic data largely lags behind targeted real075
data. Our analysis suggests that synthetic images may dis-076
tort class-specific visual details that targeted real images077
preserve. Overall, assuming we have access to a genera-078
tive model’s upstream training data, our results show that079
synthetic data does not provide strong gains. We conclude080
by presenting opportunities for future work: synthetic data081
has exciting potential in settings where the upstream data082
is inaccessible or infeasible to download; or, even when the083
upstream data is available, synthetic data may provide gains084
that we have simply not yet found.085

2. Related Work086

Learning from synthetic data. Synthetic data has been087
widely explored in the context of many machine learning088
problems [4, 6, 9, 12, 13, 18, 24, 25, 32]. In computer089
vision, synthetic data has traditionally been sourced from090
expert-crafted simulation and rendering pipelines [6, 18,091
20]. Recent advances in text-to-image synthesis via diffu-092
sion models [11, 21, 26] are changing this paradigm, in-093
spiring a new line of work that seek to train visual models094
on synthetic data algorithmically sampled from conditional095
image generation models [2, 8, 22, 29]. This shift in the096
source of synthetic images from programmatic simulation097
to a learned generator that itself derives from an upstream098
dataset poses a new question: does the intermediate step of099
training a generator and sampling synthetic data provide any100
gains over simply training on the upstream data directly?101
Our work seeks to elucidate this phenomena.102

Adapting pretrained vision models. Large-scale pre-103
trained vision models like CLIP [5, 19] offer transferable104
visual features that benefit a wide range of downstream105
tasks; it is now common to use pretrained models as a start-106
ing point for task-specific models instead of training from107
scratch. Our work also uses CLIP as the foundation for task108
adaptation. The primary methods for adapting CLIP are lin-109
ear probing and finetuning, but many other methods have110
been proposed, focusing on parameter efficiency [3, 34],111
performance [7], and distributional robustness [15, 33]. Our112
work explores CLIP adaptation from a data-centric perspec-113
tive; we compare the use of real versus synthetic data when114
constructing task-targeted datasets for simple finetuning.115

3. Problem Setting and Method 116

Given a large dataset D of general real image-text pairs and 117
a downstream visual classification task specified as a set of 118
text class names C, we wish to algorithmically construct 119
a targeted adaptation dataset DC of images and labels 120
to finetune and improve a pretrained vision model’s per- 121
formance on the downstream task. We compare two ap- 122
proaches for sourcing targeted data, shown in Figure 1: (1), 123
we use D to first train a text-to-image generator G and sub- 124

sequently query G to build a dataset D(synthetic)
C of targeted 125

synthetic images. Alternatively, (2) we source data directly 126
from D by finding a relevant subset of targeted real images 127

D(retrieved)
C ⊂ D. We detail each approach below. 128

Sourcing data by generating synthetic images. We fol- 129
low SynCLR [28], a method representative of the current 130
state-of-the-art for curating synthetic training data from off- 131
the-shelf text-to-image models. In brief, given the set of vi- 132
sual class names C, we first synthesize a large corpus of cor- 133
responding image captions by prompting a large language 134
model (details in Appendix A.1). We then use those cap- 135
tions as input for a text-to-image generator G trained on the 136
upstream data D, yielding a large set of synthesized images 137
xi. Each image xi is assigned a one-hot class label yi ac- 138
cording to the class name c ∈ C used to synthesize its cap- 139
tion. These synthetic images and labels (xi, yi) form our 140

curated dataset D(synthetic)
C . 141

Sourcing data by retrieving real images. Alternatively, 142
rather than querying a generator trained on an upstream 143
dataset D, we can directly source images from D itself. D 144
consists of image-text pairs (xi, ti). To find relevant pairs, 145
we design a simple two-step retrieve-then-filter strategy in- 146
spired by prior work on neural priming [31]. First, we 147
gather a preliminary set S of images by coarsely retriev- 148
ing all images xi whose corresponding caption ti contains 149
at least one target class name c ∈ C as a substring: 150

S = {(xi, ti) ∈ D : ∃c ∈ C such that c ∈ ti}. 151

Each selected image-text pair (xi, ti) ∈ S is further as- 152
signed a one-hot class label yi based on the matched class 153

name c ∈ ti. We obtain the final targeted dataset D(retrieved)
C 154

by filtering the candidate set S for images whose CLIP sim- 155
ilarity with text describing the downstream domain of inter- 156
est passes some manually-defined threshold τ : 157

D(retrieved)
C = {(xi, ti, yi) ∈ S : CLIP(xi, domain text) > τ} 158

For example, if our domain C is a set of flower names, we 159
filter for images that have sufficiently high similarity with 160
the text “a photo of a flower”. We find τ = 0.2 generally 161
works well. See Appendix A.2 for further details. 162
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Figure 2. We adapt a pretrained CLIP image encoder (gold squares) to different downstream image classification tasks, using either
targeted synthetic data generated from a Stable Diffusion model trained on LAION-2B (red triangles) or using targeted real data directly
retrieved from LAION-2B (blue circles). Overall, while adapting CLIP with targeted synthetic data can improve downstream linear probing
accuracy over an unadapted model, synthetic data generally lags behind targeted real data. This gap persists even when we scale the sample
size of the synthetic adaptation dataset beyond the maximum amount of (finite) targeted real data available (gray shaded regions).

4. Experiments and Results163

Experimental setup. We compare the efficacy of targeted164
synthetic data versus retrieved (real) data for adapting a pre-165
trained model to a downstream image classification task.166
We focus evaluation on three standard benchmarks where167
synthetic data has thus far shown promise versus similar-168
scale untargeted real data [28]: FGVC-Aircraft [16], Stan-169
fordCars [14], and Oxford Flowers102 [17].170

For each downstream benchmark, we first curate an171
adaptation dataset DC by either (1) generating synthetic im-172
ages with Stable Diffusion 1.5 [21], trained on the LAION-173
2B dataset [23], or (2) retrieving directly from LAION-2B174
(Section 3). We then adapt a LAION-2B pretrained CLIP175
ViT-B/16 [5] image encoder by finetuning on the adaptation176
dataset DC for a fixed 30 epochs with a cross-entropy clas-177
sification loss. Finally, we report the test set linear probing178
(LP) accuracy, using the validation set to identify the best179
epoch and hyperparameters. Further training and hyperpa-180
rameter details are provided in Appendix B.181

4.1. Main results182

Our main findings are illustrated in Figure 2.183

At equal data scales, targeted synthetic data lags a re-184
trieval approach. While finetuning with targeted synthetic185
data can provide gains over an unadapted CLIP model, fine-186
tuning with targeted retrieved data provides matching and187
often stronger performance in all settings considered. For188
example, on aircraft classification (Figure 2a), finetuning189
on 250k synthetic aircraft images improves downstream lin-190
ear probing accuracy by 3.9 points (64.9% → 68.8%) over191
off-the-shelf CLIP, but finetuning on 250k retrieved air-192
craft images boosts performance by a massive 18.6 points193
(64.9% → 83.5%). Moreover, on Flowers102 (Figure 2b),194
adapting CLIP with targeted synthetic data can hurt per-195
formance, while targeted retrieved data improves or at least196

does not hurt performance on all three benchmarks. Assum- 197
ing we have equal amounts of targeted retrieved and syn- 198
thetic data, adapting with retrieved data is the clear winner. 199

200

Synthetic data can sometimes decrease the gap with re- 201
trieved data given increasing scale, but remains behind. 202
The amount of data we can collect via retrieval is fundamen- 203
tally finite and limited based on the upstream data pool. For 204
example, even after searching through all 2 billion LAION 205
samples for images relevant to the Aircraft benchmark, our 206
retrieval-based curation method found only 341k targeted 207
samples. In contrast, it is easy to create ever-larger synthetic 208
datasets by simply generating more images. Scaling the 209
synthetic adaptation dataset size beyond the amount of re- 210
trieved data available (illustrated in the gray-shaded regions 211
of Figure 2), we find that increasing the amount of targeted 212
synthetic data does not always improve performance. On 213
StanfordCars and Flowers102, for instance, scaling from 214
125k synthetic images to 210k+ synthetic images barely 215
shifts the downstream accuracy. On Aircraft, scaling does 216
help; there is a clear upward trend in performance as the 217
amount of targeted synthetic data increases (e.g., scaling 218
from 250k → 500k synthetic images improves performance 219
from 68.8% → 71.6%). However, synthetic data still lags 220
retrieved data: matching the performance of a mere 31.25k 221
retrieved aircraft images requires scaling the synthetic adap- 222
tation dataset to 2.5M images, reflecting an 80x difference 223
in dataset size and required finetuning compute. Naively 224
extrapolating this ratio outwards, matching the performance 225
of the full 341k retrieved adaptation dataset would require 226
nearly 30 million synthetic images. We note, however, that 227
synthetic data is unlikely to truly scale infinitely, as syn- 228
thetic data fundamentally derives from the (finite) training 229
set of our generative model. Nonetheless, the performance 230
of synthetic data is likely unsaturated at the 2.5M scale (i.e., 231
accuracy is still trending up); studying whether further scal- 232
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Test Set  “Airbus A320” Synthetic “Airbus A320” Retrieved “Airbus A320”

Figure 3. We visualize synthetic (middle box) and retrieved real (right box) aircraft images, comparing to ground truth (left box). While the
synthetic images are recognizable as aircraft, they often distort key details such as the wheel configuration that retrieved images preserve.
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Figure 4. Zero-shot Aircraft accuracy of a pretrained CLIP
model adapted with either synthetic or retrieved airplane images.

ing can outperform retrieved data is left for future work.233

4.2. Why does synthetic data lag retrieved data?234

We further analyze the Aircraft task, as it was the only task235
where adapting CLIP with either synthetic or retrieved data236
yielded linear probing (LP) accuracy gains. Figure 3 visual-237
izes a few randomly-chosen images from our Aircraft adap-238
tation datasets. Although the synthetic images are identifi-239
able as airplanes, they often misrepresent class-specific de-240
tails. For example, a correctly depicted Airbus A320 should241
feature two sets of dual wheels at its rear, yet our synthetic242
images often exhibit incorrect wheel configurations. In con-243
trast, retrieved images preserve these details.244

We hypothesize that this qualitative discrepancy in detail245
precision may partially explain why synthetic data lags re-246
trieved data. Specifically, we hypothesize that while adapt-247
ing CLIP with targeted synthetic data helps align CLIP’s248
representation to the broad aircraft domain (as evidenced249
by the observed LP accuracy gains), synthetic images alone250
are too noisy to directly learn an effective task model (espe-251
cially in a fine-grained classification setting like Aircraft).252
To quantitatively test this hypothesis, we evaluate the zero-253
shot accuracy of CLIP models adapted with targeted syn-254
thetic and retrieved aircraft images (Figure 4). Overall,255
adapting models with retrieved images yields strong zero-256
shot performance that improves with dataset scale, while257
adapting with synthetic images barely changes zero-shot ac-258
curacy from an unadapted CLIP baseline. Notably, CLIP259
adapted with either 31.25k retrieved images or 2.5M syn-260
thetic images both achieve a similar LP accuracy (∼ 73%),261

yet the model adapted with synthetic data achieves a much 262
worse zero-shot accuracy (29.0% versus 42.6%). Thus, 263
models adapted with synthetic data have distinctly different 264
behaviors; additional linear probing after model adaptation 265
is crucial for the gains from synthetic data that we observed. 266

5. Discussion 267

Conclusion. Our work sought to answer a key question: 268
given a large pool of general image-text data and a desired 269
downstream task, what is the best way to make use of that 270
data for adapting a pretrained model? Is it better to train a 271
generative model on the data pool and sample task-targeted 272
synthetic images for adaptation? Or do we prefer to lever- 273
age the general data directly, by finding a relevant subset? 274
On three tasks where synthetic data has been shown effec- 275
tive, we discover that using relevant real data directly via re- 276
trieval is superior, partially because synthetic images from 277
current text-to-image model often corrupt task-relevant vi- 278
sual details. Thus, training a generative model and sampling 279
synthetic data does not provide any strong gain. 280

Limitations and Future Work. There are a few asterisks 281
to the generality of our results that suggest future opportuni- 282
ties for synthetic visual data. First, we assume access to the 283
generative model’s upstream training set. This may not al- 284
ways hold—the upstream pool may be publicly unavailable 285
due to copyright or privacy concerns; even if it is shared, 286
it may be infeasible for end-users to utilize (e.g., Stable 287
Diffusion’s weights are 2GB in size, whereas LAION-2B 288
is over 200TB). Second, the downstream tasks we evalu- 289
ated all admitted a simple substring-matching retrieval ap- 290
proach for sourcing targeted real data. However, there may 291
be scenarios where retrieving targeted real data is challeng- 292
ing, yet training a generative model to produce such tar- 293
geted data is easy. For instance, in NLP, instruction data 294
may be difficult to extract from pretraining corpora but is 295
easy to generate via a language model. What analogous set- 296
tings can we find in vision? Third, our experiments focused 297
on three fine-grained visual classification tasks. Can syn- 298
thetic data provide gains over real data for a more broad 299
visual task? Finally, we consider synthetic data and real 300
data separately—would mixing them provide complemen- 301
tary gains? We leave these questions for future work. 302
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Training with Real instead of Synthetic Generated Images Still Performs Better

Supplementary Material

A. Details in Methodology460

A.1. Curating data by generating synthetic images461

Given a set of visual class names C from our target task, we462
first synthesize a large corpus of image captions for each463
class name by prompting a large language model (we use464
LLamA-2 7B [30]). For each concept name c ∈ C, we use465
three type of prompts to convert c into an image caption466
following [28]. For the sake of completeness, we detail the467
prompts here:468

1. c 7→ caption. We prompt the language model (LM)469
to directly translate the class name into a caption using a470
prompt with 3 few-shot in-context examples.471

2. c, background 7→ caption. We prompt the LM with472
an additional background attribute that is randomly sam-473
pled from a set that is predetermined based on the domain474
of C. For example, if C contains a list of flower names,475
then possible background attributes might include “garden,”476
“meadow,” or “forest.” These background attributes are au-477
tomatically generated by prompting a strong instruction-478
tuned language model such as GPT-4 [1] with the class479
names C. We provide the LM with 3 in-context examples480
of c, background 7→ caption mappings.481

3. c, relation 7→ caption. We prompt with an addi-482
tional spatial relationship attribute that is sampled from a483
domain-invariant set of relationships, such as “next to,” “be-484
low,” “besides,” etc. We provide 3 in-context examples of485
c, relation 7→ caption mappings.486

Each of these captions are directly used as text input to Sta-487
ble Diffusion 1.5 to produce our targeted synthetic dataset488

D(synthetic)
C . When sampling from Stable Diffusion, we de-489

noise for 50 DDIM [27] steps starting from Gaussian noise,490
using a classifier-free guidance [10] scale of 2.5.491

A.2. Curating data by retrieving real images492

After obtaining a candidate set of image-text pairs S =493
{(xi, ti) ∈ D : ∃c ∈ C such that c ∈ ti}, we wish to filter S494
to minimize false-positive image-text pairs where the text ti495
contains a class name c ∈ C, but is unrelated to the desired496
domain. For example, in the Aircraft task, one of the class497
names is “Tornado” (a type of military aircraft), but naively498
searching based on this class name returns many candidate499
images of a tornado weather event. Thus, we filter S to only500
keep images that are actually relevant to the desired domain501
via CLIP cosine similarity score. Recall from Section 3:502

D(retrieved)
C = {(xi, ti, yi) ∈ S : CLIP(xi, domain text) > τ}503

The domain text (e.g., if the desired classes C are aircraft 504
names then the domain text might be “a photo of an air- 505
plane”) here can be manually-written, or it can be automati- 506
cally generated by prompting a language model with the set 507
of class names C. 508

To find a reasonable filtering threshold τ for a desired 509
task domain C, we simply try a sweep τ ∈ {0.19, 0.2, 0.21} 510
and select the optimal threshold based on downstream val- 511
idation set performance. The set {0.19, 0.2, 0.21} was se- 512
lected by qualitatively visualizing the CLIP similarity of a 513
few images from the downstream benchmark training set 514
with the desired domain text. This hyperparmeter is not 515
finely-tuned in our paper; we leave more a more systematic 516
ablation study to future work. 517

B. Details in Experimental Setup 518

B.1. Finetuning details 519

To finetune CLIP for a specific downstream image classifi- 520
cation task, we first initialize a linear readout head W using 521
the weights from the text-based zero-shot CLIP model [5]. 522
Concretely, we initialize W using the CLIP text embed- 523
dings of the class names for the desired downstream task. 524
We then append the classification head W on top of CLIP’s 525
vision encoder, and train end-to-end using a standard cross 526
entropy classification loss against one-hot labels. 527

We could alternatively choose to finetune CLIP with a 528
contrastive objective, where each positive pair is a syn- 529
thetic or retrieved image alongside its corresponding cap- 530
tion. However, we find that cross entropy finetuning per- 531
forms better across the board, so we use cross entropy fine- 532
tuning for all experiments in our paper. 533

B.2. Hyperparameter details 534

We start with relatively standard hyperparameters from 535
prior work [33], and tune them in our setting by finetuning 536
CLIP on a small-scale dataset of retrieved or synthetic im- 537
ages and grid-sweeping learning rate and batch size. From 538
the hyperparmeters we tried at this scale, we find the fol- 539
lowing work best for both synthetic and retrieved images: 540

• Batch size: 512 541
• Learning rate: 1e-5 542
• Warmup steps: 500 543
• LR schedule: Cosine decay 544
• L2 weight decay: 0.1 545

These hyperparameters are used for all our finetuning ex- 546
periments. We train with an AdamW optimizer, using 547
β1 = 0.9, β2 = 0.95. 548
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